EP2999351A1 - Procede de preparation d'une emulsion d'un principe actif et particules obtenues a partir de cette emulsion - Google Patents

Procede de preparation d'une emulsion d'un principe actif et particules obtenues a partir de cette emulsion

Info

Publication number
EP2999351A1
EP2999351A1 EP14731697.0A EP14731697A EP2999351A1 EP 2999351 A1 EP2999351 A1 EP 2999351A1 EP 14731697 A EP14731697 A EP 14731697A EP 2999351 A1 EP2999351 A1 EP 2999351A1
Authority
EP
European Patent Office
Prior art keywords
emulsion
active ingredient
protein
anionic polysaccharide
whey
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14731697.0A
Other languages
German (de)
English (en)
Inventor
Jean-Marie Dollat
Géraldine LAFITTE
Emilie RUFFIN
Odile CHAMBIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adisseo France SAS
Original Assignee
Adisseo France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adisseo France SAS filed Critical Adisseo France SAS
Publication of EP2999351A1 publication Critical patent/EP2999351A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/07Retinol compounds, e.g. vitamin A
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/20Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from milk, e.g. casein; from whey
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/04Animal proteins
    • A23J3/08Dairy proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/066Multiple emulsions, e.g. water-in-oil-in-water
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/67Vitamins
    • A61K8/678Tocopherol, i.e. vitamin E
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/733Alginic acid; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/113Multiple emulsions, e.g. oil-in-water-in-oil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1658Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5052Proteins, e.g. albumin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5073Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use

