EP2959028B1 - Alliage en aluminium pour la fabrication de demi-produits ou de composants pour véhicules automobiles, procédé de fabrication d'une bande d'alliage en aluminium à partir de cet alliage en aluminium ainsi que la bande d'alliage en aluminium et utilisations de celui-ci - Google Patents

Alliage en aluminium pour la fabrication de demi-produits ou de composants pour véhicules automobiles, procédé de fabrication d'une bande d'alliage en aluminium à partir de cet alliage en aluminium ainsi que la bande d'alliage en aluminium et utilisations de celui-ci Download PDF

Info

Publication number
EP2959028B1
EP2959028B1 EP14705528.9A EP14705528A EP2959028B1 EP 2959028 B1 EP2959028 B1 EP 2959028B1 EP 14705528 A EP14705528 A EP 14705528A EP 2959028 B1 EP2959028 B1 EP 2959028B1
Authority
EP
European Patent Office
Prior art keywords
aluminium alloy
weight
content
aluminum alloy
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14705528.9A
Other languages
German (de)
English (en)
Other versions
EP2959028A1 (fr
EP2959028B2 (fr
Inventor
Olaf Engler
Henk-Jan Brinkman
Thomas Hentschel
Réginald Dupuis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Speira GmbH
Original Assignee
Hydro Aluminium Rolled Products GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47739152&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2959028(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hydro Aluminium Rolled Products GmbH filed Critical Hydro Aluminium Rolled Products GmbH
Priority to EP14705528.9A priority Critical patent/EP2959028B2/fr
Publication of EP2959028A1 publication Critical patent/EP2959028A1/fr
Publication of EP2959028B1 publication Critical patent/EP2959028B1/fr
Application granted granted Critical
Publication of EP2959028B2 publication Critical patent/EP2959028B2/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the invention relates to an aluminum alloy for the production of semi-finished products or components for motor vehicles. Furthermore, the invention relates to a method for producing an aluminum alloy strip and a correspondingly produced aluminum alloy strip and uses thereof.
  • Semi-finished products and components for motor vehicles must meet different requirements depending on their place of use and purpose in the motor vehicle, in particular with regard to their mechanical properties and their corrosion properties.
  • the mechanical properties are determined, for example, predominantly by the rigidity, which depends in particular on the shape of these parts. In contrast, the strength has a minor influence, but the materials used must not be too soft either.
  • good formability is very important since the components and semi-finished products generally undergo complex forming processes, for example, in the manufacture of interior door parts.
  • This relates in particular to components which are produced in a one-piece sheet metal shell construction, such as, for example, a sheet-metal inner door with integrated window frame area.
  • corrosion resistance also plays a major role in motor vehicles, since automotive components such as door interior parts are exposed to spray water, condensation or condensation. It is therefore desirable that the motor vehicle components have good resistance to various corrosion attacks, in particular to intergranular corrosion and to filiform corrosion.
  • Filiform corrosion is a type of corrosion that occurs in coated components and a understood thread-like course shows. Filiform corrosion occurs at high humidity in the presence of chloride ions.
  • Curable AA 6xxx alloys have high strength and good resistance to intergranular corrosion and filiform corrosion, but are significantly less malleable than AA 8006 and therefore not very well suited for the manufacture of complex components such as door inner parts.
  • the production of semi-finished products and components from a AA 6xxx alloy is quite complex and expensive, since it requires a continuous annealing as a special process step.
  • AA 5xxx alloys with high magnesium content combine high strengths with a very good formability.
  • the formability does not match that of steel solutions, which leads to limitations in the design of the components.
  • these alloys tend to intercrystalline corrosion.
  • steel materials are very easy to form, they have a weight disadvantage and are also susceptible to corrosion for the same rigidity.
  • the present invention has the object to provide an aluminum alloy for the production of semi-finished products or components for motor vehicles available which is highly deformable, medium-strength and corrosion-resistant.
  • a corresponding method for the production of aluminum alloy strips of this aluminum alloy is to be provided, which is relatively inexpensive to carry out.
  • the present invention is also based on the object of providing a corresponding aluminum alloy strip as well as advantageous uses for the strip and the alloy.
  • the aforementioned object is achieved according to the invention in that the alloy components of the aluminum alloy have the following percentages by weight: Fe ⁇ 0.80%, Si ⁇ 0.50%, 0.90 ⁇ Mn ⁇ 1.50%, mg ⁇ 0.25%, Cu ⁇ 0.125%, Cr ⁇ 0.05%, Ti ⁇ 0.05%, V ⁇ 0.05%, Zr ⁇ 0.05%, Balance aluminum, unavoidable accompanying elements individually ⁇ 0.05%, in total ⁇ 0.15%, and the combined proportion of Mg and Cu satisfies the following relation in% by weight: 0 . 15 % ⁇ mg + Cu ⁇ 0 . 25 % ,
  • the aluminum alloy according to the invention is based on the alloy type AA 3xxx, in particular AA 3103 (AlMn1). Although such alloys have a very good formability, but are usually too soft for many applications such as components of motor vehicles.
  • AlMn1 the alloy type AA 3xxx
  • AlMn1 AlMn1
  • Mg and Cu the strength of the aluminum alloy can be increased, but this also leads to a significant reduction in ductility and thus in turn to a poorer formability.
  • the combined amount of copper and magnesium in the aluminum alloy according to the invention must be precisely controlled in order to achieve the desired mechanical properties, namely a yield strength Rp 0.2 of at least 45 MPa with an equiaxed Ag of at least 23 % and an elongation at break A 80mm of at least 30%, to achieve good corrosion resistance. It has been found in tests that with a combined proportion of Mg and Cu between 0.15 and 0.25 wt.%, A combination of strength and formability of the aluminum alloy which is advantageous for the aforementioned applications is achieved.
  • the combined amount of magnesium and copper must be at least 0.15 wt.%, Preferably at least 0.16 wt.%, In particular at least 0.17 wt the aluminum alloy achieves sufficient strength, in particular with a yield strength R p0.2 of at least 45 MPa.
  • the combined amount of Mg and Cu must be limited to at most 0.25% by weight, preferably at most 0.23% by weight, in particular at most 0.20% by weight, since otherwise uniform elongation Ag and breaking elongation A will increase to 80 mn fall very much, namely in particular under 23% for Ag and under 30% for A 80mm .
  • the combined proportion of magnesium and copper is generally understood as the sum of the two individual fractions for Mg and Cu in% by weight.
