EP2989395A1 - Procédé de fonctionnement d'un ensemble pompe à chaleur et ensemble pompe à chaleur - Google Patents

Procédé de fonctionnement d'un ensemble pompe à chaleur et ensemble pompe à chaleur

Info

Publication number
EP2989395A1
EP2989395A1 EP14728920.1A EP14728920A EP2989395A1 EP 2989395 A1 EP2989395 A1 EP 2989395A1 EP 14728920 A EP14728920 A EP 14728920A EP 2989395 A1 EP2989395 A1 EP 2989395A1
Authority
EP
European Patent Office
Prior art keywords
fluid
heat
heat pump
temperature
useful
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14728920.1A
Other languages
German (de)
English (en)
Inventor
Bernd Gromoll
Florian REISSNER
Jochen SCHÄFER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2989395A1 publication Critical patent/EP2989395A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Definitions

  • the invention relates to a method for operating a heat pump arrangement according to the preamble of claim 1.
  • the invention also relates to a heat pump arrangement according to the preamble of claim 8.
  • a heat pump is a machine that uses technical labor to absorb thermal energy in the form of heat from a lower temperature source of heat and, together with the drive energy of a compressor, dissipates it as waste heat to a heat sink with a higher temperature. For temporary storage or for the transfer of heat thereby serves a fluid which is guided within the heat pump by means of the compressor in a cyclic process. This cyclic process is also called thermodynamic vapor compression cycle.
  • HMWP high-temperature heat pumps
  • Object of the present invention is, therefore, reindeer a procedural and to provide a heat pump arrangement by means of which useful heat can be particularly high temperatures solicitge ⁇ represents.
  • COP coefficient of performance
  • the useful heat at a fluid temperature of at least 150 ° C. and more preferably of at least 160 ° C. is withdrawn from the second fluid.
  • the second heat pump By means of the second heat pump, particularly high fluid temperatures can be achieved.
  • a useful heat can be withdrawn from the second fluid with a particularly high temperature, which can be provided more effectively, for example, useful heat for industrial use.
  • the first heat pump of at least one fluoroketone as the ers ⁇ th fluid flows through. Fluoroketones are particularly harmless ⁇ industrially applicable, since it can be dispensed with special protective measures in case of danger.
  • Fluoroketones are be ⁇ Sonder's future-proof applications. In addition, they have a particularly low global warming potential, are non-flammable and non-toxic. For this reason, fluoroketones are especially suitable for use as fluids in heat pump arrangements, in particular if by means of these perennialpumpenanord ⁇ voltages industrial process heat, especially useful heat with a temperature greater than 120 ° C, is provided.
  • both water and fluoroketones are particularly suitable as fluids in applications in which high fluid temperatures occur. Because they are neither flammable nor poisonous.
  • the coefficient of performance (COP) of the respective heat pump depends on the respective temperature lift.
  • a heat pump is defined as the temperature difference which can be achieved between a respective capacitor of the heat pump and a respective evaporator of the heat pump.
  • waste heat of a particularly high temperature can thus be provided and transferred by means of the heat exchanger to the second fluid of the second heat pump.
  • An achievable by means of the second heat pump maximum tempera ture ⁇ of the second fluid thus depends directly on the transferred from the first fluid amount of heat.
  • NOVEC 524 ge only up to a maximum fluid temperature of said 140 ° C is suitable, it is recommended to realize by means of the second heat ⁇ pump, for example, a temperature of 140 ° C to 200 ° C, as a second fluid, for example, water enforce ⁇ , which is also suitable for fluid temperatures greater than 140 ° C.
  • the heat output from ers ⁇ th on the second fluid is largely isothermal.
  • the temperature of the heat released amount is kept very constant, whereby tempera ⁇ turschwankungen particularly largely excluded and thus a largely constant temperature increase by means of the second heat pump can be achieved.
  • the first fluid In order to realize an isothermal ditch ab ⁇ transfer means of the heat exchanger, the first fluid must be operated subcritical, that is to say that the first fluid can only be used below its critical temperature. In other words, the first fluid must therefore be operated at a temperature at which both the liquid and the gaseous state of aggregation can be present.
  • the useful heat at a volumetric heat output of at least 1000 kJ / m 3 , preferably of at least 1200 kJ / m 3 and more preferably of at least 1500 kJ / m 3 of the second
  • the fluid in the heat pump assembly should be operated at a point where the volumetric heating capacity is at least 1000 kJ / m 3 is present.
  • the higher the volumetric heat output above the said 1000 kJ / m 3 the higher the coefficient of performance (COP) of the respective heat pump.
  • COP coefficient of performance
  • the second fluid at a Fluidtempera- ture of at least 120 ° C, a useful heat transferable, wherein the first fluid and the second fluid having a volumetric heating ⁇ power of at least 500 kJ / m 3.
  • the second fluid can be withdrawn depending on the heat transferred from the first fluid, a useful heat with a particularly high temperature.
  • a heat pump arrangement which is also referred to as a heat pump cascade, wherein the second heat pump can provide a useful heat in egg ⁇ ner particularly high temperature, a very high volumetric heat output of the first fluid of the first heat pump is low, which is low is when the heat transferred from the first to the second fluid amount of heat is transmitted at a particularly high temperature.
  • At least one temperature stroke can be increased by means of an at least two-stage compression as a result of a higher pressure ratio of the first fluid and / or of the second fluid.