Definitions

  • the invention relates to hydrophobic and fat-soluble active ingredient particles and to a process for their manufacture.
  • vitamins and fatty acids are very widely used in many technical fields such as the pharmaceutical, cosmetics and agri-food industries, and in particular in the field of animal nutrition.
  • vitamins A and E are commonly used for the preparation of foods promoting the growth of animals.
  • the present invention is hereinafter more particularly described with reference to vitamin A, but of course its frame is not restricted thereto, and it applies to any hydrophobic and fat-soluble active substance and any mixture of such substances.
  • Vitamin A exists in several forms, especially as an ester, and it is in one of its most stable forms, retinyl acetate, that it is most often consumed by animals. breeding (poultry, pigs and cattle). It remains sensitive to oxidation, temperature, light, acids. In pharmaceutical or animal nutrition applications, it is thus very quickly degraded as soon as it comes into contact with the first severe conditions, particularly acidic ones, of the digestive system, which does not make it a bioavailable form of vitamin A.
  • vitamin A is mixed with gelatin, and then crosslinking of the gelatin is caused to obtain, by atomization or double emulsion, vitamin A particles.
  • One of the aims of the present invention is to obtain a protected form, or particle, of hydrophobic and fat-soluble active ingredients, without resorting to gelatin, while retaining the interest of the latter, in particular its protective properties, its easy supply and its simple handling.
  • gelatin requires that of a crosslinking agent such as glutaraldehyde, and it is also an object of the invention to overcome such an agent.
  • the invention also aims to implement an industrializable and environmentally friendly manufacturing process, to obtain such a form of active ingredient.
  • the particles must have a vitamin content of at least 1 000 000 IU / g;
  • the active ingredient must be stable physico-chemically and bioavailable.
  • the particles obtained must be of small size, preferably between 50 and 1000 ⁇ , advantageously less than 800 ⁇ and better still of the order of 300 ⁇ .
  • they must have a low residual moisture, preferably less than 8% and be insoluble in water.
  • the document WO01 / 47560A2 describes a process for producing particles of a fat-soluble vitamin, such as vitamin A, consisting in obtaining an o / w emulsion by adding an oily solution of said vitamin in an aqueous suspension of a gelling agent which is preferably a carrageenan and a protein, which may be a milk protein such as a casein or a lactoglobulin; the particles are then formed by double-emulsion (h / e / h) or atomization
  • the authors have developed a process for manufacturing particles of active ingredients, meeting all of the above imperatives and further improving the encapsulation of active ingredients.
  • Whey protein generally means whey protein of cow's milk, however these same proteins may be derived from the milk of another mammal such as goat.
  • Cow's milk proteins are composed of 80% casein, a protein that can coagulate in acid or rennet by leaving a liquid, the whey that contains the other milk proteins, essentially lactalbumin and lactoglobulin.
  • the whey proteins are those selected according to the invention. Indeed, in addition to their emulsifying and gelling properties as revealed in the context of the method of the invention, these proteins have a high nutritional value for humans or animals; they are also assimilable and metabolizable by the human or animal organism.
  • the whey proteins are essentially as follows: beta-lactoglobulin, alpha-lactalbumin, alpha-S1 and -S2 caseins, beta-casein, -gamma and -kappa, bovine serum albumin, IgG immunoglobulins IgA, IgM, IgE and IgD, lactoferrin and proteose peptone.
  • the invention relates to a method for producing particles of a hydrophobic and fat-soluble active ingredient, using whey proteins. It first provides for the preparation of a double emulsion of said active ingredient, then obtaining particles from this emulsion.
  • An object of the invention is therefore a process for preparing an emulsion double with an active ingredient, such as vitamin A, said process comprising the following steps:
  • step (e) An emulsion e / e of the solutions (c) and (b) is prepared, then an emulsion h / (e / e) of the active ingredient in the emulsion e / e is prepared hot.
  • step (f) the above process is completed by a step (f) according to which the emulsion is subjected to obtained in step (d) or (e) at an encapsulation step for producing particles of said active ingredient.
  • this process makes it possible to meet all the above-mentioned requirements, in particular, it makes it possible to manufacture particles with a high content endit active ingredient, which are stable and constitute a highly bioavailable form of the active principle.
  • the proteins involved in step (a) of the processes are those of whey.
  • Whey is a by-product of the cheese and casein industry, commonly known as "whey" and obtained after separation by precipitation of milk caseins.
  • 1 L of whey contains about 65g of solid compounds, mainly lactose (70-80%), minerals (9%) and proteins remaining in solution in the milk serum after precipitation of caseins (9% ). They represent 15 to 22% of the total protein of a bovine milk.
  • the major protein constituents are ⁇ -lactoglobulin ( ⁇ -LG), ⁇ -lactalbumin ( ⁇ -LA), immunoglobulins (Ig), bovine serum albumin (BSA), sodium caseinate, and proteose-peptones derived from degradation of ⁇ -casein (10 to 20%). At lower concentrations, it also contains ⁇ -casein, as well as various other proteins such as lactoferrin (LF), lactollin and transferrin.
  • Whey proteins are commercially available.
  • BiPRO ® milk protein isolate or Whey Protein Isolate, WPI
  • WPI Whey Protein Isolate
  • WPC milk protein concentrates
  • WPC35 SICAPRO ® supplied by Euroserum (France)
  • WPC60-WPC80 MILEI ® supplied by Milei (Germany).
  • the proportion of the total proteins in the whey is preferably at least 30% (w / w, dry weight), advantageously at least 60%, more preferably at least 80% w / w. %, or even at least 90%.
  • the protein fraction of whey is rich in ⁇ -LG; preferably, according to the invention, this proportion reaches at least 66% (w / w, dry weight). Nevertheless, a lower proportion of said proteins, for example of at most 25% (w / w, in dry weight) can advantageously be counterbalanced by the presence of lactose which also makes it possible to significantly increase the nutritional value of the product.
  • the whey proteins For use in the process of the invention, the whey proteins must be denatured. The authors observed that this step makes it possible to increase, unexpectedly, the emulsifying properties of these proteins. They are denatured under conditions known to those skilled in the art. However, the denaturation is preferably carried out by heat treatment, at a temperature of 70 to 80 ° C, for at least 15 minutes. Heating at 80 ° C for 30 minutes results in complete denaturation. According to the invention, denaturation of the whey protein or proteins means that at least 80% of said proteins are denatured. Advantageously, at least 90% are denatured and in an optimal process, all the whey proteins involved are denatured.
  • the process of the invention it is possible to obtain an emulsion, then, by shaping this emulsion, particles of any active ingredient, hydrophobic and fat-soluble; without being restricted to it, it is particularly suitable for the manufacture of vitamin A particles or vitamin E.
  • the vitamin is diluted in an oil, for example rapeseed oil before being dispersed.
  • an aqueous solution of at least one anionic polysaccharide is available.
  • anionic polysaccharide must be compatible with whey proteins, they must facilitate the obtention of a double emulsion according to step (d) or (e), and be capable of forming a gel with a view to the step (f).
  • they are preferably chosen from pectins, and in particular pectins low-methylated alginates, carrageenans such as kappa-carrageenan, xanthan and gellan gum, as well as any mixture thereof.
  • Pectins are polymers of vegetable origin, mainly composed of a chain of ⁇ - (1 -4) bonds of D-galacturonic acid (AG) which can be esterified with methanol, or amide.
  • the degree of esterification, or methylation (-COOCH 3 ), abbreviated DE, and amidation (-CONH 2 ) abbreviated to DA, of the AG is defined as the number of methylated or amidated carboxylic functions, respectively, for 100 GA motives.
