EP2981502A1 - Speicherstruktur - Google Patents

Speicherstruktur

Info

Publication number
EP2981502A1
EP2981502A1 EP14724738.1A EP14724738A EP2981502A1 EP 2981502 A1 EP2981502 A1 EP 2981502A1 EP 14724738 A EP14724738 A EP 14724738A EP 2981502 A1 EP2981502 A1 EP 2981502A1
Authority
EP
European Patent Office
Prior art keywords
storage medium
inert material
solid electrolyte
polymorphic
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14724738.1A
Other languages
English (en)
French (fr)
Inventor
Carsten Schuh
Thomas Soller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2981502A1 publication Critical patent/EP2981502A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0026Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof of one single metal or a rare earth metal; Treatment thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a storage structure for a solid electrolyte battery.
  • Solid electrolyte batteries are based on the principle of action of solid electrolyte fuel cells, which are extended by an additional Buffalo of at least one memory element to a solid electrolyte battery.
  • SOFC Solid Oxide Fuel Cell
  • WO 2011/019455 AI known, in which the concept of SOFC-derived solid electrolyte batteries is discussed in more detail.
  • Such solid electrolyte batteries operate at an operating temperature above 500 ° C, at which the solid electrolyte has a sufficient ionic conductivity for oxygen ions.
  • a storage medium provided for operating a rechargeable solid electrolyte battery as part of at least one storage element of the solid electrolyte battery usually comprises particles which are used to form a
  • the particles usually consist of metal and / or metal oxide. Depending on the battery condition (charging or discharging), this storage medium is reduced or oxidized.
  • the storage structure usually has a gas-permeable porous microstructure, that is to say a skeletal structure of the storage medium with a high open porosity.
  • the storage medium tends to be at the high operating temperatures present cause the particles of the active storage medium to coarsen and / or sinter. This leads to a continuous change in the memory structure and in particular to a decrease in the surface of the storage medium, which is reflected in an increasingly poorer charge and discharge characteristics and in a decrease in useful capacity.
  • storage structures have already been constructed using storage media based on oxide-dispersion-strengthened particles, or ODS particles (oxide dispersion
  • Such a memory structure is characterized by a higher long-term stability, which corresponds to a higher realizable number of cycles of charging and discharging without significant loss of useful capacity. Furthermore, an application of a ceramic
  • Matrix known which forms intergranular, ie between the particles of the storage medium, a supporting skeleton for spacing the particles of the storage medium. Both dispersion solidification of the particles of the storage medium and a coarse-grained ceramic matrix slow down the coarsening of the particles of the storage medium, but can not reverse them. In particular, it is currently not possible to regenerate an aged storage structure to undo grain coarsening of the storage medium.
  • the object of the invention is to provide a regenerable storage structure, by means of which a regenerative enlargement of active surfaces of the storage medium after an age-related grain coarsening of the storage medium is made possible.
  • the memory structure according to the invention comprises a storage medium and a storage medium integrated or as separate Inert material present in the storage medium, wherein the inert material at least partially a polymorphic
  • Inert material contains or comprises.
  • Inert material has at least one polymorphic phase transition in the range between room temperature and maximum operating temperature of the solid electrolyte battery.
  • the polymorphic phase transition causes a change in the lattice structure and the specific volume of the inert material which also acts on the surrounding grains of the storage medium.
  • a mechanical coupling of the volume change caused by the phase transition of the inert material leads to stresses in the environment of the
  • Fig. 1 a schematic representation of an exemplary
  • Fig. 3 a phase diagram of an exemplary polymorphic
  • Fig. 1 shows an exemplary structure diagram for illustrating an operation of a solid electrolyte battery, as far as it is necessary for the description of the present invention. Due to the schematic representation, therefore, not all components of such a solid electrolyte battery are considered.
  • One mode of operation of a solid electrolyte battery is to supply a process gas, in particular air, via a gas supply 14 to a positive electrode (also symbolized by a circled plus sign in the drawing below), which is also referred to as an air electrode 16 when discharging - according to a circuit shown in the right image page - the air is deoxygenated.
  • a positive electrode also symbolized by a circled plus sign in the drawing below
  • a dense layer of the active storage medium were present at the negative electrode 20, the charge capacity of the solid electrolyte battery would be quickly exhausted.
  • a memory structure 2 of porous material which is a functionally effective oxidizable material as a storage medium, preferably in the form of metal or metal oxide, for example iron and iron oxide and / or nickel and nickel oxide , contains.
  • Redox pair for example, a mixture of H 2 / H 2 0, be the transported by the solid electrolyte 18 oxygen ions transported after their discharge at the negative electrode in the form of water vapor through pore channels of the porous storage structure 2, which includes the active storage medium.
  • the metal or the metal oxide is oxidized or reduced and the oxygen required for this purpose by the gaseous
  • Redox couple H 2 / H 2 0 delivered or transported to the solid electrolyte 18 and the negative electrode 20 back.
  • This mechanism of oxygen transport via a gaseous redox couple is called a shuttle mechanism.
  • the diffusion of the oxygen ions through the solid electrolyte 18 requires a high operating temperature of 600 to 900 ° C of the described solid electrolyte battery.
  • the said operating temperature range is furthermore advantageous for optimum composition of the gaseous redox couple H 2 / H 2 O in equilibrium with the storage medium.
  • the electrodes 16 and 20 and the electrolyte 18 are exposed to a high thermal load, but also the memory structure 2 comprising the storage medium. With the steady cycles of oxidation and reduction, the active storage medium tends to become too internal and / or coarsened.
  • Roughening means that individual grains grow at the expense of other grains, with the number density and reactive surfaces of the grains detrimentally decreasing.
  • the redox pair H 2 / H 2 O can no longer reach the active surface of the active storage medium, so that after a partial release tion of the memory, the internal resistance of the battery is very high, which prevents further technically meaningful discharge.
  • 2 shows a greatly enlarged representation of a microstructure of the memory structure used in a solid electrolyte battery.
  • the memory structure essentially contains the redox-active storage medium SM and inert material IN.
  • the storage medium SM is basically in any grain shape. In the schematic representation of the drawing, large oval grain cross-sections are shown by way of example. There are pores between the grains of the storage medium SM. Due to the open porosity formed, shuttlegas, in particular H 2 / H 2 O, can flow through the storage structure in the desired manner.
  • a charging or discharging process causes a reduction or oxidation of the grains of the active storage medium SM, which increases its oxidation state during the oxidation and, in the course of the reduction, again lowers its oxidation state. Oxidation and reduction processes are associated with a continuous volume change of the grains of the active storage medium SM.
  • an inert material IN is introduced into the storage structure, wherein the inert material IN in any form, for example in the form of grains of any size or in the form of - whiskerförmigen - Particles is present.
  • the particles of the inert material IN are arranged with respect to the grains of the storage medium both intragranularly and intergranularly in the microstructure, thus arranged inside and / or between the grains of the storage medium SM. In this way, the particles of the inert material IN can also be used after several oxidation and reduction cycles. Individual grains of the storage medium SM apart from each other, since no propagation of the active storage medium SM on the inert material IN takes place even after several charge / discharge cycles. There is also no chemical reaction between the inert material IN and the Shuttlegas H 2 / H 2 0 instead.
  • ODS particles oxides dispersion-strengthened
  • iron particles are used which are mixed with coarse-grained zirconia Zr0 2 , dried by dry pressing and slightly sintered. Both the intragranular ceramic particles of inert material IN present in the storage material and a coarse-grained ceramic matrix of inert material IN (not shown) slow down the coarsening of the storage medium SM.
  • Yttrium-stabilized zirconia also called YSZ
