EP1706599B1 - Procédé et installation de conversion d'une énergie thermique résultante en énergie mécanique - Google Patents

Procédé et installation de conversion d'une énergie thermique résultante en énergie mécanique Download PDF

Info

Publication number
EP1706599B1
EP1706599B1 EP04804988.6A EP04804988A EP1706599B1 EP 1706599 B1 EP1706599 B1 EP 1706599B1 EP 04804988 A EP04804988 A EP 04804988A EP 1706599 B1 EP1706599 B1 EP 1706599B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
compressor
energy
working medium
condensed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04804988.6A
Other languages
German (de)
English (en)
Other versions
EP1706599A1 (fr
Inventor
Erwin Oser
Michael Rannow
Hubert Hamm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecoenergy Patent GmbH
Original Assignee
Ecoenergy Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34714591&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1706599(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE2003160379 external-priority patent/DE10360379A1/de
Priority claimed from DE2003160380 external-priority patent/DE10360380A1/de
Priority claimed from DE2003160364 external-priority patent/DE10360364A1/de
Priority claimed from DE2003161203 external-priority patent/DE10361203A1/de
Priority claimed from DE2003161223 external-priority patent/DE10361223A1/de
Application filed by Ecoenergy Patent GmbH filed Critical Ecoenergy Patent GmbH
Publication of EP1706599A1 publication Critical patent/EP1706599A1/fr
Application granted granted Critical
Publication of EP1706599B1 publication Critical patent/EP1706599B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • F01K25/065Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids

Definitions

  • the invention relates to a method and a system for converting accumulating thermal energy into mechanical energy by relaxing a vaporous working fluid by means of an expansion device connected to a first heat exchanger.
  • thermal power plants are known in which in a boiler, a working fluid at a high pressure isobarically heated to the boiling point, evaporated and then overheated in a superheater. The steam is then adiabatically expanded in a turbine while performing work and in a condenser with heat release liquefied. The liquid is pressurized by the feed water pump and returned to the boiler.
  • One of the disadvantages of these devices is that in the relaxation processes in turbines high pressures of more than 15 bar to 200 bar must be generated, since in turbines, the realized pressure ratio of the relaxation for the achieved efficiency is crucial.
  • Another disadvantage of the known thermal power plant is the accumulation of condensation heat from the condensation of the working fluid, which is dissipated in these systems as waste heat with cooling systems.
  • chillers are known in which condensation heat is obtained, which is disadvantageously dissipated as heat loss.
  • the invention has for its object to provide a method and a system for the conversion of heat energy into mechanical energy, which avoid the disadvantages mentioned, in particular have improved efficiency.
  • the inventive method a low-pressure expansion circuit and an energy return circuit, wherein in the low-pressure expansion circuit, the relaxation of the working fluid is carried out in a low-pressure expansion device and the relaxed working fluid is condensed in a relaxation device downstream second heat exchanger, in which an evaporation of a Operating means is effected in the second heat exchanger within the energy recirculation loop, which is conveyed via a compressor to the first heat exchanger in which the operating fluid is condensed, wherein an evaporation of the working fluid in the first heat exchanger within the low-pressure expansion circuit, wherein the molar enthalpy of vaporization of the operating means more than four times the molar evaporation enthalpy of the working fluid.
  • the "residual heat" of the relaxed working fluid can be used to use this again for the evaporation process in the first heat exchanger.
  • a condensation of the relaxed working fluid takes place in the second heat exchanger, wherein the heat of condensation released is transferred to the operating medium, which evaporates in this case.
  • the energy recirculation loop which is similar to a heat pump, becomes further brought the vaporous equipment by the compression to an elevated temperature level.
  • the subsequent first heat exchanger condenses the equipment, the heat released is transferred to the evaporating working fluid.
  • the working medium preferably has a large heat capacity, so that the working medium undergoes a relatively small temperature reduction during the relaxation. Consequently, the heat pump, in which the condensation energy is transformed back to the temperature level of the evaporation of the working fluid, can work with a low energy requirement and a good coefficient of performance.
  • the vaporous operating medium is transformed with the aid of the heat pump to a temperature level above the boiling point of the working fluid.
  • This energy feedback can be realized via a one-component equipment.
  • the heat pump with the liquid superimposed compressor system such as a liquid ring pump or a screw compressor operated and used for the operation of the heat pump, a resource whose molar enthalpy of enthalpy of a multiple, preferably more than four times, more preferably more than five times the enthalpy of evaporation of the working fluid for the relaxation is.
  • an excess of the energy return via the drive energy of the heat pump is thereby achieved.
  • a device As a low-pressure expansion device, a device will be used in which neither the mass of the steam nor the pressure ratio, but only the pressure difference is relevant.
  • the low-pressure expansion device is designed as a Roots blower - as Roots blower - or in the form of a Ovalradpumpe. It is advantageous that the Roots blower can work as a relaxation device (relaxation motors) with a pressure difference of 500 mbar with a nearly full efficiency and can be used in a closed system at pressures of 10 to 0.5 bar.
  • the Roots blower is preferably connected to a generator, which converts the mechanical energy into electrical energy.
  • the Roots blower on a gas-tight seal between the pumping chamber and the gear compartment, wherein in another embodiment, the Roots blower comprises multi-bladed rotors.
  • the working fluid has a low volume-specific or low molar enthalpy of vaporization. This ensures that a large amount of motive steam is generated with a given amount of heat energy.
  • the working fluid is a suitably selected inorganic or organic solvent.
  • the working medium can also be a solvent mixture which has organic and / or inorganic solvent components with corresponding thermodynamic data. Examples include mixtures of water and selected silicones.
  • an increase in temperature of the operating means in the energy return circuit by the mechanical compression by means of a liquid-superposed compressor wherein additionally the operating medium temperature in the compressor by heat exchange with a fluid, with which the compressor is operated and directly in contact with the Resources stands increased.
  • these liquid-superposed compressors can be operated with a high-boiling fluid. Since in the fluid superimposed compressors the fluid exerts no lubricating function but a pure sealing function, in the process of the invention in the energy recirculation circuit virtually any resources can be used up to water, the high molar heat of evaporation, in the low pressure region have large temperature jumps and high operating temperatures of the compressor allow.
  • the liquid ring pump can advantageously transfer a large portion of the work as heat to the equipment, which can heat above the saturation temperature, which can significantly increase the efficiency of the process. Furthermore, it is ensured by the liquid ring pump, that the equipment does not accumulate in the compressor so far that this may reduce the pumping speed.
  • the method according to the invention can be in the energy return circuit, which is realized as a heat pump system with liquid superposed compressor system, achieve performance ratios as a ratio of recycled heat energy to compressor drive work, which is over three times the value of conventional heat pumps lie. Temperatures of the equipment after the temperature increase of about 180 ° C can be realized with the inventive method.