  • an intermediate cooling can be installed between the compression devices effecting the respective stage of the compression. This is especially useful for water as a fluid.
  • the heat of the intermediate cooling can be supplied in a particularly energy-efficient manner to an evaporation device of the respective heat pump. In order to realize very high temperature strokes, cascades of more than two heat pump cycles are still possible.
  • the second fluid is ver ⁇ sealable by means of a liquid ring compressor ⁇ substantially isothermally. The compression, so the compression of the
  • Fluids can be largely isothermal by means of a liquid ring compressor.
  • the liquid ring of the liquid ring compressor is in direct contact with the fluid to be compressed, whereby compression heat from the fluid to the ring liquid, from which the liquid ring is formed, can be transferred in a particularly effective manner. In other words, therefore, the heat transfer resistance is particularly low, since the fluid and the ring liquid are not separated from each other by a wall.
  • FIG. 1 shows a schematic diagram of a heat pump cascade according to the prior art, which corresponds to a heat ⁇ pump arrangement with present two heat pump circuits.
  • FIG. 2 shows a schematic diagram of a respective course of a volumetric heating power of different fluids of the heat pump arrangement over the temperature
  • 3 is a schematic diagram of a dressingpumpenkaska ⁇ de, which corresponds to a heat pump assembly with two heat pump circuits, one of the heat pump circuits is operated with a fluorine ketone as a fluid.
  • FIG. 1 shows, in a schematic diagram, a heat pump arrangement which comprises two heat pump circuits and is known as a cascade heat pump 1 according to the state of the art.
  • the cascade heat pump 1 comprises a first heat ⁇ me pump 2, which is flowed through by a first fluid and a second heat pump 3, which is flowed through by a second fluid.
  • a heat exchanger 19 By means of a heat exchanger 19, the first and the second fluid are heat-coupled ge ⁇ coupled.
  • the heat exchanger 19 in this case comprises a Kondensa ⁇ gate 6 of the first heat pump 2, and an evaporator 8 of the second heat pump 3.
  • the first fluid of the first heat pump 2 is evaporated by an evaporator 4 in which the evaporator 4 is supplied by a heat source 12 with thermal energy ,
  • the heated and compressed first fluid in the condenser 6 gives off heat to the evaporator 8, the second fluid of the second heat pump 3 being evaporated by means of the evaporator 8.
  • the first fluid is expanded by means of an expansion Sven ⁇ TILs 7 of the first heat pump 2 and then takes heat in turn through the evaporator 4 at.
  • Heat pump 3 compresses and releases heat in a condenser 10 of the second heat pump 3 to a heat sink 13.
  • the second fluid flows in accordance with arrow direction of an arrow 15 through an expansion valve 11 of the second heat pump 3 and is expanded there. Following this, the second fluid again absorbs heat by means of the heat exchanger 19 and the cycle of the second heat pump 3 is thus closed.
  • FIG. 2 shows schematically in a diagram different curves of volumetric heating powers, wherein a volumetric heating power 20 is plotted on the ordinate axis of the diagram and a fluid temperature 21 which corresponds to the condensation temperature of the fluid is plotted on the abscissa axis.
  • a heating power curve 16 which corresponds to the heating power curve of a fluor ⁇ ketone called NOVEC 52 for each same fluid temperatures 21 has higher values, as a Schuleis ⁇ ment curve 17, which corresponds to the heating power curve of a Flu ⁇ orketons called NOVEC 649.
  • the heating power curve 16 of the fluoroketone NOVEC 524 is limited by reaching a critical point 28 at 148 ° C. and the heat output curve 17 of the fluoroketone NOVEC 649 by reaching a critical point 29 at approximately 169 ° C.
  • the heating power curve 18 of water is fluid temperatures below the kriti ⁇ rule point 28 and the critical point 29 below the heating power curve 16 and the
  • the heating power curve 18 of water at high fluid temperatures 21 increases to greater values than the heating power curve 16 and the Heat output curve 17 can be achieved as a result of the respective achievement of the respective critical points 28 and 29. It is also seen that an amount of heat can be delivered at a useful temperature of minds- least 160 ° C to the heat sink 13 by means of the cascade heat ⁇ pump 1 when the fluoroketone NOVEC is used 649 as the first fluid of the first heat ⁇ pump.
  • Heat transfer from the first fluid to the second fluid by means of the heat exchanger 19 is to take place isothermally.
  • the first fluid of the first heat pump 2 is operated at a fluid temperature 21 which is below the critical temperature of the respective critical point 28, 29.
  • their theoretically achievable coefficient of performance increases with a respective higher volumetric heat output 20.
  • FIG. 3 shows a cascade heat pump 1 shown in a schematic diagram, which essentially has the structure shown in FIG. 1 components already described, which is why in the following only the differences should be discussed.
  • the heat exchanger 19 comprises according to FIG. 3, a high-temperature condenser 22 of the first heat pump 2 and a high-temperature evaporator 23 of the second heat pump 3. Further, as shown in FIG. 3 recognizable for conveying the water 27 instead of the compressor 9, a liquid ring compressor 24 is used. By means of the liquid ring compressor 24, the water 27, which was previously evaporated as a result of heat input by means of the high-temperature evaporator, now compressed and fed to a high-temperature condenser 25.
  • At 200 ° C is the volumetric heating value metric 20 of water 27 over 4000 kJ / m 3, ie ei ⁇ nem significantly greater value than 1500 kJ / m 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