  • YSZ Yttrium-stabilized zirconia
  • inert material IN in the composition of the memory structure is able to slow down a coarsening of the storage medium SM, it can not reverse it. In particular, it is currently not possible to regenerate an aged storage structure. By means of the invention, age-related grain coarsening of the active storage medium is thereby reversed, by a re-enlargement or else
  • Deagglomeration of the active surfaces of the storage medium SM is sought. This deagglomeration ensures a regeneration of an aged storage structure.
  • a polymorphic inert material IN for a regeneration of the storage structure according to the invention, use of a polymorphic inert material IN is provided, wherein the inert material IN has at least one polymorphic phase transition in a temperature range which can be largely selected by technical measures.
  • the temperature range is preferably in a range between room temperature and a maximum operating temperature of the solid electrolyte battery.
  • polymorphic is understood to mean a property of a compound to be present in several lattice structures, each of which has different chemical and / or physical properties. Polymorphic substances thus differ according to the spatial arrangement of theirs
  • phase transition required according to the invention denotes a change in the lattice structure of the
  • Inert material IN due to a change in temperature.
  • the polymorphic phase transition causes via the change of the lattice structure also a more or less large change of the specific volume of the inert material IN, which acts as a mechanical strain on the surrounding grains of the storage medium SM.
  • a mechanical coupling of the stresses caused by the phase transition of the inert material IN causes a break-up of the adjacent grains of the storage medium SM, so that new reactive zones of the storage medium are available for the redox process. According to the invention, therefore, a regenerative deagglomeration is achieved.
  • phase transition temperature is run through by a thermal cycle of the memory structure.
  • the mechanical stresses caused by the changed lattice structure and the concomitant change in volume of the inert material IN cause the storage structure to break open, so that new reactive zones are available for the redox process during charging or discharging.
  • a temperature range for carrying out the regeneration process according to the invention is in principle in a range between room temperature and a maximum operating temperature of the solid electrolyte battery.
  • the method according to the invention can thus be used either in a special regeneration operation outside a thermal operating range for a normal storage operation, or, preferably, within the thermal operating range of the normal storage operation, which is also referred to as intrinsic operating temperature band.
  • the polymorphic phase transition temperature is in the intrinsic operating temperature band.
  • the storage medium SM is oxidized, which is typically an exothermic process and leads to a heating of the solid electrolyte.
  • the swept temperature window is typically 700-850 ° C, which is thus the preferred range of polymorphic
  • Phase transition temperature of the inert matrix material IN represents.
  • lower transformation temperatures up to room temperature, are selected for the polymorphic phase transition temperature of the inert matrix material IN.
  • the enlargement of the surface of the active storage medium SM then takes place by regeneration operation using a specific cooling and re-heating process of the solid electrolyte battery.
  • zirconia As an inert polymorphic matrix material zirconia is used, for example, which is suitably used with a rare earth element (RE, rare earth metals), for example according to the structural formula ZrO 2 -
  • RE rare earth element
  • (RE) Oi, 5 is doped.
  • Preferred rare earth dopants represented in the structural formula as placeholders with "RE" are yttrium, neodymium, lanthanum, cerium and / or gadolinium and combinations thereof.
  • FIG. 3 shows a phase diagram of an exemplary polymorphic inert material, wherein a doping based on neodymium according to the structural formula Zr0 2 -NdOi, 5 is used to explain the phase transitions.
  • the molar fraction MFR is plotted on NdOi, 5 in relation to the pure undoped matrix material Zr0 2 , which is 0% on the left side of the Phase diagram increases to 100% on the right side of the abscissa of the phase diagram.
  • the temperature TMP is plotted, with the applied temperatures TMP rising from bottom to top.
  • the phase diagram shows a dashed line between a first coordinate 1 and a second coordinate 2, which runs parallel to the ordinate and thus a temperature rising between the first coordinate 1 and the second coordinate 2 at a given molar fraction MFR at NdOi, 5 in relation to the undoped matrix material Zr0 2 corresponds.
  • the doped material thereby undergoes a polymorphic phase transition between the lower temperature TMP of the first coordinate 1 and the higher temperature TMP of the second coordinate 2, namely from a monoclinic phase M to a tetraagonal phase T.
  • the doped material undergoes a phase transition from a tetragonal phase T to a monoclinic phase.
  • phase transition from the monoclinic phase M to the tetragonal phase T has an offsetting martensitic effect on the lattice structure of the doped inert material, resulting in a significant volume change of the unit cell of several percent and is therefore particularly suitable for inducing the mechanical stresses used in the invention.
  • these stresses cause the neighboring grains of the storage medium to break up, so that new reactive zones are available for the redox process during charging or discharging.
  • a temperature range for carrying out the regeneration method according to the invention is to be determined on the basis of a thermal position of phase transitions as a function of a selected doping.
  • the temperature range is in principle in a range between room temperature and a maximum
  • the maximum operating temperature of the solid electrolyte battery is in the sense of the predicted a basically not fixed size of a solid electrolyte battery, which results solely from the technical balance in the upper sense. From a technical point of view, a regeneration operation selected outside the thermal cycle of normal storage operation appears in a lower temperature range up to room temperature. In any case, however, preference is given to a temperature range for carrying out the regeneration method according to the invention within the intrinsic operating temperature band of the solid electrolyte battery, since the regeneration according to the invention thus takes place in the normal temperature band of the charging and discharging operation.
  • inert material IN which is suitable with regard to the thermal position of its phase transitions
  • a suitable temperature range can be adjusted technically on the basis of the chosen inert material and on the basis of a suitable doping.
  • Zr0 2 -NdOi, 5 as inert material IN has proven to be technically favorable, but is merely exemplary of a polymorphic required according to the invention
  • Inert material IN which has at least one polymorphic phase transition in the range between room temperature and maximum operating temperature of the solid electrolyte battery.
  • the polymorphic inert material IN can be integrated both in the active storage medium SM and as a separate phase in the storage structure.
  • the total content of polymorphic inert material is advantageously less than 50% by volume.
  • the rare earth content, ie molar fraction MFR of (RE) Oi, 5 in relation to the undoped inert material Zr0 2 is less than 10%, preferably less than 5%, since in this case the a tetragonal-monoclinic phase transition of the Zr0 2 connected in the above-mentioned advantageous operating temperature range is a relatively large volume change.
  • the memory structure according to the invention allows the creation of new reactive surfaces of the active storage medium. This results in a significantly reduced aging rate as well as a significantly improved long-term stability of the storage medium.
  • the memory structure according to the invention also allows large-scale production, reproducible, flexible and cost-effective production of the storage medium and is applicable to various metal storage materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Die erfindungsgemäße Speicherstruktur umfasst ein Speichermedium und ein im Speichermedium integriertes oder als separate Phase im Speichermedium vorliegendes Inertmaterial, wobei das Inertmaterial zumindest anteilig ein polymorphes Inertmaterial enthält oder umfasst. Das polymorphe Inertmaterial weist im Bereich zwischen Raumtemperatur und maximaler Einsatztemperatur der Festelektrolyt -Batterie minestens einen polymorphen Phasenübergang auf. Der polymorphe Phasenübergang bewirkt eine Verzerrung der Gitterstruktur des Inertmaterials, führt so zu einer Änderung des spezifischen Volumens und wirkt so auf die umgebenden Körner des Speichermediums ein. Eine mechanische Kopplung der durch den Phasenübergang des Inertmaterials ausgelösten Verspannungen bewirkt ein Aufbrechen der benachbarten Körner des Speichermediums, so dass neue reaktive Zonen des Speichermediums zur Verfügung stehen. Erfindungsgemäß wird also eine Regeneration der Festelektrolyt -Batterie erzielt.