  • fluids such as high-boiling silicone oils or diester oils or plasticizers such as dioctyl phthalate with viscosities of up to 50 centistokes (cts).
  • cts centistokes
  • the boiling temperature of the fluid is higher than the temperature of the equipment after the temperature increase.
  • the liquid superimposed compressor may have a ring gassing, which prevents over-compression.
  • a mixture of alcohols may be used, in which the evaporation temperature may be about 20 ° C and the condensation temperature at 80 ° C.
  • An A3 solvent as a resource is also conceivable, in which the evaporation temperature may be about 90 ° C and the condensation temperature at 180 ° C.
  • a significant advantage of this invention is that the equipment higher temperature levels can be achieved than previously possible, for example, with CFC work equipment.
  • the heat energy accumulates in a refrigerator in which a refrigerant is vaporized in an evaporator.
  • the vaporous refrigerant is conveyed via a compressor to the first heat exchanger, in which the refrigerant condenses. This condensation heat is released, which is transferred to the evaporating in the first heat exchanger working fluid.
  • the condensed refrigerant is returned to the evaporator via an expansion valve.
  • a warm, a certain degree of moisture having air flow which is passed through the evaporator, cooled with heat to the refrigerant, wherein water is obtained as condensate, which is collected in a container.
  • the power generated by the generator can be used as drive power for the electrically driven units of the entire system comprising the refrigerant circuit, the low-pressure expansion circuit and the energy return circuit.
  • the externally applied energy and thus the energy costs of a "water extraction from air" are substantially reduced by means of the above-described condensation of work equipment and resources.
  • the object of the invention is also achieved by a system for converting incidental heat energy into mechanical energy with the features of claim 15.
  • preferred developments are carried out.
  • the invention relates to a system comprising a refrigerant circuit, a low pressure expansion circuit and an energy return circuit, which are interconnected.
  • a refrigerant is vaporized in an evaporator in the refrigerant circuit, which is conveyed via a compressor in a first heat exchanger.
  • the refrigerant condenses and is conveyed via an expansion valve back into the evaporator, wherein water, which is obtained in the evaporator during the cooling of an air stream, is collected in a container.
  • a working fluid is evaporated in the first heat exchanger, which receives the heat of condensation released in the first heat exchanger.
  • the vaporous working medium is expanded, passed into a second heat exchanger in which it condenses.
  • the low-pressure expansion device further comprises a shaft which is connected to a generator, so that the mechanical energy can ultimately be transformed into electrical energy.
  • the condensed working fluid is fed back via a pump in the first heat exchanger.
  • a resource is evaporated in the second heat exchanger, where it absorbs the heat of condensation of the working fluid of the low-pressure expansion circuit.
  • the vaporous equipment is conveyed via a liquid superimposed compressor in the first heat exchanger, in which condenses the equipment.
  • the condensed operating fluid is fed back into the first heat exchanger via an expansion valve.
  • FIG. 1 shows a system that can extract water from the air.
  • water vapor is contained in the form of atmospheric moisture.
  • a fan 12 By a fan 12, an air flow is generated, which is passed through the evaporator 1 of a refrigerant circuit.
  • the evaporator 1 in this case has not shown heat exchange surfaces, which are cooled.
  • the heat exchange surfaces may be formed, for example, as a tube through which a refrigerant flows.
  • the warm air stream cools down, the heat being transferred via the heat exchange surfaces to the refrigerant which evaporates.
  • the dissolved in the air water vapor condenses on the heat exchange surfaces, wherein the condensed water is collected in a container 11.
  • the cooled air stream leaves the evaporator 1 with a residual moisture content.
  • the vaporous refrigerant which in the present embodiment has a pressure between 2-8 bar and a temperature of about 5-10 ° C, is conveyed via a compressor 2 into a first heat exchanger 3, in which the refrigerant condenses. Upon entry of the vaporous refrigerant into the first heat exchanger 3, this has approximately a pressure of 10-20 bar and a temperature up to about 80 ° C or 110 ° C. The released heat of condensation is transferred to a working medium of a low-pressure expansion circuit. Via an expansion valve 10, the condensed refrigerant is passed back into the evaporator 1.
  • the working fluid is evaporated and expanded in a downstream low-pressure expansion device 4.
  • the low-pressure expansion device 4 is designed as a Roots blower 4, in which the heat energy is converted into mechanical energy.
  • the Roots blower 4 further includes a shaft which is connected to a generator 7, whereby the mechanical energy is converted into electrical energy.
  • the expanded working fluid is condensed in a second heat exchanger 5, wherein a second heat exchanger 5 located in further operating means is evaporated due to the heat of condensation formed.
  • the condensed working fluid is conveyed back into the first heat exchanger 3 via a pump 8.
  • the molar evaporation enthalpy of the operating medium in the present embodiment is five times the molar enthalpy of vaporization of the working medium.
  • the vaporous operating medium is compressed in a liquid ring pump 6.
  • the liquid ring pump 6 is operated with a fluid that is in direct contact with the equipment.
  • An advantage of this embodiment is that the resource is additionally heated within the liquid ring pump 6 in addition to the compression, in which a certain amount of heat passes from the fluid to the equipment.
  • the operating medium is heated above the evaporation temperature of the working medium of the low-pressure expansion circuit, so that the energy for the evaporation of the working fluid in the first heat exchanger 3 can be used.
  • the downstream first heat exchanger 3 the operating medium condenses and is subsequently conveyed via an expansion valve 9 back to the second heat exchanger 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (16)