L'invention concerne un procédé de fonctionnement d'un ensemble pompe à chaleur (1), selon lequel une première pompe à chaleur (2) est parcourue par un premier fluide (26) et une deuxième pompe à chaleur (3) est parcourue par un deuxième fluide (27), et selon lequel la chaleur est transférée du premier fluide (26) au deuxième fluide (27) par l'intermédiaire d'un échangeur de chaleur (19) ; une chaleur utile étant prélevée du deuxième fluide (27) à une température de fluide (21) d'au moins 120 °C et cette chaleur utile du deuxième fluide (27) étant cédée pour une puissance calorifique volumétrique du premier fluide (26) et du deuxième fluide (27) d'au moins 500 kJ/m3. L'invention concerne un tel ensemble pompe à chaleur (1).
EP14728920.1A 2013-06-14 2014-06-04 Procédé de fonctionnement d'un ensemble pompe à chaleur et ensemble pompe à chaleur Withdrawn EP2989395A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013211087.1A DE102013211087A1 (de) 2013-06-14 2013-06-14 Verfahren zum Betrieb einer Wärmepumpenanordnung und Wärmepumpenanordnung
PCT/EP2014/061528 WO2014198593A1 (fr) 2013-06-14 2014-06-04 Procédé de fonctionnement d'un ensemble pompe à chaleur et ensemble pompe à chaleur

Publications (1)

Publication Number Publication Date
EP2989395A1 true EP2989395A1 (fr) 2016-03-02

Family

ID=50897593

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14728920.1A Withdrawn EP2989395A1 (fr) 2013-06-14 2014-06-04 Procédé de fonctionnement d'un ensemble pompe à chaleur et ensemble pompe à chaleur

Country Status (8)