Description

Beschreibung
Speicherstruktur Die Erfindung betrifft eine Speicherstruktur für eine Festelektrolyt -Batterie .
Festelektrolyt-Batterien beruhen auf dem Wirkungsprinzip von Festelektrolyt-Brennstoffzellen, welche durch eine zusätzli- che Vorsehung mindestens eines Speicherelements zu einer Festelektrolyt -Batterie erweitert werden.
Gattungsmäßig bekannte Festelektrolyt -Brennstoffzellen, beispielsweise oxidkeramische Brennstoffzellen, in der Fachwelt auch als SOFC (Solid Oxide Fuel Cell) bezeichnet, sind aus der internationalen Veröffentlichungsschrift
WO 2011/019455 AI bekannt, in welcher auf das Konzept von SOFC-abgeleiteten Festelektrolyt-Batterien näher eingegangen wird. Derartige Festelektrolyt-Batterien arbeiten mit einer Betriebstemperatur oberhalb von 500° C, bei welcher der Festelektrolyt eine hinreichende Ionenleitfähigkeit für Sauerstoffionen aufweist.
Ein zum Betrieb einer wiederaufladbaren Festelektrolyt - Batterie vorgesehenes Speichermedium als Bestandteil zumindest eines Speicherelements der Festelektrolyt-Batterie um- fasst üblicherweise Partikel, welche zur Bildung eines
Redoxpaares geeignet sind. Die Partikel bestehen üblicherweise aus Metall und/oder Metalloxid. Je nach Batteriezustand (Laden oder Entladen) wird dieses Speichermedium reduziert oder oxidiert . Die Speicherstruktur weist üblicherweise eine gasdurchlässige poröse Mikrostruktur, also einen skelettartigen Aufbau des Speichermediums mit hoher offener Porosität auf .
Bei einer Vielzahl zyklischer Lade- und Entlade- also Reduk- tions- und Oxidationsvorgänge des Speichermediums neigt das Speichermedium bei den anliegenden hohen Betriebstemperaturen dazu, dass die Partikel des aktiven Speichermediums vergröbern und/oder versintern. Dies führt zu einer kontinuierlichen Veränderung der Speicherstruktur und insbesondere zu einer Abnahme der Oberfläche des Speichermediums, was sich in einer zunehmend schlechteren Lade- und Entladecharakteristik sowie in einer Abnahme der Nutzkapazität niederschlägt.
Es wurden daher bereits Speicherstrukturen unter Verwendung von Speichermedien auf Basis von Oxid-dispersionsverfestigten Partikeln, oder ODS-Partikeln (Oxide Dispersion
Strengthened) , vorgeschlagen. Eine derartige Speicherstruktur zeichnet sich durch eine höhere Langzeitbeständigkeit aus, welche einer höheren realisierbaren Zyklenzahl von Lade- und Entladevorgängen ohne wesentliche Einbußen der Nutzkapazität entspricht. Weiterhin ist eine Anwendung einer keramischen
Matrix bekannt, welche intergranular, also zwischen den Partikeln des Speichermediums, ein Stützskelett zur Beabstandung der Partikel des Speichermediums bildet. Sowohl Dispersionsverfestigung der Partikel des Speichermediums als auch eine grobkörnige keramische Matrix verlangsamen eine Vergröberung der Partikel des Speichermediums, können diese jedoch nicht umkehren. Insbesondere ist es derzeit nicht möglich, eine gealterte Speicherstruktur dahingehend zu regenerieren, eine Kornvergröberung des Speichermediums rückgängig zu machen.
Aufgabe der Erfindung ist es, eine regenerierbare Speicherstruktur anzugeben, durch welche eine regenerative Vergröße- rung aktiver Oberflächen des Speichermediums nach einer alterungsbedingter Kornvergröberung des Speichermediums ermöglicht wird.
Die Aufgabe wird durch eine Speicherstruktur mit den Merkma- len des Patentanspruchs 1 gelöst.
Die erfindungsgemäße Speicherstruktur umfasst ein Speichermedium und ein im Speichermedium integriertes oder als separate Phase im Speichermedium vorliegendes Inertmaterial, wobei das Inertmaterial zumindest anteilig ein polymorphes
Inertmaterial enthält oder umfasst. Das polymorphe
Inertmaterial weist im Bereich zwischen Raumtemperatur und maximaler Einsatztemperatur der Festelektrolyt -Batterie mindestens einen polymorphen Phasenübergang auf.
Der polymorphe Phasenübergang bewirkt eine Änderung der Gitterstruktur und des spezifischen Volumens des Inertmaterials, welche über die umgebenden Körner des Speichermediums auch auf diese einwirkt . Eine mechanische Kopplung der durch die beim Phasenübergang des Inertmaterials ausgelöste Volumenänderung führt zu Verspannungen in der Umgebung des
Inertmaterials und bewirkt so ein Aufbrechen der benachbarten Körner des Speichermediums, so dass neue reaktive Zonen des Speichermediums zur Verfügung stehen. Erfindungsgemäß wird also eine Regeneration der Festelektrolyt-Batterie erzielt.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind Ge- genstand der abhängigen Ansprüche.
Im Folgenden werden die Erfindung sowie ihre vorteilhaften Ausgestaltungen und Ausführungsformen anhand der Zeichnung näher erläutert. Dabei zeigen:
Fig. 1: eine schematische Darstellung eines exemplarischen
Aufbaus und einer Wirkungsweise einer Festelektrolyt-Batterie; Fig. 2: eine schematische Darstellung einer Speicherstruktur der Festelektrolyt-Batterie; und;
Fig. 3: ein Phasendiagramm eines exemplarischen polymorphen
Inert -Materials .
Die Figuren sind zugunsten einer anschaulichen Darstellungs - weise nicht notwendigerweise maßstabsgerecht gezeichnet, ins besondere entsprechen die Größenverhältnisse der dargestell- ten Figurenelemente - sowohl für sich als auch im Verhältnis zueinander - nicht notwendigerweise der Realität.
Fig. 1 zeigt eine exemplarische Strukturdarstellung zur Dar- Stellung einer Wirkungsweise einer Festelektrolyt -Batterie , soweit diese für die Beschreibung der vorliegenden Erfindung notwendig ist. Aufgrund der schematischen Darstellung werden daher nicht alle Komponenten einer solchen Festelektrolyt - Batterie betrachtet.
Eine Wirkungsweise einer Festelektrolyt -Batterie besteht darin, dass an einer - in der Zeichnung unten angeordneten und mit einem eingekreisten Pluszeichen symbolisierten - positiven Elektrode, die auch als Luftelektrode 16 bezeichnet wird, ein Prozessgas, insbesondere Luft, über eine Gaszufuhr 14 zugeführt wird, wobei beim Entladen - gemäß einem in der rechten Bildseite dargestellten Stromkreis - der Luft Sauerstoff entzogen wird. Der Sauerstoff gelangt in Form von Sauerstoff - ionen O2" durch einen an der positiven Elektrode anliegenden Feststoffelektrolyten 18, zu einer - in der Zeichnung oben angeordneten und mit einem eingekreisten Minuszeichen symbolisierten - negativen Elektrode 20, die auch als Speicherelektrode bezeichnet wird. Diese steht über ein gasförmiges Redoxpaar, z.B. ein Wasserstoff -Wasserdampf -Gemisch mit einer porösen Speicherstruktur 2 in Verbindung.
