EP0478790A1 - Hitzebeständiger ferritischer nichtrostender stahl mit hervorragenden eigenschaften für zähigkeit bei tiefen temperaturen, schweissbarkeit und hitzebeständigkeit - Google Patents

Hitzebeständiger ferritischer nichtrostender stahl mit hervorragenden eigenschaften für zähigkeit bei tiefen temperaturen, schweissbarkeit und hitzebeständigkeit Download PDF

Info

Publication number
EP0478790A1
EP0478790A1 EP91906263A EP91906263A EP0478790A1 EP 0478790 A1 EP0478790 A1 EP 0478790A1 EP 91906263 A EP91906263 A EP 91906263A EP 91906263 A EP91906263 A EP 91906263A EP 0478790 A1 EP0478790 A1 EP 0478790A1
Authority
EP
European Patent Office
Prior art keywords
stainless steel
ferritic stainless
high temperature
heat
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91906263A
Other languages
English (en)
French (fr)
Other versions
EP0478790B1 (de
EP0478790A4 (en
Inventor
Yoshihiro Uematsu
Naoto Hiramatsu
Sadayuki Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Publication of EP0478790A1 publication Critical patent/EP0478790A1/de
Publication of EP0478790A4 publication Critical patent/EP0478790A4/en
Application granted granted Critical
Publication of EP0478790B1 publication Critical patent/EP0478790B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum

Definitions

  • the present invention relates to a heat resisting ferritic stainless steel excellent in low temperature toughness, weldability and heat resistance.
  • the stainless steel according to the invention is suitable for use in composing a part of an exhaust gas path-way of an automobile, especially, a path-way from an engine to a converter, which is exposed to high temperatures.
  • heat resistivity As long as a heat resisting steel, for example, a stainless steel is applied as a material for the production of these parts, heat resistivity, of course, is excellent.
  • the material because of weld-joints (the pipe used for these parts is usually made by weld and is often jointed to other parts by weld), the material must be excellent in weldability and in mechanical workability. Therefore, it is important that the material used for this purpose must be not only corrosion resistant which is the fundamental property of a stainless steel but also heat resistant, tough at low temperature, weldable and workable.
  • SUS304 a typical austinitic stainless steel
  • SUS304 has been considered as a favorable material for use for the above-mentioned purpose because of its excellent workability and favorable weldability.
  • an austinitic stainless steel has a large thermal expansion coefficient, fears are entertained for a thermal fatigue cracking caused by a thermal stress which comes about in the repeated heating and cooling.
  • the oxide layer tends to splinter off from the surface of the steel.
  • a nickel base alloy represented by Inconel 600 is used in some parts as the path-way material for an exhaust gas of an automobile. This alloy is promising for the reasons that its thermal expansion coefficient is small whereby the oxide layer is tight adhesive to the surface and, in consequence, it is excellent in high temperature oxidation resistance as well as high temperature strength.
  • this alloy is very expensive so that it is not extensively used.
  • a ferritic stainless steel when compared with the austinitic stainless steel, a ferritic stainless steel is cheap and, in addition, excellent in thermal fatigue properties because of its small thermal expansion coefficient, so that it is considered suitable for use in parts which are subjected to cyclic variation of temperature such as heating and cooling.
  • Type 409 or SUS430 a representative of the ferritic stainless steel, is going on to use in part of an automobile exhaust gas path-way .
  • these materials have a property that the strength goes sharply down as the temperature 900 °C. and higher, and in consequence, give rise to problems of which one is fatigue cracking due to insufficient strength and the other is abnormal oxidation when conditions go beyond the limit of oxidation resistivity.
  • ferritic stainless steel retaining the previously stated desirable properties inherent to the ferritic stainless steel, and having improved heat resistivity and high temperature strength and, in addition, being excellent in productivity, workability, weldability and low temperature toughness comes to be obtainable, it may be said that such a material is very promising for the particular use mentioned above.
  • JP A 64-8254 discloses a ferritic stainless steel for the like use, but is completely silent with respect to low temperature toughness.
  • JP B 59-52226 and 61-44121 disclose to improve a ferritic stainless steel in its rust development due to chlorine ion and its acid resistivity by adding copper and nickel while extremely lowering S, but teach nothing about high temperature strength, heat resistance, weldability and low temperature toughness.
  • an object of the invention is to provide a ferritic stainless steel having properties which simultaneously meet the above-mentioned many severe conditions required for a material of an automobile exhaust gas path-way, particularly, of a part between an engine and a converter where the material is exposed to high temperatures.
  • Another object of the invention is to improve low temperature toughness, which is an inherent defect of ferritic stainless steels.
  • a further object of the invention is the provision of a heat resistive ferritic stainless steel which does not suffer from a problem of high temperature cracking of weld heat-affected zone.
  • the invention further provides a heat resisting ferritic stainless steel excellent in low temperature toughness, weldability and heat resistance which comprises, in addition to the elements of the above-mentioned steel, one or more of: up to 0.5 % of Al, up to 0.6 % of Ti, up to 0.5 % of V, up to 1.0 % of Zr, up to 1.5 % of W, up to 0.01 % of B, and up to 0.1 % of REM.
  • a heat resisting ferritic stainless steel excellent in low temperature toughness, weldability and heat resistance which comprises, in addition to the elements of the above-mentioned steel, one or more of: up to 0.5 % of Al, up to 0.6 % of Ti, up to 0.5 % of V, up to 1.0 % of Zr, up to 1.5 % of W, up to 0.01 % of B, and up to 0.1 % of REM.
  • Fig. 1 shows results of the tensile tests at the indicated elevated temperatures carried out on materials having a basic composition of Fe-18 % Cr-0.45 %-Nb with various Mo and Cu contents to examine effects of Mo and Cu on high temperature tensile strength.
  • high temperature strength is improved by the addition of molybdenum in an amount of 1 % or more.
  • the conjoint addition of molybdenum and copper is more effective than the addition of molybdenum alone to improve high temperature strength.
