EP2940773A1 - Auswerfer für Festoxid-Elektrolysezellenstapelsystem - Google Patents

Auswerfer für Festoxid-Elektrolysezellenstapelsystem Download PDF

Info

Publication number
EP2940773A1
EP2940773A1 EP14166323.7A EP14166323A EP2940773A1 EP 2940773 A1 EP2940773 A1 EP 2940773A1 EP 14166323 A EP14166323 A EP 14166323A EP 2940773 A1 EP2940773 A1 EP 2940773A1
Authority
EP
European Patent Office
Prior art keywords
soec
stack
gas
process gas
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14166323.7A
Other languages
English (en)
French (fr)
Inventor
Niklas Bengt Jakobsson
Claus FRIIS PEDERSEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Priority to EP14166323.7A priority Critical patent/EP2940773A1/de
Publication of EP2940773A1 publication Critical patent/EP2940773A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • This invention belongs to the field of electrolysis conducted in solid oxide electrolysis cell (SOEC) stacks. More particular, the invention relates to a Solid Oxide Electrolysis Cell (SOEC) stack system for producing CO comprising an ejector.
  • SOEC Solid Oxide Electrolysis Cell
  • a solid oxide electrolysis cell is a solid oxide fuel cell (SOFC) run in reverse mode, which uses a solid oxide or ceramic electrolyte to produce e.g. oxygen and hydrogen gas by electrolysis of water.
  • a solid oxide electrolysis cell system comprises an SOEC core wherein the SOEC stack is housed together with inlets and outlets for process gases.
  • the feed gas often called the fuel gas, is led to the cathode part of the stack, from where the product gas from the electrolysis is taken out.
  • the anode part of the stack is also called the oxygen side, because oxygen is produced on this side.
  • the present invention relates to a process for producing carbon monoxide (CO) from carbon dioxide (CO 2 ) in a solid oxide electrolysis cell (SOEC) or SOEC stack, wherein CO 2 is led to the fuel side of the stack with an applied current and excess oxygen is transported to the oxygen side of the stack, optionally using air or nitrogen to flush the oxygen side, and wherein the product stream from the SOEC, containing CO mixed with CO 2 , is subjected to a separation process.
  • SOEC solid oxide electrolysis cell
  • US 8,138,380 B2 describes an environmentally beneficial method of producing methanol by reductively converting carbon dioxide, said method including a step in which recycled carbon dioxide is reduced to carbon monoxide in an electrochemical cell.
  • syngas components hydrogen and carbon monoxide may be formed by decomposition of carbon dioxide and water or steam in a solid oxide electrolysis cell to form carbon monoxide and hydrogen, a portion of which may be reacted with carbon dioxide to form carbon monoxide utilizing the so-called reverse water gas shift (WGS) reaction.
  • WGS reverse water gas shift
  • US 2012/0228150 A1 describes a method of decomposing CO 2 into C/CO and O 2 in a continuous process using electrodes of oxygen deficient ferrites (ODF) integrated with a YSZ electrolyte.
  • ODF oxygen deficient ferrites
  • the ODF electrodes can be kept active by applying a small potential bias across the electrodes.
  • CO 2 and water can also be electrolysed simultaneously to produce syngas (H 2 + CO) and O 2 continuously. Thereby, CO 2 can be transformed into a valuable fuel source allowing a CO 2 neutral use of hydrocarbon fuels.
  • US 8,366,902 B2 describes methods and systems for producing syngas utilising heat from thermochemical conversion of a carbonaceous fuel to support decomposition of water and/or carbon dioxide using one or more solid oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid oxide electrolysis cells can be employed to produce hydrogen and carbon monoxide.
  • gas pressure means such as compressors may be necessary to provide flow of the process gasses through the stack system. Since such gas pressure means entails a need for a surplus energy input to propel the pressure means, the overall efficiency of the SOEC stack system and CO production drops with increasing necessary energy input. The parasitic loss in the system increases with increasing need for surplus energy.
  • a Solid Oxide Electrolysis Cell (SOEC) stack system for producing CO is disclosed as seen on Fig. 2 .
  • the system comprises an SOEC stack.