  • low methylated pectins with a DE of less than 50% are preferred. They make it possible to obtain particles by cold ionic gelation, and offer the advantage of not affecting the solubility of milk proteins at a pH of 4 to 6.
  • Such pectins are commercially available; we can mention those provided by Cargill, extracted from lemon juice, namely:
  • the weight ratio (in dry weight) of the protein (s) to the anionic polysaccharide (s) varies from 1: 2 to 7: 1.
  • the weight ratio (in dry weight) of the active ingredient to the mixture of the protein (s) and of the anionic polysaccharide (s) varies from 0.3: 0.7 to 0.6: 0.4.
  • step (d) of the process said active ingredient is mixed with the aqueous protein solution of step (a) and an o / w emulsion of said active ingredient is produced at a temperature which is sufficiently low so as not to degrade. the active ingredient but high enough to obtain the emulsion. It varies according to the active ingredient, it is generally between 40 and 60 ° C. Effective dispersion is obtained with stirring. The resulting o / w emulsion is then mixed with the solution (b) while maintaining the temperature between 40 and 60 ° C with stirring.
  • the conditions for obtaining an emulsion (h / e) / e can be easily determined by those skilled in the art on the basis of of his general knowledge. Specific examples will be described later.
  • step (e) it is possible, according to step (e), to produce an emulsion e / e: the solutions of steps (c) and (b) are mixed so as to obtain, with stirring, an emulsion e / e.
  • the active ingredient is then added and, under appropriate conditions, an emulsion (e / e) / h is obtained.
  • Advantageous conditions consist in dispersing, at a temperature ranging from 40-60 ° C, the active principle in the emulsion e / e, and in applying a high shear stirring, to this dispersion.
  • the conditions for obtaining this emulsion (e / e) / h can be easily defined by the skilled person on the basis of his general knowledge. Specific examples will be described later.
  • milk proteins, and anionic polymers it is preferable to provide a step prior to the process, according to which the milk protein (s) and the anionic polysaccharide (s) are respectively rehydrated.
  • This step can be carried out with gentle stirring, for at least one or even a few hours, so as not to break the protein aggregates of the former or the polymer network of the latter.
  • step (f) particles of active principle from the emulsion obtained in step (d) or (e) above, any conventional technique well known and controlled by those skilled in the art can be used. to be implemented. It will in particular be selected according to the desired particle size.
  • the manufacture of the particles is carried out by cold ionic gelling, by extrusion of said emulsion, and then immersion of the resulting drops in an aqueous solution of ions.
  • Monovalent or divalent ions are preferred, and in particular sodium, potassium, calcium and / or zinc ions.
  • the solution contains zinc acetate. This method makes it possible to obtain particles ranging in size from about 1 to about 2.5 mm.
  • Step (f) can also be carried out by atomization / drying of the emulsion resulting from step (d) or (e). This technique makes it possible to obtain particles of smaller sizes on the order of 0.05 to 1 mm.
  • the invention also relates to particles of a hydrophobic and fat-soluble active ingredient having a size preferably of less than 2.5 mm, comprising at least one whey protein and an anionic polysaccharide.
  • the protein or proteins constituting these particles are one or more proteins as described above according to advantageous variants of the method of the invention.
  • the anionic polysaccharide (s) and the active ingredient are those defined above, in the advantageous proportions also indicated.
  • the particles of the invention are advantageously obtained by a process as described above. They have a spherical and regular shape, non-greasy surface, they are non-sticky and non-agglomerated and have a low residual moisture.
  • the WPI is dissolved in water to obtain a concentration of 12% (w / v), and dispersed with gentle stirring (300 rpm) for at least 2 hours. Separately, the pectin is subjected to the same rehydration treatment, the concentration of the solution being 4% (w / v). The solutions are then left standing overnight at room temperature. Each solution is briefly stirred before use.
  • the WPI solution is subjected to a heat treatment, by heating in a water bath for 30 minutes at 80 ° C, for denaturation.
  • the pH of the solution is of the order of 7.
  • This simple oil-in-water emulsion (W / W) is then diluted by addition in an amount equal to the protein, of an aqueous solution of pectin (1: 1, v / v), for 5 minutes with moderate stirring (760). rpm, still at 50 ° C.
  • the weight ratio of protein to pectin is 2.8: 1.
  • the loading rate of vitamin A can vary from 10 to 20% of the weight of the final emulsion.
  • the diluted emulsion remains under gentle stirring (300 rpm) before being extruded until the last drop is dropped.
  • the diluted emulsion is transferred through a peristaltic pump or syringe pump, through a hose to a syringe with a needle or a vibrating nozzle.
  • the emulsion drops fall into a bath of 10% (w / v) divalent (Ca 2+ ) cations with continuous and moderate magnetic stirring.
  • the gelled beads are then collected by filtration under vacuum and washed with distilled water (300 mL in 2 times from Ca 2+ .) Finally, the beads are spread / spread on a sheet of parchment paper, arranged on a tray, to be dried between 48 and 72h (depending on the extrusion device) in a ventilated oven at 37 + 2 ° C.
  • the particles obtained can respond to an organized structure, in separate layers, a layer of pectin being adsorbed on the surface of the protein layer, or a disorganized structure in a mixed layer in which the pectin and the protein are distributed.
  • the encapsulation yield of vitamin A is 92%.
  • Vitamin charge (Vitamin A + BHT) 73.0%
  • a water-in-water emulsion (e / e) is produced at room temperature with magnetic stirring. To this end, the two solutions, at pH 7, are emulsified for 5 minutes at 4440 revolutions / minute in a stirred high shear Ultra-Turrax ® T25 (IKA).
  • Vitamin A is dispersed at 50 ° C. and then emulsified at 50 ° C. for 10 minutes in the above agitator at 4400 rpm to obtain an emulsion h / (e / e).
  • the emulsion h / (e / e) is subjected to a cold ionic gelation: for this purpose, the extrudates are then extruded and then the drops obtained are immersed in a bath of divalent cations at 0.degree. The beads obtained are allowed to harden with magnetic stirring for 10 minutes. The mixture is then filtered off under vacuum and the resulting particles are washed with water. They are then dried in a ventilated oven at 37 ° C.
  • the encapsulation efficiency of vitamin A is 99%.
  • Example 1 200 mg of particles obtained in Example 1 are placed in a dissolution bath, acid medium pH 1, 2 (1 L, stomach medium) for 2 hours and then they are transferred for 4 hours in a pH buffer phosphate buffer bath 6.8 (1 L, intestinal medium).
  • a 3 ml sample is taken to measure the absorbance and determine the amount of vitamin A released.
  • a measurement of white is carried out before the kinetic start (pH 1, 2) and before the transfer of the particles to pH 6.8.
  • the absorbance measurement is made with a UV / visible spectrophotometer.
  • composition of the media is hereinafter described.
  • the medium at pH 1, 2 consists of: NaCl 2.9g
  • the medium at pH 6.8 is composed of:
  • Sodium ascorbate and Triton X100 act as antioxidants and surfactants respectively. They are necessary in order to improve the stability of vitamin A and to facilitate its solubilization in a polar aqueous medium.
  • the release results are shown in the figure in comparison with vitamin A particles obtained by a conventional double gelatin emulsion method.
  • the particles of the invention provides enhanced protection of vitamin A at gastric pH and promotes an immediate and less diffuse release of the vitamin at intestinal pH.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Birds (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Nutrition Science (AREA)
  • Zoology (AREA)
  • Dermatology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Fodder In General (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