  • Fig. 2 shows results of the oxidation tests at the indicated elevated temperatures carried out on materials having a basic composition of Fe-18 % Cr-0.45 %-Nb with various Mn contents.
  • the oxidation was continued in air for 100 hrs at 900 °C. or 1000 °C., and at the end of the period an amount of scale which had splintered off was measured.
  • the scale splintering was suppressed, irrespective of the oxidation temperature tested, by the addition of at least about 0.6 % of manganese.
  • manganese makes the limit of oxidation resistivity to rise up.
  • Fig. 3 shows results of the weld high temperature affected cracking test on materials having a basic composition of Fe-18 % Cr-0.45 %-Nb with appropriate Mo and Cu contents whose effects are recognized as shown in Fig. 1 (3 % Mo and 0.5 % Cu) and with varied Mn and S contents to examine effects of the ratio, Mn/S, on weld high temperature affected cracking.
  • the test was carried out as follows. The cold rolled and annealed plate of 1.2 mm in thickness was cut into test pieces of 40 mm ⁇ 200 m. The test pieces were TIG welded under various tensile stresses imposed longitudinally.
  • the minimum strain at which cracking began to occur was determined, which is referred to herein as the critical strain and is a measure of the susceptibility to the weld high temperature affected cracking. It is revealed from Fig. 3 that if the ratio, Mn/S, is 200 or higher, ferritic stainless steels having conjointly incorporated with Mo and Cu have an increased critical strain, and, in consequence, an improved weldability. Thus, in order to overcome the weld high temperature affected cracking it is effective to add a proper amount of Mn rendering the ratio, Mn/S, not less than 200.
  • Fig. 4 shows results of the Charpy impact test carried out on materials having a basic composition of Fe-18 % Cr-0.45 %-Nb with varied Mo and Cu contents for examining effects of molybdenum and copper on toughness.
  • the impact value is lowered by the addition of molybdenum, as is known in the art.
  • Fig. 4 provides new information that the reduction in the impact value due to Mo may be compensated to some extent by conjoint addition of Cu.
  • the conjoint addition of copper improves the impact value well enough.
  • the conjoint addition of nickel and molybdenum can also improve low temperature impact toughness, as will be manifested in Examples described later.
  • the information of these facts is of great importance, particularly for a material which constitutes parts exposed to low temperature circumstance in winter, for example, a manifold or dual tube which suffer from mechanical vibration in addition to low temperature when the engine starts, whereupon the material will become usable even under further more severe conditions expected in the future.
  • the invention provides a ferritic stainless steel having well-balanced excellent properties as a whole, including high temperature strength, thermal fatigue resistance, oxidation resistance and low temperature toughness.
  • C and N are, in general, important elements because of promoting high temperature strength, but excessive amounts of them demote oxidation resistance, workability and toughness. Besides above, C and N react and form compounds with Nb, thereby lowering the effective Nb in the ferritic phase. Accordingly, it is favorable that C and N are small in quantities, so that they should be controlled not more than 0.03 %, respectively.
  • Si is an effective element to improve oxidation resistance, but an excessive amount of Si renders the steel hard, and, in consequence, adversely affects workability and toughness. Therefore, Si is controlled within the range from 0.1 % to 0.8 %.
  • Mn reacts with S, which is harmful for weld high temperature affected cracking, and fixes S in the form of MnS, whereby S is removed or reduced in welded metal . It has been found that if the relation, Mn/S ⁇ 200, is satisfied, the effect is the same as that of S reduction. On the other hand, the addition of at least 0.6 % of Mn improves adhesion of scale Therefore, Mn is controlled in the range from 0.6 % to 2.0 %, while satisfying the relation: Mn/S ⁇ 200.
  • Ni brings about a favorable result of improving toughness like copper does.
  • an excessive of Ni gives rise to deposition of an austenite phase at elevated temperatures, and follows the increase of thermal expansion coefficient as well as anxiety about the deterioration of thermal fatigue. Therefore, in the case of the conjoint addition of Ni and Cu according to the invention, the Cu being also an austenite former, it has been found that (Ni + Cu) should be not more than 4 %.
  • Cr is an indispensable element to improve corrosion resistivity and oxidation resistivity.
  • the reason of limiting Cr as not less than 17 % is that the addition of at least 17 % of Cr is required to keep a desired level of oxidation resistance at a temperature of at least higher 900 °C.
  • the upper limit of Cr is now set as 25 %.
  • Nb is a necessary element to maintain high temperature strength. Furthermore, Nb improves workability and oxidation resistivity, and still brings about a favorable influence in the manufacture of pipe by a high frequency welding method.
  • Nb when Nb is added in excess, welded parts become susceptible to high temperature affected cracking.
  • the upper limit of Nb is now set as 0.8 % so that sufficient high temperature strength may be held and susceptibility to weld high temperature affected cracking may not be influenced so much.