  • the electrolysis cells in the stack each has a fuel side and an oxygen side, hence, when all the cells are put on top of each other to form a stack, the stack has a fuel side and an oxygen side.
  • the stack has a fuel side inlet and outlet and an oxygen side inlet and outlet.
  • the configuration of the inlets and outlets may be of any kind known in the art such as internal manifolded, external manifolded or a combination of these.
  • This cleaning of the process gas is done in a process gas separator downstream the SOEC stack.
  • the process gas separator has a process gas inlet and a first and a second process gas outlet.
  • the process gas is fed to the process gas separator inlet via process gas piping when it exits the SOEC stack from the fuel side outlet.
  • Cleaned process gas, CO with a purity approaching 100% exits the process gas separator via the first process gas outlet.
  • Separated process gas which comprises CO2 and CO exits the process gas separator from the second process gas outlet.
  • the process gas separator demands a certain pressure of the process gas entering.
  • an ejector is provided downstream the SOEC stack and upstream of the process gas separator.
  • the ejector provides a pressure increase to the process gas exiting the SOEC stack by means of injection of high pressure CO2. This is feasible since the CO2 feed is normally stored in liquid form under elevated pressure, whereas the SOEC unit operates close to ambient conditions and therefore the feed gas pressure is usually reduced over a reduction valve up-stream from the SOEC unit. In-stead of the use of a reduction valve, at least a part of the high pressure feed gas may thus be lead through the ejector for pressure reduction and thereby increasing the process gas pressure upstream the process gas separator.
  • the ejector hence provides pressure for the process gas separation, but also reduces the CO content in the feed gas for the process gas purification due to the injection of CO2. This may result in a lower yield of CO of the purification, but since the ejector is replacing a compressor, it provides a cheaper and less complicated unit with a lower footprint.
  • a further second ejector is arranged between the process gas separator and the SOEC stack as seen on Fig. 3 , providing recycling of at least a part of the process gas from the second process gas outlet, via this second ejector to the fuel side inlet of the SOEC stack.
  • Piping connects the second process gas outlet with the ejector and further connects the ejector to the fuel side of the SOEC stack.
  • the recycle of at least a part of the process gas from the second process gas outlet to the fuel side of the SOEC stack reduces the consumption of CO2 and also lowers the waste of CO2 from the system.
  • the recycling requires a slight increase in pressure of the recycle gas to overcome the pressure drop in the system. This pressure increase is provided by the second ejector.
  • carbon monoxide is produced from carbon dioxide (CO2) in a solid oxide electrolysis cell (SOEC) stack, wherein CO 2 is led to the fuel side of the SOEC with an applied current, said process further comprising:
  • the principle underlying the present embodiment consists in leading CO 2 to the fuel side of an SOEC with an applied current to convert CO 2 to CO and transport the oxygen surplus to the oxygen side of the SOEC. Air, nitrogen or carbon dioxide may be used to flush the oxygen side. Flushing the oxygen side of the SOEC has two advantages, more specifically (1) reducing the oxygen concentration and related corrosive effects and (2) providing means for feeding energy into the SOEC, operating it endothermic.
  • the product stream from the SOEC contains mixed CO and CO 2 , which is led to a separation process such as pressure swing adsorption (PSA), temperature swing adsorption (TSA), membrane separation, cryogenic separation or liquid scrubber technology, such as wash with N-methyl-diethanolamine (MDEA).
  • PSA pressure swing adsorption
  • TSA temperature swing adsorption
  • MDEA cryogenic separation
  • liquid scrubber technology such as wash with N-methyl-diethanolamine (MDEA).
  • PSA is especially suitable for the production of high purity CO according to the present invention.
  • Carbon dioxide is the most abundant impurity.
  • trace amounts of N 2 and H 2 may be present in the feed gas to the PSA unit.
  • an adsorption comprising at least two adsorption columns, each containing adsorbents exhibiting selective adsorption properties towards carbon dioxide, can be used to remove CO 2 from the gas mixture.
  • a second adsorption step can be employed to further remove carbon dioxide in addition to other pollutants such as nitrogen.
  • This adsorption step comprises at least two adsorption columns, each containing adsorbents exhibiting selective adsorption properties towards carbon monoxide.