Würde an der negativen Elektrode 20 eine dichte Schicht des aktiven Speichermediums vorliegen, so würde die Ladekapazität der Festelektrolyt -Batterie schnell erschöpft werden. Aus diesem Grund ist es zweckmäßig, an der negativen Elektrode 20 als Speichermedium eine Speicherstruktur 2 aus porösem Material einzusetzen, das ein funktional wirkendes oxidierbares Material als Speichermedium, bevorzugt in Form von Metall bzw. Metalloxid, beispielsweise Eisen und Eisenoxid und/oder Nickel und Nickeloxid, enthält.
Über ein beim Betriebszustand der Batterie gasförmiges
Redoxpaar, beispielsweise ein Gemisch aus H2/H20, werden die durch den Festkörperelektrolyt 18 transportierten Sauerstoffionen nach ihrer Entladung an der negativen Elektrode in Form von Wasserdampf durch Porenkanäle der porösen Speicherstruktur 2, die das aktive Speichermedium umfasst, transportiert. Je nachdem, ob ein Entlade- oder Ladevorgang vorliegt, wird das Metall bzw. das Metalloxid oxidiert oder reduziert und der hierfür benötigte Sauerstoff durch das gasförmige
Redoxpaar H2/H20 angeliefert oder zum Festkörperelektrolyten 18 bzw. zur negativen Elektrode 20 zurück transportiert. Die- ser Mechanismus des Sauerstofftransportes über ein gasförmiges Redoxpaar wird als Shuttle-Mechanismus bezeichnet.
Die Diffusion der Sauerstoffionen durch den Feststoffelektro- lyten 18 benötigt eine hohe Betriebstemperatur von 600 bis 900°C der beschriebenen Festelektrolyt -Batterie . Der genannte Betriebstemperaturbereich ist des Weiteren für eine optimale Zusammensetzung des gasförmigen Redoxpaares H2/H20 in Gleichgewicht mit dem Speichermedium vorteilhaft. Bei einer derartigen Betriebstemperatur sind nicht nur die Elektroden 16 und 20 und der Elektrolyt 18 einer hohen thermischen Belastung ausgesetzt, sondern auch die Speicherstruktur 2, die das Speichermedium umfasst. Bei den stetigen Zyklen von Oxidation und Reduktion neigt das aktive Speichermedium dazu, zu vers- intern und/oder zu vergröbern.
Versintern bedeutet, dass einzelne Körner fortschreitend durch Diffusionsprozesse miteinander verschmelzen, wobei sowohl die reaktive Oberfläche als auch die für den Gastransport erforderliche durchgehend offene Porenstruktur in nach- teilhafter Weise abnehmen.
Vergröbern bedeutet, dass einzelne Körner auf Kosten anderer Körner wachsen, wobei Anzahldichte und reaktive Oberflächen der Körner in nachteilhafter Weise abnehmen.
Bei einer geschlossenen Porenstruktur kann das Redoxpaar H2/H20 die aktive Oberfläche des aktiven Speichermediums nicht mehr erreichen, so dass bereits nach einer Teilentla- dung des Speichers der Innenwiderstand der Batterie sehr hoch wird, was eine weitere technisch sinnvolle Entladung verhindert . Fig. 2 zeigt eine stark vergrößerte Darstellung eines Mikro- gefüges der in einer Festelektrolyt -Batterie zum Einsatz kommenden Speicherstruktur.
Die Speicherstruktur beinhaltet im Wesentlichen das redox- aktive Speichermedium SM sowie Inertmaterial IN. Das Speichermedium SM liegt grundsätzlich in beliebiger Kornform vor. In der schematischen Darstellung der Zeichnung sind exemplarisch große ovale Kornquerschnitte dargestellt. Zwischen den Körnern des Speichermediums SM liegen Poren vor. Durch die gebildete offene Porosität kann Shuttlegas, insbesondere H2/H20, in der gewünschten Weise durch die Speicherstruktur strömen. Ein Lade- bzw. Entladeprozess bewirkt eine Reduktion bzw. Oxidation der Körner des aktiven Speichermedi - ums SM, das während der Oxidation seine Oxidationsstufe erhöht und im Zuge der Reduktion seine Oxidationsstufe wieder erniedrigt. Oxidations- und Reduktionsprozesse sind mit einer fortlaufenden Volumenveränderung der Körner des aktiven Speichermediums SM verbunden.
Zur Verhinderung einer gegenseitigen Versinterung und/oder Vergröberung der Körner des aktiven Speichermediums SM, ist ein Inertmaterial IN in die Speicherstruktur eingebracht, wobei das Inertmaterial IN in beliebiger Form, beispielsweise in Form von Körnern beliebiger Größe oder auch in Form von - nicht dargestellten - whiskerförmigen Partikeln vorliegt.
Die Partikel des Inertmaterials IN sind in Bezug auf die Körner des Speichermediums sowohl intragranular als auch inter- granulär im Gefüge angeordnet, mithin innerhalb und/oder zwischen den Körnern des Speichermediums SM angeordnet. Auf diese Art und Weise können die Partikel des Inertmaterials IN auch nach mehreren Oxidations- und Reduktionszyklen die ein- zelnen Körner des Speichermediums SM voneinander beabstanden, da auch nach mehreren Lade-/Entladezyklen keine Ausbreitung des aktiven Speichermediums SM über dem Inertmaterial IN stattfindet. Es findet auch keine chemische Reaktion zwischen dem Inertmaterial IN und dem Shuttlegas H2/H20 statt.
Wird das Inertmaterial IN intragranular im Speichermaterial verteilt, so entstehen vorzugsweise sogenannte ODS-Partikel (Oxide Dispersion Strengthened) des Speichermaterials. Zur Herstellung dieser ODS-Partikel werden Eisenpartikel verwendet, die mit grobkörnigem Zirkoniumdioxid Zr02 gemischt, tro- ckengepresst und leicht angesintert werden. Sowohl die intragranular im Speichermaterial vorliegenden keramischen Partikel aus Inertmaterial IN als auch eine - nicht darge- stellte - grobkörnige keramische Matrix aus Inertmaterial IN verlangsamen eine Vergröberung des Speichermediums SM. Als keramikbasiertes Inertmaterial zur Bildung der keramischen Matrix wird derzeit beispielsweise Yttrium-stabilisiertes Zirkoniumdioxid, auch YSZ bezeichnet, eingesetzt, vorzugswei- se in einer auch als 8YSZ bezeichneten Zusammensetzung mit einer Konzentration von 8 mol% Y203 in Zr02.
