EP1818421A1 - Ferritischer, Niobium-stabilisierter 19% Chrom-Edelstahl - Google Patents

Ferritischer, Niobium-stabilisierter 19% Chrom-Edelstahl Download PDF

Info

Publication number
EP1818421A1
EP1818421A1 EP06290231A EP06290231A EP1818421A1 EP 1818421 A1 EP1818421 A1 EP 1818421A1 EP 06290231 A EP06290231 A EP 06290231A EP 06290231 A EP06290231 A EP 06290231A EP 1818421 A1 EP1818421 A1 EP 1818421A1
Authority
EP
European Patent Office
Prior art keywords
steel
ferritic
niobium
resistance
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06290231A
Other languages
English (en)
French (fr)
Inventor
Francis Chassagne
Pierre-Olivier Santacreu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aperam Stainless France SA
Original Assignee
Ugine et Alz France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36691479&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1818421(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ugine et Alz France SA filed Critical Ugine et Alz France SA
Priority to EP06290231A priority Critical patent/EP1818421A1/de
Priority to SI200730015T priority patent/SI1818422T2/sl
Priority to EP07290039A priority patent/EP1818422B2/de
Priority to DK07290039.2T priority patent/DK1818422T4/da
Priority to AT07290039T priority patent/ATE417134T1/de
Priority to ES07290039T priority patent/ES2317629T5/es
Priority to PT07290039T priority patent/PT1818422E/pt
Priority to DE602007000326T priority patent/DE602007000326D1/de
Publication of EP1818421A1 publication Critical patent/EP1818421A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/02Corrosion resistive metals
    • F01N2530/04Steel alloys, e.g. stainless steel