  • the aluminum alloy has a Cu content of not more than 0.125% by weight, preferably not more than 0.10% by weight, in particular not more than 0.05% by weight, and a magnesium content of not more than 0, 25 wt .-%, preferably at most 0.2 wt .-%, on.
  • the aluminum alloy preferably has an Mg content of at least 0.06% by weight, more preferably of at least 0.10% by weight, in particular of at least 0.15% by weight.
  • the aluminum alloy preferably has an Mg content in the range of 0.08% to 0.25% by weight.
  • the aluminum alloy according to the invention described above has proved to be highly deformable and medium-strong in tests.
  • the aluminum alloy can be used particularly well for semi-finished products and components of motor vehicles, the production of which involves complex forming processes.
  • the invention also relates to the use of the aforementioned aluminum alloy for producing a semifinished product or component of motor vehicles.
  • aluminum alloy can in particular even achieve such good formability that semifinished products and components made of the alloy can be converted to forming tools for steel components.
  • the aluminum alloy according to the invention has good corrosion resistance.
  • the aluminum alloy according to the invention in laboratory tests showed a significantly better resistance to filiform corrosion than, for example, AA 8006 alloys.
  • the Mn content of the alloy of 0.9 to 1.5% by weight, preferably 1.0 to 1.4% by weight, especially 1.0 to 1.2% by weight, results in combination with the Fe and Si components in the specified amounts, in particular to relatively uniformly distributed, compact particles of the quaternary ⁇ -Al (Fe, Mn) Si phase, which increase the strength of the aluminum alloy, without other properties such as formability or corrosion behavior to influence negatively.
  • the elements titanium, chromium, vanadium and in particular zirconium can hinder the recrystallization during the final annealing and thus impair the formability of the aluminum alloy.
  • the aluminum alloy therefore has Ti, Cr, V and Zr contents of in each case not more than 0.05% by weight and preferably in particular a Zr content of not more than 0.02% by weight.
  • the proportions of all other unavoidable accompanying elements are individually less than 0.05 wt .-% and together less than 0.15 wt .-%, so that they do not cause undesirable phase formation and / or negative effects on the material properties.
  • the Mg content of the aluminum alloy is greater than the Cu content of the aluminum alloy.
  • the corrosion behavior of the aluminum alloy in particular with respect to the Filiform corrosion, can be further improved.
  • tests on filiform corrosion on sheet metal samples of various aluminum alloys have shown that aluminum workpieces according to this first embodiment can be used to produce aluminum workpieces, in particular semi-finished products or components for motor vehicles, which show little or only slight filiform corrosion in the tests.
  • the formability of the aluminum alloy is further improved in one embodiment in that the aluminum alloy has a Cr content ⁇ 0.02% by weight, preferably ⁇ 0.01% by weight, and / or a V content ⁇ 0.02% by weight .-%, preferably ⁇ 0.01 wt .-%, and / or has a Zr content ⁇ 0.01 wt .-%.
  • Titanium may be added in the continuous casting of the aluminum alloy as a grain refining agent, for example, in the form of Ti-boride wire or rods. Therefore, the Aluminum alloy in a further embodiment, a Ti content of at least 0.01 wt .-%, preferably of at least 0.015 wt .-%, in particular of at least 0.02 wt .-% to.
  • the material properties of the aluminum alloy can be improved in a further embodiment in that the aluminum alloy has an Fe content of ⁇ 0.7% by weight, preferably ⁇ 0.6% by weight, in particular ⁇ 0.5% by weight , By further limiting the Fe content, the susceptibility of the aluminum alloy to filiform corrosion is prevented from increasing.
  • the aluminum alloy preferably has an Si content of ⁇ 0.4% by weight, preferably ⁇ 0.3% by weight, in particular ⁇ 0.25% by weight. By further restricting the Si content, it can be prevented that the formability is reduced too much.
  • the aluminum alloy further preferably has an Fe content of at least 0.10 wt .-%, preferably of at least 0.25 wt .-%, in particular of at least 0.40 wt .-%, and / or an Si content of at least 0.06% by weight, preferably at least 0.10% by weight, in particular at least 0.15% by weight.
  • the alloying constituents of the aluminum alloy have the following percentages by weight: 0.40% ⁇ Fe ⁇ 0.70%, 0.10% ⁇ Si ⁇ 0.25%, 1.00% ⁇ Mn ⁇ 1.20%, mg ⁇ 0.25%, Cu ⁇ 0.10%, Cr ⁇ 0.02%, Ti ⁇ 0.05%, V ⁇ 0.05%, Zr ⁇ 0.05%, Balance aluminum, unavoidable accompanying elements individually ⁇ 0.05%, in total ⁇ 0.15%, the combined proportion of Mg and Cu satisfying the following relation in% by weight: 0 . 15 % ⁇ mg + Cu ⁇ 0 . 25 % ,
  • the formability of this alloy can be improved by the alloy having a V content of ⁇ 0.02% by weight and / or a Zr content of ⁇ 0.01% by weight. Furthermore, the grain refining can be improved by a Ti content of at least 0.01 wt .-%.
  • a very good formability with sufficient strength is achieved in a preferred embodiment of the aluminum alloy in that the alloy components of the aluminum alloy have the following percentages by weight: 0.40% ⁇ Fe ⁇ 0.70%, 0.10% ⁇ Si ⁇ 0.25%, 1.00% ⁇ Mn ⁇ 1.20%, mg ⁇ 0.20%, Cu ⁇ 0.05%, Cr ⁇ 0.02%, Ti ⁇ 0.05%, V ⁇ 0.05%, Zr ⁇ 0.05%, Balance aluminum, unavoidable accompanying elements individually ⁇ 0.05%, in total ⁇ 0.15%, the combined proportion of Mg and Cu satisfying the following relation in% by weight: 0 . 15 % ⁇ mg + Cu ⁇ 0 . 20 % ,
  • the formability of this alloy can be improved by the alloy having a V content of ⁇ 0.02% by weight and / or a Zr content of ⁇ 0.01% by weight. Furthermore, the grain refining can be improved by a Ti content of at least 0.01 wt .-%.
  • this method can produce an aluminum alloy strip which is highly deformable, medium strength and corrosion resistant, especially against intergranular corrosion and filiform corrosion. Furthermore, this process allows for economical production of the aluminum alloy strip, since the process involves standard process steps (i.e., continuous casting, homogenizing, hot rolling, cold rolling, soft annealing) and does not necessarily require special, expensive process steps such as strip continuous annealing.
  • the casting of the rolling ingot is preferably carried out in DC continuous casting.
  • a tape casting method may also be used, for example.
  • the hot rolling of the rolling ingot takes place at a temperature between 280 ° C and 500 ° C, preferably between 300 ° C and 400 ° C, in particular between 320 ° C and 380 ° C.
  • the ingot is preferably rolled down to a thickness between 3 and 12 mm. In this way it is ensured that in the subsequent cold rolling a sufficiently high degree of rolling, preferably of at least 70%, in particular of at least 80%, is achieved, by which the strength, the formability and the elongation values of the aluminum alloy strip are determined.