  1. Procédé de conversion d'énergie thermique libérée en énergie mécanique par détente d'un milieu de travail sous forme de vapeur au moyen d'un dispositif de détente (4) relié à un premier échangeur de chaleur (3), caractérisé par un circuit de détente à basse pression et un circuit de recyclage d'énergie, dans lequel on effectue la détente du milieu de travail dans un dispositif de détente à basse pression (4) dans le circuit de détente à basse pression et on condense le milieu de travail détendu dans un deuxième échangeur de chaleur (5) placé en aval du dispositif de détente (4), par le fait que l'on provoque une vaporisation d'un milieu de fonctionnement dans le deuxième échangeur de chaleur (5) à l'intérieur du circuit de recyclage d'énergie, qui est transporté par l'intermédiaire d'un compresseur (6) vers le premier échangeur de chaleur (3) dans lequel le milieu de fonctionnement est condensé, dans lequel on effectue une vaporisation du milieu de travail dans le premier échangeur de chaleur (3) à l'intérieur du circuit de détente à basse pression, dans lequel le dispositif de détente à basse pression (4) est une soufflante de Roots.
  2. Procédé selon la revendication 1, caractérisé en ce que l'enthalpie de vaporisation molaire du milieu de fonctionnement vaut un multiple, de préférence plus du quadruple de l'enthalpie de vaporisation molaire du milieu de travail.
  3. Procédé selon la revendication 2, caractérisé en ce que la soufflante de Roots (4) est reliée à un générateur (7), qui convertit l'énergie mécanique en énergie électrique.
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le milieu de travail présente une faible enthalpie de vaporisation spécifique par unité de volume.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le milieu de travail est un solvant inorganique ou organique ou un mélange de solvants, qui présente des composants de solvants organiques et/ou inorganiques.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le compresseur (6) est réalisé sous forme de compresseur recouvert de liquide.
  7. Procédé selon la revendication 6, caractérisé en ce que le compresseur (6) est une pompe à anneau liquide ou un compresseur hélicoïdal.
  8. Procédé selon la revendication 6 ou 7, caractérisé en ce que l'on effectue une augmentation de la température du milieu de fonctionnement par la compression mécanique au moyen du compresseur (6), dans lequel on augmente en outre la température du milieu de fonctionnement dans le compresseur (6) par un échange de chaleur avec un fluide, avec lequel le compresseur (6) fonctionne et qui est directement en contact avec le milieu de travail.
  9. Procédé selon la revendication 8, caractérisé en ce que la température d'ébullition du fluide est plus élevée que la température du milieu de fonctionnement après l'augmentation de température.
  10. Procédé selon la revendication 8 ou 9, caractérisé en ce que le fluide est une huile de silicones, en particulier une huile de silicones à haut point d'ébullition, ou est un plastifiant, qui présente en particulier une viscosité qui est inférieure à 50 cSt.
  11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on transporte le milieu de travail condensé depuis le deuxième échangeur de chaleur (5) par l'intermédiaire d'une pompe (8) dans le premier échangeur de chaleur (3).
  12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on renvoie le milieu de fonctionnement condensé depuis le premier échangeur de chaleur (3) par l'intermédiaire d'une soupape de détente (9) dans le deuxième échangeur de chaleur (5).
  13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'énergie thermique est libérée dans une machine frigorifique, dans laquelle on vaporise dans un évaporateur (1) un fluide frigorigène, que l'on transporte par l'intermédiaire d'un compresseur (2) vers le premier échangeur de chaleur (3) dans lequel on condense le fluide frigorigène, vaporisant ainsi le milieu de travail dans le premier échangeur de chaleur (3), dans lequel on renvoie le fluide frigorigène condensé dans l'évaporateur (1) par l'intermédiaire d'une soupape de détente (10).
  14. Procédé selon la revendication 13, caractérisé en ce que l'on refroidit un courant d'air chaud, présentant un taux d'humidité déterminé, qui est conduit à travers l'évaporateur (1), par cession de chaleur au fluide frigorigène, dans lequel il se forme comme condensat de l'eau, qui est recueillie dans un récipient (11).
  15. Installation de conversion d'énergie thermique libérée en énergie mécanique, caractérisée en ce qu'elle comprend les composants suivants:
    a) un circuit de fluide frigorigène, dans lequel on vaporise dans un évaporateur (1) un fluide frigorigène qui est transporté par l'intermédiaire d'un compresseur (2) dans un premier échangeur de chaleur (3), dans lequel le fluide frigorigène est condensé et renvoyé dans l'évaporateur (1) par l'intermédiaire d'une soupape de détente (10), dans lequel on recueille dans un récipient (11) l'eau qui est produite dans l'évaporateur (1),
    b) un circuit de détente à basse pression, dans lequel on vaporise dans le premier échangeur de chaleur (3) un milieu de travail, qui est détendu dans un dispositif de détente à basse pression (4) placé en aval et relié à un générateur (7) et qui est condensé dans un deuxième échangeur de chaleur (5), dans lequel le milieu de travail condensé est renvoyé dans le premier échangeur de chaleur (3) par l'intermédiaire d'une pompe (8), dans lequel le dispositif de détente à basse pression (4) est réalisé sous forme de soufflante de Roots,
    c) un circuit de recyclage d'énergie, dans lequel on vaporise un milieu de fonctionnement dans le deuxième échangeur de chaleur (5) et on le transporte ensuite par l'intermédiaire d'un compresseur (6) recouvert de liquide dans le premier échangeur de chaleur (3) dans lequel le milieu de fonctionnement se condense, dans lequel le milieu de fonctionnement condensé est renvoyé dans le premier échangeur de chaleur (5) par l'intermédiaire d'une soupape de détente (9).
  16. Installation selon la revendication 15, qui peut fonctionner selon l'une quelconque des revendications 1 à 14.
EP04804988.6A 2003-12-22 2004-12-22 Procédé et installation de conversion d'une énergie thermique résultante en énergie mécanique Active EP1706599B1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE2003160379 DE10360379A1 (de) 2003-12-22 2003-12-22 Niederdruck-Entspannungsmotor auf der Basis von Rootsgebläsen
DE2003160380 DE10360380A1 (de) 2003-12-22 2003-12-22 Extraktions-Wärmepumpe mit reversibel immobilisierbarem Lösemittel
DE2003160364 DE10360364A1 (de) 2003-12-22 2003-12-22 Offene Wärmepumpe unter Verwendung von flüssigkeitsüberlagerten Verdichtersystemen
DE2003161203 DE10361203A1 (de) 2003-12-24 2003-12-24 Niederdruck-Entspannungsmotor mit Energierückführung
DE2003161223 DE10361223A1 (de) 2003-12-24 2003-12-24 Niederdruck-Entspannungsmotor mit Treibdampftrennung mittels extraktiver Rektifikation
PCT/EP2004/053655 WO2005066466A1 (fr) 2003-12-22 2004-12-22 Procede et installation de conversion d'une energie thermique resultante en energie mecanique

