EP2881661A2 - Zylinderdrehrost für einen Holzofen - Google Patents

Zylinderdrehrost für einen Holzofen Download PDF

Info

Publication number
EP2881661A2
EP2881661A2 EP14003945.4A EP14003945A EP2881661A2 EP 2881661 A2 EP2881661 A2 EP 2881661A2 EP 14003945 A EP14003945 A EP 14003945A EP 2881661 A2 EP2881661 A2 EP 2881661A2
Authority
EP
European Patent Office
Prior art keywords
transport surface
cylinder
combustion
trough
cylinder element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14003945.4A
Other languages
English (en)
French (fr)
Other versions
EP2881661A3 (de
EP2881661B1 (de
Inventor
Karl Stefan Riener
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2881661A2 publication Critical patent/EP2881661A2/de
Publication of EP2881661A3 publication Critical patent/EP2881661A3/de
Application granted granted Critical
Publication of EP2881661B1 publication Critical patent/EP2881661B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B60/00Combustion apparatus in which the fuel burns essentially without moving
    • F23B60/02Combustion apparatus in which the fuel burns essentially without moving with combustion air supplied through a grate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H13/00Grates not covered by any of groups F23H1/00-F23H11/00
    • F23H13/02Basket grates, e.g. with shaking arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H15/00Cleaning arrangements for grates; Moving fuel along grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H9/00Revolving-grates; Rocking or shaking grates
    • F23H9/02Revolving cylindrical grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • F23J1/02Apparatus for removing ash, clinker, or slag from ash-pits, e.g. by employing trucks or conveyors, by employing suction devices

Definitions

  • the present invention relates to a cylinder rotary grate and a furnace for generating heat with a cylinder rotary grate.
  • stoves for heat generation which are particularly suitable for the combustion of wood, such as logs or pellets.
  • Such ovens are typically also used in living quarters, e.g. set up in the form of a stove.
  • Such ovens typically have a grate on which the burning material to be burned is placed, with combustion residues falling through the grate into an ash box located below the grate.
  • a manual cleaning is required.
  • combustion residues typically occur which do not fall through the grate, so that the grate is covered with combustion residues over time. This can make continuous operation of a furnace over a longer period of time difficult or even impossible.
  • the grate has a series of deep circumferential grooves, in which a scraper engages on one side to remove burnt residues, which get stuck in the grooves.
  • the width of the grooves is selected according to the grain size of the fuel so that the fuel can fall down through the grooves. Combustion residues that do not fall through the grooves can be removed from the top of the grate by making the grate accessible by lowering or folding up a divider wall.
  • the object of the present invention is to provide an improved grate for a furnace for heat generation, which allows a continuous removal of combustion residues and a furnace with such a grate.
  • the present invention provides a cylinder rotating grate for a heat generating oven, in particular a wood burning stove such as a log burning stove or pellet stove, in accordance with independent claim 1.
  • a wood burning stove such as a log burning stove or pellet stove
  • the present invention provides a cylinder rotating grate for a heat generating furnace, in particular a wood burning stove such as a log burning or pelletizing furnace, in accordance with independent claim 2.
  • the present invention provides a furnace for heat generation, in particular a wood-burning stove, such as a log or pellet stove, having a cylinder rotating grate according to the first and second aspects, respectively, in accordance with independent claim 12.
  • FIG. 1 to 3 a first embodiment of a cylinder rotating grate 1 according to the present invention is illustrated. Before a detailed description follows first general explanations to the embodiments and their advantages.
  • Some embodiments relate to a cylinder rotating grate for a furnace for heat generation, in particular a wood stove, such as a log wood stove or pellet stove.
  • the cylinder rotating grate comprises a cylinder element rotatably mounted about its longitudinal axis.
  • the cylinder element may have a circular, elliptical or other cross section.
  • the cylinder element can be configured hollow or as a solid cylinder element or partially hollow.
  • the cylinder element can also be designed only as a sub-cylinder and can e.g. be open at the bottom, while the closed side is arranged upwards.
  • the cylinder element may thus have a non-closed cross section, such as e.g. a semicircular cross section, a 270 ° cross section, etc.