Definitions

  • the invention relates to a ferritic stainless steel, said to be 19% Niobium stabilized Cr, and its use for parts subjected to high temperatures, in particular above 950-1000.degree.
  • a good resistance to oxidation and a good mechanical resistance at high temperature are simultaneously sought: high mechanical characteristics, good resistance to creep and to thermal fatigue.
  • the high-temperature mechanical behavior must also be adapted to the thermal cycles associated with the accelerator-deceleration phases of the engines.
  • some parts such as exhaust manifolds require good cold formability to be shaped by bending or hydroforming.
  • the present invention aims to solve the problems mentioned above.
  • it aims to provide a stainless steel ferritic which has good heat resistance, ie high creep, thermal fatigue and oxidation resistance at periodic temperatures above 950 ° C and Cold shaping close to existing shades.
  • the subject of the invention is a ferritic stainless steel stabilized with niobium, the composition of which comprises the contents being expressed by weight: C ⁇ 0.03%, Mn ⁇ 1%, 0.3 ⁇ Si ⁇ 1% , S ⁇ 0.01%, P ⁇ 0.04%, 18% ⁇ Cr ⁇ 22%, Ni ⁇ 0.5%, Mo ⁇ 2.5%, Cu ⁇ 0.5%, Ti ⁇ 0.02% , Zr ⁇ 0.02%, Al ⁇ 0.02%, 0.2% ⁇ Nb ⁇ 1%, V ⁇ 0.2%, N ⁇ 0.03%, 0.005% ⁇ Co ⁇ 0.05%, Sn ⁇ 0.05%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the elaboration, the titanium, aluminum and zirconium contents satisfying the relationship: Ti + Al + Zr ⁇ 0.030%, the silicon and chromium contents satisfying the relationship: Cr + 5 Si ⁇ 20%, the contents of niobium, carbon, nitrogen and molybdenum satisfying the relation: Mo + 3 (Nb-7C-7N
  • the steel contains an intergranular precipitation comprising at least 80% of cubic Fe 2 Nb 3 compounds.
  • the linear fraction f of ferritic grain boundaries exhibiting a precipitation of cubic Fe 2 Nb 3 compounds is greater than or equal to 5%.
  • the structure is entirely recrystallized and the average ferritic grain size of the steel is between 10 and 60 micrometers.
  • the invention also relates to the use of a steel according to the characteristics described above, or manufactured by the method described above, for the manufacture of parts subjected to a periodic operating temperature greater than 950 ° C. , and in particular automobile exhaust gas exhaust manifolds, burners, heat exchangers, turbocharger casings, or boilers.
  • carbon increases mechanical characteristics at high temperatures, in particular creep resistance.
  • the carbon tends to precipitate in the form of carbides M 23 C 6 or M 7 C 3 at a temperature below about 900 ° C.
  • This precipitation usually located at the grain boundaries can lead to a depletion of chromium in the vicinity of these joints and thus to an awareness of intergranular corrosion.
  • This sensitization can occur especially in the Heat Affected Zones in welding that have been heated to very high temperatures.
  • the carbon content must therefore be limited to 0.03% to obtain a satisfactory resistance to intergranular corrosion and not to reduce the formability.
  • the carbon content must satisfy a relationship with molybdenum, niobium and nitrogen, as will be explained later.
  • chromium is a very effective element for increasing the resistance to oxidation during thermal cycling. To fulfill this role, a minimum content of 0.3% by weight is necessary. The inventors have also demonstrated that the weight contents of chromium and silicon must obey the relationship: Cr + 5 Si ⁇ 20%, so as to obtain good resistance to cyclic oxidation at 1000 ° C.
  • the silicon content must be limited to 1% by weight.
  • Sulfur and phosphorus are impurities that decrease hot ductility and formability. Phosphorus easily segregates at grain boundaries and decreases cohesion. As such, the sulfur and phosphorus contents must be respectively less than or equal to 0.01 and 0.04% by weight.
  • Chromium is an essential element for stabilizing the ferritic phase and increasing the resistance to oxidation.
  • its minimum content must be greater than or equal to 18% in order to obtain a ferritic structure at any temperature and to obtain good resistance to cyclic oxidation. Its maximum content must not, however, exceed 22%, otherwise the mechanical resistance to the ambient temperature will be excessively increased and the fitness ability will be reduced consecutively.
  • Nickel is a gamma element that increases the ductility of steel. In order to maintain a ferritic single-phase structure, its content must be less than or equal to 0.5% by weight.