Publications (2)

Publication Number Publication Date
EP1706599A1 EP1706599A1 (fr) 2006-10-04
EP1706599B1 true EP1706599B1 (fr) 2017-02-15

Family

ID=34714591

Family Applications (5)

Application Number Title Priority Date Filing Date
EP04804985A Withdrawn EP1706681A1 (fr) 2003-12-22 2004-12-22 Procede et installation d'augmentation de temperature d'un fluide de travail a l'etat de vapeur
EP04804988.6A Active EP1706599B1 (fr) 2003-12-22 2004-12-22 Procédé et installation de conversion d'une énergie thermique résultante en énergie mécanique
EP04816348A Active EP1702140B1 (fr) 2003-12-22 2004-12-22 Procede de conversion d'energie thermique en energie mecanique par un dispositif de detente basse tension
EP04804983.7A Active EP1706598B1 (fr) 2003-12-22 2004-12-22 Procede pour transformer l'energie thermique generee par des machines frigorifiques
EP04804984A Withdrawn EP1702139A1 (fr) 2003-12-22 2004-12-22 Dispositif et procede de transformation d'energie thermique en energie mecanique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04804985A Withdrawn EP1706681A1 (fr) 2003-12-22 2004-12-22 Procede et installation d'augmentation de temperature d'un fluide de travail a l'etat de vapeur

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP04816348A Active EP1702140B1 (fr) 2003-12-22 2004-12-22 Procede de conversion d'energie thermique en energie mecanique par un dispositif de detente basse tension
EP04804983.7A Active EP1706598B1 (fr) 2003-12-22 2004-12-22 Procede pour transformer l'energie thermique generee par des machines frigorifiques
EP04804984A Withdrawn EP1702139A1 (fr) 2003-12-22 2004-12-22 Dispositif et procede de transformation d'energie thermique en energie mecanique

Country Status (6)

