EP2893049B1 - Blech aus ferritischem edelstahl, verfahren zur herstellung und verwendung, insbesondere in abgasleitungen - Google Patents

Blech aus ferritischem edelstahl, verfahren zur herstellung und verwendung, insbesondere in abgasleitungen Download PDF

Info

Publication number
EP2893049B1
EP2893049B1 EP12766456.3A EP12766456A EP2893049B1 EP 2893049 B1 EP2893049 B1 EP 2893049B1 EP 12766456 A EP12766456 A EP 12766456A EP 2893049 B1 EP2893049 B1 EP 2893049B1
Authority
EP
European Patent Office
Prior art keywords
comprised
rolled
temperature
hot
trace amounts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12766456.3A
Other languages
English (en)
French (fr)
Other versions
EP2893049A1 (de
Inventor
Pierre-Olivier Santacreu
Claudine MIRAVAL
Saghi SAEDLOU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aperam Stainless France SA
Original Assignee
Aperam Stainless France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46940548&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2893049(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Aperam Stainless France SA filed Critical Aperam Stainless France SA
Priority to HUE12766456A priority Critical patent/HUE052513T2/hu
Priority to SI201231867T priority patent/SI2893049T1/sl
Publication of EP2893049A1 publication Critical patent/EP2893049A1/de
Application granted granted Critical
Publication of EP2893049B1 publication Critical patent/EP2893049B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea

Definitions

  • the invention relates to a ferritic stainless steel, its manufacturing process, and its use for the manufacture of mechanically welded parts subjected to high temperatures, such as elements of exhaust lines of internal combustion engines.
  • these parts are subjected to temperatures between 150 and 700 ° C, and to a projection of a mixture of urea and water (typically 32.5% urea - 67.5% water ), or a mixture of ammonia and water, or pure ammonia.
  • a mixture of urea and water typically 32.5% urea - 67.5% water
  • ammonia and water typically pure ammonia.
  • the decomposition products of urea and ammonia can also degrade parts of the exhaust system.
  • the mechanical resistance at high temperature must also be adapted to the thermal cycles associated with the phases of acceleration and deceleration of the engines.
  • the metal must have good cold formability to be shaped by bending or hydroforming, as well as good weldability.
  • Ferritic 17% Cr stainless steels are thus known, stabilized with 0.14% titanium and 0.5% niobium (type EN 1.4509, AISI 441) allowing use up to 950 ° C.
  • Ferritic stainless steels with a lower chromium content are also known, for example steels with 12% Cr stabilized with 0.2% titanium (type EN 1.4512 AISI 409) for maximum temperatures below 850 ° C, steels at 14% Cr stabilized with 0.5% niobium without titanium (type EN 1.4595) for maximum temperatures below 900 ° C. These have a high temperature resistance equivalent to that of the previous shades, but better formability.
  • ferritic grades cited corrode excessively at the grain boundaries, in the presence of a projection of a mixture of water, d 'urea and ammonia and for temperatures between 150 and 700 ° C. This makes these steels insufficiently suitable for their use in exhaust lines equipped with urea or ammonia depollution systems, as is often the case, for example, on diesel-powered vehicles.
  • the document JP-A-2011-105976 describes a stainless steel pipe for a wastewater discharge pipe, the weld area of which (carried out by the TIG process) has excellent resistance to corrosion by chlorides and H2S. To this end, the scale formed during welding is not removed.
  • the object of the present invention is to resolve the corrosion problems mentioned above. It aims in particular to make available to users of engines equipped with a urea or ammonia exhaust gas depollution system a ferritic stainless steel which has, compared to the grades known for this purpose, improved resistance to corrosion by a mixture of water, urea and ammonia.
  • This steel must also maintain good resistance to heat, that is to say a high resistance to creep, thermal fatigue and oxidation at operating temperatures that vary periodically and can reach several hundred ° C, as well as a suitability for cold forming and welding equivalent to that of grade EN 1.4509 AISI 441, i.e. guaranteeing a minimum elongation at break of 28% in tension, for mechanical properties in tension typically 300 MPa for the elastic limit Re and 490 MPa for the tensile strength Rm.
  • the subject of the invention is also two methods of manufacturing a ferritic stainless steel sheet of the above type.
  • the hot rolling temperature is between 1180 and 1200 ° C.
  • the temperature of the final annealing is between 1050 and 1090 ° C.
  • a subject of the invention is also the use of such a steel sheet for the manufacture of parts involving shaping and welding and intended to be subjected to a periodic use temperature of between 150 ° C and 700. ° C and a projection of a mixture of water, urea and ammonia or a projection of urea or ammonia.
  • They may in particular be parts of the exhaust lines of internal combustion engines equipped with a catalytic system for reducing nitrogen oxides by injection of urea or ammonia.
  • the invention is based on the use of ferritic stainless steel sheets having the composition and the structure specified, which the inventors have discovered to be particularly well suited to solving the technical problems mentioned above. .
  • the average grain size of between 25 and 65 ⁇ m is an important feature of the invention, and it is controlled both by the presence of nitrides and carbonitrides of titanium and niobium and by the temperature of the final annealing. .
  • the carbon would be likely to increase the mechanical characteristics at high temperature, in particular the creep resistance.
  • carbon tends to precipitate in the form of M 23 C 6 or M 7 C 3 carbides between 600 ° C and 900 ° C approximately, for example chromium carbides.
  • This precipitation generally located at the grain boundaries, can lead to a depletion of chromium in the vicinity of these joints, and therefore to sensitization of the metal to intergranular corrosion.
  • This sensitization can be found in particular in Heat Affected Areas (ZAC), which have been heated to very high temperature during welding.
  • ZAC Heat Affected Areas
  • the carbon content must therefore be low, namely limited to 0.03% in order to obtain satisfactory resistance to intergranular corrosion as well as not to reduce formability.
  • the carbon content must satisfy a relationship with niobium, titanium and nitrogen, as will be explained later.
  • Manganese improves the adhesion of the oxide layer protecting the metal against corrosion, when its content is greater than 0.2%. However, above 1%, the hot oxidation kinetics become too fast and a less compact oxide layer develops, formed of spinel and chromin. The manganese content must therefore be contained between these two limits.
  • silicon is a very effective element in increasing resistance to oxidation during thermal cycling. To fulfill this role, a minimum content of 0.2% is necessary. However, in order not to decrease the hot-rolling and cold-forming ability, the silicon content should be limited to 1%.
  • Sulfur and phosphorus are unwanted impurities in large amounts because they decrease hot ductility and formability.
  • phosphorus easily segregates at grain boundaries and decreases their cohesion.
  • the sulfur and phosphorus contents must be respectively less than or equal to 0.01% and 0.04%.
  • Chromium is an essential element for the stabilization of the ferritic phase and for the increase of the resistance to oxidation.
  • its minimum content must be greater than or equal to 15% in order to obtain a ferritic structure at all temperatures of use and to obtain good resistance to water. 'oxidation. Its maximum content must not, however, exceed 22%, otherwise the mechanical strength at ambient temperature will increase excessively, which reduces the formability, or favoring embrittlement by demixing of the ferrite around 475 ° C.
  • Nickel is a gammagenic element which increases the ductility of steel. But in order to maintain a ferritic single-phase structure under all circumstances, its content must be less than or equal to 0.5%.
  • Molybdenum improves the resistance to pitting corrosion, but it decreases ductility and formability. This element is therefore not mandatory, and the content is limited to 2%.
  • Copper has a heat hardening effect which could be beneficial. Present in excessive quantity, however, it decreases the ductility during hot rolling and the weldability. As such, the copper content must therefore be less than or equal to 0.5%.
  • Aluminum is an important element of the invention. In fact, together or not with rare earths (REE), it improves the resistance to corrosion by urea if the formula Al + 30 x REE ⁇ 0.15% is observed, and if, moreover, a stabilization of the metal by titanium and niobium.
  • REE rare earths
  • Niobium and titanium are also important elements of the invention. Usually, these elements can be used as stabilizing elements in ferritic stainless steels. Indeed, the phenomenon of sensitization to intergranular corrosion by formation of chromium carbides, which was mentioned above, can be avoided by the addition of elements forming very thermally stable carbonitrides.
  • titanium and nitrogen combine even before the solidification of the liquid metal to form TiNs; and in the solid state at around 1100 ° C, titanium carbides and carbonitrides are formed.
  • the carbon and nitrogen present in solid solution in the metal are reduced as much as possible during its use.
  • Such a presence at excessively high levels would reduce the corrosion resistance of the metal and harden it.
  • a minimum Ti content of 0.16% is required.