  • Molybdenum not only increases the high temperature resistance but also the resistance to oxidation. However, above 2.5% by weight of Mo, the yield strength and room temperature resistance are excessively increased, ductility and workability decrease. As will be discussed below, molybdenum must also satisfy a relationship with niobium, carbon and nitrogen, to obtain satisfactory mechanical strength and creep resistance at 1000 ° C and fatigue resistance. between 100 ° C and 1000 ° C.
  • Copper has a heat-curing effect. In excessive quantities, however, it reduces the ductility during hot rolling. As such, the copper content must be less than or equal to 0.5% by weight.
  • the inventors have demonstrated that the contents of titanium, aluminum and zirconium must be jointly limited in order to obtain a more intense precipitation of cubic Fe 2 Nb 3 : this precipitation of intermetallic compounds operating at high temperature makes it possible to obtain good resistance to cyclic oxidation and creep at 1000 ° C.
  • the weight contents of Ti, Zr, Al must be limited to 0.02% each, and the sum of their contents must be such that: Ti + Al + Zr 0,0 0.030%.
  • niobium precipitates, not in the form of Fe 2 Nb 3 , but from 650 ° C in the form of Fe 2 Nb compounds, less effective to resist creep.
  • Niobium is an important element of the invention. Usually, this element can be used as a stabilizing element in ferritic stainless steels: in fact, the sensitization phenomenon mentioned above can be avoided by the addition of elements forming carbides or carbonitrides which are very thermally stable. In this way, carbon and nitrogen are minimized in solution, and subsequent precipitation of carbides and nitrides of chromium is avoided. Niobium (as well as titanium and, to a lesser extent, zirconium and vanadium) thus stably fixes carbon and nitrogen.
  • niobium content is greater than 1% by weight, the hardening obtained is too important, the steel is less easily deformable and recrystallization after cold rolling is more difficult .
  • Vanadium is an element that increases resistance to high temperature. In order to ensure satisfactory adhesion of the oxide layer formed during use at high temperature and to ensure good resistance to oxidation, the inventors have shown that the titanium and vanadium contents must satisfy the relationship: V +10 Ti ⁇ 0.06%. However, the vanadium content should be limited to 0.2% in order not to reduce the formability.
  • nitrogen increases the mechanical characteristics. However, nitrogen tends to precipitate at grain boundaries in the form of nitrides, thus reducing the corrosion resistance. In order to limit sensitization problems, the nitrogen content must be less than or equal to 0.03%.
  • Cobalt is a hot-curing element that degrades formability:
  • its content must be between 0.005% and 0.05% by weight.
  • the tin content In order to avoid hot forgeability problems, the tin content must be less than or equal to 0.05%.
  • the average grain size of the steel in the delivery state is between 10 and 60 micrometers, the subsequent precipitation of intermetallic compounds also making it possible to stabilize the grain size during use.
  • a grain size of less than 10 microns has a detrimental effect on intergranular creep.
  • a grain size greater than 60 microns will lead to the appearance of unsightly surface irregularities, or "orange peel", when shaping at room temperature.
  • the steels according to the invention comprise an intergranular precipitation of Fe 2 Nb 3 compounds of cubic structure after a heat treatment of between 650 ° C. and 1050 ° C. for a time greater than 30 minutes.
  • the Fe 2 Nb 3 precipitates are very much in the majority of the intergranular precipitates, that is to say they represent more than 80% of the intergranular population.
  • the nature and distribution of these precipitates are very favorable to resist creep, in comparison with Fe 2 Nb precipitates, or Laves phases.
  • the Fe 2 Nb compounds that precipitate in intra- or intergranular form are stable only up to 950 ° C., unlike stable Fe 2 Nb 3 precipitates up to 1050 ° C.
  • the structure of the steel in the delivery state is completely recrystallized: in this way, the subsequent precipitation of the Fe 2 Nb 3 compounds occurs in a very homogeneous manner.
  • the expression f thus translates the degree of recovery of ferritic grain boundaries by a precipitation of cubic Fe 2 Nb 3 .
  • the inventors have demonstrated, as shown in FIG. 2, that the creep resistance during a so-called "sag-test" test was very much improved when the linear fraction of cubic Fe 2 Nb 3 precipitates was greater than or equal to at 5%: under these conditions, these precipitates play a very effective role of anchoring joints and slow creep.