  • Such an adsorption step may be used alone or as a second step in combination with the above mentioned adsorption step selective towards CO 2 .
  • Adsorbents being selective regarding carbon monoxide adsorption include activated carbon, natural zeolites, synthetic zeolites, polystyrene or mixtures thereof.
  • addition of copper or aluminium halides to any of the materials mentioned above to introduce monovalent copper ions and/or trivalent aluminium onto the materials is beneficial with respect to carbon monoxide selectivity and capacity.
  • the addition of Cu or Al can be combined with impregnation of carbon onto the carrier to preserve the oxidation stage of Cu and Al.
  • copper ions can be introduced into the zeolite material by ion exchange to increase the carbon monoxide selectivity and capacity.
  • N 2 is difficult to separate effectively from CO in the downstream purification process which, as mentioned, uses PSA, TSA, membrane separation, cryogenic separation or liquid scrubber technology, such as wash with N-methyl-diethanolamine (MDEA).
  • MDEA N-methyl-diethanolamine
  • the electrolysis process in the SOEC requires an operating temperature between 650 and 850°C.
  • the overall operation can consume heat (i.e. be endothermic), it can be thermoneutral or it can generate heat (i.e. be exothermic). Any operation carried out at such high temperatures also leads to a significant heat loss. This means that typically it will require external heating to reach and maintain the desired operating temperature.
  • external heaters are used to heat the inlet gas on the oxygen side and the fuel side in order to supply heat to the SOEC stack, thereby mitigating this issue.
  • Such external heaters are also useful during start-up as they can provide heat to help the SOEC reach its operating temperature. Suitable feed gas temperatures would be around 700 to 850°C.
  • the external heaters can be electrical, but gas or liquid fuelled external heaters may also be used.
  • the hot exhaust gas on the oxygen side and the fuel side may be utilized to heat the inlet gas. This is another way to maintain a suitable operating temperature for the SOEC and at the same time reduce the load on the heaters.
  • mass (O 2 ) is transferred from the fuel side to the oxygen side, which leads to a limitation on the maximum temperature that can be reached in the feed effluent heat exchanger on the fuel side alone.
  • a third feed effluent heat exchanger is implemented, said third heat exchanger transferring heat from the hot outlet side of the feed effluent heat exchanger on the oxygen side to the cold inlet of the feed effluent heat exchanger on the fuel side.
  • feed effluent heat exchangers increases the efficiency with respect to power consumption of the plant, and it also greatly reduces the load on the high temperature heaters.
  • the feed effluent heat exchangers will slow down and restrict the maximum rate of cooling by insertion of cold gases at the feed and purge inputs.
  • fast cooling is desirable when electrical anode protection (EAP) is used during a power failure, where the electrical protection is provided by a battery back-up.
  • EAP electrical anode protection
  • the stack should be cooled to a temperature below the cathode/nickel oxidation temperature (e.g. 400°C) before the battery back-up power is used.
  • a tie-in point is designed in between the high temperature heater and the SOEC, where a cooling medium such as air, N 2 or CO 2 can be added to the system and thus the cooling down rate can be increased and independently controlled.
  • This tie-in point can be introduced on the anode side as well as on the cathode side of the SOEC.
  • the gas connections for the heating and the cooling flows may be identical.
  • the feed effluent heat exchanger employed on the cathode side of the SOEC may be subject to corrosion due to carbon formation in the carbon monoxide-rich atmosphere present on this side.
  • This type of corrosion is generally renowned as metal dusting, and it may be mitigated by choosing an appropriate material or coating with respect to the heat exchanger and the heat exchanger conditions.
  • An alternative solution to the metal dusting issue is to simply quench the gas coming from the cathode side of the SOEC to a temperature around 400-600°C, where metal dusting is kinetically inhibited.
  • the quench should be performed with an inert gas such as N 2 , H 2 O, but most preferably with CO 2 .
  • the feed effluent heat exchanger is still in service, but now utilizing the heat from a temperature range within 400-600°C, most preferably within 400-550°C, instead of from the SOEC operating temperature. This obviously reduces the overall efficiency of the plant with respect to heat and CO 2 consumption, but it does mitigate the metal dusting issue and it is an alternative to using more exotic materials on the cathode side.