  • the cold rolling of the aluminum alloy strip can be done in one or more passes.
  • the aluminum alloy strip is preferably rolled to a final thickness in the range from 0.2 to 5 mm, preferably from 0.25 to 4 mm, in particular from 0.5 to 3.6 mm. In these thickness ranges, the desired material properties of the aluminum alloy strip can be achieved particularly well.
  • the final annealing of the aluminum strip allows a fine-grained, thoroughly crystallized microstructure with good strength and formability to be achieved.
  • the final annealing is therefore a recrystallizing soft annealing.
  • the final annealing can be carried out in particular in a chamber furnace at 300 ° C to 400 ° C, preferably at 320 ° C to 360 ° C or in a continuous furnace at 450 ° C to 550 ° C, preferably at 470 ° C to 530 ° C.
  • the chamber furnace is in operation and purchase less expensive than the continuous furnace.
  • the Duration of final annealing in the chamber furnace is typically 1 hour or more.
  • the corrosion properties of the produced aluminum alloy strip or an end product made of this aluminum alloy strip can be improved.
  • the milling of the upper and / or lower side of the roll ingot can be carried out, for example, after casting and before homogenizing the rolling ingot.
  • milling of the top and / or bottom of the rolling billet may be performed between the first homogenizing and the second homogenizing, more preferably after cooling the rolling bar to room temperature.
  • the degree of rolling during cold rolling is at least 70%, preferably at least 80%.
  • the degree of rolling during cold rolling is at most 90%, preferably at most 85%. This maximum degree of rolling can prevent an excessive decrease in the elongation values of the aluminum alloy strip.
  • the method can be carried out particularly economically by carrying out the cold rolling without intermediate annealing. It has been found that the desired properties of the aluminum alloy strip can also be achieved without intermediate annealing. In the production of the aluminum alloy strip, no expensive and expensive continuous strip annealing is preferably carried out.
  • the aluminum alloy strip is annealed between two cold rolling passes, in particular at a temperature of 300 ° C to 400 ° C, preferably at a temperature of 330 ° C to 370 ° C.
  • the intermediate annealing can be done for example in a chamber furnace.
  • the intermediate annealing is in particular an intermediate annealing of the strip.
  • the intermediate annealing will preferably carried out when the degree of rolling during cold rolling is more than 85%, in particular more than 90%.
  • the cold rolling and the intermediate annealing is then preferably carried out so that the degree of rolling after the intermediate annealing is less than 90%, in particular less than 85%.
  • the degree of rolling after the intermediate annealing is particularly preferably between 70% and 90%, in particular between 80% and 85%.
  • an aluminum alloy strip which is preferably produced by one of the methods described above , in that the aluminum alloy strip consists of an alloy according to the invention and has a yield strength R p0.2 of at least 45 MPa, a uniform elongation A g of at least 23% and an elongation at break A 80mm of at least 30%.
  • the alloy according to the invention and in particular also by the method according to the invention an aluminum alloy strip can be produced, which has the abovementioned material properties and also good corrosion resistance to intercrystalline corrosion and filiform corrosion.
  • the aluminum alloy strip according to the invention is particularly well suited for components and semi-finished products for motor vehicles, especially for coated components such as interior door components.
  • the yield strength R p0.2 is determined according to DIN EN ISO 6892-1: 2009.
  • the uniform elongation Ag and the elongation at break A 80mm are also according to DIN EN ISO 6892-1: 2009 with a Flat tensile specimen according to DIN EN ISO 6892-1: 2009, Annex B, form 2.
  • the aluminum alloy strip has a thickness in the range of 0.2 to 5 mm, preferably 0.25 to 4 mm, in particular 0.5 to 3.6 mm. In these thickness ranges, the desired material properties of the aluminum alloy strip can be achieved particularly well.
  • the object described above is furthermore achieved by the use of the aluminum alloy according to the invention for semifinished products or components for motor vehicles, in particular for coated components for motor vehicles. It has been found that with the aluminum alloy material properties can be achieved, which are particularly advantageous for these uses.
  • the aluminum alloy can be used according to an embodiment particularly advantageous for interior door components of a motor vehicle.
  • the above-described object is further achieved by the use of a metal sheet, produced from an aluminum alloy strip according to the invention, as a component in the motor vehicle.
  • a metal sheet produced from an aluminum alloy strip according to the invention, as a component in the motor vehicle.
  • the material properties of the aluminum alloy strip and thus also the material properties of a sheet produced from this are particularly suitable for use in motor vehicles, especially as a door inner panel.
  • the aluminum alloy according to the invention or an aluminum alloy produced from the aluminum alloy according to the invention Sheet metal particularly preferably used for coated, in particular painted components of a motor vehicle.
  • Fig. 1 shows a flowchart for a first embodiment of the inventive method for producing an aluminum alloy strip.
  • a rolling ingot is first cast from an aluminum alloy according to the invention.
  • the casting can be done for example in DC continuous casting or strip casting.
  • the ingot is homogenized in step 4 at a temperature in the range of 480 ° C to 600 ° C for at least 0.5 hours.
  • the ingot is then hot rolled at a temperature in the range of 280 ° C to 500 ° C to a final thickness of between 3 and 12 mm.
  • the hot strip hot rolled from the billet is then cold rolled in step 8 to a final thickness of preferably 0.2 mm to 5 mm.
  • a final annealing of the aluminum alloy strip takes place in step 10, for example in a chamber furnace at a temperature between 300 ° C. and 400 ° C. or in a continuous furnace between 450 ° C. and 550 ° C.
  • step 12 Between the casting of the rolling ingot in step 2 and the homogenization in step 4, optionally in a step 12 the top and / or bottom of the rolling ingot are milled.
  • the aluminum alloy strip may optionally be annealed in a step 14, preferably in a chamber furnace at a temperature between 300 ° C and 400 ° C.
  • the intermediate annealing is particularly suitable for improving the material properties of the aluminum alloy strip when the hot strip is relatively thick and therefore the degree of rolling during cold rolling is more than 85%, in particular more than 90%.
  • the degree of rolling in cold rolling is approximately 96.7%.
  • the hot strip can first be rolled to 2 mm in a first cold-rolled pass, then intermediate-annealed, and finally rolled to 0.4 mm in a second cold-rolled pass.
