WO2013045211A1 - Speicherelement - Google Patents

Speicherelement Download PDF

Info

Publication number
WO2013045211A1
WO2013045211A1 PCT/EP2012/067114 EP2012067114W WO2013045211A1 WO 2013045211 A1 WO2013045211 A1 WO 2013045211A1 EP 2012067114 W EP2012067114 W EP 2012067114W WO 2013045211 A1 WO2013045211 A1 WO 2013045211A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage element
metal
element according
ion conductor
particles
Prior art date
Application number
PCT/EP2012/067114
Other languages
English (en)
French (fr)
Inventor
Thomas Soller
Katrin Benkert
Carsten Schuh
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2013045211A1 publication Critical patent/WO2013045211A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/801Sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/801Sintered carriers
    • H01M4/803Sintered carriers of only powdered material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a storage element for a solid ⁇ electrolyte battery according to the preamble of claim 1.
  • Solid electrolyte batteries are based on the principle of solid electrolyte fuel cells, which are expanded by the addition of storage elements to the battery.
  • This Spei ⁇ cher elements are usually made of ceramic bodies in which particles of a metal and / or a metal oxide are incorporated, which together form a redox couple. In the charged state of the battery, the particles are thereby reduced to the metal. By electrochemical oxidation with atmospheric oxygen energy can be recovered, which can be removed as electrical energy to the Abgriffspolen the battery. If the metal particles completely oxidized to per ⁇ consulted metal, so the battery is charged. To recharge the battery, the fuel cell is now operated in electrolysis mode, producing hydrogen, which reduces the metal oxides back to metal.
  • the discharge process ie the oxidation of the metal particles in the solid, is based predominantly on cationic diffusion.
  • the discharge process ie the oxidation of the metal particles in the solid, is based predominantly on cationic diffusion.
  • During the discharge process therefore, there is a successive migration of the metal of the metal particles in the direction of the oxygen source, since the diffusion of the metal species over the diffusion of oxygen species is preferred.
  • This leads to a continuous degradation of the memory structure and thus to a successive change in the charging and discharging characteristics, to an increase in the required charging and discharging times and to a decrease in useful capacity.
  • the cationic diffusion leads to a non-optima ⁇ len reaction kinetics of the redox process, because the oxygen transport ⁇ is inhibited in the center of the storage particles or layers.
  • the present invention is therefore based on the object to provide a memory element according to the preamble of claim 1, which has an improved life and lower reaction kinetics.
  • Such a storage element for a solid electrolyte battery has a main body of a porous matrix of sintered ceramic particles, in which particles of a metal and / or a metal oxide, which together form a redox couple, are embedded.
  • the storage element has a structure consisting of a mixed ion conductor which passes through the particles of the metal and / or the metal oxide.
  • Mixed ion conductors are substances which have both an electrical conductivity and a transport capacity for ions. Such a mixed ion conductor thus facilitates in the diffusion of oxygen ions into the storage element, so that deeper layers of the grain or inside of the Parti ⁇ kel from the metal for the oxidation process are accessible.
  • the mixed ion conductor is a perovskite mixed oxide.
  • Perovskites have the general molecular formula ABO 3 and are particularly suitable for promoting oxygen diffusion.
  • the oxygen transport can take place both via defect-site diffusion and via an interstitial diffusion mechanism.
  • Particularly good ionically conductive ⁇ ness takes up upon perovskite in which the A-atom of approximately the same size as the oxygen, while the B atom is much smaller.
  • the ionic conductivity of perovskites can also be increased by suitable doping.
  • mixed oxides of the general structure (La, Sr, Ca, Ce) (Fe, Di, Cr, Co, Mn) 0 3 and in particular (Lao, 5 Sr 0 , 5) (Feo, 25 Cr 0 , 2 5 Tio, 5) O3, (Lao, 5 Ca 0 , 5) (Fe 0 , 25Cr 0 , 25Ti 0 , 5) 0 3 , (Lao, 5 Sro, 5 ) (Fe 0 , 5 Tio, 5) 0 3 ,
  • a particularly good oxygen conductivity results when the mixed ion conductor oxygen is substoichiometric.