  • Mo As already stated, the more addition of Mo make high temperature strength to increase. Besides, Mo is effective to improve high temperature oxidation resistance and corrosion resistivity. However, an excessive addition of it makes low temperature toughness as well as productivity and workability to decrease remarkably. Therefore, Mo is restricted within the range from 1.0 % to 4.5 %, preferably from 2.0 % to 4.5 %, still more preferably within the range of more than 2.5 % and up to 4.5 %.
  • Cu is an important element of the steel according to the invention because of its remarkable effectiveness on toughness. As shown in Fig. 4, Cu is needed at least 0.1 % to achieve an appreciable improvement to toughness, so that the lower limit of Cu is now set as 0.1 %. On the contrary, the addition of an excessive amount of Cu renders the steel hard and deteriorates its workability, in particular its hot workability, so that the upper limit of Cu is now set as 2.5 %.
  • Al improves oxidation resistivity at elevated temperatures, but the addition of an excessive amount of Al poses problems on productivity as well as weldability. For this reason the upper limit of Al is now set as 0.5 %.
  • Ti increases high temperature strength and improves workability. Like aluminum, the addition of an excessive amount of Ti, causes problems on productivity and weldability, so that the upper limit of Ti is now set as 0.5 %.
  • V Like Ti, V increases high temperature strength and improves workability, but the addition of an excessive amount of V invites reduction in strength. Therefore, the upper limit of V is now set as 0.5 %.
  • Zr increases high temperature strength and improves oxidation resistance at elevated temperatures. However, the addition of an excessive amount of Zr invites reduction in strength. Therefore, the upper limit of Zr is now set as 1.0 %.
  • W Similar to Ti and V, W increases high temperature strength and improves workability, but the addition of an excessive amount of W invites reduction in strength, so that the upper limit of W is now set as 1.5 %.
  • B improves hot workability, high temperature strength and even workability.
  • the addition of an excessive amount of B adversely affects hot workability, on the contrary, therefore the upper limit of B is now set as 0.01 %.
  • REM Even in small quantity the addition of rare-earth metal improves hot-workability, oxidation resistance, particularly, adhesion of scale. However, the addition of an excessive amount of REM adversely affects hot workability on the contrary. Therefore, the upper limit of REM is now set as 0.1 %.
  • Table 1 shows chemical components, in % by weight, of the tested steels.
  • Steels M1 to M21 are those in accordance with the invention, while Steels M22 to M30 are control steels.
  • Each steel was made into a 30 kg ingot and forged to a rod having a diameter of 25 mm, or to a slab having a thickness of 25 mm.
  • the rod was annealed at a temperature of from 950 °C. to 1100 °C., and test pieces for the high temperature tensile test in accordance with JIS were prepared from the annealed rod.
  • the slab was cut into pieces, which were heated in a furnace, took out from the furnace at a temperature of 1200 °C., hot rolled to plates having a thickness of 5 mm and annealed at a temperature of from 950 °C. to 1100 °C.
  • Some of the annealed plates were as such worked to Charpy impact test pieces having a thickness of 4.5 mm, while the others were made to cold plates having a thickness of 2 mm of 1.2 mm by repeating cold rolling and annealing.
  • the 2 mm plates were subjected to the high temperature oxidation test, while the 1.2 mm plates were subjected to the high temperature affected weld cracking test.
  • Table 2 shows tensile strength at elevated temperatures determined by the tensile test in accordance with JIS, amount of scale which splinters off by the oxidation test continued for 100 hours at 900 °C. and at 1000 °C., critical strain of weldment caused by the high temperature affected cracking test which is previously described, and results of the Charpy impact test carried out on V-notched Charpy impact testing pieces of a thickness of 4.5 mm.
  • the invention has provided a heat resistive ferritic stainless steel which achieves the above-mentioned object and which has excellent high temperature strength, resistance to high temperature oxidation, resistance to high temperature affected weld cracking, improved low temperature toughness, which is serious drawback of the ferritic stainless steel. Accordingly, the novel and useful material responsible to the progressive increase of power and capability of the engine has now been offered for an automobile exhaust gas system, particularly, for a pipe between an engine and a converter, which pipe is prepared by welding or jointed to other parts by welding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Silencers (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
EP91906263A 1990-03-24 1991-03-13 Hitzebeständiger ferritischer nichtrostender stahl mit hervorragenden eigenschaften für zähigkeit bei tiefen temperaturen, schweissbarkeit und hitzebeständigkeit Expired - Lifetime EP0478790B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP74785/90 1990-03-24
JP2074785A JP2696584B2 (ja) 1990-03-24 1990-03-24 低温靭性,溶接性および耐熱性に優れたフエライト系耐熱用ステンレス鋼
PCT/JP1991/000344 WO1991014796A1 (en) 1990-03-24 1991-03-13 Heat-resistant ferritic stainless steel excellent in low-temperature toughness, weldability and heat resistance