Country Link
US (2) US7726128B2 (fr)
EP (5) EP1706681A1 (fr)
AT (1) ATE371101T1 (fr)
DE (1) DE502004004776C5 (fr)
ES (2) ES2293384T3 (fr)
WO (5) WO2005066466A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006021928A1 (de) * 2005-06-02 2007-11-15 Lutz Giechau Vorrichtung zur Erzeugung mechanischer Energie
DE102006022792B3 (de) 2006-05-16 2007-10-11 Erwin Dr. Oser Umwandlung solarer Wärme in mechanische Energie mit einem Strahlverdichter
DE102007041457B4 (de) * 2007-08-31 2009-09-10 Siemens Ag Verfahren und Vorrichtung zur Umwandlung der Wärmeenergie einer Niedertemperatur-Wärmequelle in mechanische Energie
DE102008013737A1 (de) 2008-03-06 2009-09-10 Heinz Manfred Bauer Verfahren zur Wandlung thermischer Energie in mechanische und weiter in elektrische Energie
DE102008024116A1 (de) * 2008-05-17 2009-11-19 Hamm & Dr. Oser GbR (vertretungsberechtiger Gesellschafter: Dr. Erwin Oser, 50670 Köln) Umwandlung der Druckenergie von Gasen und Dämpfen bei niedrigen Ausgangsdrücken in mechanische Energie
DE102008036917A1 (de) 2008-08-05 2010-02-11 Heinz Manfred Bauer Verfahren zur Wandlung thermischer Energie in mechanische und weiter in elektrische Energie
WO2010104601A1 (fr) * 2009-03-12 2010-09-16 Seale Joseph B Moteur thermique avec régénérateur et échange minuté de gaz
US20130174552A1 (en) * 2012-01-06 2013-07-11 United Technologies Corporation Non-azeotropic working fluid mixtures for rankine cycle systems
EP2820257A1 (fr) * 2012-02-29 2015-01-07 Eaton Corporation Dispositif et systèmes de récupération d'énergie volumétrique
DE102012016991A1 (de) 2012-08-25 2014-02-27 Erwin Oser Energieeffizientes Entspannungsaggregat
DE102013112024A1 (de) * 2013-10-31 2015-04-30 ENVA Systems GmbH Drehkolbengebläse mit einem Dichtsystem
US10648745B2 (en) 2016-09-21 2020-05-12 Thermal Corp. Azeotropic working fluids and thermal management systems utilizing the same
DE102019135820A1 (de) 2019-12-27 2021-07-01 Corinna Ebel Verfahren zur Dampferzeugung, Dampferzeuger und Verwendung eines Wälzkolbengebläses
CN112412560A (zh) * 2020-10-28 2021-02-26 北京工业大学 一种基于单螺杆膨胀机的卡琳娜循环系统
DE202021100874U1 (de) 2021-02-23 2022-05-30 Marlina Hamm Wälzkolbengebläse zur Entspannung eines dampfförmigen Mediums bei hohem Druck und guter Dichtigkeit