  • the cylinder element has a transport surface for transporting combustion residues on.
  • the transport surface is arranged on the outside of the cylinder element, ie it can be applied as a separate element on the cylinder element or it can also be integrally formed on the cylinder element, so that, for example, the surface of the cylinder element forms the transport surface.
  • the transport surface is configured at least partially cylindrical jacket-shaped. It may for example have the same shape as the cylinder element itself or it may have a different shape.
  • the cylinder rotating grate that is to say the cylinder element and / or the transport surface, does not have to be cylindrical throughout in the sense that the distance between the lateral surface and the longitudinal axis is equal over the entire longitudinal axis.
  • the cylinder rotating grate that is to say the cylinder element and / or the transport surface, can also be conical and can be made e.g. taper towards the center, so that a cross-sectional constriction forms towards the middle.
  • the cylinder rotating grate comprises a combustion trough which is arranged above the transport surface, wherein between the transport surface and the combustion trough, a gap is set such that upon rotation of the cylinder element combustion residues from the combustion trough are transported through the gap.
  • the gap is thus arranged so that with a corresponding rotation of the cylinder element, combustion residues are transported in the direction of the gap.
  • the combustion trough may, for example, have a rectangular cross-section and comprise four walls.
  • the combustion trough is open at the bottom, that is, at the bottom, on which the cylinder element is arranged below the combustion trough, it is open.
  • the gap is formed in particular between the transport surface and a lower edge of a wall of the combustion trough.
  • the gap is set so that through him combustion residues, such as ash residue and slag, are passed through the transport surface of the cylinder member, but while, for example, the ember bed is not passed through the gap, but gets stuck on the wall of the firing tray and thus remains within the firing tray ,
  • the gap thus defines a distance between the combustion trough or a wall of the combustion trough and the transport surface, which corresponds, for example, to the height of a combustion residue layer to be expected on the transport surface after a certain combustion period.
  • the gap can consequently be provided in some embodiments only on a wall of the combustion trough, namely on the wall, in the direction of which the transport surface transports combustion residues at a predetermined direction of rotation of the cylinder element.
  • the wall at which the gap between the combustion trough and the transport surface is provided formed less high than the opposite wall.
  • the cylinder rotary grate also includes a scraper, which is designed and arranged so that it scrapes combustion residues from the transport surface upon rotation of the cylinder member. It happens that incineration residues, such as slag or the like, adhere to the transport surface and are not liable to fall down by gravity, e.g. fall into a collection container for combustion residues (also called ascharge), as is typically the case for ash, when the cylinder element is e.g. rotated 360 °. Such adhering to the transport surface combustion residues can be removed by the scraper.
  • a scraper which is designed and arranged so that it scrapes combustion residues from the transport surface upon rotation of the cylinder member. It happens that incineration residues, such as slag or the like, adhere to the transport surface and are not liable to fall down by gravity, e.g. fall into a collection container for combustion residues (also called ascharge), as is typically the case for ash, when the cylinder element is e.g. rotated 360
  • the scraper may have a blade-shaped portion or region that is in contact with the transport surface, such that upon rotation of the cylinder member, the scraper scrapes combustion debris from the transport surface.
  • the scraper may be fixed at a fixed distance to the transport surface or it may, for example, be subjected to a mechanical stress, so that the scraper presses with a predetermined contact pressure on the transport surface.
  • the scraper may be mechanically biased by means of a spring or a hydraulic means.
  • the cylinder element may be rotatably mounted on the longitudinal axis, also called cylinder axis, for example by a shaft or the like.
  • the cylinder rotating grate may be equipped with a motor that can rotate the cylinder element accordingly.
  • the engine can be controlled, for example, by a controller that is included in the cylinder rotary grate or the oven.
  • the engine may, for example, continuously slow down to remove the combustion residues, as required, or it may be used at intervals for one or it can rotate at intervals, for example, the cylinder element by 360 °, etc.
  • the cylinder rotating grate includes a further scraper, which is also called the second scraper in the following.
  • the second scraper may be arranged opposite to the (first) scraper such that the cylinder element between the (first) scraper and the second scraper is arranged.