  • normally occupied by oxygen atoms Gitterpo ⁇ sitions are in the crystal lattice of the mixed ion conductor some empty.
  • Such oxygen vacancies are used in the course of defect diffusion for oxygen transport. It is also expedient if the mixed ion conductor in the matrix forms an intragranular penetration structure.
  • the mixed ion conductor forms a completely contiguous contained structure that permeates the grains of Me ⁇ tallp
  • the oxygen diffusion is facilitated over the entire volume of the storage element and, in particular, a particularly good contact surface Zvi ⁇ rule the mixed ion conductor and the particles from the Metal and / or metal oxide exists.
  • a volume fraction of the particles from the metal and / or metal oxide more than 50 percent by volume of the solid olumens of the storage element, while a volume portion of the mixed ion conductor between 10 and 50 volume per ⁇ center of the solid is olumens the memory element.
  • the particles of the metal and / or metal oxide exist before ⁇ preferably made of iron or iron oxide, nickel and nickel oxide, or manganese or manganese oxide. Of course, other redox couples are suitable.
  • the ceramic matrix is preferably formed from an oxide ceramic, in particular zirconium oxide, magnesium oxide or aluminum oxide.
  • oxide ceramics are under the operating ⁇ conditions of a solid electrolyte battery redox-inert and ver ⁇ like the high operating temperatures of about 900 ° C to withstand.
  • the single FIGURE shows a schematic representation of a single particle of a storage metal for an embodiment of a memory element according to the invention, which of a
  • Intragranular penetration structure of a mixed ion conductor is penetrated.
  • a storage element for solid electrolyte batteries is constructed from sintered grains 10 having a base body 12 of a metal or the associated metal oxide.
  • metals iron, nickel, manganese or the like can be used here, for example.
  • the metal of the base body 12 is electrochemically oxidized. Since the oxygen diffusion is hampered within the storage element and in particular ⁇ sondere within the grains 10, the oxidation process is mainly due to cationic diffusi ⁇ on the metal ions. This leads to long-term structural Changes in the storage element and the grains 10 themselves, which lead to a reduction of the active surface of the metal. This reduces the storage capacity of such a battery. At the same time, there is a deterioration in the charging and discharging kinetics.
  • mixed oxide of perovskite offer, which both electrical conductivity, al ⁇ so have the ability to transport electrons, and a spe ⁇ -specific oxygen ion conductivity.
  • the improved oxygen transport throughout Speicherele ⁇ ment and within the grains 10 cationic Dif ⁇ fusion of metal ions is reduced, so that a separation of the storage element is avoided and the active surface of the metal body is preserved 12th As a result, the usual aging phenomena of such solid electrolyte storage elements are avoided.
  • the total content of mixed ion conductors in such a storage element is usually 10 to 50 Volumenpro ⁇ zent, while the main body 12 is more than 50 percent by volume of the grains 10.
  • the entire memory produced by sintering the grains 10 also has pores that further facilitate the penetration of oxygen.
  • Specific mixed ion conductors suitable for use in solid electrolyte storage elements usually originate from the composition field (La, Sr, Ca, Ce) (Fe, Ti, Cr, Co, Mn) 0 3 . Particularly well suited
  • the preparation of such grains 10 with a intragra- nularen penetration structure can on the one hand on the Infilt ⁇ ration of conventional, for example by means ⁇ pore formers, sponges, foams, freeze-drying, spraying or the like conditioned porous skeleton structures from
  • the storage material according to the invention can also in process ⁇ safe, large-scale production enabled, reproducible, flexible and cost-effective manufacturing method different morphologies, for example as powder, fibers, layers, or the like, are manufactured and is applicable to various Me ⁇ tall untilmaterialien and mixed ion conductor fourteenth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Die Erfindung betrifft eine Speicherelement für eine Festelektrolyt-Batterie, mit einem Grundkörper aus einer porösen Matrix gesinterter Keramikpartikel, in welche Partikel (10) aus einem Metall und/oder einem Metalloxid, welche zusammen ein Redoxpaar bilden, eingelagert sind, wobei das Speicherelement eine die Partikel (10) aus dem Metall und/oder dem Metalloxid durchziehende Struktur (14) aus einem Mischionenleiter aufweist.