  • the SOEC unit together with the preheaters on the cathode side and the anode side as well as the feed effluent heat exchangers placed directly downstream from the SOEC unit comprise an entity called the SOEC core.
  • This core is encapsulated and thermally insulated towards the surroundings to mitigate heat loss from and thermal gradients within these units which are operating at high temperatures.
  • the core shell can be connected to the PSA purge line in order to assure that any leakage of CO is oxidized to CO 2 in the oxidation unit.
  • the outlet stream from the oxygen side (anode side) of the SOEC is led to the oxidation unit to ensure that any leakage of CO into the oxygen side of the system is also oxidized into CO 2 .
  • separate oxidation units may be established for the SOEC core purge and for the oxygen side outlet of the SOEC unit.
  • these two streams may also share one common oxidizing unit.
  • this catalytic oxidizing unit would include a catalytic oxidation reactor utilizing a catalyst.
  • Said catalyst comprises a noble metal catalyst, such as Pt or Pd optionally combined with V 2 O 5 and WO 3 on a TiO 2 or alumina carrier, and the catalyst operates at temperatures above 100°C, preferably between 150 and 250°C.
  • the CO 2 source is available at elevated pressure, whereas the SOEC is operating close to atmospheric pressure.
  • a compressor between the SOEC and the separation process such as pressure swing adsorption (PSA)
  • PSA pressure swing adsorption
  • Adsorbents or absorbents are used upstream from the SOEC to remove undesired contaminants in the gas.
  • Sulfur species and siloxanes in particular, but also other contaminants, such as halogens and higher hydrocarbons (e.g. benzene), are known to poison solid oxide cells.
  • Such compounds can be absorbed, e.g. with active carbon or absorbents based on alumina, ZnO, Ni or Cu, such as Topsoe HTZ-51, Topsoe SC-101 and Topsoe ST-101.
  • Carbon formation can also be suppressed by addition of H 2 S. Both carbon formation and metal dusting are normally considered to take place through the following reactions: 2CO ⁇ C + CO 2 (Boudouard reaction) and H 2 + CO ⁇ H 2 O + C (CO reduction)
  • H 2 S does not affect the thermodynamic potential for metal dusting, but it pacifies the metal surfaces so that the sites, where the carbon-forming reactions would take place, are blocked.
  • H 2 S to the feed stream to a level of H 2 S between 50 ppb and 2 ppm, most preferably between 100 ppb and 1 ppm, would effectively suppress carbon formation in the SOEC stack, i.e. in the Ni-containing cathode, and also protect downstream equipment from metal dusting attacks.
  • the relatively low level mentioned above is enough to suppress the formation of carbon, and at the same time it does not cause any detrimental effects on the SOEC stack performance.
  • H 2 S can be added to the feed gas just downstream from the feed gas purification unit to protect the SOEC and the downstream equipment from carbon formation and metal dusting.
  • H 2 S can be added just downstream from the SOEC to only protect the downstream equipment from metal dusting.
  • the same adsorbents as used for the feed gas purification can be used, i.e. active carbon or adsorbents based on alumina, ZnO, Ni or Cu, such as Topsoe HTZ-51, Topsoe SC-101 and Topsoe ST-101.
  • the purification unit is preferably placed between the product gas compressor or ejector and the product purification unit.
  • H 2 can be removed by selective oxidation of hydrogen: 2H 2 + O 2 ⁇ 2H 2 O
  • the water formed is easily separated using cooling and condensation. This will make it possible to use H 2 in any SOEC operation where the target product is CO.
  • H 2 is oxidized over oxidation catalysts at a lower temperature than CO.
  • the applicable temperature level depends on the catalyst.
  • a Pd or Pt catalyst can be expected to oxidize H 2 at temperature levels from ambient temperature to 70°C, whereas temperatures above 150°C are needed to oxidize CO.
  • the CO/CO 2 product stream is effectively cleaned from H 2 .
  • O 2 can be drawn conveniently from the O 2 -CO 2 mix on the anode side of the SOEC.