  • the one (e.g., first) scraper can remove combustion debris in one direction of rotation of the cylinder member, and the other (second) scraper can remove combustion debris in the opposite direction of rotation.
  • the cylinder element may also be configured only as a half-cylinder or the like and / or be open at the bottom, so that the cylinder element requires less space and is inexpensive to produce, since less material is needed.
  • the transport surface has a first and a second portion, wherein a step is arranged between the first and the second portion.
  • a step is arranged between the first and the second portion.
  • the gap between the first portion and the combustion bowl is greater than the gap between the second portion and the combustion bowl.
  • the step between the first section and the second section may be perpendicular or at another angle, e.g. 60 ° or 45 °, be formed to the transport surface.
  • the cylinder rotary grate for a furnace for heat generation in particular a wood-burning stove, such as a log or pellet stove, comprises a cylinder element rotatably mounted about its longitudinal axis and a transporting surface for transporting combustion residues on the cylinder element is arranged, wherein the transport surface is at least partially designed like a cylinder jacket, as has already been explained above.
  • the cylinder rotating grate comprises in some embodiments, a combustion trough, which is arranged above the transport surface, wherein between the transport surface and the fuel trough a distance is provided and the transport surface is formed eccentrically to the longitudinal axis of the cylinder member, so that the distance between the transport surface and the combustion trough by rotation of the cylinder element changed and thereby a minimum gap and a maximum gap between the combustion trough and the transport surface is adjustable.
  • the maximum gap can be designed so that it leaves combustion residues from the combustion trough during rotation of the transport surface, but, as also explained above, the ember bed essentially remains in the combustion trough.
  • the change between maximum and minimum gap can serve in some embodiments to transport combustion residues in the direction of rotation of the cylinder element and to transport accordingly out of the combustion trough out.
  • the edge of the combustion trough can be designed as a wiper for stripping combustion residues from the transport surface.
  • the minimum gap must be provided so that the edge of the firing trough has contact with the transport surface or the gap is so small that adhesive combustion residues can be removed, as has already been described above for a wiper.
  • the edge of the combustion bowl may also have a blade-shaped portion or the like.
  • eccentric transport surface of the cylinder rotary grate may additionally comprise a scraper, which is designed and arranged so that it scrapes combustion residues from the transport surface upon rotation of the cylinder member, as already explained above.
  • the transport surface may include air openings.
  • primary air can be guided through the transport surface into the combustion trough.
  • the cylinder member having a primary air connection the primary air, for example.
  • a shaft on which the cylinder element is rotatably mounted may be formed as a hollow shaft, which also forms a primary air supply at the same time and, for example, primary air passes through the air openings in the transport surface.
  • the transport surface may also have a structure for transporting the combustion residues.
  • the structure may be configured as elevations, e.g. as nubs, tips, or the like.
  • the scraper and / or the combustion trough may have negative recesses, so that upon rotation of the cylinder member, the elements of the structure does not abut against the wall of the combustion trough, or so that the wiper makes good contact with the transport surface and the combustion residues also from the Stripping structural elements and between the structural elements.
  • the structure may also be formed spirally or helically with a slope and thereby support the transport of the combustion residues in the direction of rotation of the cylinder member.
  • the spiral or helical structure may also cause a transport of combustion residues in the longitudinal direction of the transport surface, i. a transport along the slope of the structure.
  • an outlet opening may also be provided on an end face of the firing trough, so that there the combustion residues exit and, for example, can be cleaned off the transport surface by means of a brush or a differently designed wiper.
  • the cylinder element can also be displaceable along its longitudinal axis. Thereby, e.g. a shaking movement is performed, the combustion remains evenly distributed on the transport surface, e.g. before the cylinder element is rotated to remove the combustion residues from the combustion trough.
  • Some embodiments relate to a furnace for heat generation, in particular wood burning stove, such as log burning stove or pellet stove.
  • the furnace includes a combustion chamber in which fuel such as logs or pellets or other biomass-based fuel is burned.
  • the furnace comprises a cylinder rotating grate, as described above, wherein the combustion trough is arranged in the combustion chamber.