Publications (3)

Publication Number Publication Date
EP0478790A1 true EP0478790A1 (de) 1992-04-08
EP0478790A4 EP0478790A4 (en) 1992-08-12
EP0478790B1 EP0478790B1 (de) 1995-06-28

Family

ID=13557292

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91906263A Expired - Lifetime EP0478790B1 (de) 1990-03-24 1991-03-13 Hitzebeständiger ferritischer nichtrostender stahl mit hervorragenden eigenschaften für zähigkeit bei tiefen temperaturen, schweissbarkeit und hitzebeständigkeit

Country Status (6)

Country Link
EP (1) EP0478790B1 (de)
JP (1) JP2696584B2 (de)
KR (1) KR0180206B1 (de)
CA (1) CA2056362C (de)
DE (1) DE69110816T2 (de)
WO (1) WO1991014796A1 (de)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0779374A1 (de) * 1995-12-15 1997-06-18 Nisshin Steel Co., Ltd. Rostfreier Stahl mit verbesserter antimikrobieller Eigenschaft und dessen Herstellungsverfahren
EP0795619A1 (de) * 1996-03-15 1997-09-17 USINOR SACILOR Société Anonyme Verfahren zur Herstellung rostfreies ferritisches Stahl mit erhöhte Korrosionsbeständigkeit, insbesondere Beständigkeit gegen interkristalline Korrosion und gegen Lochfrasskorrosion
EP1176220A1 (de) * 2000-07-25 2002-01-30 Kawasaki Steel Corporation Ferritisch rostfreier Stahl mit guter Verformbarkeit bei Raumtemperatur und mit guten mechanischen Eigenchaften bei hoheren Temperaturen, und Verfahren zur Herstellung derselben
WO2003004714A1 (fr) * 2001-07-05 2003-01-16 Nisshin Steel Co., Ltd. Acier inoxydable ferritique pour element de debit de gaz d'echappement
CN1308477C (zh) * 2003-10-31 2007-04-04 烨联钢铁股份有限公司 具有良好热加工性及抗菌效果的肥粒铁系不锈钢
EP1818421A1 (de) * 2006-02-08 2007-08-15 UGINE & ALZ FRANCE Ferritischer, Niobium-stabilisierter 19% Chrom-Edelstahl
EP2060650A1 (de) * 2007-11-13 2009-05-20 Nisshin Steel Co., Ltd. Ferritischer Edelstahl für Abgasleitungskomponenten eines Fahrzeuges
EP2210965A1 (de) * 2007-06-13 2010-07-28 Weidong Chen Ultradünnes flexibles rohr aus einer legierung und herstellungsverfahren dafür
EP2316979A1 (de) * 2008-07-23 2011-05-04 Nippon Steel & Sumikin Stainless Steel Corporation Ferritischer edelstahl zur verwendung bei der herstellung eines harnstoffwassertanks
CN103210104A (zh) * 2010-11-11 2013-07-17 杰富意钢铁株式会社 抗氧化性优异的铁素体系不锈钢
WO2014001644A1 (en) * 2012-06-26 2014-01-03 Outokumpu Oyj Ferritic stainless steel
US20150010771A1 (en) * 2012-01-30 2015-01-08 Jfe Steel Corporation Ferritic stainless steel foil
US9243306B2 (en) 2010-03-11 2016-01-26 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet excellent in oxidation resistance
EP2351868A4 (de) * 2008-10-24 2016-11-30 Nippon Steel & Sumikin Sst Ferritisches edelstahlblech für agr-kühlgeräte
US9885099B2 (en) 2012-03-09 2018-02-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet
US10030282B2 (en) 2012-02-15 2018-07-24 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
US10260134B2 (en) 2012-03-30 2019-04-16 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet for cold rolling raw material
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
EP3508598A4 (de) * 2016-09-02 2019-08-28 JFE Steel Corporation Ferritischer edelstahl
US10450623B2 (en) 2013-03-06 2019-10-22 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet having excellent heat resistance
EP3604589A4 (de) * 2017-05-26 2020-04-29 JFE Steel Corporation Ferritischer edelstahl
EP3670692A1 (de) 2018-12-21 2020-06-24 Outokumpu Oyj Ferritischer edelstahl

