EP2986752B1 - Couche de protection contre l'oxydation à base de chrome - Google Patents

Couche de protection contre l'oxydation à base de chrome Download PDF

Info

Publication number
EP2986752B1
EP2986752B1 EP14722542.9A EP14722542A EP2986752B1 EP 2986752 B1 EP2986752 B1 EP 2986752B1 EP 14722542 A EP14722542 A EP 14722542A EP 2986752 B1 EP2986752 B1 EP 2986752B1
Authority
EP
European Patent Office
Prior art keywords
layer
chromium
individual
individual layers
oxidation protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14722542.9A
Other languages
German (de)
English (en)
Other versions
EP2986752A2 (fr
Inventor
Juergen Ramm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Surface Solutions AG Pfaeffikon
Original Assignee
Oerlikon Surface Solutions AG Pfaeffikon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Surface Solutions AG Pfaeffikon filed Critical Oerlikon Surface Solutions AG Pfaeffikon
Publication of EP2986752A2 publication Critical patent/EP2986752A2/fr
Application granted granted Critical
Publication of EP2986752B1 publication Critical patent/EP2986752B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness

Definitions

  • the present invention relates to a chromium-based anti-oxidation layer for substrates which are exposed to high temperatures.
  • Oxidation protection layers are used, for example, in gas turbine parts, gas turbine blades, plates of combustion chambers or the like. There it is described how layers are applied to the substrates from a suspension by means of so-called plasma spraying. Such applied layers, however, have the disadvantage, among other things, that they can only be applied relatively thickly and also have tensions which can have a negative effect on the adhesion. Oxidation-resistant and poorly heat-conducting materials are also used in connection with pistons, for example in the DE10 2009 035841 disclosed.
  • the WO 2008/043606 A1 shows a PVD layer system for coating workpieces, which comprises a mixed crystal layer of a multiple oxide.
  • the WO 2006/099754 A1 discloses a hard material layer as an oxidic arc PVD functional layer which is deposited on a workpiece.
  • the layer is essentially designed as an electrically insulating oxide.
  • the EP 2 279 837 A1 shows an alternating layer system on a cutting tool of wood.
  • the object is achieved by a chromium-containing layer system according to claim 1.
  • the production method of the layer system is claimed in claim 4.
  • a layer system is applied by means of deposition from the gas phase.
  • PVD and / or CVD processes come into consideration here.
  • sputtering and / or evaporation under vacuum conditions can be used as the PVD method.
  • spark evaporation in which material is locally evaporated from a target surface by means of an electric arc.
  • a 3 ⁇ m thick CrN intermediate layer is applied to a substrate, to which a 3 ⁇ m thick AlCrO layer is applied.
  • the AlCrO layer can also be deposited as a multilayer layer, for example it can be deposited with different compositions for the individual layers.
  • a 3.5 ⁇ m thick CrN intermediate layer is applied to a substrate, onto which a 3.5 ⁇ m thick AlCrO layer is applied.
  • a 1.7 ⁇ m thick CrN intermediate layer is applied to a substrate, on which a 1.7 ⁇ m thick AlCrO layer is applied.
  • a 5 ⁇ m thick CrN intermediate layer is applied to a substrate, to which a 5 ⁇ m thick CrO / N multilayer (CrO / CrN multilayer) is applied.
  • the coating temperature can be 450C, for example.
  • a CrN / CrON multi-layer is applied to a CrN intermediate layer applied to the substrate (see the kalo section in FIG Figure 1 ).
  • the thickness of the CrN intermediate layer can be seen to be approx. 2.4 ⁇ m and the thickness of the multilayer approx. 3 ⁇ m.
  • the multilayer is a multilayer consisting of 36 individual layers, of which 18 CrN individual layers and 18 CrON individual layers (see Figure 1 ).
  • 18 CrN individual layers and 18 CrON individual layers see Figure 1 .
  • a coating temperature of approx. 230 ° C was maintained during the coating.
  • the number of individual layers and their thickness can be selected to suit the application.