  • the oven includes a collecting container for combustion residues, wherein the cylinder rotating grate is arranged above the collecting container, so that combustion residues are transported out by rotating the cylinder member through the transport surface from the combustion trough and fall from the transport surface by gravity into the collecting container. Both combustion residues can fall into the collecting container, which lie loosely on the transport surface, as well as those that are, for example, stripped by a scraper from the transport surface.
  • the furnace may also have an automatic fuel supply, as e.g. for pellet stoves is known, so that fuel can be automatically routed for combustion in the firing tray.
  • an automatic fuel supply as e.g. for pellet stoves is known, so that fuel can be automatically routed for combustion in the firing tray.
  • the furnace or cylinder rotating grate comprises a controller adapted to drive, e.g. having an electric motor for controlling the cylinder element.
  • the control can, for example, control the drive in such a way that the cylinder element is driven continuously and thus continuously removes combustion residues from the combustion trough.
  • the drive can also be controlled so that the cylinder element at time intervals, that is, after a predetermined period of time, drives the cylinder member and rotates by a predetermined angular amount.
  • the cylinder element can thereby execute a complete 360 ° rotation or cover only a partial angle range, e.g. 45 °, 60 °, 90 °, etc.
  • the cylinder member may also be rotated forward and backward by a certain angle of rotation, e.g. in the embodiment described above with two stripping makes sense.
  • the controller may be configured to move the cylinder member along its longitudinal direction, as discussed above.
  • the drive can be designed to also perform the linear movement in addition to the rotational movement or it is provided according to a linear drive.
  • FIG. 1 to 3 There is shown a first embodiment of a cylinder rotating grate 1 in a three-dimensional view.
  • like reference numerals are used for like elements and like reference numerals, which differ only by a dash, are used for similar elements, so that embodiments for such elements made in connection with an embodiment are analogous to the same or similar element in a other embodiment apply.
  • the cylinder rotating grate has a cylinder element 2 with a transport surface 3, which is formed as a surface of the cylinder element 2. Above the cylinder element 2, and thus also above the transport surface 3 formed as the surface of the cylinder element 2, there is arranged a combustion trough 4, in which fuel, such as e.g. Logs or pellets can be filled for combustion.
  • fuel such as e.g. Logs or pellets
  • the combustion trough 4 is open at the bottom, so that fuel directly rests on the transport surface 3, which is accessible in the operating state of the cylinder rotating grate 1 in the lower opening of the combustion trough 4.
  • the combustion trough 4 has four walls and has a similar longitudinal extent as the cylinder element 2 and the transport surface 3.
  • the combustion trough 4 has two longer opposite walls 10 and 11 and two shorter end walls 15 and 16.
  • the end walls 15 and 16 are respectively at the bottom cut out so circular that they follow the circular cylinder jacket-shaped surface partially, so that the distance between the end walls 15 and 16 of the combustion trough 4 to the transport surface 3 is low and, for example Embers and / or combustion residues and fuel does not fall through the gap between the transport surface 3 and the respective end wall 15 and 16.
  • the longer walls 11 and 10 are each formed straight at the lower edge, wherein the in Fig. 2 shown left side wall 11 is higher than the right side wall 10.
  • the left side wall 11 is located just above the transport surface 3, so that by the resulting gap 12 no combustion residues, embers or fuel parts can fall.
  • FIG. 2 As in Fig. 2 is shown in the view shown, the direction of rotation of the cylinder member 2 in a clockwise direction, so that combustion residues that are in the combustion trough 4 on the transport surface 3 of the cylinder member 2 are pushed upon rotation of the cylinder member 2 in a clockwise direction in the direction of the Abscheidespalts 5 and further Rotation can be pushed through him. Combustion residues which do not adhere or stick to the transport surface 3 fall down from the transport surface 3 due to the gravitational force acting on them.
  • the cylinder element 2 is internally provided with a cavity 9 and is mounted via a shaft 7, which is designed as a hollow shaft and can be supplied via the primary air, which are guided through holes 13 in the transport surface 3 of the cylinder member 2 from below into the combustion trough 4 can.
  • the shaft 9 is connected via struts 8 (or full surface) with the lateral surface of the hollow cylindrical cylinder element 2 and thereby secured.
  • a scraper 6 is arranged on the opposite side of the Abscheidespalts 5 on the circumference of the cylinder element 2.