L'invention concerne un procédé de préparation d'une émulsion double d'un principe actif hydrophobe et liposoluble, qui comprend les étapes suivantes: (a) On dispose d'une solution aqueuse d'au moins une protéine de lactosérum; (b) On dispose d'une solution aqueuse d'au moins un polysaccharide anionique; (c) On soumet la ou les protéines du lactosérum à un traitement de dénaturation; (d) On prépare à chaud une émulsion h/e du principe actif dans la solution (c), puis on prépare à chaud une émulsion (h/e)/e de l'émulsion h/e dans la solution (b), ou (e) On prépare une émulsion e/e des solutions (c) et (b), puis on prépare à chaud une émulsion h/(e/e) du principe actif dans l'émulsion e/e. Elle concerne aussi la fabrication de particules dudit principe actif à partir d'une émulsion ainsi préparée, et les particules obtenues.

Description

PROCEDE DE PREPARATION D'UNE EMULSION D'UN PRINCIPE ACTIF ET PARTICULES OBTENUES A PARTIR DE CETTE EMULSION
L'invention concerne des particules de principes actifs hydrophobes et liposolubles, et leur procédé de fabrication.
Ces molécules, comme les vitamines, les acides gras, sont très largement employées dans de nombreux domaines techniques tels que les industries pharmaceutique, cosmétique, agroalimentaire, et notamment dans le domaine de la nutrition animale. A titre d'exemple, les vitamines A et E sont couramment utilisées pour la préparation d'aliments favorisant la croissance d'animaux.
Leur nature hydrophobe et leur fragilité environnementale, notamment thermique et chimique, tant au cours de leur formulation et de leur stockage, que lors de leur utilisation, rendent nécessaire leur encapsulation.
La présente invention est ci-après plus particulièrement décrite en référence à la vitamine A, mais bien entendu, son cadre n'y est pas restreint, et elle s'applique à toute substance active hydrophobe et liposoluble et tout mélange de telles substances.
La vitamine A existe sous plusieurs formes, notamment à l'état d'ester, et c'est sous l'une de ses formes les plus stables, l'acétate de rétinyle, qu'elle est le plus souvent consommée par les animaux d'élevage (volaille, porcs et bovins). Elle reste toutefois sensible à l'oxydation, à la température, à la lumière, aux acides. En application pharmaceutique ou en nutrition animale, elle est ainsi très rapidement dégradée dès qu'elle entre en contact avec les premières conditions sévères, notamment acides, du système digestif, ce qui n'en fait pas une forme biodisponible de la vitamine A.
Afin de préserver au mieux ces principes actifs sensibles, il est connu depuis longtemps de les protéger par enrobage ou encapsulation. Diverses voies d'encapsulation de la vitamine A ont été développées et largement utilisées, comme celle impliquant des protéines, et notamment la gélatine : la vitamine A est mélangée à de la gélatine, puis une réticulation de la gélatine est provoquée permettant d'obtenir, par atomisation ou double émulsion, des particules de vitamine A.
Un des buts de la présente invention est d'obtenir une forme protégée, ou particule, de principes actifs hydrophobes et liposolubles, sans recourir à la gélatine, tout en conservant l'intérêt de cette dernière, notamment ses propriétés protectrices, son approvisionnement facile et sa manipulation simple. L'utilisation de la gélatine nécessite celle d'un agent réticulant comme le glutaraldéhyde, et c'est aussi un des objectifs de l'invention de s'affranchir d'un tel agent. L'invention vise en outre la mise en œuvre d'un procédé de fabrication industrialisable et respectueux de l'environnement, pour obtenir une telle forme de principe actif.
La substitution de la gélatine par un ou plusieurs biopolymères doit répondre aux exigences suivantes :
- Les particules doivent comprendre une teneur en vitamine d'au moins 1 .000.000 Ul/g ;
- Le rendement d'encapsulation doit approcher 100% ;
- Le principe actif doit être stable physico-chimiquement et biodisponible.
Selon le domaine d'application du principe actif, en particulier s'il est destiné à la nutrition animale et donc à être incorporé dans un prémix, les particules obtenues doivent être de faible taille, de préférence une taille comprise entre 50 et 1000 μιτι, avantageusement inférieure à 800 μιτι et mieux encore de l'ordre de 300 μιτι. Elles doivent au surplus posséder une humidité résiduelle basse, de préférence inférieure à 8% et être insolubles dans l'eau.
Les impératifs ci-dessus ont été approchés par des procédés faisant intervenir des protéines de lait comme les caséines et les protéines de lactosérum, pour remplacer la gélatine. Ainsi, le document WO01 /47560A2 décrit un procédé de fabrication de particules d'une vitamine liposoluble, telle que la vitamine A, consistant à obtenir une émulsion h/e par ajout d'une solution huileuse de ladite vitamine dans une suspension aqueuse d'un gélifiant qui est de préférence un carraghénane et d'une protéine, qui peut être une protéine de lait comme une caséine ou une lactoglobuline ; les particules sont ensuite formées par double-émulsion (h/e/h) ou atomisation
Des formes toujours plus stables et plus concentrées de principes actifs hydrophobes et liposolubles sont encore recherchées, et c'est un but de la présente invention.
Les auteurs ont mis au point un procédé de fabrication de particules de principes actifs, respectant l'ensemble des impératifs ci-dessus et améliorant en outre l'encapsulation des principes actifs.
Ce procédé met en œuvre une ou des protéines de lactosérum, après qu'elles sont soumises à un traitement de dénaturation. Par protéines du lactosérum selon l'invention, on entend généralement des protéines de lactosérum du lait de vache, cependant ces mêmes protéines peuvent être issues du lait d'un autre mammifère comme la chèvre. Les protéines du lait de vache sont composées à 80% de caséine, une protéine susceptible de coaguler en milieu acide ou sous l'action de la présure en laissant un liquide, le lactosérum qui contient les autres protéines du lait, essentiellement la lactalbumine et la lactoglobuline. Les protéines du lactosérum sont celles sélectionnées selon l'invention. En effet, en plus de leurs propriétés émulsifiantes et gélifiantes telles qu'elles ont été révélées dans le cadre du procédé de l'invention, ces protéines présentent une haute valeur nutritionnelle pour l'homme ou l'animal ; elles sont également assimilables et métabolisables par l'organisme humain ou animal.
Les protéines du lactosérum sont essentiellement les suivantes : la beta-lactoglobuline, l'alpha-lactalbumine, les caséines alpha-S1 et -S2, les caséines-beta, -gamma et -kappa, l'albumine de sérum bovin, les immunoglobulines IgG, IgA, IgM, IgE et IgD, la lactoferrine et la protéose peptone.
Ainsi, l'invention concerne un procédé de fabrication de particules d'un principe actif hydrophobe et liposoluble, faisant appel à des protéines de lactosérum. Il prévoit d'abord la préparation d'une émulsion double dudit principe actif, puis l'obtention de particules depuis cette émulsion.
Un objet de l'invention est donc un procédé de préparation d'une émulsion double d'un principe actif, comme la vitamine A, ledit procédé comprenant les étapes suivantes :
(a) On dispose d'une solution aqueuse d'au moins une protéine du lactosérum ;
(b) On dispose d'une solution aqueuse d'au moins un polysaccharide anionique ;
(c) On soumet la ou les protéines du lactosérum à un traitement de dénaturation ;
(d) On prépare à chaud une émulsion h/e du principe actif dans la solution (c), puis on prépare à chaud une émulsion (h/e)/e de l'émulsion h/e dans la solution (b), ou
(e) On prépare une émulsion e/e des solutions (c) et (b), puis on prépare à chaud une émulsion h/(e/e) du principe actif dans l'émulsion e/e. Pour obtenir les particules à partir de l'émulsion (d) ou (e), et c'est un autre objet de l'invention, on complète le procédé ci-dessus par une étape (f) selon laquelle on soumet l'émulsion obtenue à l'étape (d) ou (e) à une étape d'encapsulation pour fabriquer des particules dudit principe actif.
Comme dit précédemment, ce procédé permet de répondre à toutes les exigences précitées, en particulier, il permet de fabriquer des particules à teneur élevée endit principe actif, stables et constituant une forme hautement biodisponible du principe actif.