  • the result is a thin, highly resistant protective layer that protects against oxidation, suitable, among other things, for substrates which are exposed to high temperatures in use and which should be protected against oxidation.
  • CrN was used as the intermediate layer.
  • other layers for example metallic chromium. It is also possible to first apply metallic chromium to the substrate surface, followed by a thicker CrN layer on which a CrN / CrON multilayer made up of thinner individual layers is then applied.
  • a chromium-based oxidation protection layer was disclosed for substrates which are exposed to high temperatures, the layer comprising a chromium-containing layer system which comprises a base layer and a functional layer and wherein the base layer is located between the substrate and the functional layer, and the base layer at least for the most part contains chromium nitride and the functional layer contains chromium oxide.
  • the base layer consists of chromium nitride, but can also consist of aluminum chromium nitride for some applications.
  • the functional layer contains at least for the most part aluminum chromium oxide or, preferably, the functional layer consists of aluminum chromium oxide.
  • the functional layer has a multilayer layer structure which comprises alternately deposited individual layers A and B, the composition of the A individual layers differing from the composition of the B individual layers.
  • the layer thickness of the base layer is preferably greater than 1 ⁇ m, for some applications it is preferably between 1.5 and 10 ⁇ m or, even more preferably, between 2 ⁇ m and 7 ⁇ m.
  • the ratio between the layer thickness of the functional layer and the layer thickness of the base layer is preferably between 0.5 and 2, or for some applications preferably between 0.25 and 1.5.
  • a chromium-based anti-oxidation layer for substrates that are exposed to high temperatures, the layer comprising a layer system containing chromium which comprises a functional layer, and the functional layer having a multilayered layer structure which comprises alternately deposited individual layers A and B, the composition of A.
  • Individual layers differ from the composition of the B individual layers, and the A individual layers contain at least for the most part aluminum chromium nitride or preferably chromium nitride and the B individual layers at least largely contain aluminum chromium oxide or chromium oxide or preferably aluminum chromium oxynitride or even more preferably chromium oxynitride.
  • the A individual layers contain at least for the most part aluminum chromium nitride or preferably chromium nitride and the B individual layers contain at least for the most part aluminum chromium oxide or chromium oxide or preferably aluminum chromium oxynitride or even more preferably chromium oxynitride.
  • the multilayer structure can also comprise a single layer C which is deposited between an A single layer and a B single layer, the composition of the C single layer differing from the composition of the A single layer and from the composition of the B single layer, and the C single layer at least contains mostly aluminum chromium oxynitride or preferably chromium oxynitride.
  • Such a C single layer preferably consists of aluminum chromium oxynitride or even more preferably of chromium oxynitride.
  • the multi-layer layer structure comprises, between each individual layer A and each individual layer B, which are alternately deposited one on top of the other, a single layer C, the nitrogen content of which is greater than the nitrogen content in the adjacent individual layer B and less than that Nitrogen content in the adjacent single layer A is.
  • each individual layer A and / or B is preferably between 50 nm and 100 nm.
  • a method for producing an oxidation layer according to the embodiments described above has been disclosed, the method preferably being a PVD method, for example a sputtering method or, for some applications, preferably a spark evaporation method.
  • the process temperature should preferably not be higher than 450 ° C. during the coating process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Chemical Vapour Deposition (AREA)

Claims (4)