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2085790C (en) * 1991-12-19 2000-03-28 Masao Koike Steel for use in exhaust manifolds of automobiles
EP0593776B1 (de) * 1992-04-09 2001-08-16 Nippon Steel Corporation Ferritischer rostfreier stahl mit exzellentem hochtemperatur widerstand und hochtemperaturwiderstand gegen salzangriff
KR20000034395A (ko) * 1998-11-30 2000-06-26 이구택 용접부에서의 인성이 우수한 페라이트계 스테인레스강
KR100605678B1 (ko) * 1999-11-08 2006-07-31 주식회사 포스코 내열강도가 우수한 내열 스테인레스강
JP4948998B2 (ja) * 2006-12-07 2012-06-06 日新製鋼株式会社 自動車排ガス流路部材用フェライト系ステンレス鋼および溶接鋼管
JP5428396B2 (ja) * 2008-03-07 2014-02-26 Jfeスチール株式会社 耐熱性と溶接性に優れるフェライト系ステンレス鋼
EP2460899A4 (de) * 2009-07-27 2014-07-09 Nisshin Steel Co Ltd Ferritischer edelstahl für agr-kühler und agr-kühler
US9399809B2 (en) 2011-02-08 2016-07-26 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
JP5703075B2 (ja) * 2011-03-17 2015-04-15 新日鐵住金ステンレス株式会社 耐熱性に優れたフェライト系ステンレス鋼板
CN112458379A (zh) * 2020-10-30 2021-03-09 萍乡德博科技股份有限公司 一种适用于汽油机可变截面喷嘴环盘类零件的材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2701329B1 (de) * 1977-01-14 1977-12-22 Thyssen Edelstahlwerke Ag Korrosionsbestaendiger ferritischer chrom-molybdaen-nickelstahl
GB2075549A (en) * 1980-04-11 1981-11-18 Sumitomo Metal Ind Ferritic stainless steel having good corrosion resistance
US4391635A (en) * 1980-09-22 1983-07-05 Kubota, Ltd. High Cr low Ni two-phased cast stainless steel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118218A (en) * 1977-03-25 1978-10-16 Nippon Steel Corp Stainless steel use in apparatus for purifying automotive exhaust gas
US4286986A (en) * 1979-08-01 1981-09-01 Allegheny Ludlum Steel Corporation Ferritic stainless steel and processing therefor
US4331474A (en) * 1980-09-24 1982-05-25 Armco Inc. Ferritic stainless steel having toughness and weldability
FR2589482B1 (fr) * 1985-11-05 1987-11-27 Ugine Gueugnon Sa Tole ou bande en acier ferritique inoxydable, en particulier pour systemes d'echappement
JP2514367B2 (ja) * 1987-06-27 1996-07-10 日新製鋼株式会社 自動車エンジンのマニホ−ルド用鋼
US4834808A (en) * 1987-09-08 1989-05-30 Allegheny Ludlum Corporation Producing a weldable, ferritic stainless steel strip
JPH02145752A (ja) * 1988-11-28 1990-06-05 Toshiba Corp フェライト系ステンレス鋼