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505810A (en) * 1966-12-02 1970-04-14 Gohee Mamiya System for generating power
FR1546326A (fr) 1966-12-02 1968-11-15 Générateur d'énergie perfectionné, particulièrement pour créer une énergie enutilisant un réfrigérant
GB1301214A (en) 1970-05-26 1972-12-29 Wallace Louis Minto Prime mover system
US3972195A (en) * 1973-12-14 1976-08-03 Biphase Engines, Inc. Two-phase engine
US4009575A (en) * 1975-05-12 1977-03-01 said Thomas L. Hartman, Jr. Multi-use absorption/regeneration power cycle
FR2374539A1 (fr) * 1976-12-15 1978-07-13 Air Ind Procede de compression de vapeur d'eau, et circuits thermiques pour sa mise en oeuvre
US4295335A (en) * 1978-01-09 1981-10-20 Brinkerhoff Verdon C Regenative absorption engine apparatus and method
DE2803118B2 (de) * 1978-01-25 1980-07-31 Stiebel Eltron Gmbh & Co Kg, 3450 Holzminden Verfahren zur Beheizung mit einer Absorptionswärmepumpenanlage und Vorrichtung zur Durchführung des Verfahrens
US4195485A (en) * 1978-03-23 1980-04-01 Brinkerhoff Verdon C Distillation/absorption engine
US4307572A (en) * 1978-05-15 1981-12-29 New Energy Dimension Corporation Externally cooled absorption engine
US4429661A (en) * 1981-11-27 1984-02-07 Mcclure Michael C Heat recovery apparatus and method
US4534175A (en) * 1982-03-11 1985-08-13 Gason Energy Engineering Ltd. Method and apparatus for the absorption of a gas in a liquid and their use in energy conversion cycles
DE3219680A1 (de) * 1982-05-21 1983-11-24 Siemens AG, 1000 Berlin und 8000 München Waermepumpenanlage
WO1985002881A1 (fr) * 1983-12-22 1985-07-04 Lipovetz Ivan Systeme pour la conversion d'energie thermique, en particulier pour utiliser l'energie thermique de l'environnement
DE3417833A1 (de) * 1984-05-14 1985-11-14 VEB Wärmeanlagenbau "DSF" im VE Kombinat Verbundnetze Energie, DDR 1020 Berlin Anordnung fuer eine resorptionswaermepumpenanlage zur erzeugung von heizwaerme aus industrie- und umweltwaerme
DE3619547A1 (de) * 1984-12-13 1987-12-17 Peter Koch Verfahren und einrichtung zur erzeugung einer kraft aus einer temperaturdifferenz zweier medien
JPS61171811A (ja) 1985-01-28 1986-08-02 Sanyo Electric Co Ltd 動力取出し用吸収ヒ−トポンプ装置
US4622820A (en) * 1985-09-27 1986-11-18 Sundquist Charles T Absorption power generator
JPH0696978B2 (ja) 1985-12-03 1994-11-30 トヨタ自動車株式会社 過給機付内燃機関
US4848088A (en) * 1987-12-03 1989-07-18 Lazarevich Milan P M Heat recycling process
US5027602A (en) * 1989-08-18 1991-07-02 Atomic Energy Of Canada, Ltd. Heat engine, refrigeration and heat pump cycles approximating the Carnot cycle and apparatus therefor
US5791157A (en) * 1996-01-16 1998-08-11 Ebara Corporation Heat pump device and desiccant assisted air conditioning system
DE19712325A1 (de) 1997-03-24 1998-10-15 Wilhelm Holzapfel Anlage zur Umwandlung thermischer Energie niedrigen Niveaus in mechanische Energie
KR20010002901A (ko) * 1999-06-18 2001-01-15 김창선 물질 열팽창에너지 재활용 방법
GB0007917D0 (en) * 2000-03-31 2000-05-17 Npower An engine
HU0100463D0 (en) * 2001-01-29 2001-03-28 Szopko Mihaly Method and device for absorption heat pumping
US6672064B2 (en) * 2002-03-14 2004-01-06 The Sun Trust, L.L.C. Rankine cycle generation of electricity
DE10214183C1 (de) * 2002-03-28 2003-05-08 Siemens Ag Kraftwerk zur Kälteerzeugung
US7019412B2 (en) * 2002-04-16 2006-03-28 Research Sciences, L.L.C. Power generation methods and systems
DE10221145A1 (de) * 2002-05-11 2003-11-20 Juergen Uehlin Wärmekraftmaschine mit interner Wärmesenke
US7028476B2 (en) * 2004-05-22 2006-04-18 Proe Power Systems, Llc Afterburning, recuperated, positive displacement engine

Also Published As

Publication number Publication date
US20080289336A1 (en) 2008-11-27
WO2005061858A1 (fr) 2005-07-07
US7726128B2 (en) 2010-06-01
EP1702140B1 (fr) 2007-08-22
EP1706598A1 (fr) 2006-10-04
WO2005066466A1 (fr) 2005-07-21
EP1706681A1 (fr) 2006-10-04
ATE371101T1 (de) 2007-09-15
US20080134680A1 (en) 2008-06-12
DE502004004776C5 (de) 2020-01-16
EP1706598B1 (fr) 2013-10-16
ES2293384T3 (es) 2008-03-16
WO2005061973A1 (fr) 2005-07-07
US8132413B2 (en) 2012-03-13
EP1702140A1 (fr) 2006-09-20
EP1706599A1 (fr) 2006-10-04
DE502004004776D1 (de) 2007-10-04
WO2005061857A1 (fr) 2005-07-07
EP1702139A1 (fr) 2006-09-20
ES2624638T3 (es) 2017-07-17
WO2005066465A1 (fr) 2005-07-21