  1. Couche de protection contre l'oxydation à base de chrome pour des substrats exposés à des températures élevées, la couche à base de chrome étant appliquée sur un substrat au moyen de PVD et / ou CVD et comprenant un système de couches contenant du chrome, ledit système de couche comprenant une couche de base et une couche fonctionnelle, la couche de base étant entre le substrat et la couche fonctionnelle, la couche fonctionnelle contenant de l'oxyde de chrome, la couche fonctionnelle ayant une structure multicouche comprenant des couches individuelles A et B qui sont déposées en alternance, la composition des couches individuelles A différant de la composition des couches individuelles B, la couche de base étant composée de nitrure de chrome, et les couches individuelles A étant constituées de nitrure de chrome et les couches individuelles B étant constituées d'oxyde de chrome ou d'oxynitrure de chrome,
    caractérisée en ce que, entre chaque couche individuelle A et chaque couche individuelle B, qui sont déposées l'une sur l'autre en alternance, la structure multicouche comprend une couche individuelle C dont la teneur en azote est supérieure à la teneur en azote contenu dans la couche individuelle B directement adjacente et inférieure à la teneur en azote contenu dans la couche individuelle A directement adjacente.
  2. Couche de protection contre l'oxydation selon la revendication 1, l'épaisseur de chaque couche individuelle A et/ou B étant comprise entre 50 nm et 100 nm.
  3. Couche de protection contre l'oxydation selon l'une des revendications précédentes 1 à 2, le rapport entre l'épaisseur de la couche fonctionnelle et l'épaisseur de la couche de base étant compris entre 0,5 et 2 ou entre 0,25 et 1,5.
  4. Procédé de production d'une couche de protection contre l'oxydation selon l'une quelconque des revendications précédentes 1 à 3, le procédé étant un procédé de pulvérisation ou de vaporisation par étincelle, et de préférence une température de procédé non supérieure à 450 ° C est utilisée.
EP14722542.9A 2013-04-16 2014-04-14 Couche de protection contre l'oxydation à base de chrome Active EP2986752B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361812350P 2013-04-16 2013-04-16
PCT/EP2014/000991 WO2014170005A2 (fr) 2013-04-16 2014-04-14 Couche de protection contre l'oxydation à base de chrome

Publications (2)

Publication Number Publication Date
EP2986752A2 EP2986752A2 (fr) 2016-02-24
EP2986752B1 true EP2986752B1 (fr) 2021-04-07

Family

ID=50685852

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14722542.9A Active EP2986752B1 (fr) 2013-04-16 2014-04-14 Couche de protection contre l'oxydation à base de chrome

Country Status (10)

Country Link
US (1) US10174416B2 (fr)
EP (1) EP2986752B1 (fr)
JP (1) JP7002195B2 (fr)
KR (1) KR102236892B1 (fr)
CN (1) CN105143498B (fr)
AR (1) AR096030A1 (fr)
BR (1) BR112015026344B1 (fr)
CA (1) CA2912584C (fr)
MX (1) MX2015014649A (fr)
WO (1) WO2014170005A2 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107488830A (zh) * 2016-06-13 2017-12-19 沈阳科蓝纳米涂层技术有限公司 一种氮化铬涂层的制备方法
CN106435489B (zh) * 2016-11-30 2019-01-11 西北有色金属研究院 一种铌基表面抗氧化自愈合Cr/NiCr涂层的制备方法
CN107747093B (zh) * 2017-10-10 2019-10-29 岭南师范学院 一种柔性硬质复合涂层及其制备方法和涂层刀具
EP3714081A1 (fr) 2017-11-24 2020-09-30 Oerlikon Surface Solutions AG, Pfäffikon Revêtements céramiques à base d'al et de cr présentant une stabilité thermique accrue
JP7275449B2 (ja) * 2017-12-22 2023-05-18 エリコン サーフェス ソリューションズ アーゲー、 プフェフィコン ガスタービンのタービンブレードの耐食および耐エロージョンコーティング
EP3768873A4 (fr) * 2018-03-19 2022-06-01 Applied Materials, Inc. Procédés de protection de composants métalliques contre la corrosion au moyen de films minces contenant du chrome
SG11202008268RA (en) 2018-03-19 2020-10-29 Applied Materials Inc Methods for depositing coatings on aerospace components
BR112021009483A2 (pt) * 2018-11-14 2021-08-10 Oerlikon Surface Solutions Ag, Pfäffikon revestimento depositado sobre uma superfície de um substrato e substrato que tem um revestimento
WO2020219332A1 (fr) 2019-04-26 2020-10-29 Applied Materials, Inc. Procédés de protection d'éléments aérospatiaux contre la corrosion et l'oxydation
US11697879B2 (en) 2019-06-14 2023-07-11 Applied Materials, Inc. Methods for depositing sacrificial coatings on aerospace components
CA3208501A1 (fr) * 2021-02-23 2022-09-01 Anders Olof Eriksson Systeme de revetement pour applications de traitement de matiere plastique
CN116145082A (zh) * 2023-03-01 2023-05-23 纳狮新材料有限公司杭州分公司 狭缝涂布模具表面清洗方法及表面结构的制备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006099754A1 (fr) * 2005-03-24 2006-09-28 Oerlikon Trading Ag, Trübbach Couche de materiau solide
WO2008043606A1 (fr) * 2006-10-10 2008-04-17 Oerlikon Trading Ag, Trübbach Système de couches avec au moins une couche de cristal mixte d'un oxyde multiple
EP2037004A1 (fr) * 2007-09-14 2009-03-18 Sulzer Metaplas GmbH Outil de coupe, ainsi que procédé de fabrication d'un outil de coupe
EP2279837A1 (fr) * 2008-04-25 2011-02-02 Kanefusa Kabushiki Kaisha Outil de coupe de bois