  • the sheet is then scoured and the sheet is then rolled under the usual conditions, for example by applying a reduction ratio of 30 to 90%.
  • the cold-rolled sheet is then annealed at a temperature T R and for a time t R.
  • T R and t R are chosen such that a complete recrystallization with an average ferritic grain size of between 10 and 60 microns is obtained.
  • An increase in T R and t R increases the recrystallization rate as well as the average grain size.
  • the steel sheet is in the delivery condition.
  • a part can then be manufactured from this sheet steel by implementing common modes of deformation, such as stamping, hydroforming or folding.
  • common modes of deformation such as stamping, hydroforming or folding.
  • one or more thermal cycles in a temperature range between 650 and 1050 ° C for a cumulative time greater than 30 minutes lead to a precipitation of Fe 2 Nb 3 and an increase of creep resistance.
  • This resistance is particularly high when the linear fraction f of ferritic grain boundaries comprising a precipitation of Fe 2 Nb 3 compounds is greater than or equal to 5%.
  • FIG. 3 illustrates the precipitates observed after creep tests at 1000 ° C. in the flows I1, I2, I3 and I4 according to the invention.
  • the presence of intra- and especially intergranular precipitates covering a large part of the ferritic grain boundaries is noted.
  • Analyzes by energy dispersive spectrometry (EDS) and wavelength (WDS) reveal that more than 80% of these precipitates consist of niobium and iron, of Fe 2 Nb 3 stoichiometry, and that they do not contain neither carbon nor nitrogen.
  • EDS energy dispersive spectrometry
  • WDS wavelength
  • Figure 6 shows precipitates observed in the reference steels R3, R4 and R5.
  • the degree of recovery of the ferritic grain boundaries by these precipitates is very low after creep tests at 1000 ° C.
  • Experimental electron diffraction patterns and theoretical views along the zone axis of these precipitates are given in Figures 7 and 8, respectively.
  • the EDS analysis and the diffraction studies reveal that they are Fe 2 Nb precipitates. , or phase of Laves, of hexagonal network.
  • the steels I1 to I4 according to the invention combine good mechanical properties when hot: mechanical resistance, resistance to creep, thermal fatigue and cyclic oxidation.
  • the R1 and R2 steels have a combination of insufficient titanium and vanadium: the resistances to cyclic oxidation and thermal fatigue are unsatisfactory due to the lack of adhesion of the oxide layers to the substrate steel.
  • R5 steel also has an excessive titanium content and a combination (Ti + Al + Zr) unsatisfactory. Moreover, its combination: Mo + 3 ⁇ Nb, is insufficient. As a result, the steel does not exhibit satisfactory mechanical properties at high temperature, in particular creep.
  • R6 steel has an insufficient chromium content as well as combinations: Mo + 3 ⁇ Nb, Cr + 5% Si insufficient. Despite the presence of Fe 2 Nb 3 compounds, the properties of oxidation resistance and high temperature mechanical properties are insufficient.
  • the steels according to the invention will be used with advantage for the manufacture of parts subjected to a periodic operating temperature greater than 950 ° C., and in particular of combustion gas exhaust manifolds in the automobile field, of burners, of Heat exchangers or envelopes of turbochargers, boilers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Catalysts (AREA)
EP06290231A 2006-02-08 2006-02-08 Ferritischer, Niobium-stabilisierter 19% Chrom-Edelstahl Withdrawn EP1818421A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP06290231A EP1818421A1 (de) 2006-02-08 2006-02-08 Ferritischer, Niobium-stabilisierter 19% Chrom-Edelstahl
SI200730015T SI1818422T2 (sl) 2006-02-08 2007-01-11 Feritno nerjavno jeklo z kroma stabilizirano z niobijem
EP07290039A EP1818422B2 (de) 2006-02-08 2007-01-11 Ferritischer Edelstahl mit 19 % Chrom, der mit Niob stabilisiert ist
DK07290039.2T DK1818422T4 (da) 2006-02-08 2007-01-11 Ferritisk rustfrit stål med 19 % chrom stabiliseret med niobium
AT07290039T ATE417134T1 (de) 2006-02-08 2007-01-11 Ferritischer edelstahl mit 19 chrom, der mit niob stabilisiert ist
ES07290039T ES2317629T5 (es) 2006-02-08 2007-01-11 Acero inoxidable ferrítico con 19% de cromo estabilizado con niobio
PT07290039T PT1818422E (pt) 2006-02-08 2007-01-11 Aço inoxidável ferrítico com 19% de cromo estabilizado em nióbio
DE602007000326T DE602007000326D1 (de) 2006-02-08 2007-01-11 Ferritischer Edelstahl mit 19 % Chrom, der mit Niob stabilisiert ist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06290231A EP1818421A1 (de) 2006-02-08 2006-02-08 Ferritischer, Niobium-stabilisierter 19% Chrom-Edelstahl