L'invention va maintenant être exposée plus en détail, avec une description plus précise de chacune des étapes (a) à (e) et (f) des procédés de l'invention et la présentation de variantes préférentielles.
Comme dit précédemment, les protéines impliquées à l'étape (a) des procédés, sont celles du lactosérum. Le lactosérum est un produit dérivé de l'industrie fromagère et caséinière, communément appelé « petit lait » et obtenu après séparation par précipitation des caséines du lait. En moyenne, 1 L de lactosérum renferme environ 65g de composés solides, dont essentiellement du lactose (70-80%), des minéraux (9%) et des protéines demeurées en solution dans le sérum du lait après la précipitation des caséines (9%). Elles représentent 15 à 22% des protéines totales d'un lait bovin. Les constituants protéiques majeurs sont la β-lactoglobuline (β-LG), Γα- lactalbumine (α-LA), les immunoglobulines (Ig), la sérumalbumine bovine (BSA), le caséinate de sodium, ainsi que les protéose-peptones issues de la dégradation de la β-caséine (10 à 20%). A des concentrations plus faibles, on y retrouve également de la β-caséine, de même que diverses autres protéines telles la lactoferrine (LF), la lactolline et la transferrine.
Les protéines du lactosérum sont disponibles dans le commerce. Ainsi, on trouve un isolât de protéine de lait (ou Whey Protein Isolate, WPI) de type BiPRO®, fourni par Davisco (USA) qui contient 92,4% de protéines de lait hautement purifiées, dont 72% de β-LG, 14,4% de α-LA et 4,1 % de BSA. On trouve aussi des concentrais de protéines de lait (ou Whey Protein Concentrate, WPC), moins riches en protéines de lait que le WPI et en contenant de 35 à 80%, selon les fournisseurs. Parmi ceux-ci, on peut citer la WPC35 SICAPRO®, fourni par Euroserum (France), les WPC60-WPC80 MILEI®, fourni par Milei (Allemagne). La perte en protéines de lait, dans ces concentrais, est compensée par la présence de lactose (entre 8 et 40%, contre <1 % dans la WPI BiPRO®), de matières grasses et de minéraux et sels. Selon l'invention, la proportion des protéines totales dans le lactosérum est de préférence d'au moins 30% (p/p, en poids sec), avantageusement, elle est d'au moins 60%, mieux encore d'au moins 80%, voire d'au moins 90%. Les auteurs ont effectivement observé que plus cette proportion est élevée, plus forte sont la protection et la biodisponibilité du principe actif dans les particules obtenues. Comme dit précédemment, la fraction protéique du lactosérum est riche en β-LG ; de préférence, selon l'invention, cette proportion atteint au moins 66% (p/p, en poids sec). Néanmoins, une plus faible proportion en dites protéines, par exemple d'au plus 25% (p/p, en poids sec) peut avantageusement être contrebalancée par la présence de lactose qui permet aussi d'augmenter significativement la valeur nutritive du produit.
Pour être utilisées dans le cadre du procédé de l'invention, les protéines de lactosérum doivent être dénaturées. Les auteurs ont observé que cette étape permet d'accroître, de façon inattendue, les propriétés émulsifiantes de ces protéines. Elles sont dénaturées dans des conditions connues de l'homme du métier. Cependant, la dénaturation est de préférence conduite par traitement thermique, à une température de 70 à 80°C, pendant au moins 15 minutes. Un chauffage à 80°C pendant 30 minutes entraîne une dénaturation complète. Selon l'invention, par dénaturation de la ou des protéines du lactosérum, on entend qu'au moins 80% desdites protéines sont dénaturées. Avantageusement, au moins 90% sont dénaturées et dans un procédé optimal, la totalité des protéines de lactosérum impliquées sont dénaturées.
Selon le procédé de l'invention, on peut obtenir une émulsion, puis, par mise en forme de cette émulsion, des particules de tout principe actif, hydrophobe et liposoluble ; sans y être restreint, il est particulièrement adapté à la fabrication de particules de vitamine A ou de vitamine E. Avantageusement, la vitamine est diluée dans une huile, par exemple l'huile de colza avant d'être dispersée.
Parallèlement, on dispose selon l'étape (b) du procédé d'une solution aqueuse d'au moins un polysaccharide anionique. Ceux-ci doivent être compatibles avec les protéines du lactosérum, ils doivent faciliter l'obtention d'une double émulsion selon l'étape (d) ou (e), et être capables de former un gel en vue de l'étape (f) du procédé de fabrication des particules, A cet effet, ils sont de préférence choisis parmi les pectines, et notamment les pectines faiblement méthylées, les alginates, les carraghénanes comme le kappa- carraghénane, le xanthane et la gomme de Gellane, ainsi que tout mélange de ceux-ci.
Les pectines sont des polymères d'origine végétale, composées majoritairement d'un enchaînement de liaisons a-(1 -4) d'acide D-galacturonique (AG) qui peut être estérifié par du méthanol, ou amidé. Le degré d'estérification, ou méthylation (-COOCH3), en abrégé DE, et d'amidation (-CONH2) en abrégé DA, de l'AG est défini comme étant le nombre de fonctions carboxyliques méthylées ou amidées, respectivement, pour 100 motifs d'AG. On préfère selon l'invention des pectines faiblement méthylées, de DE inférieur à 50%. Elles permettent en effet d'obtenir des particules par gélification ionique à froid, et offrent l'avantage de ne pas affecter la solubilité des protéines de lait à un pH de 4 à 6. De telles pectines sont disponibles dans le commerce ; on peut citer celles fournies par Cargill, extraites du jus de citron, à savoir :
Unipectin OF 300C® (DE=30:t:3%; pHinitiai = 2,7 en solution aqueuse) ou LMP1 ,
Unipectin OF 305C® (DE=25% + DA=21 %, pH ai =4,6 en solution aqueuse) ou LMPA,
- Unipectin OF 100C® (DE=3-12%; pHinitiai 4,7 en solution aqueuse) ou LMP2.
Avantageusement, le rapport pondéral (en poids sec) de la ou des protéines au(x) polysaccharide(s) anionique(s) varie de 1 :2 à 7:1 .
Avantageusement, le rapport pondéral (en poids sec) du principe actif au mélange de la ou des protéines et du ou des polysaccharides anioniques varie de 0,3:0,7 à 0,6:0,4.
Selon l'étape (d) du procédé, on mélange ledit principe actif avec la solution protéique aqueuse de l'étape (a) et on réalise une émulsion h/e dudit principe actif à chaud, à une température suffisamment basse pour ne pas dégrader le principe actif mais assez élevée pour obtenir l'émulsion. Elle varie en fonction du principe actif, elle est de généralement comprise entre 40 et 60°C. Une dispersion efficace est obtenue sous agitation. L'émulsion h/e en résultant est alors mélangée à la solution (b) en maintenant la température entre 40 et 60°C et sous agitation. Les conditions d'obtention d'une émulsion (h/e)/e peuvent être aisément déterminées par l'homme du métier sur la base de ses connaissances générales. Des exemples spécifiques seront décrits plus loin.
Alternativement à l'étape (d), on peut réaliser, selon l'étape (e), une émulsion e/e : on mélange les solutions des étapes (c) et (b) pour obtenir sous agitation une émulsion e/e. Le principe actif est ensuite ajouté et, dans des conditions appropriées, on obtient une émulsion (e/e)/h. Des conditions avantageuses consistent à disperser, à une température variant de 40-60°C, le principe actif dans l'émulsion e/e, et à appliquer une agitation à haut cisaillement, à cette dispersion. Comme pour l'étape précédente, les conditions d'obtention de cette émulsion (e/e)/h, peuvent être aisément définies par l'homme du métier sur la base de ses connaissances générales. Des exemples spécifiques seront décrits plus loin.
En vue d'une utilisation optimale, et des protéines de lait, et des polymères anioniques, il est préférable de prévoir une étape préalable au procédé, selon laquelle on réhydrate, respectivement, la ou les protéines de lait, et le ou les polysaccharides anioniques. Cette étape peut être réalisée sous agitation douce, pendant au moins une, voire quelques heures, de manière à ne pas casser les agrégats protéiques des premières, ni le réseau polymère des seconds.