  • the precipitation of TiN in the liquid metal is considered by steelmakers as a drawback in that it can lead to an accumulation of these precipitates on the walls of the nozzles of the pouring vessels (ladle, distributor continuous casting) which risks clogging these nozzles.
  • TiNs improve the structure which develops during solidification by helping to obtain an equiaxial rather than dendritic structure, and therefore improve the homogeneity of the final grain size.
  • the advantages of this precipitation outweigh its drawbacks, which can be minimized by choosing casting conditions which reduce the risks of the nozzles clogging.
  • Niobium combines with nitrogen and carbon in the solid state, and stabilizes the metal, just like titanium. Niobium therefore stably fixes carbon and nitrogen. But niobium also combines with iron to form in the range 550 ° C-950 ° C intermetallic compounds at grain boundaries, namely Fe 2 Nb Laves phases, which improves creep resistance in this range. temperature. A minimum content of 0.2% niobium is necessary to obtain this property. The conditions for obtaining this improvement in creep resistance are also strongly linked to the manufacturing process of the invention, in particular the annealing temperatures, and to an average grain size controlled and kept within the limits of 25 to 65 ⁇ m.
  • niobium and titanium it is also advisable to limit the additions of niobium and titanium.
  • the niobium and titanium contents is greater than 1% by weight, the hardening obtained is too great, the steel is less easily deformable and recrystallization after cold rolling is more difficult.
  • Zirconium would have a stabilizing role close to that of titanium, but is not deliberately used in the invention. Its content is less than 0.01%, and therefore must remain in the order of a residual impurity. An addition of Zr would be costly, and above all harmful, since zirconium carbonitrides, by virtue of their shape and their large size, greatly reduce the resilience of the metal.
  • Vanadium is a very inefficient stabilizer in the context of the invention given the low stability of vanadium carbonitrides at high temperature. On the other hand, it improves the ductility of the welds. However, at medium temperatures in a nitrogenous atmosphere it promotes nitriding of the metal surface by diffusion of nitrogen. The content is limited to 0.2%, taking into account the intended application.
  • nitrogen increases mechanical characteristics. However, nitrogen tends to precipitate at grain boundaries as nitrides, reducing corrosion resistance. In order to limit the problems of sensitization to intergranular corrosion, the nitrogen content must be less than or equal to 0.03%. In addition, the nitrogen content must satisfy the previous relationship between Ti, Nb, C and N. A minimum nitrogen of 0.009% is however necessary for the invention, because it guarantees the presence of TiN precipitates, and also the correct recrystallization of the cold-rolled strip during the final annealing operation, making it possible to obtain an average grain size of less than 65 microns. A content between 0.010% and 0.020%, for example 0.013%, may be recommended.
  • Cobalt is a hot-hardening element which degrades formability.
  • its content must be limited to 0.2% by weight.
  • the tin content should be less than or equal to 0.05%.
  • REE rare earths group together a collection of elements like cerium and lanthanum, among others, and are known to improve the adhesion of the layers of oxides which make steel resistant to corrosion. It has also been shown that rare earths improve resistance to intergranular corrosion by urea between 150 ° C and 700 ° C as in the case of aluminum already described, and respecting the Al + 30 x REE ⁇ relationship 0.15%. In synergy with aluminum and stabilizers, REEs help limit the diffusion of nitrogen. However, the rare earth content should not exceed 0.1%. Beyond this content, the production of the metal would be made difficult because of the reactions of the REEs with the refractories coating the ladle.
  • an annealing step can be added between the hot rolling and the cold rolling. This annealing takes place between 1000 and 1100 ° C for a period of 30 s to 6 min.
  • the cast samples were processed according to the following method.
  • the metal which is initially in the form of a 20mm thick larget, is brought to a temperature of 1200 ° C, and hot rolled in 6 passes to a thickness of 2 , 5 mm.
  • a first annealing of the hot-rolled strip can then be carried out at 1050 ° C. with the sample being maintained for 1 min 30 sec at this temperature.
  • n ° 1 to 11 and some reference examples (n ° 12 and 19) were treated with and without this first annealing, and it was possible to verify that they had, in both cases, properties very similar finals.
  • the execution of this first annealing makes it possible to obtain a slight improvement in formability, but for the attainment of the typical objectives of the invention, it is the conditions of the final annealing which are the only determining factors, in combination with the other essential characteristics. process and, of course, the composition of the steel.
  • Tables 2 and 3 correspond to those observed on the samples which have not undergone the first annealing of the variant which has just been described.
  • the metal After shot blasting and pickling, the metal is cold rolled at ambient temperature, ie approximately 20 ° C., in five passes, to a thickness of 1 mm.
  • the metal is annealed at 1050 ° C. with maintenance for 1 min 30 sec at this temperature, then it is pickled.
  • the sample is sprayed with a mixture containing 32.5% urea and 67.5% water (flow rate: 0.17ml / min), and simultaneously undergoes a thermal cycle between 200 and 600 ° C, with a triangular signal with period 120 sec as shown on the figure 1 by curve 1.
  • the temperature rise from 200 to 600 ° C lasts 40 sec, then cooling begins as soon as the temperature of 600 ° C is reached and continues up to 200 ° C for 80 sec.
  • Electrolytic copper plating of the sample is carried out, before coating, in a solution of CuSO 4 at 210 g / L and H 2 SO 4 at 30 ml / l; the imposed current density is 0.07 A / cm 2 for 5 minutes, then 0.14 A / cm2 for 1 minute. This procedure is considered optimal for obtaining good copper plating.
  • An electrolytic attack is carried out in a 5% solution of oxalic acid for 15s at 20 ° C.
  • the imposed current density is 60 mA / cm 2 .
  • This procedure B reveals two areas corroded by urea observed under the microscope at magnification x 1000.
  • the mechanical strength of the welds was evaluated using a tensile test at 300 ° C.
  • Two samples of the same cast are welded by the MIG / MAG process with a 430LNb wire under the following conditions: 98.5% argon, 1.5% oxygen, voltage: 26 V wire speed: 10m / min, current: 250 A, welding speed: 160 cm / min, energy: 2.5 kJ / cm (Welding procedure C). The result is judged all the more satisfactory when the ratio between the mechanical resistance for the welded specimen and for the non-welded specimen is close to 100%.
  • welds carried out on the castings according to the invention have mechanical strengths very comparable to those of the base metal, namely always greater than 80%.
  • the mechanical strength of the welds present in the components of the exhaust line, in particular when they are obtained by the MIG / MAG process, is therefore improved by the invention.
  • a minimum content of 0.2% of Nb is a condition for improving creep resistance and limiting the deformation of the parts during their use at high temperature.
  • Table 3 Depth of intergranular corrosion by urea and mechanical resistance of welds as a function of the average grain size of a sample Average grain size ( ⁇ m) Final annealing temperature (° C) Al + 30 * REE (%) Nb (%) 1 / [Nb + 7 / 4Ti-7 * (C + N)] Intergranular corrosion by urea, depth ( ⁇ m) Mechanical resistance of welds at 300 ° C (% compared to that of the base metal) 35 1070 0.207 0.4 2 3 90 5 900 0.207 0.4 2 11 90 200 1150 0.207 0.4 2 2 70
  • the grain size obtained on the product after the final annealing is a fundamental characteristic for simultaneously obtaining all the targeted properties.
  • a grain size that is too small (5 ⁇ m in the example cited) leads to intergranular corrosion by urea which extends over too great a depth.
  • Too large a grain size (200 ⁇ m in the example cited) makes it possible to maintain a sufficiently low sensitivity to intergranular corrosion, but it is then the mechanical strength of the welds which becomes unsatisfactory.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Claims (7)