Eine fortgesetzte Redox-Zyklierung in der Festelektrolyt - Batterie führt nun in Kombination mit den hohen Betriebstem- peraturen zu einer sukzessiven Vergröberung des aktiven Speichermediums und damit zu einer merklichen Alterung in der Batterieleistung .
Ein weiteres Problem liegt im intrinsischen Oxidationsmecha- nismus der verwendeten Speichermetalle, welcher vorwiegend auf kationischer Diffusion beruht. Dieser Oxidationsmechanis - mus führt insbesondere beim Entladevorgang zu einer sukzessiven Migration des Speichers in Richtung der 02"-Quelle, da beim zu Grunde liegenden Oxidationsprozess die Diffusion der Metall -Spezies in die Reaktionszone schneller erfolgt als der entsprechende Transport der Sauerstoff -Spezies . Der resultierende Massefluss auf die Oxidationsquelle hin führt zusammen mit der sukzessiven Vergröberung und/oder Versinterung der ursprünglich vorhandenen reaktiven Metall - Partikel zu einer kontinuierlichen Veränderung der Speicher- struktur, was sich in einer zunehmend schlechteren Lade- und Entladecharakteristik sowie in einer Abnahme der Nutzkapazität niederschlägt .
Der beschriebene Einsatz von Inertmaterial IN in der Zusam- mensetzung der Speicherstruktur vermag zwar eine Vergröberung des Speichermediums SM zu verlangsamen, kann diese jedoch nicht umkehren. Insbesondere ist es derzeit nicht möglich, eine gealterte Speicherstruktur zu regenerieren. Mit den Mitteln der Erfindung wird eine alterungsbedingte Kornvergröberung des aktiven Speichermediums dadurch umgekehrt, indem eine Wiedervergrößerung oder auch
Deagglomeration der aktiven Oberflächen des Speichermediums SM angestrebt wird. Diese Deagglomeration gewährleistet eine Regenerierung einer gealterten Speicherstruktur.
Für eine erfindungsgemäße Regeneration der Speicherstruktur ist ein Einsatz eines polymorphen Inertmaterials IN vorgesehen, wobei das Inertmaterial IN in einem durch technische Maßnahmen weitgehend wählbaren Temperaturbereich mindestens einen polymorphen Phasenübergang aufweist. Der Temperaturbereich liegt vorzugsweise in einem Bereich zwischen Raumtemperatur und einer maximalen Einsatztemperatur der Festelektrolyt-Batterie .
Unter dem Begriff »polymorph« wird eine Eigenschaft einer Verbindung verstanden, in mehreren Gitterstrukturen vorliegen zu können, welche jeweils unterschiedliche chemische und/oder physikalische Eigenschaften haben. Polymorphe Stoffe unter- scheiden sich also je nach der räumlichen Anordnung ihrer
Gitterstrukturen und haben somit unterschiedliche Eigenschaften. Unterschiedliche Gitterstrukturen können sich durch verschiedene äußere Einflüsse einstellen, wobei in diesem Zusam- menhang der Einfluss der Temperatur maßgeblich interessiert. Der erfindungsgemäß geforderte Phasenübergang bezeichnet in diesem Sinne einen Wechsel in der Gitterstruktur des
Inertmaterials IN aufgrund einer Temperaturänderung.
Der polymorphe Phasenübergang bewirkt über die Änderung der Gitterstruktur auch eine mehr oder weniger große Änderung des spezifischen Volumens des Inertmaterials IN, welche als mechanische Verspannung auf die umgebenden Körner des Speicher- mediums SM einwirkt. Eine mechanische Kopplung der durch den Phasenübergang des Inertmaterials IN ausgelösten Verspannun- gen bewirkt ein Aufbrechen der benachbarten Körner des Speichermediums SM, so dass neue reaktive Zonen des Speichermediums für den Redox-Vorgang zur Verfügung stehen. Erfindungsge- mäß wird also eine regenerative Deagglomeration erzielt.
Eine Einstellung eines polymorphen Phasenübergangs erfolgt beispielsweise dadurch, dass durch einen thermischen Zyklus der Speicherstruktur die Phasenübergangstemperatur durch- laufen wird. Die durch die geänderte Gitterstruktur und der damit einhergehenden Volumenänderung des Inertmaterials IN hervorgerufenen mechanischen Spannungen bewirken ein Aufbrechen der Speicherstruktur, so dass neue reaktive Zonen für den Redox-Vorgang beim Laden bzw. Entladen zur Verfügung ste- hen.
Ein Temperaturbereich zur Durchführung des erfindungsgemäßen Regenerationserfahrens liegt prinzipiell in einem Bereich zwischen Raumtemperatur und einer maximalen Einsatztemperatur der Festelektrolyt -Batterie . Das erfindungsgemäße Verfahren kann also entweder in einem besonderen Regenerationsbetrieb außerhalb eines thermischen Betriebsbereichs für einen normalen Speicherbetrieb eingesetzt werden, oder aber, bevorzugt, innerhalb des thermischen Betriebsbereichs des normalen Spei- cherbetriebs , welcher auch als intrinsisches Betriebstemperaturband bezeichnet wird. Gemäß einer bevorzugten Ausgestaltung der Erfindung liegt die polymorphe Phasenübergangstemperatur im intrinsischen Betriebstemperaturband. Während des Entladevorgangs wird das Speichermedium SM oxidiert, was typischerweise ein exothermer Vorgang ist und zu einer Aufheizung der Festelektrolyt -
Batterie führt. Hingegen verläuft die Reduktion des aktiven Speichermediums SM im Regelfall endotherm und führt zu einer Abkühlung der Festelektrolyt -Batterie . Das überstrichene Temperaturfenster beträgt dabei typischerweise 700 - 850°C, was somit den bevorzugt auszuwählenden Bereich der polymorphen
Phasenübergangstemperatur des inerten Matrixmaterials IN darstellt .
Gemäß einer alternativen Ausgestaltung der Erfindung werden tiefere Umwandlungstemperaturen, bis hin zu Raumtemperatur, für die polymorphe Phasenübergangstemperatur des inerten Matrixmaterials IN ausgewählt. Die Vergrößerung der Oberfläche des aktiven Speichermediums SM erfolgt dann durch Regenerationsbetrieb unter Anwendung eines gezielten Abkühl- und Wie- deraufhei zvorgangs der Festelektrolyt -Batterie .
Als inertes, polymorphes Matrixmaterial kommt beispielsweise Zirkoniumdioxid zum Einsatz, welches in geeigneter Weise mit einem Element aus der Gruppe der seltenen Erden (RE, Rare Earth Metals) , zum Beispiel gemäß der Strukturformel Zr02-
(RE)Oi,5 dotiert ist. Bevorzugte Selten-Erd-Dotanden, in der Strukturformel als Platzhalter mit »RE« wiedergegeben, sind Yttrium, Neodym, Lanthan, Cer und/oder Gadolinium sowie Kombinationen hiervon.