Publications (1)

Publication Number Publication Date
EP1818421A1 true EP1818421A1 (de) 2007-08-15

Family

ID=36691479

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06290231A Withdrawn EP1818421A1 (de) 2006-02-08 2006-02-08 Ferritischer, Niobium-stabilisierter 19% Chrom-Edelstahl
EP07290039A Active EP1818422B2 (de) 2006-02-08 2007-01-11 Ferritischer Edelstahl mit 19 % Chrom, der mit Niob stabilisiert ist

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07290039A Active EP1818422B2 (de) 2006-02-08 2007-01-11 Ferritischer Edelstahl mit 19 % Chrom, der mit Niob stabilisiert ist

Country Status (7)

Country Link
EP (2) EP1818421A1 (de)
AT (1) ATE417134T1 (de)
DE (1) DE602007000326D1 (de)
DK (1) DK1818422T4 (de)
ES (1) ES2317629T5 (de)
PT (1) PT1818422E (de)
SI (1) SI1818422T2 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2857538A4 (de) * 2012-05-28 2016-03-23 Jfe Steel Corp Ferritischer edelstahl
EP3214198A4 (de) * 2014-10-31 2018-09-05 Nippon Steel & Sumikin Stainless Steel Corporation Ferrit-basierter rostfreier stahl mit hoher beständigkeit gegen korrosivität durch abgas und kondensation und mit guten löteigenschaften sowie verfahren zur herstellung davon
EP3508598A4 (de) * 2016-09-02 2019-08-28 JFE Steel Corporation Ferritischer edelstahl
EP3517647A4 (de) * 2016-12-21 2019-12-04 JFE Steel Corporation Ferritischer edelstahl
US10752973B2 (en) 2014-10-31 2020-08-25 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same
CN111684092A (zh) * 2018-01-31 2020-09-18 杰富意钢铁株式会社 铁素体系不锈钢
EP2893049B1 (de) 2012-09-03 2020-10-07 Aperam Stainless France Blech aus ferritischem edelstahl, verfahren zur herstellung und verwendung, insbesondere in abgasleitungen
WO2022151603A1 (zh) * 2021-01-15 2022-07-21 江苏省沙钢钢铁研究院有限公司 400MPa级耐蚀钢筋及其生产方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI124995B (fi) 2012-11-20 2015-04-15 Outokumpu Oy Ferriittinen ruostumaton teräs
EP3670692B1 (de) 2018-12-21 2022-08-10 Outokumpu Oyj Ferritischer edelstahl
KR102259806B1 (ko) * 2019-08-05 2021-06-03 주식회사 포스코 고온 내크립 특성이 향상된 페라이트계 스테인리스강 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010049A (en) * 1975-10-06 1977-03-01 Jones & Laughlin Steel Corporation Columbium-stabilized high chromium ferritic stainless steels containing zirconium
US4726853A (en) * 1985-11-05 1988-02-23 Ugine Gueugnon Sa Ferritic stainless steel strip or sheet, in particular for exhaust systems
EP0478790A1 (de) * 1990-03-24 1992-04-08 Nisshin Steel Co., Ltd. Hitzebeständiger ferritischer nichtrostender stahl mit hervorragenden eigenschaften für zähigkeit bei tiefen temperaturen, schweissbarkeit und hitzebeständigkeit
EP1083241A1 (de) * 1999-09-09 2001-03-14 Ugine S.A. Ferritisches Niobium-stabilisiertes 14% Chrom-stahl und dessen Verwendung in Kraftfahrzeugen
EP1170392A1 (de) * 2000-07-04 2002-01-09 Kawasaki Steel Corporation Ferritischer rostfreier Stahl

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735556B2 (ja) 1990-12-26 1995-04-19 川崎製鉄株式会社 高温強度と溶接熱影響部の靱性に優れたフェライト系ステンレス鋼
JPH0717988B2 (ja) 1991-03-08 1995-03-01 日本冶金工業株式会社 靱性および耐食性がともに優れるフェライト系ステンレス鋼

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010049A (en) * 1975-10-06 1977-03-01 Jones & Laughlin Steel Corporation Columbium-stabilized high chromium ferritic stainless steels containing zirconium
US4726853A (en) * 1985-11-05 1988-02-23 Ugine Gueugnon Sa Ferritic stainless steel strip or sheet, in particular for exhaust systems
EP0478790A1 (de) * 1990-03-24 1992-04-08 Nisshin Steel Co., Ltd. Hitzebeständiger ferritischer nichtrostender stahl mit hervorragenden eigenschaften für zähigkeit bei tiefen temperaturen, schweissbarkeit und hitzebeständigkeit
EP1083241A1 (de) * 1999-09-09 2001-03-14 Ugine S.A. Ferritisches Niobium-stabilisiertes 14% Chrom-stahl und dessen Verwendung in Kraftfahrzeugen
EP1170392A1 (de) * 2000-07-04 2002-01-09 Kawasaki Steel Corporation Ferritischer rostfreier Stahl

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2857538A4 (de) * 2012-05-28 2016-03-23 Jfe Steel Corp Ferritischer edelstahl
EP2893049B1 (de) 2012-09-03 2020-10-07 Aperam Stainless France Blech aus ferritischem edelstahl, verfahren zur herstellung und verwendung, insbesondere in abgasleitungen
EP3214198A4 (de) * 2014-10-31 2018-09-05 Nippon Steel & Sumikin Stainless Steel Corporation Ferrit-basierter rostfreier stahl mit hoher beständigkeit gegen korrosivität durch abgas und kondensation und mit guten löteigenschaften sowie verfahren zur herstellung davon
US10752973B2 (en) 2014-10-31 2020-08-25 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same
EP3508598A4 (de) * 2016-09-02 2019-08-28 JFE Steel Corporation Ferritischer edelstahl
US11261512B2 (en) 2016-09-02 2022-03-01 Jfe Steel Corporation Ferritic stainless steel
EP3517647A4 (de) * 2016-12-21 2019-12-04 JFE Steel Corporation Ferritischer edelstahl
CN111684092A (zh) * 2018-01-31 2020-09-18 杰富意钢铁株式会社 铁素体系不锈钢
EP3719164A4 (de) * 2018-01-31 2020-10-07 JFE Steel Corporation Ferritischer edelstahl
WO2022151603A1 (zh) * 2021-01-15 2022-07-21 江苏省沙钢钢铁研究院有限公司 400MPa级耐蚀钢筋及其生产方法