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59802578D1 (de) 1997-11-03 2002-01-31 Siemens Ag Für eine heissgasbeaufschlagung ausgelegtes erzeugnis und verfahren zur herstellung einer beschichtung für dieses erzeugnis
JP2001179420A (ja) * 1999-10-14 2001-07-03 Olympus Optical Co Ltd ダイカスト用金型およびその製造方法
US9997338B2 (en) * 2005-03-24 2018-06-12 Oerlikon Surface Solutions Ag, Pfäffikon Method for operating a pulsed arc source
DE102005061060A1 (de) 2005-12-21 2007-06-28 Mahle International Gmbh Kolben für einen Verbrennungsmotor und Verfahren zu seiner Herstellung
DE102009010110B4 (de) * 2009-02-21 2014-08-28 MTU Aero Engines AG Erosionsschutz-Beschichtungssystem für Gasturbinenbauteile
JP5345436B2 (ja) 2009-03-26 2013-11-20 Dowaサーモテック株式会社 硬質皮膜被覆部材の製造方法
DE102009035841A1 (de) 2009-08-01 2011-02-03 Matthäus Götz Verfahren zur Herstellung einer Oxidationsschutz- und Wärmedämmschicht auf hohen Temperaturen ausgesetzten Substraten
CN102650036A (zh) * 2011-02-25 2012-08-29 鸿富锦精密工业(深圳)有限公司 金属外壳上形成乳白色膜层的方法
CN102268637A (zh) 2011-06-28 2011-12-07 株洲钻石切削刀具股份有限公司 含TiAlN层和CrAlN层的复合涂层刀具及其制备方法
CN102994954A (zh) * 2011-09-09 2013-03-27 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法
KR102190850B1 (ko) * 2012-11-08 2020-12-14 호야 가부시키가이샤 마스크 블랭크의 제조 방법 및 전사용 마스크의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006099754A1 (fr) * 2005-03-24 2006-09-28 Oerlikon Trading Ag, Trübbach Couche de materiau solide
WO2008043606A1 (fr) * 2006-10-10 2008-04-17 Oerlikon Trading Ag, Trübbach Système de couches avec au moins une couche de cristal mixte d'un oxyde multiple
EP2037004A1 (fr) * 2007-09-14 2009-03-18 Sulzer Metaplas GmbH Outil de coupe, ainsi que procédé de fabrication d'un outil de coupe
EP2279837A1 (fr) * 2008-04-25 2011-02-02 Kanefusa Kabushiki Kaisha Outil de coupe de bois