Zur näheren Erläuterung der erfindungsgemäß genutzten Materialeigenschaften zeigt Fig. 3 ein Phasendiagramm eines exemplarischen polymorphen Inertmaterials, wobei eine Dotierung auf der Basis von Neodym gemäß der Strukturformel Zr02-NdOi,5 zur Erläuterung der Phasenübergänge verwendet wird. Auf der Abszisse des Phasendiagramms ist der molare Anteil MFR an NdOi,5 im Verhältnis zum reinen undotierten Matrixmaterial Zr02 aufgetragen, welcher von 0 % auf der linken Seite des Phasendiagramms bis 100 % auf der rechten Seite der Abszisse des Phasendiagramms ansteigt. Auf der Ordinate des Phasendiagramms ist die Temperatur TMP aufgetragen, wobei die aufgetragenen Temperaturen TMP von unten nach oben ansteigen.
Im Phasendiagramm ist eine gestrichelte Strecke zwischen einer ersten Koordinate 1 und einer zweiten Koordinate 2 eingezeichnet, welche parallel zur Ordinate verläuft und somit eine zwischen der ersten Koordinate 1 und der zweiten Koordina- te 2 ansteigende Temperatur bei einem gegebenen molaren Anteil MFR an NdOi,5 im Verhältnis zum undotierten Matrixmaterial Zr02 entspricht. Wie im Phasendiagramm ersichtlich, durchläuft das dotierte Material dabei zwischen der niedrigeren Temperatur TMP der ersten Koordinate 1 und der höheren Tempe- ratur TMP der zweiten Koordinate 2 einen polymorphen Phasenübergang, nämlich von einer monoklinen Phase M zu einer tet- ragonalen Phase T. In umgekehrter Richtung, entsprechend einer Absenkung der Temperatur TMP, durchläuft das dotierte Material einen Phasenübergang von einer tetragonalen Phase T zu einer monoklinen Phase.
Die übrigen in der Zeichnung benannten Phasen F,P,L,A,X,H sind für das Verständnis dieses betrachteten Phasenübergangs nicht wesentlich, und sind lediglich der Vollständigkeit hal- ber angeführt.
Der Phasenübergang von der monoklinen Phase M zur tetragonalen Phase T hat eine versetzende martensitische Auswirkung auf die Gitterstruktur des dotierten Inertmaterials, führt zu einer erheblichen Volumenänderung der Einheitszelle von mehreren Prozent und ist deshalb besonders geeignet, die erfindungsgemäß genutzten mechanischen Verspannungen herbeizuführen. Bei Verwendung der betrachteten Dotierung in einem Inertmaterial IN bewirken diese Verspannungen ein Aufbrechen der benachbarten Körner des Speichermediums, so dass neue reaktive Zonen für den Redox-Vorgang beim Laden bzw. Entladen zur Verfügung stehen. Ein Temperaturbereich zur Durchführung des erfindungsgemäßen RegenerationsVerfahrens ist anhand einer thermalen Lage von Phasenübergängen in Abhängigkeit von einer gewählten Dotierung zu treffen. Der Temperaturbereich liegt prinzipiell in einem Bereich zwischen Raumtemperatur und einer maximalen
Einsatztemperatur der Festelektrolyt -Batterie . Für eine Einstellung der Temperatur für einen besonderen Regenerationsbetrieb oberhalb des intrinsischen Betriebstemperaturbandes sind Abwägungen zu treffen. Eine obere Betriebstemperatur- grenze derzeitiger Festelektrolyt -Batterien liegt heute typischerweise bei ca. 900° C. Es ist möglich, die Festelektrolyt-Batterie vorübergehend in einem die obere Betriebstemperaturgrenze übersteigenden Temperaturbereich bis zur maximalen Einsatztemperatur der Festelektrolyt -Batterie zu betrei- ben, um mit den Mitteln der Erfindung einen vorübergehenden Regenerationsbetrieb der Festelektrolyt-Batterie durchzuführen, wobei der vorübergehend erhöhte Temperaturbereich des Regenerationsbetriebs die heute übliche obere Betriebstemperaturgrenze übersteigt. Im Einzelfall ist abzuwägen, ob die Vorteile eines für den Regenerationsbetrieb einzustellenden erhöhten Temperaturbereichs oberhalb der oberen Betriebstemperaturgrenze die Nachteile anwachsender thermischer Alterungsprozesse oberhalb der oberen Betriebstemperaturgrenze überwiegen. Die maximale Einsatztemperatur der Festelektro- lyt-Batterie ist im Sinne des vorgesagten eine prinzipiell nicht festgelegte Größe einer Festelektrolyt -Batterie , welche sich alleine aus der technischen Abwägung im oberen Sinne ergibt . Technisch sinnvoller erscheint ein außerhalb des thermischen Zyklus des normalen Speicherbetriebs gewählter Regenerations - betrieb in einem tieferen Temperaturbereich bis zur Raumtemperatur. In jedem Fall ist aber einem Temperaturbereich zur Durchführung des erfindungsgemäßen Regenerationsverfahrens innerhalb des intrinsischen Betriebstemperaturbands der Festelektrolyt-Batterie der Vorzug zu geben, da die erfindungsgemäße Regeneration so im normalen Temperaturband des Lade- und Entladebetriebs stattfindet. Durch die Wahl eines bezüglich der thermischen Lage seiner Phasenübergänge geeigneten Inertmaterials IN ist ein geeigneter Temperaturbereich anhand des gewählten Inertmaterials und anhand einer geeigneten Dotierung technisch einstellbar. Die Wahl von Zr02-NdOi,5 als Inertmaterial IN hat sich als technisch günstig herausgestellt, ist jedoch lediglich exemplarisch für ein erfindungsgemäß gefordertes polymorphes
Inertmaterial IN, welches im Bereich zwischen Raumtemperatur und maximaler Einsatztemperatur der Festelektrolyt -Batterie mindestens einen polymorphen Phasenübergang aufweist.
Das polymorphe Inertmaterial IN kann sowohl im aktiven Speichermedium SM integriert als auch als separate Phase in der Speicherstruktur vorliegen.
Der Gesamtgehalt an polymorphem inerten Material beträgt vorteilhafterweise weniger als 50 Volumenprozent. Gemäß einer Aus führungs form der Erfindung beträgt der Selten- Erd-Gehalt, also molare Anteil MFR an (RE)Oi,5 im Verhältnis zum undotierten Inertmaterial Zr02 weniger als 10 %, bevorzugt weniger als 5 %, da in diesem Fall der mit einer relativen großen Volumenänderung verbundene tetragonal -monokline Phasenübergang des Zr02 im obig erwähnten vorteilhaften Betriebstemperaturbereich liegt.
Die erfindungsgemäße Speicherstruktur erlaubt die Schaffung neuer reaktiver Oberflächen des aktiven Speichermediums. Da- raus resultieren eine deutlich reduzierte Alterungsrate sowie eine deutlich verbesserte Langzeitstabilität des Speichermediums .
Die erfindungsgemäße Speicherstruktur erlaubt ferner eine großserienfähige, reproduzierbare, flexible und kostengünstige Herstellung des Speichermediums und ist auf verschiedene Metallspeichermaterialien anwendbar .