  • the scraper 6 has a blade-shaped end portion 6a, whose sharp edge is arranged at a small distance from the transport surface 3, so that the sharp edge scrape combustion residues adhering to the transport surface 3, when the transport surface 3 by rotation of the cylinder member 2 along her moves.
  • the scraper 6 is mounted in a fixed position.
  • the wiper 6 can also be made e.g. be acted upon by a spring and press with a predetermined contact pressure on the transport surface 3.
  • the cylinder element 2 can still be displaced in the longitudinal direction, as it is also by the in Fig. 3 illustrated double arrow is illustrated. As a result, the cylinder element 2 can perform a vibrating motion through which combustion residues, which lie in the combustion trough 4 on the transport surface 3, are distributed on the transport surface 3, before they are pushed out through the separation gap 5 by rotation of the cylinder element 2.
  • the cylinder rotating grate 1 ' has two scrapers a first scraper 6 (left side) with a blade-shaped end portion 6a and opposite a second scraper 6' (right side), which has a blade-shaped end portion 6a '.
  • the cylinder element 2 ' is provided below with a cutout 17 and has a cavity 9'.
  • the cylinder element 2 ' as indicated by the arrows, rotatable clockwise and counterclockwise, so depending on the direction of rotation of the left scraper 6 or the right scraper 6' combustion residues from the transport surface 3 'of the cylinder element 2 'strips.
  • the remaining elements of the cylinder rotating grate 1 ' correspond to those of the first embodiment.
  • the cylinder rotating grate 1 ' has a combustion trough 4, which is arranged above the cylinder element 2', so that the side walls 11 and 10 are arranged at a small distance 12 or with the deposition gap 5 above the transport surface 3, as described in detail above ,
  • the transporting surface 3 "of the cylindrical member 2" is formed so that two steps 14a and 14b are respectively formed at a junction between a first conveying surface portion 3a "and a second conveying surface portion 3b".
  • the first transport surface section 3a is farther from the longitudinal axis of the cylinder element 2" and thus closer to the firing trough 4, while the second transport surface section 3b "is closer to the longitudinal axis and therefore further away from the firing trough 4.
  • the combustion trough 4 is designed exactly as it has already been explained in connection with the first embodiment.
  • the separation gap 5, which is defined as described above between the right side wall 10 of the combustion trough 4 and the transport surface 3", and the gap 12, as described above, between the left side wall 11 and the transport surface 3 "is formed, vary.
  • the first conveying surface section 3a " is at the top arranged so that it forms the bottom of the combustion trough 4.
  • the configuration corresponds to that of Fig. 1 since here the gap 12 is small and the separation gap 5 is designed essentially as it is also the case in the first embodiment, that is, it is dimensioned so that the combustion residues are transported out in a clockwise direction upon rotation of the cylinder element 2 ", while the ember remains in the combustion trough 4.
  • the wiper 6 is arranged here so that it can strip off the combustion residues on the first transport surface section 3a "since no adhering combustion residues are to be expected on the second transport surface section 3b" since the combustion substantially occurs the first transport surface portion 3a "takes place and the ember comes into contact with the second transport surface portion 3b" for a short time only when rotating the cylinder member 2 "by 360 °.
  • the stage 14a comes into the region of the combustion trough 4, so that the material in the combustion trough 4, ie combustion residues, embers and fuel after passing through the step 14a on the second transport surface portion 3b" fall through him and be entrained by rotation of the cylinder member 2 and are transported by the now increased by the height difference between the first 3a "and second 3b" transport surface portion Abscheidespalt 5 from the combustion trough 4.
  • the second step 14b After another half turn, ie after a total of approximately three quarters of a revolution of the cylinder element 2 ", the second step 14b enters the region of the combustion trough 4 and pushes combustion residues which lie on the second transport surface section 3b" before it and out of the enlarged separation gap 5 out of the combustion trough 4 out.
  • the cylinder element 2 has a cavity 9" and a shaft 7 which is fastened via struts 8 "(or over the entire surface) to the lateral surface of the cylinder element 2".