Pour obtenir selon l'étape (f) des particules de principe actif à partir de l'émulsion obtenue à l'étape (d) ou (e) ci-dessus, toute technique classique bien connue et maîtrisée par l'homme du métier peut être mise en œuvre. Elle sera en particulier sélectionnée en fonction de la taille de particules souhaitées. De préférence, la fabrication des particules est effectuée par gélification ionique à froid, par extrusion de ladite émulsion, puis immersion des gouttes obtenues dans une solution aqueuse d'ions. Des ions monovalents ou divalents sont préférés, et notamment les ions sodium, potassium, calcium et/ou zinc. Avantageusement, la solution contient de l'acétate de zinc. Ce procédé permet d'obtenir des particules d'une taille variant d'environ 1 à environ 2,5mm.
L'étape (f) peut aussi être opérée par atomisation/séchage de l'émulsion issue de l'étape (d) ou (e). Cette technique permet d'obtenir des particules de tailles inférieures de l'ordre de 0,05 à 1 mm.
Les particules résultantes subissent ensuite les traitements routiniers de séparation, purification, solidification, séchage, déshydratation... L'invention concerne aussi des particules d'un principe actif hydrophobe et liposoluble, ayant une taille de préférence inférieure à 2,5mnn, comprenant au moins une protéine de lactosérum et un polysaccharide anionique. De préférence, la ou les protéines t constituant ces particules sont une ou des protéines telles que décrites précédemment selon des variantes avantageuses du procédé de l'invention. De même, le ou les polysaccharides anioniques et le principe actif sont ceux définis précédemment, dans les proportions avantageuses aussi indiquées. Les particules de l'invention sont avantageusement obtenues par un procédé tel que décrit ci-dessus. Elles présentent une forme sphérique et régulière, à surface non grasse, elles sont non collantes et non agglomérées et possèdent une faible humidité résiduelle.
Les caractéristiques et avantages de l'invention ressortiront des exemples ci-après illustrant les particules de l'invention et leur procédé d'obtention, à l'appui de la figure annexée qui représente une comparaison de la libération de la vitamine A entre des particules selon l'invention et des particules selon l'art antérieur, en fonction du temps et du pH.
Exemple 1 : Fabrication de particules de vitamine A selon l'invention selon les étapes a), b), c), d) et f)
Les ingrédients utilisés et leurs proportions (en p/p) dans les particules obtenues sont les suivants :
WPI BiPRO® 28,1 %
Pectine LMPI 9,3 %
Charge vitaminée
(Vitamine A + Butylhydroxytoiuène, BHT) 58,9 %
dont Vitamine A 47,2 %
Eau 3,6 %
On met en solution la WPI dans l'eau pour obtenir une concentration de 12% (p/v), et on la disperse sous agitation douce (300 tours/minutes) pendant au moins 2 heures. Séparément, on soumet la pectine au même traitement de réhydratation, la concentration de la solution étant de 4% (p/v). Les solutions sont ensuite laissées au repos pendant une nuit à température ambiante. Chaque solution est brièvement agitée, avant utilisation. La solution de WPI est soumise à un traitement thermique, par chauffage au bain-marie pendant 30 minutes à 80°C, pour dénaturation. Le pH de la solution est de l'ordre de 7.
On disperse, dans cette solution protéique, la vitamine A, puis on émulsionne à chaud à 50°C, pendant 10 minutes sous agitateur à haut cisaillement de type Ultra-Turrax, T25® (IKA) à 6800 tours/min en fonction de la viscosité apparente (η) de l'émulsion pour une dispersion efficace et fine des globules. Le maintien de l'émulsion à chaud, à l'aide d'un bain-marie, permet de réduire la viscosité de l'émulsion et de pallier la gélification prématurée de l'émulsion.
Cette émulsion simple huile-dans-eau (h/e) est ensuite diluée par ajout en quantité égale à la protéine, d'une solution aqueuse de pectine (1 :1 , v/v), pendant 5 minutes sous agitation modérée (760 tours/min, toujours à 50°C. Le rapport pondéral de la protéine à la pectine est de 2,8 :1 .
Le taux de chargement en vitamine A peut varier de 10 à 20% du poids de l'émulsion finale.
L'émulsion diluée reste sous faible agitation (300 tours/min) avant d'être extrudée et ce jusqu'à la chute de la dernière goutte.
L'émulsion diluée est transférée grâce à une pompe péristaltique ou un pousse-seringue, par un tuyau jusqu'à une seringue munie d'une aiguille ou d'une buse vibrante. Les gouttes d'émulsion tombent dans un bain de cations divalents (Ca2+) à 10% (p/v) sous agitation magnétique continue et modérée.
Les billes gélifiées sont ensuite collectées par filtration sous vide et lavées à l'eau distillée (300mL en 2 fois à partir de Ca2+. Enfin, les billes sont étalées/réparties sur une feuille de papier sulfurisé, disposée sur un plateau, pour être séchées entre 48 à 72h (selon le dispositif d'extrusion) sous étuve ventilée à 37+2°C.
Les particules obtenues peuvent répondre à une structure organisée, en couches séparées, une couche de pectine étant adsorbée à la surface de la couche de protéine, ou à une structure désorganisée, en couche mixte dans laquelle sont réparties la pectine et la protéine.
Le rendement d'encapsulation de la vitamine A est de 92%.
Les caractéristiques des particules obtenues sont ci-après rassemblées :
Taille 2,0-2,5 mm Humidité relative 3,6 %
Titre en vitamine A 1 .173.400 Ul/g
Exemple 2 : Fabrication de particules de vitamine A selon l'invention selon les étapes a), b), c), e) et f)
Les ingrédients utilisés et leurs proportions (en p/p) dans les particules obtenues sont les suivants :
WPI BiPRO® 17,6 %
Pectine LMPI 5,8 %
Charge vitaminée (Vitamine A + BHT) 73,0 %
dont Vitamine A 58,4 %
Eau 3,6 %
Les solutions de WPI et de pectine sont préparées comme détaillé à l'exemple 1 .
On réalise une émulsion eau-dans-eau (e/e) à température ambiante sous agitation magnétique. A cet effet, les deux solutions, à pH 7, sont émulsionnées pendant 5 minutes à 4440 tours/minute, dans un agitateur à haut cisaillement Ultra-Turrax® T25 (IKA).
On disperse la vitamine A à 50°C, puis on émulsionne à 50°C, pendant 10 min dans l'agitateur ci-dessus, à 4400 tours/min, pour obtenir une émulsion h/(e/e).
On soumet l'émulsion h/(e/e) à une gélification ionique à froid : à cet effet, on réalise une extrusion puis immersion des gouttes obtenues dans un bain de cations divalents à 0°C. On laisse durcir les billes obtenues sous agitation magnétique, pendant 10 minutes, Puis on sépare par filtration sous vide et on lave les particules résultantes à l'eau. Elles sont ensuite séchées sous étuve ventilée à 37°C.
Le rendement d'encapsulation de la vitamine A est de 99%.
Les caractéristiques des particules obtenues sont ci-après rassemblées :
Taille 1 -5-2,0 mm
Humidité relative 3,6 %
Titre en vitamine A 1 .548.320 Ul/g Exemple 3 : Libération in vitro de la vitamine A à partir de particules
200 mg de particules obtenues à l'exemple 1 sont placés dans un bain de dissolution, de milieu acide à pH 1 ,2 (1 L, milieu stomacal) pendant 2h puis elles sont transférées pendant 4h dans un bain de milieu tampon phosphate à pH 6,8 (1 L, milieu intestinal).
Toutes les 30 min, un prélèvement de 3ml_ est effectué afin de mesurer l'absorbance et déterminer la quantité de vitamine A libérée. Une mesure de blanc est effectuée avant le démarrage cinétique (pH 1 ,2) et avant le transfert des particules à pH 6,8. La mesure d'absorbance est faite avec un spectrophotomètre UV/visible.
La composition des milieux est ci-après décrite.
Milieu stomacal :
Pour un volume fixé de 1 L, le milieu à pH 1 ,2 se compose de : NaCI 2,9g
HCI (1 N) 85mL
Ascorbate de sodium 10g
Triton X100 1 g
Milieu intestinal :
Pour un volume fixé de 1 L, le milieu à pH 6,8 se compose de :
NaH2PO4 10g
NaOH (1 N) 30mL
Ascorbate de sodium 10g
Triton X100 1 g
L'ascorbate de sodium et le Triton X100 jouent respectivement les rôles d'antioxydant et de tensio-actif. Ils sont nécessaires afin d'améliorer la stabilité de la vitamine A et de faciliter sa solubilisation en milieu aqueux polaire.
Les résultats de libération sont représentés sur la figure en comparaison avec des particules de vitamine A obtenues par un procédé classique de double émulsion avec de la gélatine.
On observe que les particules de l'invention apporte une protection renforcée de la vitamine A à pH gastrique et favorise une libération immédiate et moins diffuse de la vitamine à pH intestinal.