Claims

Patentansprüche
1. Speicherstruktur für eine Festelektrolyt -Batterie , umfassend ein Speichermedium (SM) und Inertmaterial (IN),
gekennzeichnet durch,
zumindest anteilig polymorphes Inertmaterial, welches im Bereich zwischen Raumtemperatur und maximaler Einsatztemperatur der Festelektrolyt -Batterie mindestens einen polymorphen Phasenübergang aufweist.
2. Speicherstruktur nach Anspruch 1,
dadurch gekennzeichnet,
dass zumindest eine polymorphe Phasenübergangstemperatur des polymorphen Inertmaterials (IN) innerhalb eines intrinsischen Betriebstemperaturband der Festelektrolyt -Batterie liegt.
3. Speicherstruktur nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet,
dass als polymorphes Inertmaterial (IN) selten-erd-dotiertes Zirkoniumdioxid verwendet wird.
4. Speicherstruktur nach Anspruch 3,
dadurch gekennzeichnet,
dass der molare Selten-Erd-Anteil des selten-erd-dotierten Zirkoniumdioxids weniger als 10 Prozent, bevorzugt weniger als 5 Prozent beträgt.
5. Speicherstruktur nach einem der Ansprüche 3 und 4, dadurch gekennzeichnet,
dass die Selten-Erd-Dotanden des selten-erd-dotierten
Zirkoniumdioxids Yttrium, Neodym, Lanthan, Cer und/oder Gadolinium sowie Kombinationen hiervon umfassen.
6. Speicherstruktur nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet,
dass der Gesamtanteil an polymorphem Inertmaterial (IN) in der Speicherstruktur unter 50 Volumenprozent liegt.
7. Speicherstruktur nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet,
dass polymorphes Inertmaterial (IN) im Speichermedium (SM) integriert oder als separate Phase im Speichermedium (SM) vorliegt.
8. Speicherstruktur nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet,
dass das Speichermedium (SM) auf Eisen und/oder Eisenoxid, Nickel und/oder Nickeloxid, Wolfram und/oder Wolframoxid oder Kombinationen hiervon basiert.
EP14724738.1A 2013-06-04 2014-05-16 Speicherstruktur Withdrawn EP2981502A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013210342 2013-06-04
PCT/EP2014/060041 WO2014195111A1 (de) 2013-06-04 2014-05-16 Speicherstruktur