Description

Beschreibung
Speicherelement Die Erfindung betrifft ein Speicherelement für eine Fest¬ elektrolytbatterie nach dem Oberbegriff von Patentanspruch 1.
Festelektrolytbatterien beruhen auf dem Prinzip von Festelektrolytbrennstoffzellen, die durch das Hinzufügen von Speicherelementen zur Batterie erweitert werden. Diese Spei¬ cherelemente bestehen üblicher Weise aus keramischen Grundkörpern, in welche Partikel aus einem Metall und/oder einem Metalloxid eingelagert sind, welche zusammen ein Redoxpaar bilden. Im geladenen Zustand der Batterie sind die Partikel dabei zum Metall reduziert. Durch elektrochemische Oxidation mit Luftsauerstoff kann Energie gewonnen werden, die als elektrische Energie an den Abgriffspolen der Batterie entnommen werden kann. Sind die Metallpartikel vollständig zum je¬ weiligen Metalloxid oxidiert, so ist die Batterie geladen. Um die Batterie neu zu laden, wird nun die Brennstoffzelle im Elektrolysemodus betrieben, wobei Wasserstoff entsteht, der die Metalloxide wieder zu Metall reduziert.
Der Entladeprozess , also die Oxidation der Metallpartikel im Feststoff beruht dabei vorwiegend auf kationischer Diffusion. Beim Entladevorgang kommt es daher zu einer sukzessiven Migration des Metalls der Metallpartikel in Richtung der Sauerstoffquelle, da die Diffusion der Metallspezies gegenüber der Diffusion der Sauerstoffspezies bevorzugt ist. Dies führt zu einer kontinuierlichen Degradation der Speicherstruktur und damit zu einer sukzessiven Veränderung der Lade- und Entladecharakteristik, zu einem Anstieg der erforderlichen Lade- und Entladezeiten sowie zu einer Abnahme der Nutzkapazität. Ferner führt die kationische Diffusion zu einer nicht optima¬ len Reaktionskinetik des Redoxprozesses , da der Sauerstoff¬ transport in das Zentrum der Speicherpartikel bzw. Schichten gehemmt ist. Der vorliegenden Erfindung liegt somit die Aufgabe zu Grunde, ein Speicherelement nach dem Oberbegriff von Patentanspruch 1 bereitzustellen, welches eine verbesserte Lebensdauer sowie günstigere Reaktionskinetiken aufweist.
Diese Aufgabe wird durch ein Speicherelement mit den Merkma¬ len des Patentanspruchs 1 gelöst. Ein derartiges Speicherelement für eine Festelektrolyt- Batterie weist einen Grundkörper aus einer porösen Matrix gesinterter Keramikpartikel auf, in welche Partikel aus einem Metall und/oder einem Metalloxid, welche zusammen ein Redox- paar bilden, eingelagert sind. Erfindungsgemäß ist dabei vor- gesehen, dass das Speicherelement eine die die Partikel aus dem Metall und/oder dem Metalloxid durchziehende Struktur aus einem Mischionenleiter aufweist.
Mischionenleiter sind Substanzen, die sowohl eine elektrische Leitfähigkeit als auch ein Transportvermögen für Ionen besitzen. Ein derartiger Mischionenleiter erleichtert somit die Diffusion von Sauerstoffionen in das Speicherelement hinein, so dass auch tiefere Schichten bzw. das Korninnere der Parti¬ kel aus dem Metall für den Oxidationsprozess zugänglich sind.
Durch die erleichterte Diffusion von Sauerstoff wird zudem die Neigung zur kationischen Diffusion der Metalle in Richtung der Sauerstoffquelle reduziert, so dass eine Entmischung des Speichers vermieden wird und auch bei längerem Betrieb eine große aktive Oberfläche der Partikel aus dem Metall und/oder dem Metalloxid zur Verfügung steht. Hierdurch wird eine schnelle Degradation der Speicherqualität vermieden. Durch die erleichterte Eindiffusion des Sauerstoffs wird zu¬ dem die Reaktionskinetik des Redoxprozess verbessert, so dass insgesamt eine dauerhaft hohe Nutzkapazität und dauerhaft stabile Lade- und Entladekinetik gewährleistet