  1. Ferritisches Blech aus rostfreiem Stahl mit einer Zusammensetzung, ausgedrückt in Gewichtsprozenten, von:
    - Spuren ≤ C ≤ 0,03%,
    - 0,2% ≤ Mn ≤ 1%,
    - 0,2% ≤ Si ≤ 1%,
    - Spuren ≤ S ≤ 0,01%,
    - Spuren ≤ P ≤ 0,04%,
    - 15% ≤ Cr ≤ 22%,
    - Spuren ≤ Ni ≤ 0,5%,
    - Spuren ≤ Mo ≤ 2%,
    - Spuren ≤ Cu ≤ 0,5%,
    - 0,160% ≤ Ti ≤ 1%,
    - 0,02% ≤ Al ≤ 1%,
    - 0,2% ≤ Nb ≤ 1%,
    - Spuren ≤ V ≤ 0,2%,
    - 0,009% ≤ N ≤ 0,03%, vorzugsweise zwischen 0,010% und 0,020%,
    - Spuren ≤ Co ≤ 0,2%,
    - Spuren ≤ Sn ≤ 0,05%,
    - seltene Erden (REE) ≤ 0,1%,
    - Spuren ≤ Zr ≤ 0,01%,
    - wobei der Rest der Zusammensetzung aus Eisen und unvermeidbaren Verunreinigungen, welche aus der Erstellung resultieren, gebildet ist,
    - wobei die Gehalte von Al und von seltenen Erden (REE) den folgenden Zusammenhang erfüllen: Al + 30 × REE 0,15 % ,
    Figure imgb0008
    - wobei die Gehalte von Nb, C, N und Ti in % den folgenden Zusammenhang erfüllen: 1 / Nb + 7 / 4 × Ti 7 × C + N 3 ,
    Figure imgb0009
    wobei das besagte Blech eine Struktur, welche vollständig rekristallisiert ist, und eine mittlere ferritische Korngröße, welche zwischen 25 und 65 µm liegt, hat.
  2. Verfahren zum Herstellen eines ferritischen Blechs aus rostfreiem Stahl, dadurch gekennzeichnet, dass:
    - man einen Stahl erstellt, welcher die Zusammensetzung gemäß Anspruch 1 hat,
    - man ein Halbprodukt ausgehend von diesem Stahl gießt,
    - man das Halbprodukt auf eine Temperatur von mehr als 1000°C und weniger als 1250°C bringt und man das Halbprodukt warmwalzt, um ein warmgewalztes Blech mit einer Dicke, welche zwischen 2,5 und 6 mm liegt, zu erhalten,
    - man das besagte warmgewalzte Blech kaltwalzt, bei einer Temperatur, welche zwischen der Umgebung und 300°C liegt, in einem einzigen Schritt oder in mehreren Schritten, welche durch Zwischentempervorgänge getrennt sind,
    - man einen finalen Tempervorgang des kaltgewalzten Blechs ausführt, bei einer Temperatur, welche zwischen 1000 und 1100°C liegt, und für eine Dauer, welche zwischen 10 Sekunden und 3 Minuten liegt, um eine vollständig rekristallisierte Struktur mit einer mittleren Korngröße, welche zwischen 25 und 65 µm liegt, zu erhalten.
  3. Verfahren zum Herstellen eines ferritischen rostfreien Blechs, dadurch gekennzeichnet, dass:
    - man einen Stahl erstellt, welcher die Zusammensetzung gemäß Anspruch 1 hat,
    - man ein Halbprodukt ausgehend von diesem Stahl gießt,
    - man das Halbprodukt auf eine Temperatur von mehr als 1000°C und weniger als 1250°C bringt und man das Halbprodukt warmwalzt, um ein warmgewalztes Blech mit einer Dicke, welche zwischen 2,5 und 6 mm liegt, zu erhalten,
    - man das warmgewalzte Blech bei einer Temperatur, welche zwischen 1000 und 1100°C liegt, und für eine Dauer, welche zwischen 30 Sekunden und 6 Minuten liegt, tempert,
    - man das besagte warmgewalzte Blech kaltwalzt bei einer Temperatur, welche niedriger als 300°C ist, in einem einzigen Schritt oder in mehreren Schritten, welche durch Zwischentempervorgänge getrennt sind,
    - man einen finalen Tempervorgang des kaltgewalzten Blechs ausführt, bei einer Temperatur, welche zwischen 1000 und 1100°C liegt, und für eine Dauer, welche zwischen 10 Sekunden und 3 Minuten liegt, um eine vollständig rekristallisierte Struktur mit einer mittleren Korngröße, welche zwischen 25 und 65 Mikrometern liegt, zu erhalten.
  4. Verfahren gemäß Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Warmwalztemperatur von 1180 bis 1200°C ist.
  5. Verfahren gemäß einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Temperatur des finalen Tempervorgangs zwischen 1050 und 1090°C liegt.
  6. Verwendung eines Blechs aus Stahl, welches mittels des Verfahrens gemäß einem der Ansprüche 2 bis 5 hergestellt ist, für die Herstellung von Teilen, welche eine Formgebung und ein Schweißen involvieren und welche dafür bestimmt sind, einer periodischen Verwendungstemperatur, welche zwischen 150°C und 700°C liegt, und einem Sprühen mit einer Mischung aus Wasser, aus Harnstoff und aus Ammoniak oder einem Sprühen mit Harnstoff oder mit Ammoniak ausgesetzt zu sein.
  7. Verwendung gemäß Anspruch 6, dadurch gekennzeichnet, dass die besagten Teile Teile von Abgasleitungen von Verbrennungsmotoren sind, welche mit einem Katalysatorsystem zur Reduktion von Stickoxiden mittels Einspritzens von Harnstoff oder von Ammoniak ausgestattet sind.
EP12766456.3A 2012-09-03 2012-09-03 Blech aus ferritischem edelstahl, verfahren zur herstellung und verwendung, insbesondere in abgasleitungen Active EP2893049B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
HUE12766456A HUE052513T2 (hu) 2012-09-03 2012-09-03 Ferrites rozsdamentes acéllemez, eljárás elõállítására, valamint alkalmazása, különösen kipufogó rendszerekben
SI201231867T SI2893049T1 (sl) 2012-09-03 2012-09-03 Feritna nerjavna jeklena pločevina, postopek za njeno izdelavo in njena uporaba, zlasti v izpušnih vodih