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2701329B1 (de) * 1977-01-14 1977-12-22 Thyssen Edelstahlwerke Ag Korrosionsbestaendiger ferritischer chrom-molybdaen-nickelstahl
GB2075549A (en) * 1980-04-11 1981-11-18 Sumitomo Metal Ind Ferritic stainless steel having good corrosion resistance
US4391635A (en) * 1980-09-22 1983-07-05 Kubota, Ltd. High Cr low Ni two-phased cast stainless steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9114796A1 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0779374A1 (de) * 1995-12-15 1997-06-18 Nisshin Steel Co., Ltd. Rostfreier Stahl mit verbesserter antimikrobieller Eigenschaft und dessen Herstellungsverfahren
EP0795619A1 (de) * 1996-03-15 1997-09-17 USINOR SACILOR Société Anonyme Verfahren zur Herstellung rostfreies ferritisches Stahl mit erhöhte Korrosionsbeständigkeit, insbesondere Beständigkeit gegen interkristalline Korrosion und gegen Lochfrasskorrosion
FR2746114A1 (fr) * 1996-03-15 1997-09-19 Usinor Sacilor Procede d'elaboration d'un acier inoxydable ferritique presentant une resistance a la corrosion amelioree, et notamment une resistance a la corrosion intergranulaire et par piqure
US5779820A (en) * 1996-03-15 1998-07-14 Usinor Sacilor Process for producing a ferritic stainless steel having an improved corrosion resistance, especially resistance to intergranular and pitting corrosion
EP1176220A1 (de) * 2000-07-25 2002-01-30 Kawasaki Steel Corporation Ferritisch rostfreier Stahl mit guter Verformbarkeit bei Raumtemperatur und mit guten mechanischen Eigenchaften bei hoheren Temperaturen, und Verfahren zur Herstellung derselben
US6521056B2 (en) 2000-07-25 2003-02-18 Kawasaki Steel Corporation Ferritic stainless steel sheet having superior workability at room temperatures and mechanical characteristics at high temperatures
WO2003004714A1 (fr) * 2001-07-05 2003-01-16 Nisshin Steel Co., Ltd. Acier inoxydable ferritique pour element de debit de gaz d'echappement
CN1308477C (zh) * 2003-10-31 2007-04-04 烨联钢铁股份有限公司 具有良好热加工性及抗菌效果的肥粒铁系不锈钢
EP1818421A1 (de) * 2006-02-08 2007-08-15 UGINE & ALZ FRANCE Ferritischer, Niobium-stabilisierter 19% Chrom-Edelstahl
EP1818422A1 (de) * 2006-02-08 2007-08-15 Ugine & Alz France Ferritischer Edelstahl mit 19 % Chrom, der mit Niob stabilisiert ist
EP2210965A4 (de) * 2007-06-13 2010-12-08 Weidong Chen Ultradünnes flexibles rohr aus einer legierung und herstellungsverfahren dafür
EP2210965A1 (de) * 2007-06-13 2010-07-28 Weidong Chen Ultradünnes flexibles rohr aus einer legierung und herstellungsverfahren dafür
EP2060650A1 (de) * 2007-11-13 2009-05-20 Nisshin Steel Co., Ltd. Ferritischer Edelstahl für Abgasleitungskomponenten eines Fahrzeuges
CN101435054B (zh) * 2007-11-13 2012-09-12 日新制钢株式会社 汽车排气通路部件用铁素体不锈钢材料
EP2316979A1 (de) * 2008-07-23 2011-05-04 Nippon Steel & Sumikin Stainless Steel Corporation Ferritischer edelstahl zur verwendung bei der herstellung eines harnstoffwassertanks
EP2316979A4 (de) * 2008-07-23 2014-01-22 Nippon Steel & Sumikin Sst Ferritischer edelstahl zur verwendung bei der herstellung eines harnstoffwassertanks
EP2351868A4 (de) * 2008-10-24 2016-11-30 Nippon Steel & Sumikin Sst Ferritisches edelstahlblech für agr-kühlgeräte
US9243306B2 (en) 2010-03-11 2016-01-26 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet excellent in oxidation resistance
CN103210104A (zh) * 2010-11-11 2013-07-17 杰富意钢铁株式会社 抗氧化性优异的铁素体系不锈钢
CN103210104B (zh) * 2010-11-11 2016-01-20 杰富意钢铁株式会社 抗氧化性优异的铁素体系不锈钢
US20150010771A1 (en) * 2012-01-30 2015-01-08 Jfe Steel Corporation Ferritic stainless steel foil
US9920409B2 (en) * 2012-01-30 2018-03-20 Jfe Steel Corporation Ferritic stainless steel foil
US10030282B2 (en) 2012-02-15 2018-07-24 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
US9885099B2 (en) 2012-03-09 2018-02-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet
US10260134B2 (en) 2012-03-30 2019-04-16 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet for cold rolling raw material
WO2014001644A1 (en) * 2012-06-26 2014-01-03 Outokumpu Oyj Ferritic stainless steel
US10047419B2 (en) 2012-06-26 2018-08-14 Outokumpu Oyj Ferritic stainless steel
CN108611561A (zh) * 2012-06-26 2018-10-02 奥托库姆普联合股份公司 铁素体不锈钢
CN104619879A (zh) * 2012-06-26 2015-05-13 奥托库姆普联合股份公司 铁素体不锈钢
US10450623B2 (en) 2013-03-06 2019-10-22 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet having excellent heat resistance
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
EP3508598A4 (de) * 2016-09-02 2019-08-28 JFE Steel Corporation Ferritischer edelstahl
US11261512B2 (en) 2016-09-02 2022-03-01 Jfe Steel Corporation Ferritic stainless steel
EP3604589A4 (de) * 2017-05-26 2020-04-29 JFE Steel Corporation Ferritischer edelstahl
US11365467B2 (en) 2017-05-26 2022-06-21 Jfe Steel Corporation Ferritic stainless steel
EP3670692A1 (de) 2018-12-21 2020-06-24 Outokumpu Oyj Ferritischer edelstahl
WO2020127275A1 (en) 2018-12-21 2020-06-25 Outokumpu Oyj Ferritic stainless steel