  • the Abwalzgrad after the intermediate annealing is then only 80% and is thus in a preferred range.
  • FIG. 2 shows a part of a flowchart for further embodiments of the method according to the invention.
  • the process flow of these embodiments is substantially the same as the process flow of FIG. 1 match described method.
  • the homogenization of the rolling ingot takes place in the embodiments according to FIG. 2 not in step 4, but in a step 16, which is divided into several steps.
  • FIG. 2 shows possible sequences of the individual steps of step 16.
  • the ingot is cooled to the temperature of the second homogenization in the range of 450 ° C and 550 ° C, before then in the subsequent step 22 at this temperature, the second homogenization for at least 0.5 h, preferably for at least 2 h, takes place.
  • the ingot may be first cooled to room temperature in a step 24 and heated in a subsequent step 26 to the temperature for the second homogenization.
  • step 24 and step 26 optionally the top and / or bottom of the rolling billet can be milled.
  • aluminum alloys of the AA 3xxx type in particular based on AA 3103, were produced with different Mg and Cu contents.
  • the alloy compositions of these aluminum alloys are summarized in the following Table 1, wherein the individual alloy portions are each given in wt .-%. Table 1 No.
  • alloys Nos. 6 and 8 are examples of the invention alloy (E), while alloys Nos. 1-5, 7 and 9-13 are comparative examples (V).
  • each of these alloys 1 to 13 was cast in DC continuous casting in each case a rolling bar with a thickness of 600 mm, which was then homogenized in two stages, first for several hours at about 580 ° C and then for several hours at about 500 ° C. After homogenization, the ingots were hot rolled at about 500 ° C into aluminum alloy hot tapes having a thickness of 4 to 8 mm. These aluminum alloy hot tapes were then each cold-rolled to a final thickness of 1.2 mm and finally subjected to a recrystallizing final annealing at 350 ° C for 1 h.
  • the aluminum alloy strips were examined for their mechanical properties, in particular their strength and formability.
  • Table 2 shows the corresponding material properties of an alloy of the type AA 8006, as known from the prior art.
  • Table 2 No. R p0.2 [MPa] R m [MPa] Ag [%] A 80mm [%] n-value r-value SZ 32 [mm] 1 V 42 101 25.1 41.3 0.214 0.472 16.7 2 V 42 103 24.6 35.7 0,216 0.579 16.3 3 V 43 111 24.5 36.1 0.218 0.484 16.4 4 V 48 111 25.3 35.9 0.214 0,417 16.6 5 V 45 114 24.8 36.4 0.217 0.484 16.5 6 e 46 116 24.5 35.1 0.217 0.662 16.7 7 V 49 115 25.1 34.2 0.218 0,420 16.2 8th e 50 113 24.2 35.0 0.210 0,598 16.4 9 V 53 118 23.8 32.5 0,216 0.344 15.9 10 V 51 119 21.8 29.5 0.207 0,635 15.9 11 V
  • the yield strength R p0.2 open squares
  • the elongations at break A 80mm filled diamonds
  • the sag values SZ 32 filled triangles
  • the R p0,2 values are plotted in MPa according to the scale on the left ordinate axis.
  • the A 80mm values are plotted in percent and the SZ 32 values are plotted in mm according to the scale on the right axis of the ordinate.
  • the combined Cu and Mg content is indicated on the abscissa in wt.%.
  • the good formability is also reflected in particular by the measured depth value, which in the case of the alloy according to the invention preferably has a value SZ 32 ⁇ 15.8 mm, in particular ⁇ 15.9 mm.
  • the aluminum alloys Nos. 4-9 have only a slightly poorer formability at the same strength than the comparison alloy AA 8006.
  • the aluminum alloys Nos. 4-9 have the advantage over the alloy AA 8006 that they have a significantly better Have corrosion resistance. Thus intercrystalline corrosion does not occur in alloys of type AA 3xxx.
  • FIGS. 4a-c Photographs of the sample surfaces are shown at the end of the test.
  • FIG. 4a shows the sheet sample of the comparative alloy AA8006
  • FIG. 4b shows the sheet sample of Comparative Example No. 5
  • Figure 4c shows the sample sheet according to Embodiment No. 6.
  • the scribe line introduced into the sheet sample is to be seen (dark line running from top to bottom).
  • the filiform corrosion spreads starting from the scribe line substantially transversely to the extension direction of the scribe line and is shown in the figures as a light thread-like structures.
  • the figures each show a ruler with centimeter scale placed on the sample.
  • the sheet sample of the comparative alloy AA8006 shows a strong Filiform corrosion.
  • the scribe line is in Fig. 4a almost completely surrounded by the white filiform structures of filiform corrosion.
  • the subterranean depth, ie the extent of the threadlike structures starting from the scribe line, is up to 6 mm.
  • the Sample No. 5 metal sample shows a considerably lower amount of filiform corrosion.
  • the density of thread-like structures of filiform corrosion is at the scribe line in Fig. 4b considerably less than the scribe line in Fig. 4a so that the sheet sample in Fig. 4b has a much greater resistance to filiform corrosion than the sheet sample in Fig. 4a , Nevertheless, some filiform structures of filiform corrosion, some of which have a large infiltration depth of up to approximately 6 mm, also occur in this sample of sheet metal.
  • the Mg content of the alloy composition is greater than the Cu content.
  • the sample of sheet metal for Embodiment No. 6 with an Mg content of 0.15% by weight and a Cu content of 0.031% by weight shows only minimal filiform corrosion.
  • the scribe line in Fig. 4c is only occasionally surrounded by short filiform structures of filiform corrosion up to 3 mm in length.
  • the sheet sample for Embodiment No. 6 thus has a very good resistance to filiform corrosion.
  • Table 2 show that the exemplary embodiments of the aluminum alloy according to the invention also achieve good values for the tensile strength R m and for the n and r values, which are in particular within the scope of conventional AA 3xxx alloys or even better.
  • FIG. 5 shows a schematic representation of a typical component of a motor vehicle in the form of a door inner part.
  • Such door inner parts 40 are usually made of steel. However, steel components are heavy and susceptible to corrosion with equal rigidity.
  • aluminum alloy ribbons can be produced that are highly deformable, medium strength, and highly corrosion resistant, particularly to intergranular corrosion as well as to filiform corrosion.
  • the material properties of these aluminum alloy strips or of the sheets produced therefrom are therefore particularly favorable for the production of motor vehicle components, such as the door inner part 40.
  • the good resistance to filiform corrosion is especially when using the aluminum alloys for coated, in particular painted components, such as the door inner part 40, advantageous.
  • the components produced from these aluminum alloys have a better corrosion resistance than corresponding components made of steel or of an alloy of the type AA 8006. At the same time they have a significantly lower weight than components made of steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Claims (14)