bleibt. Vorzugsweise ist der Mischionenleiter ein perowskitisches Mischoxid. Perowskite besitzen die allgemeine Summenformel ABO3 und eignen sich insbesondere, um die Sauerstoffdiffusion zu befördern. Der Sauerstofftransport kann dabei sowohl über Fehlstellendiffusion als auch über einen interstitiellen Diffusionsmechanismus erfolgen. Besonders gute Ionenleitfähig¬ keit findet sich dabei bei Perowskiten, bei denen das A-Atom in etwa die gleiche Größe besitzt wie der Sauerstoff, während das B-Atom deutlich kleiner ist. Die Ionenleitfähigkeit von Perowskiten kann ferner durch geeignete Dotierung gesteigert werden .
Besonders für Verwendung als Mischionenleiter eigenen sich Mischoxide der allgemeinen Struktur (La, Sr, Ca, Ce) (Fe, Di, Cr, Co, Mn)03 und insbesondere (Lao,5Sr0,5) (Feo,25Cr0,25Tio,5) O3, (Lao,5Ca0,5) (Fe0,25Cr0,25Ti0,5) 03, (Lao,5Sro,5) (Fe0,5Tio,5) 03,
(Lao,5Cao,5) (Feo,5Tio,5) 03
Alternativ zu Perowskiten können auch Keramiken der allgemei- nen Struktur (Y, Sc, Zr) O2 oder auch (Gd, Ce)02 verwendet werden .
Eine besonders gute Sauerstoffleitfähigkeit ergibt sich, wenn der Mischionenleiter Sauerstoff unterstöchiometrisch ist. Mit anderen Worten sind im Kristallgitter des Mischionenleiters einige, üblicherweise von Sauerstoffatomen besetzte Gitterpo¬ sitionen leer. Derartige Sauerstoffleersteilen werden im Zuge der Fehlstellendiffusion zum Sauerstofftransport verwendet. Es ist ferner zweckmäßig, wenn der Mischionenleiter in der Matrix ein intragranulares Durchdringungsgefüge ausbildet. Mit anderen Worten bildet der Mischionenleiter eine in sich vollständig zusammenhängende Struktur, die die Körner der Me¬ tallpartikel durchdringt, so dass die Sauerstoffdiffusion über das gesamte Volumen des Speicherelements erleichtert wird und insbesondere eine besonders gute Kontaktfläche zwi¬ schen dem Mischionenleiter und den Partikeln aus dem Metall und/oder Metalloxid besteht. Zweckmäßigerweise beträgt ein Volumenanteil der Partikel aus dem Metall und/oder Metalloxid mehr als 50 Volumenprozent des Feststoff olumens des Speicherelements, während ein Volumen- anteil des Mischionenleiters zwischen 10 und 50 Volumenpro¬ zent des Feststoff olumens des Speicherelements beträgt.
Die Partikel aus dem Metall und/oder Metalloxid bestehen vor¬ zugsweise aus Eisen bzw. Eisenoxid, Nickel bzw. Nickeloxid, oder Mangan bzw. Manganoxid. Selbstverständlich sind auch andere Redoxpaare geeignet.
Die keramische Matrix ist vorzugsweise aus einer Oxidkeramik, insbesondere Zirkonoxid, Magnesiumoxid oder Aluminiumoxid ausgebildet. Derartige Oxidkeramiken sind unter den Betriebs¬ bedingungen einer Festelektrolytbatterie redox-inert und ver¬ mögen den hohen Betriebstemperaturen von etwa 900 °C stand zu halten . Im Folgenden wird die Erfindung und ihre Ausführungsformen anhand der Zeichnung näher erläutert. Die einzige Figur zeigt dabei eine schematische Darstellung eines einzelnen Partikels aus einem Speichermetall für ein Ausführungsbeispiel eines erfindungsgemäßen Speicherelements, welches von einem
intragranularen Durchdringungsgefüge eines Mischionenleiters durchdrungen ist.
Ein Speicherelement für Festelektrolytbatterien ist aus zusammengesinterten Körnern 10 aufgebaut, welche einen Grund- körper 12 aus einem Metall bzw. dem zugeordneten Metalloxid aufweisen. Als Metalle können hier beispielsweise Eisen, Nickel, Mangan oder dergleichen Anwendung finden. Zur Energieentnahme aus einer derartigen Festelektrolytbatterie wird das Metall des Grundkörpers 12 elektrochemisch oxidiert. Da die Sauerstoffdiffusion innerhalb des Speicherelements und insbe¬ sondere innerhalb der Körner 10 stark behindert ist, beruht der Oxidationsprozess hauptsächlich auf kationischer Diffusi¬ on der Metallionen. Dies führt langfristig zu strukturellen Veränderungen des Speicherelements sowie der Körner 10 selbst, die zu einer Verringerung der aktiven Oberfläche des Metalls führen. Hierdurch verringert sich die Speicherkapazität einer derartigen Batterie. Gleichzeitig kommt es zu einer Verschlechterung der Lade- bzw. Entladekinetik.