Also Published As

Publication number Publication date
DK1818422T3 (da) 2009-02-23
EP1818422A1 (de) 2007-08-15
EP1818422B1 (de) 2008-12-10
PT1818422E (pt) 2009-01-30
ATE417134T1 (de) 2008-12-15
SI1818422T2 (sl) 2012-11-30
DE602007000326D1 (de) 2009-01-22
ES2317629T5 (es) 2012-12-26
SI1818422T1 (sl) 2009-04-30
DK1818422T4 (da) 2012-10-29
ES2317629T3 (es) 2009-04-16
EP1818422B2 (de) 2012-07-18

Similar Documents

Publication Publication Date Title
EP1818422B1 (de) Ferritischer Edelstahl mit 19 % Chrom, der mit Niob stabilisiert ist
EP1819461B1 (de) Verfahren zur herstellung von austenitischen eisen-/karbon-/mangan-stahlblechen mit sehr guten festigkeits- und dehnungseigenschaften sowie ausgezeichneter homogenität
US6478897B1 (en) Heat-resistant alloy wire
EP1844173B1 (de) Verfahren zur herstellung von austenitischen eisen-kohlenstoff-mangan-blechen und auf diese weise hergestellte bleche
EP1649069B1 (de) Verfahren zur herstellung von blechen aus austenitischem eisen/kohlenstoff/mangan-stahl mit hoher festigkeit und hervorragender zähigkeit und kaltumformbarkeit, und so hergestellte bleche
EP2718469B1 (de) Kaltgewalztes stahlblech mit zink oder zinklegierungsbeschichtung, herstellungsverfahren dafür und verwendung eines solchen stahlblechs
CA2584455C (fr) Procede de fabrication de toles d' acier austenitique fer-carbone-manganese et toles ainsi produites
EP2893049B1 (de) Blech aus ferritischem edelstahl, verfahren zur herstellung und verwendung, insbesondere in abgasleitungen
EP2155916B2 (de) Stahl von geringer dichte mit guten prägeeigenschaften
WO2011111871A1 (ja) 耐酸化性に優れたフェライト系ステンレス鋼板並びに耐熱性に優れたフェライト系ステンレス鋼板及びその製造方法
JPH11302801A (ja) 耐応力腐食割れ性に優れた高Cr−高Ni合金
EP1083241B1 (de) Ferritisches Niobium-stabilisiertes 14% Chrom-stahl und dessen Verwendung in Kraftfahrzeugen
EP0430754B1 (de) Rostfreie Formgedächtnislegierung und Verfahren zu ihrer Herstellung
EP2257652B1 (de) Herstellungsverfahren von rostfreien austenitischen stahlblechen mit hohen mechanischen eigenschaften
JP7341016B2 (ja) フェライト系ステンレス冷延鋼板
CA2502079C (fr) Procede de fabrication de toles d'acier durcissables par cuisson, toles d'acier et pieces ainsi obtenues
CN115198144B (zh) 耐热合金部件、其所使用的材料、以及它们的制造方法
CN1093887C (zh) 具有良好抗氧化性的奥氏体不锈钢
CA2435938C (fr) Acier isotrope a haute resistance, procede de fabrication de toles et toles obtenues
FR2864108A1 (fr) Tole en acier inoxydable presentant une grande resistance et un bon allongement, et procede de fabrication
EP0703298B1 (de) Verfahren zum Herstellen von Stählen guter Verformbar- und Formbeständigkeit
JPH11256287A (ja) 耐高温酸化性およびスケール密着性に優れたフェライト系ステンレス鋼
JPH06104879B2 (ja) 燃焼排ガス浄化触媒担体用耐熱ステンレス箔

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20080129