  1. Alliage d'aluminium destiné à la fabrication de produits semi-finis ou d'éléments constitutifs de véhicules,
    caractérisé en ce que les éléments de l'alliage d'aluminium présentent les parts suivantes en % en poids : Fe ≤ 0,80 %, Si ≤ 0,50 %, 0,90 % ≤ Mn ≤ 1,50 %, Mg ≤ 0,25 %, Cu ≤ 0,125 %, Cr ≤ 0,05 %, Ti ≤ 0,05 %, V ≤ 0,05 % , Zr ≤ 0,05 %,
    le reste étant aluminium, des éléments d'accompagnement inévitables, individuellement < 0,05 %, au total < 0,15 %,
    et la part combinée de Mg et de Cu satisfait à l'équation suivante : 0 , 15 % Mg + Cu 0 , 25 % ,
    Figure imgb0006
    la part en Mg de l'alliage d'aluminium étant supérieure à la part en Cu de l'alliage d'aluminium.
  2. Alliage d'aluminium selon la revendication 1, caractérisé en ce que l'alliage d'aluminium comporte une part en Cu d'un maximum de 0,10 % en poids et/ou une part en Mg de 0,06 % en poids à 0,20 % en poids.
  3. Alliage d'aluminium selon la revendication 1 ou la revendication 2, caractérisé en ce que l'alliage d'aluminium comporte une part en Cr ≤ 0,02 % en poids et/ou une part en V ≤ 0,02 % en poids et/ou une part en Zr ≤ 0,02 % en poids, notamment ≤ 0,01 % en poids.
  4. Alliage d'aluminium selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'alliage d'aluminium comporte une part en Fe de 0,4 à 0,7 % en poids et/ou une part en Si de 0,1 à 0,25 % en poids et/ou une part en Mn de 1,0 à 1,2 % en poids.
  5. Alliage d'aluminium selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'alliage d`aluminium comporte une part en Ti d'au moins 0,01 % en poids.
  6. Procédé destiné à la fabrication d'un feuillard en alliage d'aluminium à partir d'un alliage d'aluminium selon l'une quelconque des revendications 1 à 5, comprenant les étapes de procédé suivantes :
    - coulée d'une brame en un alliage d'aluminium selon l'une quelconque des revendications 1 à 5,
    - homogénéisation de la brame à de 480 °C à 600 °C pendant au moins 0,5 h,
    - laminage à chaud de la brame à de 280 °c à 500 °C en un feuillard en alliage d'aluminium,
    - laminage à froid du feuillard en alliage d'aluminium à l'épaisseur finale et
    - recuit final recristallisant du feuillard en alliage d'aluminium.
  7. Procédé selon la revendication 6, caractérisé en ce que le procédé comprend en supplément l'étape de procédé suivante :
    - fraisage de la face supérieure et/ou inférieure de la brame.
  8. Procédé selon la revendication 6 ou la revendication 7, caractérisé en ce que l'homogénéisation est réalisée au moins en deux phases avec les étapes suivantes :
    - première homogénéisation à de 500 °C à 600 °C pendant au moins 0,5 h et
    - deuxième homogénéisation à de 450 °c à 550 °C pendant au moins 0,5 h.
  9. Procédé selon l'une quelconque des revendications 6 à 8, caractérisé en ce que le niveau de laminage pendant le laminage à froid est compris entre 70 % et 90 %, de préférence entre 80 % et 85 %.
  10. Procédé selon l'une quelconque des revendications 6 à 9, caractérisé en ce qu'on réalise le laminage à froid avec ou sans recuit intermédiaire.
  11. Feuillard en alliage d'aluminium, notamment fabriqué à l'aide d'un procédé selon l'une quelconque des revendications 6 à 10, caractérisé en ce que le feuillard en alliage d'aluminium est constitué d'un alliage selon l'une quelconque des revendications 1 à 5 et présente une limite élastique Rp0,2 d'au moins 45 MPa, un allongement uniforme Ag d'au moins 23 % et un allongement à la rupture A80mm d'au moins 30 %.
  12. Feuillard en alliage d'aluminium selon la revendication 11, caractérisé en ce que le feuillard en alliage d'aluminium présente une épaisseur de l'ordre de 0,2 mm à 5 mm.
  13. Utilisation d'un alliage d'aluminium selon l'une quelconque des revendications 1 à 5 pour des produits semi-finis ou d'éléments constitutifs de véhicules, notamment pour des éléments d'intérieur de portière.
  14. Utilisation d'une tôle, fabriquée en un feuillard en alliage d'aluminium selon la revendication 11 ou la revendication 12 en tant qu'élément dans le véhicule automobile, notamment en tant que tôle d'intérieur de portière.
EP14705528.9A 2013-02-21 2014-02-20 Utilisation d'un alliage en aluminium pour la fabrication de demi-produits ou de composants pour véhicules automobiles Active EP2959028B2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14705528.9A EP2959028B2 (fr) 2013-02-21 2014-02-20 Utilisation d'un alliage en aluminium pour la fabrication de demi-produits ou de composants pour véhicules automobiles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13156100.3A EP2770071B9 (fr) 2013-02-21 2013-02-21 Alliage en aluminium pour la fabrication de demi-produits ou de composants pour véhicules automobiles, procédé de fabrication d'une bande d'alliage en aluminium à partir de cet alliage en aluminium ainsi que la bande d'alliage en aluminium et utilisations de celui-ci
EP14705528.9A EP2959028B2 (fr) 2013-02-21 2014-02-20 Utilisation d'un alliage en aluminium pour la fabrication de demi-produits ou de composants pour véhicules automobiles
PCT/EP2014/053323 WO2014128212A1 (fr) 2013-02-21 2014-02-20 Alliage d'aluminium servant à fabriquer des demi-produits ou des composants de véhicules à moteur, procédé de fabrication d'un feuillard à partir de cet alliage d'aluminium, ainsi que feuillard d'alliage d'aluminium et son utilisation