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2012/051969 WO2014033372A1 (fr) 2012-09-03 2012-09-03 Tôle d'acier inoxydable ferritique, son procédé de fabrication, et son utilisation, notamment dans des lignes d'échappement

Publications (2)

Publication Number Publication Date
EP2893049A1 EP2893049A1 (de) 2015-07-15
EP2893049B1 true EP2893049B1 (de) 2020-10-07

Family

ID=46940548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12766456.3A Active EP2893049B1 (de) 2012-09-03 2012-09-03 Blech aus ferritischem edelstahl, verfahren zur herstellung und verwendung, insbesondere in abgasleitungen

Country Status (14)

Country Link
US (1) US9873924B2 (de)
EP (1) EP2893049B1 (de)
JP (1) JP2015532681A (de)
KR (1) KR20150099706A (de)
CN (1) CN104903482B (de)
BR (1) BR112015004633A2 (de)
CA (1) CA2883538C (de)
ES (1) ES2831163T3 (de)
HU (1) HUE052513T2 (de)
IN (1) IN2015DN01710A (de)
MX (1) MX2015002716A (de)
RU (1) RU2603519C2 (de)
SI (1) SI2893049T1 (de)
WO (1) WO2014033372A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2901964T3 (es) * 2014-08-29 2022-03-24 Jfe Steel Corp Lámina de acero inoxidable ferrítico y método de producción de la misma
JP6425959B2 (ja) * 2014-10-14 2018-11-21 山陽特殊製鋼株式会社 耐高温酸化性、高温クリープ強度および高温引張強度に優れたフェライト系ステンレス鋼
PL3249067T3 (pl) * 2015-01-19 2021-05-31 Nippon Steel & Sumikin Stainless Steel Corporation Nierdzewna stal ferrytyczna do elementu układu wydechowego mająca doskonałą odporność na korozję po ogrzewaniu
JP6354772B2 (ja) * 2015-04-10 2018-07-11 Jfeスチール株式会社 フェライト系ステンレス鋼
WO2017056452A1 (ja) * 2015-09-29 2017-04-06 Jfeスチール株式会社 フェライト系ステンレス鋼
JP6113359B1 (ja) * 2015-10-29 2017-04-12 新日鐵住金ステンレス株式会社 クリープ特性に優れたAl含有フェライト系ステンレス鋼材と、燃料電池用部材
CN105506510A (zh) * 2015-12-03 2016-04-20 浙江腾龙精线有限公司 一种不锈钢丝的生产工艺
CN105673173B (zh) * 2015-12-31 2019-09-03 台州三元车辆净化器有限公司 一种新型高性能材料的排气管及其加工制备工艺
EP3517647A4 (de) * 2016-12-21 2019-12-04 JFE Steel Corporation Ferritischer edelstahl
JP6807402B2 (ja) * 2016-12-27 2021-01-06 本田技研工業株式会社 インターコネクター、セルを保持する基材及び固体酸化物形燃料電池
CN107632388B (zh) 2017-10-24 2024-04-02 歌尔光学科技有限公司 目镜及头戴显示设备
KR102020514B1 (ko) * 2017-12-20 2019-09-10 주식회사 포스코 확관 가공성이 향상된 페라이트계 스테인리스강 및 그 제조방법
RU2699480C1 (ru) * 2018-12-14 2019-09-05 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства холоднокатаного проката
US11560605B2 (en) 2019-02-13 2023-01-24 United States Steel Corporation High yield strength steel with mechanical properties maintained or enhanced via thermal treatment optionally provided during galvanization coating operations
CN117187700A (zh) * 2019-07-05 2023-12-08 斯塔米卡邦有限公司 尿素装置中的铁素体钢部件
KR102259806B1 (ko) * 2019-08-05 2021-06-03 주식회사 포스코 고온 내크립 특성이 향상된 페라이트계 스테인리스강 및 그 제조 방법
DE102020214688A1 (de) * 2020-11-23 2022-05-25 Robert Bosch Gesellschaft mit beschränkter Haftung Wasserstoffbeständiger ferritischer Stahl mit Laves-Phase