  • the compartment around the stack may be purged with CO 2 .
  • a heater is installed to bring the inlet CO 2 gas, utilized as a compartment purge, up to the operating temperature of the SOEC stack or above.
  • This heater could for example be applied as a radiant heater, where the heater is incorporated in the CO 2 purge gas manifold, simultaneously heating the physical perimeter of the stack and the inlet CO 2 purge gas.
  • the radiant heater can replace the oxygen side inlet heater, or alternatively it can be used as an additional heater which is used to reduce the time for cold start-up.
  • the current invention focuses on applications, where carbon monoxide is the desired product, but the principles applied and the process configurations are also valid for the cases, where a mixture of CO 2 and steam comprises the feed stock and a mixture of hydrogen and CO is the desired product.
  • a mixture of CO 2 and steam comprises the feed stock and a mixture of hydrogen and CO is the desired product.
  • steam will follow CO 2 and H 2 will follow the CO product gas.
  • the final PSA step would separate H 2 from CO and is thus only applicable in cases where splitting H 2 from CO is desired for the downstream process.
  • steam is preferably removed from the product stream upstream from the product gas separation unit.
EP14166323.7A 2014-04-29 2014-04-29 Auswerfer für Festoxid-Elektrolysezellenstapelsystem Withdrawn EP2940773A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14166323.7A EP2940773A1 (de) 2014-04-29 2014-04-29 Auswerfer für Festoxid-Elektrolysezellenstapelsystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14166323.7A EP2940773A1 (de) 2014-04-29 2014-04-29 Auswerfer für Festoxid-Elektrolysezellenstapelsystem

Publications (1)

Publication Number Publication Date
EP2940773A1 true EP2940773A1 (de) 2015-11-04

Family

ID=50624472

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14166323.7A Withdrawn EP2940773A1 (de) 2014-04-29 2014-04-29 Auswerfer für Festoxid-Elektrolysezellenstapelsystem

Country Status (1)

Country Link
EP (1) EP2940773A1 (de)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018228716A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und anlage zur herstellung eines kohlenmonoxid enthaltenden gasprodukts
DE102017005681A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung eines Kohlenmonoxid enthaltenden Gasprodukts
WO2018228717A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und anlage zur herstellung eines kohlenmonoxid enthaltenden gasprodukts
EP3511441A1 (de) 2018-01-12 2019-07-17 Linde Aktiengesellschaft Herstellung eines kohlenmonoxid enthaltenden gasprodukts
EP3511442A1 (de) 2018-01-12 2019-07-17 Linde Aktiengesellschaft Herstellung eines kohlenmonoxid enthaltenden gasprodukts
WO2019158308A1 (de) 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Anlage zur elektrochemischen herstellung eines co-haltigen gasprodukts
DE102018202337A1 (de) 2018-02-15 2019-08-22 Linde Aktiengesellschaft Elektrochemische Herstellung eines Gases umfassend CO mit Zwischenkühlung des Elektrolytstroms
WO2019158305A1 (de) 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Elektrochemische herstellung von kohlenstoffmonoxid und/oder synthesegas
DE102018003343A1 (de) 2018-04-24 2019-10-24 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung von Ethanol
DE102018003342A1 (de) 2018-04-24 2019-10-24 Linde Aktiengesellschaft Herstellung eines zumindest Kohlenmonoxid enthaltenden Gasprodukts
DE102018003332A1 (de) 2018-04-24 2019-10-24 Linde Aktiengesellschaft Herstellung eines Syntheseprodukts