Country Link
US (1) US20160138837A1 (fr)
EP (1) EP2989395A1 (fr)
JP (1) JP6526639B2 (fr)
KR (2) KR20180005281A (fr)
CN (1) CN105264306A (fr)
CA (1) CA2915305C (fr)
DE (1) DE102013211087A1 (fr)
WO (1) WO2014198593A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013214891A1 (de) * 2013-07-30 2015-02-05 Siemens Aktiengesellschaft Wärmetechnische Verschaltung einer Geothermiequelle mit einem Fernwärmenetz
ES2675562T3 (es) * 2014-07-29 2018-07-11 Siemens Aktiengesellschaft Procedimiento y dispositivo para el secado de un producto a secar y planta industrial
CN107106925B (zh) * 2014-10-18 2019-10-18 艾拉索尔戴纳米克斯有限公司 用于颗粒的冷凝生长的持续过饱和
KR102096201B1 (ko) * 2016-02-26 2020-04-01 시노켐 란티안 컴퍼니 리미티드 불소-함유 케톤을 포함하는 조성물
DE102016204158A1 (de) * 2016-03-14 2017-09-14 Efficient Energy Gmbh Wärmepumpenanlage mit zwei Stufen, Verfahren zum Betreiben einer Wärmepumpenanlage und Verfahren zum Herstellen einer Wärmepumpenanlage
DE102017011134B4 (de) 2017-12-01 2022-09-08 Emz-Hanauer Gmbh & Co. Kgaa Haushaltskältegerät sowie Verfahren zum Steuern einer in diesem angeordneten Lichtquellenanordnung
EP4063762A1 (fr) 2021-03-26 2022-09-28 Mitsubishi Electric R&D Centre Europe B.V. Système de pompe à chaleur en cascade à refrigérant à faible effet de serre
EP4356050A2 (fr) * 2021-06-16 2024-04-24 Colorado State University Research Foundation Système de pompe à chaleur à source d'air et procédé d'utilisation pour la production industrielle de vapeur

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE394741B (sv) * 1974-04-18 1977-07-04 Projectus Ind Produkter Ab Vermepumpsystem
FR2374539A1 (fr) * 1976-12-15 1978-07-13 Air Ind Procede de compression de vapeur d'eau, et circuits thermiques pour sa mise en oeuvre
US4149389A (en) * 1978-03-06 1979-04-17 The Trane Company Heat pump system selectively operable in a cascade mode and method of operation
DE3433366A1 (de) * 1984-09-08 1986-03-20 Peter 2351 Hasenkrug Koch Verfahren zur waermeenergiezu- und -abfuhr sowie waermepumpeneinrichtung
JPS61138059A (ja) * 1984-12-10 1986-06-25 三井造船株式会社 高温用ヒ−トポンプ
JPS62190360A (ja) * 1986-02-17 1987-08-20 株式会社東芝 カスケ−ド結合ヒ−トポンプ装置
US4907410A (en) * 1987-12-14 1990-03-13 Chang Yan P Thermal energy from environmental fluids
US5241829A (en) * 1989-11-02 1993-09-07 Osaka Prefecture Government Method of operating heat pump
US7100380B2 (en) * 2004-02-03 2006-09-05 United Technologies Corporation Organic rankine cycle fluid
WO2006029884A1 (fr) * 2004-09-17 2006-03-23 Basf Aktiengesellschaft Procede permettant de faire fonctionner un compresseur a anneau liquide
EP1764487A1 (fr) * 2005-09-19 2007-03-21 Solvay Fluor GmbH Fluide de travail pour un procédé de type cycle organique de Rankine
US8703690B2 (en) * 2008-03-07 2014-04-22 Arkema Inc. Use of R-1233 in liquid chillers
JP5612250B2 (ja) * 2008-03-07 2014-10-22 出光興産株式会社 冷凍機用潤滑油組成物
US20130091843A1 (en) * 2008-12-05 2013-04-18 Honeywell International Inc. Fluoro olefin compounds useful as organic rankine cycle working fluids
US8871112B2 (en) * 2008-11-19 2014-10-28 E I Du Pont De Nemours And Company Compositions comprising 2,3,3,3-tetrafluoropropene and hydrocarbons and uses thereof
FR2941039B1 (fr) * 2009-01-14 2013-02-08 Arkema France Procede de transfert de chaleur
IT1396440B1 (it) * 2009-10-14 2012-11-23 Innovation Factory Scarl Dispositivo di riscaldamento a ciclo termodinamico irreversibile per impianti di riscaldamento ad alta temperatura di mandata.
TW201124687A (en) * 2009-11-03 2011-07-16 Du Pont Cascade refrigeration system with fluoroolefin refrigerant
DE202009016576U1 (de) * 2009-12-08 2011-01-13 Gebhardt, Peter Vorrichtung zur Wärmegewinnung umfassend zwei Wärmepumpen
US8846754B2 (en) * 2009-12-16 2014-09-30 Honeywell International Inc. Azeotrope-like compositions of cis-1,1,1,4,4,4-hexafluoro-2-butene
DE102010001929B4 (de) * 2010-02-15 2014-06-18 Konvekta Ag Kälteanlage zur Kühlung eines umschlossenen Raumes
US8535559B2 (en) * 2010-03-26 2013-09-17 3M Innovative Properties Company Nitrogen-containing fluoroketones for high temperature heat transfer
JP2012172866A (ja) * 2011-02-18 2012-09-10 Showa Denko Kk 沸騰冷却装置
DE102011086476A1 (de) * 2011-09-30 2013-04-04 Siemens Aktiengesellschaft Hochtemperaturwärmepumpe und Verfahren zur Verwendung eines Arbeitsmediums in einer Hochtemperaturwärmepumpe
CN106715635B (zh) * 2014-09-23 2020-09-15 科慕埃弗西有限公司 (2e)-1,1,1,4,5,5,5-七氟-4-(三氟甲基)戊-2-烯在高温热泵中的用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2014198593A1 *