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733601B2 (en) 2001-01-18 2004-05-11 Jfe Steel Corporation Ferritic stainless steel sheet with excellent workability
EP1818421A1 (de) 2006-02-08 2007-08-15 UGINE & ALZ FRANCE Ferritischer, Niobium-stabilisierter 19% Chrom-Edelstahl
JP2010202916A (ja) 2009-03-02 2010-09-16 Nisshin Steel Co Ltd オーステナイト系ステンレス鋼との溶接部の耐食性に優れたフェライト系ステンレス鋼
JP2011162843A (ja) 2010-02-09 2011-08-25 Nisshin Steel Co Ltd 耐酸化性及び耐二次加工脆性に優れたフェライト系ステンレス鋼、並びに鋼材及び二次加工品
WO2012046879A1 (ja) 2010-10-08 2012-04-12 Jfeスチール株式会社 耐食性および電気伝導性に優れたフェライト系ステンレス鋼とその製造方法、固体高分子型燃料電池セパレータおよび固体高分子型燃料電池
EP2460899A1 (de) 2009-07-27 2012-06-06 Nisshin Steel Co., Ltd. Ferritischer edelstahl für agr-kühler und agr-kühler
WO2012111391A1 (ja) 2011-02-17 2012-08-23 新日鐵住金ステンレス株式会社 耐酸化性と高温強度に優れた高純度フェライト系ステンレス鋼板およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2739531B2 (ja) 1991-09-17 1998-04-15 日新製鋼株式会社 溶接部耐食性に優れるフェライト系ステンレス鋼
RU2033465C1 (ru) * 1991-12-04 1995-04-20 Маркелова Татьяна Александровна Ферритная сталь
JPH06279951A (ja) * 1993-03-26 1994-10-04 Nisshin Steel Co Ltd 温水器用フェライト系ステンレス鋼
JP2003073782A (ja) * 2001-08-31 2003-03-12 Kawasaki Steel Corp 深絞り性に優れたフェライト系ステンレス鋼板
ITRM20010584A1 (it) * 2001-09-26 2003-03-26 Acciai Speciali Terni Spa Acciaio inossidabile ferritico e suo uso nella fabbricazione di manufatti per impieghi ad elevate temperature.
RU2222633C2 (ru) * 2002-04-29 2004-01-27 Закрытое акционерное общество "Институт биметаллических сплавов" Сталь ферритная коррозионно-стойкая
JP4312653B2 (ja) * 2004-04-28 2009-08-12 新日鐵住金ステンレス株式会社 耐熱性および加工性に優れたフェライト系ステンレス鋼およびその製造方法
JP2007009290A (ja) 2005-07-01 2007-01-18 Nisshin Steel Co Ltd 温水容器
JP5010323B2 (ja) 2006-04-10 2012-08-29 日新製鋼株式会社 溶接構造温水容器用フェライト系ステンレス鋼および温水容器並びにその製造法
CN101652491A (zh) * 2007-03-29 2010-02-17 日新制钢株式会社 焊接结构热水容器用铁素体不锈钢及热水容器
JP4949122B2 (ja) * 2007-05-15 2012-06-06 新日鐵住金ステンレス株式会社 耐熱疲労性に優れた自動車排気系用フェライト系ステンレス鋼板
JP5387057B2 (ja) * 2008-03-07 2014-01-15 Jfeスチール株式会社 耐熱性と靭性に優れるフェライト系ステンレス鋼
JP4386144B2 (ja) * 2008-03-07 2009-12-16 Jfeスチール株式会社 耐熱性に優れるフェライト系ステンレス鋼
RU2458175C1 (ru) * 2009-08-31 2012-08-10 ДжФЕ СТИЛ КОРПОРЕЙШН Ферритная нержавеющая сталь, характеризующаяся высокой жаростойкостью
JP2011105976A (ja) 2009-11-13 2011-06-02 Nisshin Steel Co Ltd 排水管
KR101803050B1 (ko) 2011-03-29 2017-11-29 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 용접부의 내식성 및 강도가 우수한 페라이트계 스테인리스강 및 tig 용접 구조물
JP5387802B1 (ja) * 2011-11-30 2014-01-15 Jfeスチール株式会社 フェライト系ステンレス鋼