  • the struts 8 are of different lengths since the first transport surface section 3a" is farther from the central axis than the second transport surface section 3b "and consequently the struts 8" leading from the shaft 7 to the first transport surface section 3a " longer than struts 8 ", which lead to the second transport surface portion 3b".
  • the two steps 14a and 14b are arranged in the present embodiment such that the first transport surface section 3a "occupies a larger surface area of the entire transport surface 3" than the second transport surface section 3b ".
  • the first 3a" and second 3b " Transport surface portion be the same size or it is the second 3b "larger than the first 3a”.
  • a fourth embodiment of a cylinder rotating grate 1 '" is in the Fig. 6a and 6b
  • the transporting surface 3 '" is designed eccentrically and wherein no scraper is provided.
  • the cylinder rotating grate 1'" is similar to that of the third embodiment.
  • the minimum distance position 12 '' ' is the operating position in which combustion takes place on the area of the transport surface 3' '' located in the combustion trough 4 '' ', here the minimum distance 12' '' is between the two side walls 11 '"and 10'" present and set so that no combustion residues, Glutmaschine or fuel particles fall through.
  • the cylinder element 2 '" is provided with a cavity 9'" and a shaft 7 is arranged off-center (eccentric) and with struts 8 '"(or full surface) on the lateral surface of the cylinder element 2'" attached.
  • an edge of a sidewall e.g. the lower edge of the left side wall 11, be designed as a scraper.
  • a separate wiper such as e.g. the scraper 6 of the first embodiment or even two scrapers 6, 6 ', as in the second embodiment, be provided.
  • the scraper can be designed so that it follows the eccentrically formed transport surface 3 '"upon rotation of the cylinder member 2'".
  • the scraper may be displaced and tensioned with a spring.
  • Fig. 7 schematically illustrates a wood oven 20 with a combustion chamber 21, in which, by way of example, the cylinder rotary grate 1 of the first embodiment is arranged.
  • the combustion trough 4 is arranged in the combustion chamber 21 and below the cylinder rotary grate 1, an ash tray 22 is arranged.
  • a primary air supply 23 is coupled to the hollow shaft 7 of the cylinder rotating grate 1 and carries primary air through the cylinder element 2 in the combustion trough 4, as in the context of the above with the first embodiment of the Fig. 1 to 3 was explained.
  • a flue gas outlet 24 is arranged above the combustion chamber 21.
  • the upper unburned combustion layers (ember bed) remain in the combustion trough 4, whereby a removal of combustion residues from the combustion trough 4 is possible without interrupting the combustion. Due to the rotation of the cylinder element and the upper unburned combustion layers (ember bed) are loosened, whereby a slagging (especially with poor fuel quality) is additionally counteracted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Fuel Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

Die Erfindung betrifft einen Zylinderdrehrost für einen Ofen zur Wärmeerzeugung, insbesondere einen Holzofen, wie einen Scheitholzofen oder Pelletofen, mit: einem um seine Längsachse drehbar gelagerten Zylinderelement (2); einer Transportfläche (3) zum Transportieren von Verbrennungsrückständen, die an dem Zylinderelement (2) angeordnet ist, wobei die Transportfläche (3) wenigstens teilweise zylindermantelförmig ausgestaltet ist; einer Brennmulde (4), die oberhalb der Transportfläche (3) angeordnet ist. wobei zwischen der Transportfläche (3) und der Brennmulde (4) ein Spalt (5) derart festgelegt ist, dass bei Drehung des Zylinderelements (2) Verbrennungsrückstände aus der Brennmulde (4) durch den Spalt transportiert werden; und einem Abstreifer (6), der derart ausgebildet und angeordnet ist, dass er Verbrennungsrückstände von der Transportfläche (3) bei Drehung des Zylinderelements (2) abstreift. Zusätzlich kann das Zylinderelement (2) entlang seiner Längsachse verschiebbar sein.

Description

    GEBIET DER ERFINDUNG
  • Die vorliegende Erfindung bezieht sich auf einen Zylinderdrehrost und einen Ofen zur Wärmeerzeugung mit einem Zylinderdrehrost.