Um die Sauerstoffdiffusion innerhalb der Körner 10 zu er¬ leichtern, sind die Körner 10 von einen intragranularen
Durchdringungsgefüge 14 eines Mischionenleiters durchzogen. Auf Grund des Korn-Korn-Kontaktes weist somit auch das gesam¬ te Speicherelement aus zusammengesinterten Körnern 10 eine durchgängige Struktur aus den Mischionenleiter 14 auf.
Als Mischionenleiter bieten sich insbesondere Mischoxid von Perowskittyp an, welche sowohl elektrische Leitfähigkeit, al¬ so die Fähigkeit zum Elektronentransport, als auch eine spe¬ zifische Leitfähigkeit für Sauerstoffionen besitzen. Durch den verbesserten Sauerstofftransport im gesamten Speicherele¬ ment sowie innerhalb der Körner 10 wird die kationische Dif¬ fusion von Metallionen reduziert, so dass eine Entmischung des Speicherelements vermieden wird und die aktive Oberfläche des metallischen Grundkörpers 12 erhalten bleibt. Hierdurch werden die üblichen Alterungserscheinungen derartiger Festelektrolyt-Speicherelemente vermieden .
Der Gesamtgehalt an Mischionenleiter in einem derartigen Speicherelement beträgt üblicherweise 10 bis 50 Volumenpro¬ zent, während der Grundkörper 12 mehr als 50 Volumenprozent der Körner 10 ausmacht. Der gesamte, durch Sintern der Körner 10 erzeugte Speicher weist zudem Poren auf, die das Eindringen von Sauerstoff weiter erleichtern.
Spezifische, für den Einsatz in Festelektrolyt- Speicherelementen geeignete Mischionenleiter stammen übli- cherweise aus dem Kompositionsfeld (La, Sr, Ca, Ce) (Fe, Ti, Cr, Co, Mn)03. Besonders gut geeignet sind
(Lao,5Sro,5) (Feo,25Cro,25Tio,s) O3, (Lao,sCao,5) (Feo,25Cro,25Tio,s) O3, (Lao,5Sro,5) (Feo,5Tio,5) 03, (Lao,5Cao,5) (Feo,5Tio,5) 03. Auch Materialien auf Basis von Yttrium-Skandium- Zirkonmischoxiden oder Gadolinium-Cer-Mischoxiden sind möglich.
Die Herstellung von derartigen Körnern 10 mit einem intragra- nularen Durchdringungsgefüge kann einerseits über die Infilt¬ ration von konventionell, beispielsweise mittels Porenbild¬ nern, Schwämmen, Schäumen, Gefriertrocknung, Versprühen oder dergleichen aufbereiteten porösen Skelettstrukturen aus dem
Metall des Grundkörpers 12 mit dem Mischionenleiter 14 erfol¬ gen. Anschließend erfolgt noch ein Sintern und Aufmahlen, um die Körner 10 zu erhalten. Auch nasschemische Routen über Sol-Gel-Prozess , bei denen die Materialien des Grundkörpers 12 und des Mischionenleiters 14 copräzipitiert werden und ge¬ gebenenfalls anschließend zu Fasern oder Aerogelen aufberei¬ tet werden, sind möglich.
Insgesamt kann durch die Verwendung der Körner 10 als Spei- chermaterial für Festelektrolytbatterie auf einfache Weise ein signifikant verbesserter Sauerstofftransport in das Spei¬ cherinnere realisiert werden, woraus sich vorteilhafte Redox- kinetiken und drastisch verminderte Alterungs- und Degradati¬ onseffekte ergeben.
Das erfindungsgemäße Speichermaterial kann zudem in prozess¬ sicheren, großserienfähigen, reproduzierbaren, flexiblen und kostengünstigen Herstellungsverfahren unterschiedlichen Morphologien, beispielsweise als Pulver, Fasern, Schichten oder dergleichen, hergestellt werden und ist auf verschiedene Me¬ tallspeichermaterialien und Mischionenleiter 14 anwendbar.