Also Published As

Publication number Publication date
CA2056362C (en) 2001-08-28
DE69110816T2 (de) 1995-11-30
KR920702434A (ko) 1992-09-04
KR0180206B1 (ko) 1999-02-18
CA2056362A1 (en) 1991-09-25
EP0478790B1 (de) 1995-06-28
EP0478790A4 (en) 1992-08-12
WO1991014796A1 (en) 1991-10-03
DE69110816D1 (de) 1995-08-03
JP2696584B2 (ja) 1998-01-14
JPH03274245A (ja) 1991-12-05

Similar Documents

Publication Publication Date Title
EP0478790B1 (de) Hitzebeständiger ferritischer nichtrostender stahl mit hervorragenden eigenschaften für zähigkeit bei tiefen temperaturen, schweissbarkeit und hitzebeständigkeit
US5302214A (en) Heat resisting ferritic stainless steel excellent in low temperature toughness, weldability and heat resistance
EP1413640B1 (de) Ferritischer nichtrostender stahl für ein element einer abgasstrompassage
EP0560375B1 (de) Hitzebeständiger, ferritischer Stahl mit niedrigem Chromgehalt und mit verbesserter Dauerstandfestigkeit und Zäheit
EP0084588A2 (de) Hitze- und korrosionsfeste Schweisslegierung sowie geschweisstes Bauteil
EP0411515A1 (de) Hochfeste, hitzebeständige, niedrig legierte Stähle
SU1741611A3 (ru) Сплав на основе железа с эффектом пам ти формы
KR100308401B1 (ko) 내고온산화성및스케일밀착성이우수한페라이트계스테인레스강
JP2001059141A (ja) オーステナイト系ステンレス鋼および自動車排気系部品
JP2803538B2 (ja) 自動車排気マニホールド用フェライト系ステンレス鋼
JPH0860306A (ja) 自動車排気系部材用フェライトステンレス鋼
JP2000234140A (ja) 電縫溶接性に優れたボイラ用鋼およびそれを用いた電縫ボイラ鋼管
JP3219099B2 (ja) 耐熱性, 低温靭性および溶接性に優れたフエライト系耐熱用ステンレス鋼
JP4173611B2 (ja) 二重構造エキゾーストマニホールドの内管用オーステナイト系ステンレス鋼
JP3928200B2 (ja) 耐高温溶接割れ性および溶接熱影響部の靭性に優れるフェライト系耐熱鋼
JPH08239737A (ja) 熱間加工性および耐σ脆化性に優れた耐熱用オーステナイト系ステンレス鋼
JP4297631B2 (ja) 溶接部の耐粒界腐食性および低温靭性に優れたクロム含有鋼
JP3387145B2 (ja) 高温延性および高温強度に優れた高Crフェライト鋼
JPH0762497A (ja) 高温強度と靱性の優れた高Crフェライト系耐熱鋼
JPS6217022B2 (de)
JPH11256287A (ja) 耐高温酸化性およびスケール密着性に優れたフェライト系ステンレス鋼
JP4286055B2 (ja) 溶接部の耐粒界腐食性に優れた自動車用クロム含有鋼
JP2001262284A (ja) 溶接部の耐食性に優れた石炭焚火力発電プラント煙突内筒用クラッド鋼および煙突
JPH0959746A (ja) 高温強度に優れた高Crフェライト鋼
JPS62151548A (ja) フエライト系高Cr耐熱鋳鋼

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19920407

A4 Supplementary search report drawn up and despatched

Effective date: 19920623

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19940610

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 69110816

Country of ref document: DE

Date of ref document: 19950803

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090311

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090321

Year of fee payment: 19

Ref country code: SE

Payment date: 20090306

Year of fee payment: 19

Ref country code: DE

Payment date: 20090306

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090316

Year of fee payment: 19

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100313

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100313

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100314