WO2020104053A1 (de) * 2018-11-22 2020-05-28 Linde Aktiengesellschaft Verfahren zum wechsel der betreibsweise einer elektrolyseanlage sowie elektrolyseanlage
EP3378972A3 (de) * 2017-03-21 2020-09-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Elektrisches energiespeichersystem und elektrisches energiespeicher- und -versorgungssystem
WO2021073769A1 (de) 2019-10-18 2021-04-22 Linde Gmbh Verfahren und anlage zur herstellung eines an kohlenstoffmonoxidreichen gasprodukts
DE102020000476A1 (de) 2020-01-27 2021-07-29 Linde Gmbh Verfahren und Anlage zur Herstellung von Wasserstoff
DE102020000937A1 (de) 2020-02-14 2021-08-19 Linde Gmbh Verfahren und Anlage zur Bereitstellung eines Industrieprodukts unter Verwendung von Sauerstoff
CN113906599A (zh) * 2019-07-02 2022-01-07 Avl李斯特有限公司 Soec系统和soec系统运行方法
WO2023288174A1 (en) * 2021-07-14 2023-01-19 Saudi Arabian Oil Company Solid oxide electrolytic cells using zeolite-templated carbon (ztc) as electrocatalyst
TWI816374B (zh) * 2022-04-21 2023-09-21 國立臺灣大學 還原二氧化碳的電化學設備及其系統
EP4324957A1 (de) 2022-08-19 2024-02-21 Linde GmbH Verfahren und anlage zur herstellung eines wasserstoff enthaltenden produkts
EP4345191A1 (de) 2022-09-30 2024-04-03 Linde GmbH Verfahren und anlage zur herstellung eines wasserstoff enthaltend en produkts unter einsatz einer elektrolyse
EP4345086A1 (de) 2022-09-30 2024-04-03 Linde GmbH Verfahren und anlage zur herstellung von methanol

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070045125A1 (en) 2005-08-25 2007-03-01 Hartvigsen Joseph J Electrochemical Cell for Production of Synthesis Gas Using Atmospheric Air and Water
JP2007128786A (ja) * 2005-11-04 2007-05-24 Toyota Central Res & Dev Lab Inc 燃料電池システム
US20080023338A1 (en) 2006-07-31 2008-01-31 Battelle Energy Alliance, Llc High temperature electrolysis for syngas production
WO2009059571A1 (de) * 2007-11-10 2009-05-14 Horst-Eckart Vollmar Hochtemperaturbrennstoffzellensystem mit teilweisem kreislauf des anodenabgases und ausschleusung von gaskomponenten
US8138380B2 (en) 2007-07-13 2012-03-20 University Of Southern California Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol
US20120228150A1 (en) 2011-03-08 2012-09-13 Kang Bruce S Co2 decomposition via oxygen deficient ferrite electrodes using solid oxide electrolyser cell
US8366902B2 (en) 2008-03-24 2013-02-05 Battelle Energy Alliance, Llc Methods and systems for producing syngas
WO2013131778A2 (en) * 2012-03-05 2013-09-12 Haldor Topsøe A/S Apparatus for production of high purity carbon monoxide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070045125A1 (en) 2005-08-25 2007-03-01 Hartvigsen Joseph J Electrochemical Cell for Production of Synthesis Gas Using Atmospheric Air and Water
JP2007128786A (ja) * 2005-11-04 2007-05-24 Toyota Central Res & Dev Lab Inc 燃料電池システム
US20080023338A1 (en) 2006-07-31 2008-01-31 Battelle Energy Alliance, Llc High temperature electrolysis for syngas production
US8138380B2 (en) 2007-07-13 2012-03-20 University Of Southern California Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol
WO2009059571A1 (de) * 2007-11-10 2009-05-14 Horst-Eckart Vollmar Hochtemperaturbrennstoffzellensystem mit teilweisem kreislauf des anodenabgases und ausschleusung von gaskomponenten
US8366902B2 (en) 2008-03-24 2013-02-05 Battelle Energy Alliance, Llc Methods and systems for producing syngas
US20120228150A1 (en) 2011-03-08 2012-09-13 Kang Bruce S Co2 decomposition via oxygen deficient ferrite electrodes using solid oxide electrolyser cell
WO2013131778A2 (en) * 2012-03-05 2013-09-12 Haldor Topsøe A/S Apparatus for production of high purity carbon monoxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Electrolysis of Carbon Dioxide in Solid Oxide Electrolysis Cells", JOURNAL OF POWER SOURCES, vol. 193, 2009, pages 349 - 358