Claims

REVENDICATIONS
1 . Procédé de préparation d'une émulsion double d'un principe actif hydrophobe et liposoluble, caractérisé en ce qu'il comprend les étapes suivantes :
(a) On dispose d'une solution aqueused'au moins une protéine de lactosérum ;
(b) On dispose d'une solution aqueuse d'au moins un polysaccharide anionique ;
(c) On soumet la ou les protéines du lactosérum à un traitement de dénaturation ;
(d) On prépare à chaud une émulsion h/e du principe actif dans la solution (c), puis on prépare à chaud une émulsion (h/e)/e de l'émulsion h/e dans la solution (b), ou
(e) On prépare une émulsion e/e des solutions (c) et (b), puis on prépare à chaud une émulsion h/(e/e) du principe actif dans l'émulsion e/e.
2. Procédé de fabrication de particules d'un principe actif hydrophobe et liposoluble, caractérisé en ce qu'il comprend les étapes suivantes :
(a) On dispose d'une solution aqueuse d'au moins une protéine de lactosérum;
(b) On dispose d'une solution aqueuse d'au moins un polysaccharide anionique ;
(c) On soumet la ou les protéines du lactosérum à un traitement de dénaturation ;
(d) On prépare à chaud une émulsion h/e du principe actif dans la solution (c), puis on prépare à chaud une émulsion (h/e)/e de l'émulsion h/e dans la solution (b), ou
(e) On prépare une émulsion e/e des solutions (c) et (b), puis on prépare à chaud une émulsion h/(e/e) du principe actif dans l'émulsion e/e ; et
(f) On soumet l'émulsion (d) ou (e) à une étape d'encapsulation pour obtenir des particules dudit principe actif.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les protéines du lactosérum sont choisies parmi la beta-lactoglobuline (β-LG), l'alpha-lactalbumine (α-LA), l'albumine de sérum bovin (BSA), le caséinate de sodium et la lactoferrine.
4. Procédé selon la revendication 3, caractérisé en ce que la solution (a) est obtenue à partir de poudre de lactosérum dans lequel la proportion des protéines totales est d'au moins 30% (p/p, en poids sec).
5. Procédé selon la revendication 4, caractérisé en ce que la proportion en beta-lactoglobuline dans la poudre de lactosérum est d'au moins 66% (p/p, en poids sec).
6. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la proportion de beta-lactoglobuline dans la poudre de lactosérum est d'au plus 25% et en ce que ladite poudre comprend du lactose.
7. Procédé selonl'une quelconque des revendications 1 à 6, caractérisé en ce que, à l'étape (c), la ou lesdites protéines sont dénaturées par un traitement thermique à une température variant de 70 à 80°C.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le principe actif est choisi parmi les vitamines A et E.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le polysaccharide anionique est choisi parmi les pectines, les alginates, les carraghénanes comme le kappa-carraghénane, le xanthane et la gomme de Gellane, ainsi que tout mélange de ceux-ci.
10. Procédé selon la revendication 9, caractérisé en ce que le polysaccharide anionique est choisi parmi les pectines possédant un degré de méthylation (DE) inférieur à 50%.
1 1 . Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que le rapport pondéral (en poids sec) de la ou des protéines au(x) polysaccharide(s) anionique(s) varie de 1 :2 à 7:1 .
12. Procédé selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que le rapport pondéral (en poids sec) du principe actif au mélange de la ou des protéines et du ou des polysaccharides anioniques varie de 0,3:0,7 à 0,6:0,4.
13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'il comprend une étape préalable selon laquelle on réhydrate, respectivement, la ou les protéines du lactosérum, et le ou les polysaccharides anioniques.
14. Procédé selon la revendication 2 et l'une quelconque des revendications 3 à 13, caractérisé en ce que, selon l'étape (f), on réalise une gélification ionique à froid, par extrusion de l'émulsion obtenue à l'étape (d) ou à l'étape (e) puis immersion des gouttes obtenues dans une solution aqueuse d'ions monovalents ou multivalents, tels que les ions sodium, potassium, calcium et zinc.
15. Procédé selon la revendication 2 et l'une quelconque des revendications 3 à 13, caractérisé en ce que, selon l'étape (f), on réalise une atomisation/séchage de l'émulsion obtenue à l'étape (d) ou à l'étape (e).
16. Particule d'un principe actif hydrophobe et liposoluble, ayant une taille au plus égale à 2,5mm, comprenant au moins une protéine du lactosérum et un polysaccharide anionique.
17. Particule selon la revendication 16, caractérisée en que la ou les protéines, et sa ou leurs proportions sont telles que définies à l'une quelconque des revendications 3 à 6.
18. Particule selon la revendication 16 ou 17, caractérisée en ce que le ou les polysaccharides anioniques, et sa ou leurs proportions sont telles que définies à l'une quelconque des revendications 9 à 1 1 .
19. Particule selon l'une quelconque des revendications 16 à 18, caractérisée en ce que le principe actif et sa proportion sont telles que définies à la revendication 8 ou 12.
20. Particule selon l'une quelconque des revendications 16 à 19, susceptible d'être obtenue par un procédé tel que défini à l'une quelconque des revendications 1 à 15.
EP14731697.0A 2013-05-21 2014-05-21 Procede de preparation d'une emulsion d'un principe actif et particules obtenues a partir de cette emulsion Withdrawn EP2999351A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1354539A FR3005863B1 (fr) 2013-05-21 2013-05-21 Procede de prepartion d’une emulsion d’un principe actif et particules obtenues a partir de cette emulsion
PCT/FR2014/051190 WO2014188124A1 (fr) 2013-05-21 2014-05-21 Procede de preparation d'une emulsion d'un principe actif et particules obtenues a partir de cette emulsion

Publications (1)

Publication Number Publication Date
EP2999351A1 true EP2999351A1 (fr) 2016-03-30

Family

ID=48795786

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14731697.0A Withdrawn EP2999351A1 (fr) 2013-05-21 2014-05-21 Procede de preparation d'une emulsion d'un principe actif et particules obtenues a partir de cette emulsion

Country Status (6)