Publications (3)

Publication Number Publication Date
EP2959028A1 EP2959028A1 (fr) 2015-12-30
EP2959028B1 true EP2959028B1 (fr) 2016-07-27
EP2959028B2 EP2959028B2 (fr) 2019-07-10

Family

ID=47739152

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13156100.3A Active EP2770071B9 (fr) 2013-02-21 2013-02-21 Alliage en aluminium pour la fabrication de demi-produits ou de composants pour véhicules automobiles, procédé de fabrication d'une bande d'alliage en aluminium à partir de cet alliage en aluminium ainsi que la bande d'alliage en aluminium et utilisations de celui-ci
EP14705528.9A Active EP2959028B2 (fr) 2013-02-21 2014-02-20 Utilisation d'un alliage en aluminium pour la fabrication de demi-produits ou de composants pour véhicules automobiles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13156100.3A Active EP2770071B9 (fr) 2013-02-21 2013-02-21 Alliage en aluminium pour la fabrication de demi-produits ou de composants pour véhicules automobiles, procédé de fabrication d'une bande d'alliage en aluminium à partir de cet alliage en aluminium ainsi que la bande d'alliage en aluminium et utilisations de celui-ci

Country Status (10)

Country Link
US (1) US10501833B2 (fr)
EP (2) EP2770071B9 (fr)
JP (1) JP6143892B2 (fr)
KR (1) KR101656419B1 (fr)
CN (1) CN105008563B (fr)
CA (1) CA2899991C (fr)
ES (2) ES2621871T3 (fr)
PT (2) PT2770071T (fr)
RU (1) RU2637458C2 (fr)
WO (1) WO2014128212A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008427B1 (fr) * 2013-07-11 2015-08-21 Constellium France Tole en alliage d'aluminium pour structure de caisse automobile
EP2924135B1 (fr) 2014-03-28 2017-12-13 Hydro Aluminium Rolled Products GmbH Procédé pour la fabrication d'une bande d'un alliage d'aluminium à fermeté moyenne hautement déformable pour la fabrication de produits semi-finis ou de composants de véhicules automobiles
JP6176393B2 (ja) * 2014-04-09 2017-08-09 日本軽金属株式会社 曲げ加工性と形状凍結性に優れた高強度アルミニウム合金板
KR101914888B1 (ko) 2014-09-12 2018-11-02 노벨리스 인크. 고도로 성형된 알루미늄 제품용의 합금 및 이를 제조하는 방법
CN104264009B (zh) * 2014-09-30 2016-11-23 国网河南省电力公司周口供电公司 一种高铁铝合金导体材料及其退火工艺
TR201806865T4 (tr) 2014-11-27 2018-06-21 Hydro Aluminium Rolled Prod Isi dönüştürücü, bi̇r alümi̇nyum alaşimin ve bi̇r alümi̇nyum şeri̇di̇n kullanimi yani sira bi̇r alümi̇nyum şeri̇di̇n üreti̇mi̇ i̇çi̇n yöntem
AU2017269097B2 (en) 2016-05-27 2019-06-13 Novelis Inc. High strength and corrosion resistant alloy for use in HVAC&R systems
CN109715880B (zh) * 2016-09-14 2021-05-25 Fp创新研究所 以较低磨浆能量生产纤维素长丝的方法
CN107447133B (zh) * 2017-07-26 2019-07-12 江苏亚太轻合金科技股份有限公司 一种耐腐蚀铝合金管及其制备方法
DE102018215243A1 (de) * 2018-09-07 2020-03-12 Neumann Aluminium Austria Gmbh Aluminiumlegierung, Halbzeug, Dose, Verfahren zur Herstellung eines Butzen, Verfahren zur Herstellung einer Dose sowie Verwendung einer Aluminiumlegierung
DE102018215254A1 (de) * 2018-09-07 2020-03-12 Neuman Aluminium Austria Gmbh Aluminiumlegierung, Halbzeug, Dose, Verfahren zur Herstellung eines Butzen, Verfahren zur Herstellung einer Dose sowie Verwendung einer Aluminiumlegierung
CN109097637B (zh) * 2018-09-10 2021-01-26 招商局铝业(重庆)有限公司 一种球釜型锅胆用铝合金材料的制备方法
RU2731634C2 (ru) * 2018-11-01 2020-09-07 АО "Завод алюминиевых сплавов" Способ получения деформированных полуфабрикатов из вторичного алюминиевого сплава
CN109128728A (zh) * 2018-11-17 2019-01-04 景德镇兴航科技开发有限公司 一种消耗油箱薄壁加工工艺
EP3741875A1 (fr) 2019-05-24 2020-11-25 Constellium Rolled Products Singen GmbH & Co.KG Produit de feuille en alliage d'aluminium ayant un aspect de surface amélioré
CN111471901B (zh) * 2020-05-22 2021-03-23 永杰新材料股份有限公司 铝锰合金及其生产方法
CN112267053A (zh) * 2020-09-27 2021-01-26 绵阳市优泰精工科技有限公司 一种含有稀土成份的铝合金材料
CN112195373A (zh) * 2020-11-09 2021-01-08 江苏常铝铝业集团股份有限公司 一种电池壳体用铝合金带材及其制造方法
FR3123922B1 (fr) 2021-06-11 2023-12-22 Constellium Rolled Products Singen Tôle forte en alliage d’aluminium pour boîtier de batterie parallélépipédique
CN113802033B (zh) * 2021-09-15 2022-03-08 山东宏桥新型材料有限公司 一种耐腐蚀船舶装饰用铝合金带材及其制备工艺和应用
US12031199B2 (en) * 2022-03-30 2024-07-09 Relativity Space, Inc. Aluminum alloy compositions, articles therefrom, and methods of producing articles therefrom
CN115094276B (zh) * 2022-06-30 2023-04-11 广东和胜工业铝材股份有限公司 一种铝合金及其制备方法和应用
CN116590554B (zh) * 2023-05-19 2024-01-12 盐城永鑫机械有限公司 一种高性能车用转向节