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3378972A3 (de) * 2017-03-21 2020-09-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Elektrisches energiespeichersystem und elektrisches energiespeicher- und -versorgungssystem
WO2018228716A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und anlage zur herstellung eines kohlenmonoxid enthaltenden gasprodukts
DE102017005681A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung eines Kohlenmonoxid enthaltenden Gasprodukts
WO2018228717A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und anlage zur herstellung eines kohlenmonoxid enthaltenden gasprodukts
DE102017005678A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung eines Kohlenmonoxid enthaltenden Gasprodukts
WO2018228718A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und anlage zur herstellung eines kohlenmonoxid enthaltenden gasprodukts
DE102017005680A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung eines Kohlenmonoxid enthaltenden Gasprodukts
CN110730830A (zh) * 2017-06-14 2020-01-24 林德股份公司 用于生产含有一氧化碳的气体产物的方法和系统
CN110770369A (zh) * 2017-06-14 2020-02-07 林德股份公司 用于生产含有一氧化碳的气体产物的方法和系统
US20200131647A1 (en) * 2017-06-14 2020-04-30 Linde Aktiengesellschaft Method and system for producing a gas product containing carbon monoxide
EP3511441A1 (de) 2018-01-12 2019-07-17 Linde Aktiengesellschaft Herstellung eines kohlenmonoxid enthaltenden gasprodukts
WO2019137827A1 (de) 2018-01-12 2019-07-18 Linde Aktiengesellschaft Herstellung eines kohlenmonoxid enthaltenden gasprodukts
DE102018000213A1 (de) 2018-01-12 2019-07-18 Linde Aktiengesellschaft Herstellung eines zumindest Kohlenmonoxid enthaltenden Gasprodukts
DE102018000214A1 (de) 2018-01-12 2019-07-18 Linde Aktiengesellschaft Herstellung eines zumindest Kohlenmonoxid enthaltenden Gasprodukts
EP3511442A1 (de) 2018-01-12 2019-07-17 Linde Aktiengesellschaft Herstellung eines kohlenmonoxid enthaltenden gasprodukts
WO2019158308A1 (de) 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Anlage zur elektrochemischen herstellung eines co-haltigen gasprodukts
WO2019158305A1 (de) 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Elektrochemische herstellung von kohlenstoffmonoxid und/oder synthesegas
US11105007B2 (en) 2018-02-15 2021-08-31 Siemens Aktiengesellschaft Method for the electrochemical production of a gas product containing CO
DE102018202335A1 (de) 2018-02-15 2019-08-22 Linde Aktiengesellschaft Anlage zur elektrochemischen Herstellung eines CO-haltigen Gasprodukts
CN111727276B (zh) * 2018-02-15 2021-05-25 西门子股份公司 用于电化学制取包含co的气体产物的设备
DE102018202337A1 (de) 2018-02-15 2019-08-22 Linde Aktiengesellschaft Elektrochemische Herstellung eines Gases umfassend CO mit Zwischenkühlung des Elektrolytstroms
US11560633B2 (en) 2018-02-15 2023-01-24 Siemens Energy Global GmbH & Co. KG Electrochemical production of carbon monoxide and/or syngas
DE102018202344A1 (de) 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Elektrochemische Herstellung von Kohlenstoffmonoxid und/oder Synthesegas
WO2019158307A1 (de) 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Elektrochemische herstellung eines gases umfassend co mit zwischenkühlung des elektrolytstroms
WO2019206450A1 (de) 2018-04-24 2019-10-31 Linde Aktiengesellschaft Herstellung eines syntheseprodukts
WO2019206451A1 (de) 2018-04-24 2019-10-31 Linde Aktiengesellschaft Herstellung eines zumindest kohlenmonoxid enthaltenden gasprodukts
DE102018003332A1 (de) 2018-04-24 2019-10-24 Linde Aktiengesellschaft Herstellung eines Syntheseprodukts