Similar Documents

Publication Publication Date Title
EP1706599B1 (fr) Procédé et installation de conversion d'une énergie thermique résultante en énergie mécanique
EP2021634B1 (fr) Installation et procédé associé pour la conversion de la chaleur en énergie mécanique, électrique et/ou énergie thermique
DE102012220188B4 (de) Integrierter ORC-Prozess an zwischengekühlten Kompressoren zur Erhöhung des Wirkungsgrades und Verringerung der erforderlichen Antriebsleistung durch Nutzung der Abwärme
WO2014191230A1 (fr) Système et procédé de refroidissement pour environnements à haute température
EP2867599A2 (fr) Procédé et dispositif de production d'une énergie électrique
AT510809A1 (de) Vorrichtung zur abwärmenutzung
DE102010004187A1 (de) Wärmepumpe für hohe Vor- und Rücklauftemperaturen
DE112016000565B4 (de) Einheit zum Umwandeln von Wärme in mechanische Energie
DE102011012644A1 (de) Kälteanlage
EP2215412A1 (fr) Installation pour le refroidissement, le chauffage ou la climatisation, en particulier installations frigorifiques
DE102009016775A1 (de) Verfahren und Vorrichtung zur Erzeugung von Wasserdampf auf hohem Temperaturniveau
WO2011000548A2 (fr) Procédé pour faire fonctionner une centrale comportant un dispositif de turbine à gaz
DE102012100645B4 (de) ORC - Organischer Rankine Zyklus
EP2951407A2 (fr) Procédé permettant de faire fonctionner une centrale basse température et centrale basse température
EP0134431A2 (fr) Procédé thermodynamique approchant le cycle d'Ericsson
WO2018145884A1 (fr) Procédé permettant de faire fonctionner une installation de pompes à chaleur, installation de pompes à chaleur et centrale électrique comprenant une installation de pompes à chaleur
WO2024078669A1 (fr) Dispositif de pompe à chaleur pour la génération économe en énergie d'une chaleur de traitement, dispositif de séchage permettant de sécher un matériau devant être séché, et procédé de fonctionnement d'un dispositif de pompe à chaleur
DE102010040765A1 (de) Einrichtung zur Bereitstellung von Heizwärme oder zur Erzeugung von Klimakälte und Einrichtung zur Bereitstellung von Elektroenergie, sowie Verfahren zur Bereitstellung von Heizenergie, Verfahren zur Erzeugung von Kälteenergie und Verfahren zur Erzeugung von Bewegungsenergie und/oder Elektroenergie
DE102004037934B4 (de) Arbeitsverfahren
DE102011056055B4 (de) Verfahren und Vorrichtung zur Erzeugung von elektrischem Strom aus Abwärme
WO2024068688A1 (fr) Moteur thermique et procédé de fonctionnement d'un moteur thermique
DE102004030367A1 (de) Stromgewinnung aus der Kondensatorabwärme einer Anlage zur Wassergewinnung aus Luft mittels Kondensation zur anteiligen Deckung des Energiebedarfs
DE102012024023B4 (de) Verfahren und Vorrichtung zum Umwandeln thermischer Energie aus einer Niedertemperatur-Wärmequelle
DE102005054487A1 (de) Verfahren zur Erwärmung dampfförmiger Arbeitsmittel
DE102013020686A1 (de) Tieftemperatur - Dampfprozeß ( TT-ORC ) zur Optimierung konventioneller Dampfprozesse und zur Gewinnung von Energie aus Umweltwärme

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ECOENERGY PATENT GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ECOENERGY PATENT GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160708

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ECOENERGY PATENT GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004015458

Country of ref document: DE

Owner name: AAA EFFICIENCY AG, CH

Free format text: FORMER OWNER: OSER, ERWIN, DR., 50670 KOELN, DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 868044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015458

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2624638

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170615

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170515

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015458

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20171116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20041222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WEINMANN ZIMMERLI, CH

Ref country code: CH

Ref legal event code: PUE

Owner name: AAA EFFICIENCY AG, CH

Free format text: FORMER OWNER: ECOENERGY PATENT GMBH, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: AAA EFFICIENCY AG

Effective date: 20200414

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200402 AND 20200408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004015458

Country of ref document: DE

Representative=s name: MICHALSKI HUETTERMANN & PARTNER PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004015458

Country of ref document: DE

Owner name: AAA EFFICIENCY AG, CH

Free format text: FORMER OWNER: ECOENERGY PATENT GMBH, 45772 MARL, DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: AAA EFFICIENCY AG; CH

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: ECOENERGY PATENT GMBH

Effective date: 20200330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170615

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 868044

Country of ref document: AT

Kind code of ref document: T

Owner name: AAA EFFICIENCY AG, CH

Effective date: 20200626

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20201231

Year of fee payment: 17

Ref country code: GB

Payment date: 20201230

Year of fee payment: 17

Ref country code: FR

Payment date: 20201230

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20201230

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201230

Year of fee payment: 17

Ref country code: CH

Payment date: 20210120

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201230

Year of fee payment: 17

Ref country code: ES

Payment date: 20210219

Year of fee payment: 17

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 868044

Country of ref document: AT

Kind code of ref document: T

Owner name: SATORIUS AG, CH

Effective date: 20210618

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004015458

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 868044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211222

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211222

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211223