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028276A (en) 1990-02-16 1991-07-02 Aluminum Company Of America Method for making lithoplate having improved grainability
EP0823305A2 (fr) 1996-08-08 1998-02-11 Denso Corporation Feuille de brasage à haute résistance à la corrosion pour usage dans un échangeur de chaleur et échangeur de chaleur obtenu
WO2005118899A1 (fr) 2004-05-26 2005-12-15 Corus Aluminium Walzprodukte Gmbh Procede de production d'une feuille de brasage d'alliage d'aluminium, et feuille de brasage d'alliage d'aluminium obtenue par ce procede
JP2012149354A (ja) 2012-05-11 2012-08-09 Kobe Steel Ltd アルミニウム合金板およびその製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985837A (ja) 1982-11-08 1984-05-17 Mitsubishi Alum Co Ltd 耐垂下性にすぐれた熱交換器フイン材
JPS60248859A (ja) * 1984-05-25 1985-12-09 Sumitomo Light Metal Ind Ltd 超高圧用プレ−トフイン型熱交換器のフイン材
JPH03215645A (ja) * 1989-12-20 1991-09-20 Furukawa Alum Co Ltd フッ素樹脂塗装容器用アルミニウム合金およびその製造方法
JPH03222796A (ja) * 1990-01-30 1991-10-01 Nippon Light Metal Co Ltd 平版印刷版用アルミニウム支持体
JPH0755373B2 (ja) * 1990-09-18 1995-06-14 住友軽金属工業株式会社 アルミニウム合金クラッド材および熱交換器
FR2707092B1 (fr) 1993-06-28 1995-08-25 Pechiney Rhenalu Produit métallurgique en alliage d'Al à durcissement structural présentant une variation continue des propriétés d'emploi suivant une direction donnée et un procédé et dispositif d'obtention de celui-ci.
KR0165927B1 (ko) * 1995-05-18 1999-01-15 우사미 카즈오 강도 및 성형성이 우수한 핀 형성용 알루미늄 합금 및 그 제조방법
RU2142187C1 (ru) * 1997-07-18 1999-11-27 Общество с ограниченной ответственностью "Таврида Электрик Р" Реклоузер (автоматический выключатель воздушных линий) серии tel
DE29924474U1 (de) * 1999-07-02 2003-08-28 Hydro Aluminium Deutschland GmbH, 53117 Bonn Lithoband
FR2797454B1 (fr) * 1999-08-12 2001-08-31 Pechiney Rhenalu Bande ou tube en alliage d'aluminium pour la fabrication d'echangeurs de chaleur brases
AUPQ485399A0 (en) 1999-12-23 2000-02-03 Commonwealth Scientific And Industrial Research Organisation Heat treatment of age-hardenable aluminium alloys
RU2221891C1 (ru) * 2002-04-23 2004-01-20 Региональный общественный фонд содействия защите интеллектуальной собственности Сплав на основе алюминия, изделие из этого сплава и способ изготовления изделия
JP4932473B2 (ja) 2003-03-17 2012-05-16 アレリス、アルミナム、コブレンツ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 一体化されたモノリシックアルミニウム構造の製造方法およびその構造から機械加工されたアルミニウム製品
WO2005037479A1 (fr) 2003-10-20 2005-04-28 Furukawa-Sky Aluminum Corp. Appareil de revetement pour element destine a un echangeur de chaleur, fait d'un alliage d'aluminium, et procede pour fabriquer un element destine a un echangeur de chaleur fait d'un alliage d'aluminium
US20050217770A1 (en) 2004-03-23 2005-10-06 Philippe Lequeu Structural member for aeronautical construction with a variation of usage properties
US7407714B2 (en) * 2004-05-26 2008-08-05 Aleris Aluminum Koblenz Gmbh Process by producing an aluminium alloy brazing sheet, aluminium alloy brazing sheet
FR2897319B1 (fr) * 2006-02-15 2009-01-23 Pechiney Softal Soc Par Action Composants de structure de caisse automobile pour absorption d'energie de choc en alliage d'aluminium de la famille 3000
JP5054364B2 (ja) 2006-12-08 2012-10-24 株式会社神戸製鋼所 アルミニウム合金板の製造方法
WO2009043426A1 (fr) 2007-10-04 2009-04-09 Aleris Aluminum Koblenz Gmbh Procédé de fabrication d'un produit de tôle de métal ouvré ayant un gradient dans ses propriétés de mise en œuvre
JP4444354B2 (ja) * 2008-08-04 2010-03-31 株式会社東芝 画像処理装置、および画像処理方法
US20100279143A1 (en) 2009-04-30 2010-11-04 Kamat Rajeev G Multi-alloy composite sheet for automotive panels
JP5750237B2 (ja) * 2010-05-25 2015-07-15 株式会社Uacj アルミニウム合金製熱交換器の製造方法
CN101956102B (zh) * 2010-10-27 2012-05-23 江苏格林威尔金属材料科技有限公司 热交换器用平行流管及其制造方法
JP5746528B2 (ja) 2011-03-15 2015-07-08 株式会社神戸製鋼所 焼付け塗装硬化性に優れたアルミニウム合金板
EP2857535B1 (fr) * 2012-05-25 2018-11-28 UACJ Corporation Feuille d'alliage d'aluminium pour collecteur d'électrode, procédé pour fabriquer celle-ci, et matériau d'électrode
KR101914888B1 (ko) * 2014-09-12 2018-11-02 노벨리스 인크. 고도로 성형된 알루미늄 제품용의 합금 및 이를 제조하는 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028276A (en) 1990-02-16 1991-07-02 Aluminum Company Of America Method for making lithoplate having improved grainability
EP0823305A2 (fr) 1996-08-08 1998-02-11 Denso Corporation Feuille de brasage à haute résistance à la corrosion pour usage dans un échangeur de chaleur et échangeur de chaleur obtenu
WO2005118899A1 (fr) 2004-05-26 2005-12-15 Corus Aluminium Walzprodukte Gmbh Procede de production d'une feuille de brasage d'alliage d'aluminium, et feuille de brasage d'alliage d'aluminium obtenue par ce procede
JP2012149354A (ja) 2012-05-11 2012-08-09 Kobe Steel Ltd アルミニウム合金板およびその製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"- Rolled Products", THE ALUMINIUM AUTOMOTIVE MANUAL PRODUCTS, 2002, pages 1 - 42, XP055377757
"Design Methodology", THE ALUMINIUM AUTOMOTIVE MANUAL DESIGN -, 2011, pages 1 - 20, XP055377750
ANONYMOUS: "Registration Record Series Teal Sheets", THE ALUMINIUM ASSOCI- ATION, 2 January 2009 (2009-01-02), pages 4, XP055377746
GOVINDARAJ, NAGARAJ VINAYAGAM ET AL.: "Threshold deformation for exhibiting the hardening on annealing behaviour in AA3103 alloy", 13TH INTERNATIONAL CONFERENCE ON ALUMINUM ALLOYS, 2012, pages 1873 - 1878, XP055377748
HAKONSEN, ARILD ET AL.: "Modelling the metallurgical reactions during homogenisation of an AA3103 alloy", LIGHT METALS, 2002, pages 1028 - 1035, XP055377752
LANGERWEGER, J.: "Influence of homogenizing on the properties of cast aluminium products", LIGHT METALS, 1982, pages 1036 - 1042, XP055377756
LOK, ZACHARIAS JOHANNES: "Microchemistry in aluminium sheet production", PHD THESIS, TECHNISCHE UNIVERSITEIT DELFT, 2005, pages 1 - 3, XP055377751, ISBN: 90-771-7215-7