DE102018003342A1 (de) 2018-04-24 2019-10-24 Linde Aktiengesellschaft Herstellung eines zumindest Kohlenmonoxid enthaltenden Gasprodukts
DE102018003343A1 (de) 2018-04-24 2019-10-24 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung von Ethanol
WO2020104053A1 (de) * 2018-11-22 2020-05-28 Linde Aktiengesellschaft Verfahren zum wechsel der betreibsweise einer elektrolyseanlage sowie elektrolyseanlage
CN112969521A (zh) * 2018-11-22 2021-06-15 林德有限责任公司 切换电解装置的运行方式的方法以及电解装置
US20220010444A1 (en) * 2018-11-22 2022-01-13 Linde Gmbh Method for changing the operating mode of an electrolysis system, and electrolysis system
CN113906599B (zh) * 2019-07-02 2024-04-30 Avl李斯特有限公司 Soec系统和soec系统运行方法
US11769890B2 (en) * 2019-07-02 2023-09-26 Avl List Gmbh SOEC system and method for operating a SOEC system
CN113906599A (zh) * 2019-07-02 2022-01-07 Avl李斯特有限公司 Soec系统和soec系统运行方法
US20220367892A1 (en) * 2019-07-02 2022-11-17 Avl List Gmbh Soec system and method for operating a soec system
WO2021073769A1 (de) 2019-10-18 2021-04-22 Linde Gmbh Verfahren und anlage zur herstellung eines an kohlenstoffmonoxidreichen gasprodukts
DE102020000476A1 (de) 2020-01-27 2021-07-29 Linde Gmbh Verfahren und Anlage zur Herstellung von Wasserstoff
WO2021151453A1 (de) 2020-01-27 2021-08-05 Linde Gmbh Verfahren und anlage zur herstellung von wasserstoff
DE102020000937A1 (de) 2020-02-14 2021-08-19 Linde Gmbh Verfahren und Anlage zur Bereitstellung eines Industrieprodukts unter Verwendung von Sauerstoff
WO2023288174A1 (en) * 2021-07-14 2023-01-19 Saudi Arabian Oil Company Solid oxide electrolytic cells using zeolite-templated carbon (ztc) as electrocatalyst
TWI816374B (zh) * 2022-04-21 2023-09-21 國立臺灣大學 還原二氧化碳的電化學設備及其系統
EP4324957A1 (de) 2022-08-19 2024-02-21 Linde GmbH Verfahren und anlage zur herstellung eines wasserstoff enthaltenden produkts
EP4345191A1 (de) 2022-09-30 2024-04-03 Linde GmbH Verfahren und anlage zur herstellung eines wasserstoff enthaltend en produkts unter einsatz einer elektrolyse
EP4345086A1 (de) 2022-09-30 2024-04-03 Linde GmbH Verfahren und anlage zur herstellung von methanol
WO2024068047A1 (de) 2022-09-30 2024-04-04 Linde Gmbh Verfahren und anlage zur herstellung von methanol
WO2024068048A2 (de) 2022-09-30 2024-04-04 Linde Gmbh Verfahren und anlage zur herstellung eines wasserstoff enthaltenden produkts unter einsatz einer elektrolyse

Similar Documents

Publication Publication Date Title
US10494728B2 (en) Process for producing CO from CO2 in a solid oxide electrolysis cell
EP2940773A1 (de) Auswerfer für Festoxid-Elektrolysezellenstapelsystem
CA2866312C (en) Process for producing high purity carbon monoxide
EP1908143B1 (de) Brennstoffzellensystem mit teilweiser rückgewinnung von anodenabgas
AU2017222158B2 (en) Carbon monoxide production process optimized by SOEC
EP2449617B1 (de) Hochtemperatur-brennstoffzellensystem
US20040191595A1 (en) SORFC system and method with an exothermic net electrolysis reaction
US20050123810A1 (en) System and method for co-production of hydrogen and electrical energy
US20060127714A1 (en) Power generation apparatus
Han et al. High purity hydrogen generator for on-site hydrogen production
CN110582880B (zh) 燃料电池系统和用于操作燃料电池系统的方法
US11309563B2 (en) High efficiency fuel cell system with hydrogen and syngas export
EP3875426A1 (de) Brennstoffzellensystem und regenerationsverfahren für abgas
JP5098073B2 (ja) エネルギーステーション
JP2007164989A (ja) 固体酸化物型燃料電池と水素製造工程との組み合わせ方法
WO2004086585A2 (en) Sorfc system and method with an exothermic net electrolysis reaction
WO2023100835A1 (ja) オレフィン系化合物の製造装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20151116