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733601B2 (en) 2001-01-18 2004-05-11 Jfe Steel Corporation Ferritic stainless steel sheet with excellent workability
EP1818421A1 (de) 2006-02-08 2007-08-15 UGINE & ALZ FRANCE Ferritischer, Niobium-stabilisierter 19% Chrom-Edelstahl
JP2010202916A (ja) 2009-03-02 2010-09-16 Nisshin Steel Co Ltd オーステナイト系ステンレス鋼との溶接部の耐食性に優れたフェライト系ステンレス鋼
EP2460899A1 (de) 2009-07-27 2012-06-06 Nisshin Steel Co., Ltd. Ferritischer edelstahl für agr-kühler und agr-kühler
JP2011162843A (ja) 2010-02-09 2011-08-25 Nisshin Steel Co Ltd 耐酸化性及び耐二次加工脆性に優れたフェライト系ステンレス鋼、並びに鋼材及び二次加工品
WO2012046879A1 (ja) 2010-10-08 2012-04-12 Jfeスチール株式会社 耐食性および電気伝導性に優れたフェライト系ステンレス鋼とその製造方法、固体高分子型燃料電池セパレータおよび固体高分子型燃料電池
WO2012111391A1 (ja) 2011-02-17 2012-08-23 新日鐵住金ステンレス株式会社 耐酸化性と高温強度に優れた高純度フェライト系ステンレス鋼板およびその製造方法

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Metalworking Science and Engineering", 1 January 1991, ISBN: 978-0-07-041904-9, article MIELNIK EDWARD M: "Chapter 5: Classification of Metalworking or Metalforming Processes", pages: cover, 333 - 335, XP055824298
ANONYMOUS: "NSSC launches second tin containing stainless steel grade, FW2", JAPAN METAL BULLETIN, CSTEELNEWS.COM, 16 December 2010 (2010-12-16), pages 1 - 1, XP055824332, [retrieved on 20210714]
ANONYMOUS: "Stainless steels - Part 2: Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for general purposes", DANSK STANDARD EN 10088-2, 8 December 2005 (2005-12-08), XP093155616
ANONYMUS: "Urea tanks on diesel trucks", EUREKALERT, 30 June 2021 (2021-06-30), pages 1 - 6
ASTM: "ASTM Designation E 1086 - 08. Standard Test Method for Atomic Emission Vacuum Spectrometric Analysis of Stainless Steel by Point-to-Plane Excitation Technique", 1 November 2008 (2008-11-01), pages 1 - 5, XP055824268
ASTM: "ASTM Designation E112 - 10 Standard Test Methods for Determining Average Grain Size", 1 December 2010 (2010-12-01), pages 1 - 26, XP055824305
ASTM: "ASTM Designation E353 - 93 (Reapproved 2006) Standard Test Methods for Chemical Analysis of Stainless, Heat-Resisting, Maraging, and Other Similar Chromium-Nickel-Iron Alloys", 1 June 2006 (2006-06-01), pages 1 - 33, XP055824270
ASTM: "ASTM Designation: E 572 - 94. Standard Test Method for X-Ray Emission Spectrometric Analysis of Stainless Steel", 1 September 1994 (1994-09-01), pages 1 - 5, XP055824265
DAVIS J R (ED): "ASM Specialty Handbook. Stainless Steels. Excerpt", 1 December 1994 (1994-12-01), pages i - ii,10, XP055824309
DE ABREU, H.F.G. BRUNO, A.D.S. TAVARES, S. SANTOS, R.P. CARVALHO, S.S.: "Effect of high temperature annealing on texture and microstructure on an AISI-444 ferritic stainless steel", MATERIALS CHARACTERIZATION, vol. 57, no. 4-5, 14 November 2006 (2006-11-14), US, pages 342 - 347, XP005763334, ISSN: 1044-5803, DOI: 10.1016/j.matchar.2006.02.015
KAGA YUJI: "Sn-added Ferritic Stainless Steel. NSSC FW series characteristics", 6TH ANNUAL ASIAN STEEL CONFERENCE. 7TH JUNE 2011. NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION, 1 January 2011 (2011-01-01), pages 1 - 27, XP055824324
MULLER BRUCE WALTER: "Evaluation of the SAG properties in a dual stabilized ferritic stainless steel", THESIS UNIVERSITY OF CAPE TOWN, 1 September 2002 (2002-09-01), pages 1 - 145, XP055824293
RAO G V: "Nickel and Cobalt Ores: Flotation", 1 January 2000 (2000-01-01), pages 3491 - 3500, XP055824313
ROBERTS WILLIAM L: "COLD ROLLING OF STEEL. Excerpts", MARCEL DEKKER, INC., 1 January 1978 (1978-01-01), pages 348 - 372, XP055824274
SAWATANI TADASHI ET AL: "Development of continuous annealing process for 17% chromium stainless steel strip", NEW DEVELOPMENTS IN STAINLESS STEEL TECHNOLOGY : CONFERENCE PROCEEDINGS; DETROIT/MICH., USA : 1984.09.17-21, AMERICAN SOCIETY FOR METALS CORPORATION, US, 1 January 1985 (1985-01-01), pages 269 - 282, XP009195215, ISBN: 978-0-87170-205-0 *
STANDARD: "ASTM Standard E1019-11. Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques", ASTM INTERNATIONAL, WEST CONSHOHOCKEN, PA, 30 June 2011 (2011-06-30), West Conshohocken, PA, XP055615886, Retrieved from the Internet <URL:https://compass.astm.org/download/E1019-11.16120.pdf> [retrieved on 20190827], DOI: 10.1520/E1019-11