Claims

Patentansprüche
1. Speicherelement für eine Festelektrolyt-Batterie, mit ei¬ nem Grundkörper aus einer porösen Matrix gesinterter Keramik- partikel , in welche Partikel (10) aus einem Metall und/oder einem Metalloxid, welche zusammen ein Redoxpaar bilden, eingelagert sind, dadurch gekennzeichnet, dass das Speicherele¬ ment eine die Partikel (10) aus dem Metall und/oder dem Me¬ talloxid durchziehende Struktur (14) aus einem Mischionenlei- ter aufweist.
2. Speicherelement nach Anspruch 1, dadurch gekennzeichnet, dass der Mischionenleiter ein perowskitisches Mischoxid ist.
3. Speicherelement nach Anspruch 2, dadurch gekennzeichnet, dass der Mischionenleiter ein Mischoxid der allgemeinen
Struktur (La, Sr, Ca, Ce) (Fe, i, Cr, Co, Mn) O3, insbesondere
(Lao,5Sro,5) (Feo,25Cro,25Tio,s) O3, (Lao,sCao,5) (Feo,25Cro,25Tio,s) O3, (Lao,5Sr0,5) (Fe0,5Tio,5) 03, (Lao,5Ca0,5) (Fe0,5Tio,5) 03, ist.
4. Speicherelement nach Anspruch 1, dadurch gekennzeichnet, dass der Mischionenleiter eine Keramik der allgemeinen Struktur (Y,Sc,Zr)02 oder (Gd,Ce)02 ist.
5. Speicherelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Mischionenleiter Sauerstoffunterstö- chiometrisch ist.
6. Speicherelement nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Mischionenleiter in der Matrix ein intragranulares Durchdringungsgefüge ausbildet.
7. Speicherelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Volumenanteil der Partikel aus dem Metall und/oder dem Metalloxid mehr als 50 Vol.% des Fest¬ stoffvolumens des Speicherelements beträgt.
8. Speicherelement nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass ein Volumenanteil des Mischionenleiters 10 bis 50 Vol.% des Feststoff olumens des Speicherelements beträgt .
9. Speicherelement nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Partikel aus dem Metall und/oder Me¬ talloxid aus Fe bzw. FexOy, Ni bzw. NiO, Mn bzw. MnÜ2 ausge¬ bildet sind.
10. Speicherelement nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die keramische Matrix aus einer Oxidke¬ ramik, insbesondere ZrÜ2, MgO oder Als03 ausgebildet ist.
PCT/EP2012/067114 2011-09-27 2012-09-03 Speicherelement WO2013045211A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011083545A DE102011083545A1 (de) 2011-09-27 2011-09-27 Speicherelement
DE102011083545.8 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013045211A1 true WO2013045211A1 (de) 2013-04-04

Family

ID=46799238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/067114 WO2013045211A1 (de) 2011-09-27 2012-09-03 Speicherelement

Country Status (2)

Country Link
DE (1) DE102011083545A1 (de)
WO (1) WO2013045211A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080285A (ja) * 2018-11-14 2020-05-28 トヨタ自動車株式会社 活物質