Also Published As

Publication number Publication date
KR102236892B1 (ko) 2021-04-07
CN105143498A (zh) 2015-12-09
CA2912584A1 (fr) 2014-10-23
EP2986752A2 (fr) 2016-02-24
BR112015026344B1 (pt) 2022-05-31
AR096030A1 (es) 2015-12-02
CA2912584C (fr) 2023-07-04
WO2014170005A2 (fr) 2014-10-23
US10174416B2 (en) 2019-01-08
CN105143498B (zh) 2018-11-09
US20160060746A1 (en) 2016-03-03
BR112015026344A2 (pt) 2017-07-25
JP2016520719A (ja) 2016-07-14
KR20160007535A (ko) 2016-01-20
MX2015014649A (es) 2016-06-23
WO2014170005A3 (fr) 2015-03-12
JP7002195B2 (ja) 2022-01-20

Similar Documents

Publication Publication Date Title
EP2986752B1 (fr) Couche de protection contre l'oxydation à base de chrome
EP2163661B1 (fr) Outil de fraisage à cylindre pourvu d'un revêtement et procédé de nouveau revêtement d'un outil de fraisage à cylindre
EP2906668B1 (fr) Revêtements pour applications à haute température sous contrainte tribologique
EP2931932B1 (fr) Tôle d'acier traitée en surface et procédé de sa fabrication
DE112004003138B4 (de) Aluminiumoxidschutzschicht und Herstellungsverfahren dafür
EP1334220B1 (fr) Materiau pour substrats soumis a des contraintes thermiques
DE102011053372A1 (de) Werkzeug mit chromhaltiger Funktionsschicht
EP2978869B1 (fr) Couches en matériau dur présentant une conductivité thermique définie
WO2008152104A1 (fr) Segment de piston
WO2007095876A1 (fr) Système de couches hautement réfléchissantes, procédé de fabrication du système de couches et dispositif de réalisation du procédé
EP3320127B1 (fr) Couche protectrice à contournage précis pour éléments structuraux de compresseur pour des turbines à gaz
DE10126896A1 (de) Schutzbeschichtigung für ein thermisch belastetes Bauteil, insbesondere Turbinenbauteil
EP2171121B1 (fr) Outil recouvert d'un revêtement d'oxyde métallique multicouche et son procédé de fabrication
WO2013104784A2 (fr) Segment de piston
DE112014005504T5 (de) Kolbenring
AT511605B1 (de) Kohlenstoffbasierende beschichtung
WO2015078570A1 (fr) Couche de substance dure permettant de réduire un apport de chaleur dans le substrat revêtu
EP3728695B1 (fr) Revêtement anti-corrosion et anti-érosion pour pales de turbines à gaz
EP2036999A1 (fr) Procédé de fabrication d'une couche isolante et couche isolante
DE102009007100A1 (de) Stahlflachprodukt mit einem metallischen Überzug und Verfahren zu seiner Herstellung
DE102012017694A1 (de) Mo-haltige Beschichtungen auf Werkzeugen für das direkte Presshärten
EP2999807B1 (fr) Couche barrière pour turbocompresseur
EP1468761A1 (fr) Cylindre de coulée pour le moulage de feuilles d'aluminium ou d'alliages d'aluminium
EP2607515A2 (fr) Procédé de revêtement par diffusion et couche de chrome ainsi fabriquée
EP3510180B1 (fr) Pale de compresseur avec revêtement protecteur multicouche contenant de l'aluminium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151116

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

PUAG Search results despatched under rule 164(2) epc together with communication from examining division

Free format text: ORIGINAL CODE: 0009017

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180619

B565 Issuance of search results under rule 164(2) epc

Effective date: 20180619

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 14/06 20060101AFI20180614BHEP

Ipc: C23C 14/08 20060101ALI20180614BHEP

Ipc: C23C 14/32 20060101ALI20180614BHEP

Ipc: C23C 14/34 20060101ALI20180614BHEP

Ipc: C23C 28/04 20060101ALI20180614BHEP

Ipc: C23C 28/00 20060101ALI20180614BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200527

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20201026

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON SURFACE SOLUTIONS AG, PFAEFFIKON

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1379787

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014015464

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210708

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210809

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210414

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014015464

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220110

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210414

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1379787

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230421

Year of fee payment: 10

Ref country code: FR

Payment date: 20230421

Year of fee payment: 10

Ref country code: DE

Payment date: 20230427

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230424

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407