Also Published As

Publication number Publication date
KR20180005281A (ko) 2018-01-15
JP6526639B2 (ja) 2019-06-05
JP2016526650A (ja) 2016-09-05
WO2014198593A1 (fr) 2014-12-18
KR20160018795A (ko) 2016-02-17
CA2915305A1 (fr) 2014-12-18
DE102013211087A1 (de) 2015-01-15
US20160138837A1 (en) 2016-05-19
CN105264306A (zh) 2016-01-20
CA2915305C (fr) 2018-04-10

Similar Documents

Publication Publication Date Title
EP2989395A1 (fr) Procédé de fonctionnement d'un ensemble pompe à chaleur et ensemble pompe à chaleur
DE102008005978B4 (de) Niedertemperaturkraftwerk und Verfahren zum Betreiben eines thermodynamischen Zyklus
DE2754626C2 (de) Mit einer Energiequelle relativ niedriger Temperatur, insbesondere Solarenergie, arbeitende Kälteanlage
DE69730125T2 (de) Kältegerät und verfahren zu seiner herstellung
DE2819276A1 (de) Vorrichtung und verfahren zur waermeuebertragung zwischen fluiden medien oder sonstigen materialien
DE102011086476A1 (de) Hochtemperaturwärmepumpe und Verfahren zur Verwendung eines Arbeitsmediums in einer Hochtemperaturwärmepumpe
EP3004754B1 (fr) Pompe à chaleur pour utilisation des réfrigérants écologiques
EP3097370A1 (fr) Pompe à chaleur comprenant un réservoir de stockage
EP3540332B1 (fr) Pompe à chaleur a absorption et procédé de circuit à absorption
EP1706599B1 (fr) Procédé et installation de conversion d'une énergie thermique résultante en énergie mécanique
WO2014183892A1 (fr) Accumulateur d'énergie thermique
WO1985004216A1 (fr) Procede et installation destines a un cycle thermodynamique
EP2215412A1 (fr) Installation pour le refroidissement, le chauffage ou la climatisation, en particulier installations frigorifiques
DE102010004187A1 (de) Wärmepumpe für hohe Vor- und Rücklauftemperaturen
EP2321592A1 (fr) Pompe à chaleur ou machine frigorifique et procédé permettant de faire fonctionner une pompe à chaleur ou une machine frigorifique
DE102007062343B4 (de) Verfahren und Anordnung zur Kälteerzeugung nach einem Wasser-Lithiumbromid-Resorptionskälteprozess
WO2012100275A2 (fr) Moteur thermique
EP2989397B1 (fr) Procédé et dispositif de refroidissement d'un moteur
DE102013203240A1 (de) Kältemaschine und Verfahren zum Betreiben einer Kältemaschine
DE102012100645B4 (de) ORC - Organischer Rankine Zyklus
DE102016220634A1 (de) Abwärme-Kraftanlage mit stufenweiser Wärmezufuhr
EP3577397A1 (fr) Pompe à chaleur et procédé de fonctionnement d'une pompe à chaleur
WO2014117924A2 (fr) Procédé permettant de faire fonctionner une centrale basse température et centrale basse température
WO2014131591A1 (fr) Pompe à chaleur et procédé de fonctionnement d'une pompe à chaleur
WO2015039833A1 (fr) Procédé permettant de mettre en œuvre un processus thermodynamique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200529

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210427