Also Published As

Publication number Publication date
CA2899991C (fr) 2017-05-02
PT2959028T (pt) 2016-09-19
EP2959028A1 (fr) 2015-12-30
CA2899991A1 (fr) 2014-08-28
CN105008563A (zh) 2015-10-28
WO2014128212A1 (fr) 2014-08-28
KR20150119369A (ko) 2015-10-23
EP2770071B9 (fr) 2020-08-12
ES2621871T3 (es) 2017-07-05
JP2016514206A (ja) 2016-05-19
US10501833B2 (en) 2019-12-10
PT2770071T (pt) 2017-04-19
EP2770071B1 (fr) 2017-02-01
CN105008563B (zh) 2018-05-25
JP6143892B2 (ja) 2017-06-07
RU2015139899A (ru) 2017-03-24
EP2770071A1 (fr) 2014-08-27
ES2590779T3 (es) 2016-11-23
KR101656419B1 (ko) 2016-09-09
US20150368771A1 (en) 2015-12-24
ES2590779T5 (es) 2020-03-11
RU2637458C2 (ru) 2017-12-04
WO2014128212A9 (fr) 2014-11-27
EP2959028B2 (fr) 2019-07-10
EP2770071B2 (fr) 2020-04-01

Similar Documents

Publication Publication Date Title
EP2959028B1 (fr) Alliage en aluminium pour la fabrication de demi-produits ou de composants pour véhicules automobiles, procédé de fabrication d&#39;une bande d&#39;alliage en aluminium à partir de cet alliage en aluminium ainsi que la bande d&#39;alliage en aluminium et utilisations de celui-ci
EP3314031B1 (fr) Bande almg facilement déformable et très résistante et son procédé de fabrication
EP2570509B1 (fr) Procédé de fabrication pour une bande d&#39;aluminium AlMgSi
DE69703420T2 (de) Produkt aus AlMgMn-Legierung für Schweissstrukturen mit verbesserter Korossionsbeständigkeit
DE69204092T2 (de) Verfahren zur Herstellung von gehärteten Blechen aus Aluminiumlegierung mit sehr guter thermischer Stabilität.
DE69912850T2 (de) Herstellungsverfahren eines produktes aus aluminium-magnesium-lithium-legierung
EP2570257B1 (fr) Matière première composite en aluminium dotée d&#39;une couche d&#39;alliage centrale AIMgSi
EP2270249B1 (fr) Bande AIMgSi pour applications ayant des exigences de déformation élevées
EP2888382B1 (fr) Bande d&#39;alliage en aluminium résistant à la corrosion intercristalline et son procédé de fabrication
WO2002083967A1 (fr) Procede de realisation de feuillards ou de toles al-mn
EP2888383B1 (fr) Bande d&#39;alliage en aluminium résistant à la corrosion intercristalline et son procédé de fabrication
EP2192202B9 (fr) Bande en aluminium pour support de plaque d&#39;impression lithographique à haute résistance à la flexion alternée
DE69612922T2 (de) Eisen-Chromlegierung mit gute Beständigkeit gegen Rillenformung und mit glatten Oberflache
EP1748088B1 (fr) Procédé de fabrication de produit semi-fini ou de composant pour des applications de châssis ou de structure automobiles
EP2703508A1 (fr) Alliages d&#39;aluminium résistant à la corrosion intercristalline
EP3690076A1 (fr) Procédé de fabrication d&#39;une tôle ou d&#39;une bande d&#39;un alliage d&#39;aluminium ainsi que tôle, bande ou pièce moulée fabriqués selon ledit procédé
DE69012073T2 (de) Hochfestes kaltgewalztes Stahlblech, entweder feuerverzinkt oder nicht, mit verbesserten Streckbördeleigenschaften und Herstellungsverfahren.
EP3178952B9 (fr) Alliage d&#39;aluminium à haute ductilité, semi-rigide destiné à la fabrication de demi-produits ou de pièces pour véhicules automobiles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160205

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HENTSCHEL, THOMAS

Inventor name: ENGLER, OLAF

Inventor name: BRINKMAN, HENK-JAN

Inventor name: DUPUIS, REGINALD

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 815863

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014001197

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2959028

Country of ref document: PT

Date of ref document: 20160919

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20160908

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2590779

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161123

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161027

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161127

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014001197

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ALERIS ALUMINUM DUFFEL BVBA

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161027

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170220

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190321

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20190325

Year of fee payment: 16

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140220

27A Patent maintained in amended form

Effective date: 20190710

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502014001197

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20190128

Year of fee payment: 6

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2590779

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 815863

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190220

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200922

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014001197

Country of ref document: DE

Owner name: SPEIRA GMBH, DE

Free format text: FORMER OWNER: HYDRO ALUMINIUM ROLLED PRODUCTS GMBH, 41515 GREVENBROICH, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 11

Ref country code: GB

Payment date: 20240220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240227

Year of fee payment: 11

Ref country code: FR

Payment date: 20240220

Year of fee payment: 11