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014195111A1 (de) 2013-06-04 2014-12-11 Siemens Aktiengesellschaft Speicherstruktur
DE102019204854A1 (de) * 2019-04-04 2020-10-08 Forschungszentrum Jülich GmbH Redoxstabiler Perowskit zur Speicherung von Stickoxiden aus Abgasen
DE112020001428A5 (de) 2019-03-27 2021-12-23 Forschungszentrum Jülich GmbH Redoxstabiler Perowskit zur Speicherung von Stickoxiden aus Abgasen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2627531A (en) * 1947-12-15 1953-02-03 Vogt Hans Porous electrode
DE4129553A1 (de) * 1990-09-10 1992-03-12 Fuji Electric Co Ltd Brennstoffzelle und verfahren zu ihrer herstellung
WO1998019351A2 (en) * 1996-10-30 1998-05-07 Nanomaterials Research Corporation Nanostructured ion conducting solid electrolytes
EP1513214A1 (de) * 2003-09-05 2005-03-09 Sulzer Hexis AG Hochtemperaturbrennstoffzelle mit stabilisierter Cermet-Struktur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2627531A (en) * 1947-12-15 1953-02-03 Vogt Hans Porous electrode
DE4129553A1 (de) * 1990-09-10 1992-03-12 Fuji Electric Co Ltd Brennstoffzelle und verfahren zu ihrer herstellung
WO1998019351A2 (en) * 1996-10-30 1998-05-07 Nanomaterials Research Corporation Nanostructured ion conducting solid electrolytes
EP1513214A1 (de) * 2003-09-05 2005-03-09 Sulzer Hexis AG Hochtemperaturbrennstoffzelle mit stabilisierter Cermet-Struktur

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080285A (ja) * 2018-11-14 2020-05-28 トヨタ自動車株式会社 活物質
JP7059901B2 (ja) 2018-11-14 2022-04-26 トヨタ自動車株式会社 活物質

Also Published As

Publication number Publication date
DE102011083545A1 (de) 2013-03-28

Similar Documents

Publication Publication Date Title
EP2712467B1 (de) Speicherelement und verfahren zu dessen herstellung
EP2852994B1 (de) Verfahren zum herstellen einer elektrode für einen elektrochemischen energiespeicher und elektrode
WO2013045211A1 (de) Speicherelement
WO2005045979A2 (de) Kathodenwerkstoff für eine hochtemperatur-brennstoffzelle (sofc) sowie eine daraus herstellbare kathode
DE102011017594A1 (de) Verfahren zur Herstellung eines porösen Körpers und Zelle einer wieder aufladbaren Oxidbatterie
WO2012076229A1 (de) Natrium-chalkogen-zelle
DE2738456A1 (de) Verfahren zur herstellung von eisenhaltigen sinterelektroden
EP2721670B1 (de) Speicherelement und verfahren zu dessen herstellung
EP2751858B1 (de) Speicherelement für eine festelektrolytbatterie
EP2997614B1 (de) Elektrochemisches speichermaterial und elektrochemische speichereinrichtung zur speicherung elektrischer energie, umfassend ein solches speichermaterial
EP2850676B1 (de) Speicherstruktur einer elektrischen energiespeicherzelle
WO2013045223A1 (de) Speicherelement für eine festelektrolyt-batterie sowie verfahren zu dessen herstellung
WO2013045217A1 (de) Speicherelement
EP2985820B1 (de) Gasdiffusionselektrode, verfahren zum herstellen einer gasdiffusionselektrode und batterie
EP2850680B1 (de) Speicherstruktur einer elektrischen energiespeicherzelle
EP2810337A1 (de) Speicherstruktur einer elektrischen energiespeicherzelle
EP2724401B1 (de) Speicherelement
WO2018096022A1 (de) Anode für eine elektrochemische zelle sowie ein verfahren zur herstellung einer elektrochemischen zelle mit einer solchen anode
WO2021083624A1 (de) Elektrodenmaterial, verfahren zu dessen herstellung und dessen verwendung
WO2014195111A1 (de) Speicherstruktur
WO2015010823A1 (de) Speicherstruktur und verfahren zur herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12755852

Country of ref document: EP

Kind code of ref document: A1