Also Published As

Publication number Publication date
EP2893049A1 (de) 2015-07-15
RU2015107432A (ru) 2016-09-27
SI2893049T1 (sl) 2021-03-31
CA2883538A1 (fr) 2014-03-06
HUE052513T2 (hu) 2021-05-28
US20160115562A1 (en) 2016-04-28
CA2883538C (fr) 2019-11-26
CN104903482B (zh) 2017-03-08
ES2831163T3 (es) 2021-06-07
KR20150099706A (ko) 2015-09-01
BR112015004633A2 (pt) 2017-07-04
WO2014033372A1 (fr) 2014-03-06
US9873924B2 (en) 2018-01-23
RU2603519C2 (ru) 2016-11-27
MX2015002716A (es) 2015-08-14
JP2015532681A (ja) 2015-11-12
IN2015DN01710A (de) 2015-05-22
CN104903482A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
EP2893049B1 (de) Blech aus ferritischem edelstahl, verfahren zur herstellung und verwendung, insbesondere in abgasleitungen
CA2584449C (fr) Procede de revetement au trempe a chaud dans un bain de zinc des bandes en acier fer-carbone-manganese
EP1929053B1 (de) Verfahren zur herstellung eines stahlteils mit mehrphasiger mikrostruktur
EP1819461B1 (de) Verfahren zur herstellung von austenitischen eisen-/karbon-/mangan-stahlblechen mit sehr guten festigkeits- und dehnungseigenschaften sowie ausgezeichneter homogenität
EP1913169B1 (de) Herstellungsprozess von stahlblechen mit hoher festigkeit und exzellenter dehnung und hergestellte produkte
EP3175006B1 (de) Verfahren zur herstellung von stahlblechen zum presshärten und mittels dieses verfahrens erhaltene teile
WO2006042931A1 (fr) Procede de fabrication de toles d&#39; acier austenitique fer-carbone-manganese et toles ainsi produites
EP2718469B1 (de) Kaltgewalztes stahlblech mit zink oder zinklegierungsbeschichtung, herstellungsverfahren dafür und verwendung eines solchen stahlblechs
EP3024951B1 (de) Stahlblech mit sehr hohen mechanischen festigkeits- und dehnbarkeitseigenschaften, herstellungsverfahren und verwendung solcher bleche
EP1818422B1 (de) Ferritischer Edelstahl mit 19 % Chrom, der mit Niob stabilisiert ist
WO2013178887A1 (fr) Acier laminé a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation
CA2697138A1 (en) Al-plated steel sheet for exhaust gas passageway members of motorcycles excellent in high-temperature strength and the members
EP0735153B1 (de) Rostfreies ferritisches Stahl, insbesondere verwendbar für Katalysatorträger
EP1558769B1 (de) Verfahren zur herstellung von wärmehärtbaren stahlblechen durch glühung, stahlbleche und davon hergestellte teile
EP2257652B1 (de) Herstellungsverfahren von rostfreien austenitischen stahlblechen mit hohen mechanischen eigenschaften
FR2864108A1 (fr) Tole en acier inoxydable presentant une grande resistance et un bon allongement, et procede de fabrication
WO2002059384A2 (fr) Acier isotrope a haute resistance, procede de fabrication de toles et toles obtenues
BE1011557A4 (fr) Acier a haute limite d&#39;elasticite montrant une bonne ductilite et procede de fabrication de cet acier.
EP3914738A1 (de) Eisen-mangan-legierung mit verbesserter schweissbarkeit
BE499251A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171004

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200514

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1321230

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012072686

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201007

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1321230

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210208

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E052513

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210107

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2831163

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602012072686

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: FI

Ref legal event code: MDE

Opponent name: OUTOKUMPU OYJ

26 Opposition filed

Opponent name: OUTOKUMPU OYJ

Effective date: 20210705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210903

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230822

Year of fee payment: 12

Ref country code: IT

Payment date: 20230911

Year of fee payment: 12

Ref country code: GB

Payment date: 20230920

Year of fee payment: 12

Ref country code: FI

Payment date: 20230821

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230818

Year of fee payment: 12

Ref country code: SE

Payment date: 20230922

Year of fee payment: 12

Ref country code: HU

Payment date: 20230829

Year of fee payment: 12

Ref country code: FR

Payment date: 20230811

Year of fee payment: 12

Ref country code: DE

Payment date: 20230911

Year of fee payment: 12

Ref country code: BE

Payment date: 20230914

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231006

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007