Publications (1)

Publication Number Publication Date
EP2981502A1 true EP2981502A1 (de) 2016-02-10

Family

ID=50733072

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14724738.1A Withdrawn EP2981502A1 (de) 2013-06-04 2014-05-16 Speicherstruktur

Country Status (3)

Country Link
US (1) US9780373B2 (de)
EP (1) EP2981502A1 (de)
WO (1) WO2014195111A1 (de)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4681560B2 (ja) * 2004-09-07 2011-05-11 黒崎播磨株式会社 水の分解による水素製造に使用する反応媒体とその作成方法
CN102745989B (zh) 2006-08-17 2015-07-15 H·C·施塔克有限公司 氧化锆及其生产方法
US20110033769A1 (en) 2009-08-10 2011-02-10 Kevin Huang Electrical Storage Device Including Oxide-ion Battery Cell Bank and Module Configurations
DE102011017711A1 (de) 2011-04-28 2012-10-31 Robert Bosch Gmbh Sensorelement zur Erfassung einer Eigenschaft eines Gases in einem Messgasraum
DE102011085224A1 (de) 2011-09-27 2013-03-28 Siemens Aktiengesellschaft Speicherelement und Verfahren zu dessen Herstellung
DE102011083538A1 (de) 2011-09-27 2013-03-28 Siemens Aktiengesellschaft Speicherelement für eine Festelektrolyt-Batterie sowie Verfahren zu dessen Herstellung
DE102011083545A1 (de) 2011-09-27 2013-03-28 Siemens Aktiengesellschaft Speicherelement
DE102011084181A1 (de) 2011-09-27 2013-03-28 Siemens Aktiengesellschaft Speicherelement für eine Festelektrolytbatterie

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.P. OUWELTJES: "Development of 2nd Generation, Supported Electrolyte, Flat Plate SOFC Components at ECN", PROCEEDINGS - ELECTROCHEMICAL SOCIETY, vol. 1999-19, no. 1, 1 January 1999 (1999-01-01), US, pages 803 - 811, XP055719510, ISSN: 0161-6374, DOI: 10.1149/199919.0803PV *
See also references of WO2014195111A1 *

Also Published As

Publication number Publication date
US20160126552A1 (en) 2016-05-05
WO2014195111A1 (de) 2014-12-11
US9780373B2 (en) 2017-10-03

Similar Documents

Publication Publication Date Title
EP2036152B1 (de) Keramische werkstoffkombination für eine anode für eine hochtemperatur-brennstoffzelle
DE112006000220T5 (de) Zelle für Festoxid-Brennstoffzelle und Verfahren zur Herstellung einer Zelle für Festoxid-Brennstoffzelle
DE60123839T2 (de) Gestapelte mikrostrukturen leitender, keramischer oxidionenmembranen; verwendung zur trennung von sauerstoff von luft
WO2013045211A1 (de) Speicherelement
EP2850676B1 (de) Speicherstruktur einer elektrischen energiespeicherzelle
EP2751858B1 (de) Speicherelement für eine festelektrolytbatterie
EP2981502A1 (de) Speicherstruktur
EP2997614B1 (de) Elektrochemisches speichermaterial und elektrochemische speichereinrichtung zur speicherung elektrischer energie, umfassend ein solches speichermaterial
EP2810337B1 (de) Speicherstruktur einer elektrischen energiespeicherzelle
WO2013045223A1 (de) Speicherelement für eine festelektrolyt-batterie sowie verfahren zu dessen herstellung
EP2850680B1 (de) Speicherstruktur einer elektrischen energiespeicherzelle
DE102011083541A1 (de) Speicherelement
EP2724401B1 (de) Speicherelement
EP2849904B1 (de) Verfahren zur herstellung einer speicherstruktur einer elektrischen energiespeicherzelle
EP1481431A2 (de) Kathode für den einsatz bei hohen temperaturen
WO2015010823A1 (de) Speicherstruktur und verfahren zur herstellung
WO2014195099A1 (de) Speicherstruktur und verfahren zur regeneration eines speichermediums
DE102012202974A1 (de) Verfahren zur Herstellung einer Speicherstruktur
DE102012223794A1 (de) Wiederaufladbarer elektrischer Energiespeicher, insbesondere in Form eines Metalloxid-Luft-Energiespeichers, mit wenigstens einem wenigstens ein Speichermaterial zur Speicherung elektrischer Energie umfassenden Speicherelement
DE102013200582A1 (de) Wiederaufladbarer elektrischer Energiespeicher
DE102012204171A1 (de) Speicherstruktur einer elektrischen Energiespeicherzelle
DE102009050435A1 (de) Elektrode für eine Schmelzkarbonat-Brennstoffzelle und Verfahren zu ihrer Herstellung
DE102013200594A1 (de) Verfahren zur Herstellung einer Elektroden-Elektrolyt-Einheit für einen wiederaufladbaren elektrischen Energiespeicher, insbesondere einen Metalloxid-Luft-Energiespeicher, mit einem zwischen zwei Elektroden angeordneten Elektrolyten
DE102013211380A1 (de) Speicherstruktur
DE102013200585A1 (de) Wiederaufladbarer elektrischer Energiespeicher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170630

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 8/12 20160101ALI20200730BHEP

Ipc: H01M 8/0606 20160101ALI20200730BHEP

Ipc: H01M 8/1253 20160101ALI20200730BHEP

Ipc: H01M 8/124 20160101ALI20200730BHEP

Ipc: H01M 8/06 20160101ALI20200730BHEP

Ipc: C01B 3/06 20060101ALI20200730BHEP

Ipc: C01B 3/00 20060101AFI20200730BHEP

Ipc: H01M 8/18 20060101ALI20200730BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20201201