Country Link
US (1) US20160101064A1 (fr)
EP (1) EP2999351A1 (fr)
JP (1) JP2016527185A (fr)
CN (1) CN105283083A (fr)
FR (1) FR3005863B1 (fr)
WO (1) WO2014188124A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108186381B (zh) * 2017-12-26 2019-09-06 浙江大学 一种在化妆品中激发锌活性离子的方法
CN108324583B (zh) * 2017-12-26 2019-10-18 浙江大学 一种在化妆品中激发金属活性离子的方法
CN112315913A (zh) * 2019-07-19 2021-02-05 中国农业大学 一种硒纳米双乳化微制剂的制备方法
CN110448482B (zh) * 2019-09-27 2020-06-09 瑞希(重庆)生物科技有限公司 一种乳剂及其制备方法
FR3102991B1 (fr) * 2019-11-07 2021-11-26 Huddle Corp Procédé de fabrication d’un aliment ou complément alimentaire pour animaux d’élevage
CN111631385A (zh) * 2020-06-17 2020-09-08 武汉轻工大学 一种荷载姜黄素Pickering乳液及其制备方法
CN112056544B (zh) * 2020-09-21 2022-07-29 华中农业大学 一种可稳定负载脂溶性活性成分的果胶乳液凝胶的制备方法
CN115336760B (zh) * 2022-08-16 2024-04-30 河南科技学院 一种基于交叉水凝胶构建的超稳定混合型高内相乳液体系及其制备方法
CN116369499B (zh) * 2023-05-18 2024-04-05 东北农业大学 一种低油相Pickering乳液凝胶的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985177A (en) * 1995-12-14 1999-11-16 Shiseido Co., Ltd. O/W/O type multiple emulsion and method of preparing the same
WO1998015192A1 (fr) * 1996-10-09 1998-04-16 Givaudan-Roure (International) S.A. Procede de preparation de granules en tant qu'additif pour aliments
JP2003518509A (ja) * 1999-12-23 2003-06-10 アベンティス・アニマル・ニユートリシヨン・エス・エー 粒状ビタミン組成物
ATE364322T1 (de) * 2003-04-15 2007-07-15 Campina Bv Verfahren zur herstellung eines beta- laktoglobulin-angereichertes molkenproteinkonzentrates und darauf basierender texturverstärker zur verwendung in milchprodukten
CA2660877A1 (fr) * 2006-08-17 2008-02-21 University Of Massachusetts Emulsions stabilisees, procedes d'elaboration, et produits alimentaires correspondants a teneur reduite en matieres grasses
AU2008205325B2 (en) * 2007-01-10 2013-09-12 Dsm Nutritional Products Ag Vegetarian microcapsules
AU2008330337A1 (en) * 2007-11-29 2009-06-04 Nizo Food Research B.V. Protein-based oil - encapsulates
EP2238843A1 (fr) * 2009-02-26 2010-10-13 DSM IP Assets B.V. Compositions d'ingrédients actifs liposolubles contenant des conjugués de protéine-polysaccharide
FR2953409B1 (fr) * 2009-12-09 2011-12-23 Adisseo France Sas Particules de principes actifs liposolubles stables
CN102416024B (zh) * 2011-12-08 2012-11-21 大连理工大学 一种噬菌体口服微球制剂及其制备方法
US20130202740A1 (en) * 2012-02-08 2013-08-08 Pepsico, Inc. Acidic Aqueous Product Comprising Oil-Containing Microcapsules and Method for the Manufacture Thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2014188124A1 *

Also Published As

Publication number Publication date
FR3005863A1 (fr) 2014-11-28
CN105283083A (zh) 2016-01-27
JP2016527185A (ja) 2016-09-08
FR3005863B1 (fr) 2015-08-21
US20160101064A1 (en) 2016-04-14
WO2014188124A1 (fr) 2014-11-27

Similar Documents

Publication Publication Date Title
WO2014188124A1 (fr) Procede de preparation d&#39;une emulsion d&#39;un principe actif et particules obtenues a partir de cette emulsion
RU2523297C2 (ru) Твердые масляные порошки
Mohan et al. Encapsulation of food protein hydrolysates and peptides: A review
Tang Assembly of food proteins for nano-encapsulation and delivery of nutraceuticals (a mini-review)
AU2020101281A4 (en) Euphausia Superba Protein Pickering Emulsion and Preparation Method Thereof
ABD EL‐SALAM et al. Formation and potential uses of milk proteins as nano delivery vehicles for nutraceuticals: a review
US8603566B2 (en) Cross-linked biopolymers, related compounds and methods of use
EP0209510B1 (fr) Procédé de préparation de nouvelles levures comme composés d&#39;alimentation pour alevins
De Vries et al. Controlling agglomeration of protein aggregates for structure formation in liquid oil: A sticky business
Rao et al. Encapsulation of antioxidant peptide enriched casein hydrolysate using maltodextrin–gum arabic blend
US20110045147A1 (en) Protein-based oil encapsulates
Santos et al. Interpolymeric complexes formed between whey proteins and biopolymers: Delivery systems of bioactive ingredients
WO2009070011A1 (fr) Procédé de fabrication de capsules à base de protéine
Luo et al. Food-derived biopolymers for nutrient delivery
CN1654510A (zh) 一种纳米微凝胶、其制备方法及应用
JP2005534317A (ja) ルーメンで保護される脂質、他の栄養剤及び薬剤を調整並びに送達するための方法及び配合物
WO2014076432A1 (fr) Procédé pour la fabrication d&#39;une émulsion sèche en poudre contenant au moins un principe actif lipophile, destinée à améliorer la biodisponibilité dudit principe actif lipophile, et émulsion sèche obtenue par ce procédé
Mahalakshmi et al. Emulsion electrospraying and spray drying of whey protein nano and microparticles with curcumin
EP1735005B1 (fr) Procede d&#39;encapsulage de materiaux a ingestion orale afin de modifier le site de digestion, le site d&#39;action ou la stabilite
CN1891301A (zh) 一种纳米微凝胶、其制备方法及应用
Rodrigues et al. High protein microparticles produced by ionic gelation containing Lactobacillus acidophilus for feeding pacu larvae
Jiménez-Cruz et al. Protein-based nanoparticles
Köse et al. Application of complex coacervates in controlled delivery
Guri et al. Dairy materials as delivery tools for bioactive components in dairy platforms
Warji et al. Temperature and Heating Time of Forming Process of Nanofibrils of Whey Protein Isolate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RUFFIN, EMILIE

Inventor name: CHAMBIN, ODILE

Inventor name: DOLLAT, JEAN-MARIE

Inventor name: LAFITTE, GERALDINE

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 8/64 20060101ALI20180511BHEP

Ipc: A61K 9/107 20060101ALI20180511BHEP

Ipc: A23J 3/08 20060101AFI20180511BHEP

Ipc: A61K 9/50 20060101ALI20180511BHEP

Ipc: A61K 8/67 20060101ALI20180511BHEP

Ipc: A61K 31/07 20060101ALI20180511BHEP

Ipc: A61K 9/14 20060101ALI20180511BHEP

Ipc: A61K 9/113 20060101ALI20180511BHEP

Ipc: A23J 1/20 20060101ALI20180511BHEP

Ipc: A61K 8/73 20060101ALI20180511BHEP

Ipc: A61K 8/06 20060101ALI20180511BHEP

Ipc: A61K 9/16 20060101ALI20180511BHEP

Ipc: A61Q 19/00 20060101ALI20180511BHEP

17Q First examination report despatched

Effective date: 20180530

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181010