  • HINTERGRUND DER ERFINDUNG
  • Es sind allgemein Öfen zur Wärmeerzeugung bekannt, die insbesondere zur Verbrennung von Holz, wie Scheitholz oder Pellets, geeignet sind. Solche Öfen werden typischerweise auch in Wohnräumen, z.B. in der Form eines Kaminofens aufgestellt.
  • Solche Öfen haben typischerweise einen Rost, auf dem das zu verbrennende Brenn-material angeordnet wird, wobei Verbrennungsrückstände durch den Rost in einen Aschekasten fallen, der unterhalb des Rostes angeordnet ist. Bei dieser bekannten Art von Rost ist eine manuelle Reinigung erforderlich. Außerdem entstehen typischerweise Verbrennungsrückstände, die nicht durch den Rost fallen, sodass der Rost mit der Zeit mit Verbrennungsrückständen bedeckt ist. Dies kann einen kontinuierlichen Betrieb eines Ofens über einen längeren Zeitraum erschweren oder sogar unmöglich machen. Außerdem ist es bekannt, Primärluft durch den Rost von unten der Verbrennung zuzuführen, sodass die Luftzufuhr verschlechtert oder sogar unterbrochen wird, wenn Verbrennungsrückstände die Öffnungen des Rostes, durch die Primärluft zugeführt wird, verschließen.
  • Aus der Patentschrift AT 506 411 B1 und der Offenlegungsschrift DE 198 32 115 A1 ist es bekannt, einen drehbaren oder kippbaren Rost vorzusehen und mit einem Abstreifer zu reinigen, um Verbrennungsrückstände automatisch von dem Rost zu entfernen. Zwar sind solche Roste in der Lage, eine automatische Reinigung vorzusehen, allerdings erlauben diese keinen dauerhaften Betrieb eines Ofens, da beim Drehen oder Kippen des Rostes auch das im Ofen vorhandene Glutbett abgekippt wird. Dementsprechend ist ein neues Starten der Verbrennung nach der Reinigung des Rostes nötig.
  • Aus der Patentschrift AT 410 128 B ist ein walzenförmiger Feuerrost für eine kontinuierliche Entaschung bekannt. Der Feuerrost hat eine Reihe von tiefen umlaufenden Nuten, in die auf einer Seite ein Abstreifer eingreift, um Verbrennungsreste zu entfernen, die in den Nuten hängenbleiben. Die Breite der Nuten ist entsprechend der Korngröße des Brennstoffs gewählt, sodass der Brennstoff durch die Nuten nach unten fallen kann. Verbrennungsreste, die nicht durch die Nuten fallen, können von der Oberseite des Feuerrostes entfernt werden, indem der Feuerrost durch Absenken oder durch Hochklappen einer Trennwand zugänglich gemacht wird.
  • Aufgabe der vorliegenden Erfindung ist es, einen verbesserten Rost für einen Ofen zur Wärmeerzeugung bereitzustellen, der eine kontinuierliche Entfernung von Verbrennungsrückständen erlaubt und einen Ofen mit einem solchen Rost.
  • KURZFASSUNG DER ERFINDUNG
  • Nach einem ersten Aspekt stellt die vorliegende Erfindung einen Zylinderdrehrost für einen Ofen zur Wärmeerzeugung, insbesondere einen Holzofen, wie einen Scheitholzofen oder Pelletofen, in Übereinstimmung mit dem unabhängigen Anspruch 1 bereit. Nach einem zweiten Aspekt stellt die vorliegende Erfindung einen Zylinderdrehrost für einen Ofen zur Wärmeerzeugung, insbesondere einen Holzofen, wie einen Scheitholzofen oder Pelletofen, in Übereinstimmung mit dem unabhängigen Anspruch 2 bereit. Nach einem dritten Aspekt stellt die vorliegende Erfindung einen Ofen zur Wärmeerzeugung, insbesondere einen Holzofen, wie einen Scheitholzofen oder Pelletofen, mit einem Zylinderdrehrost nach dem ersten bzw. zweiten Aspekt in Übereinstimmung mit dem unabhängigen Anspruch 12.
  • Weitere Aspekte und Merkmale der vorliegenden Erfindung ergeben sich aus den abhängigen Ansprüchen, der beigefügten Zeichnung und der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele.
  • KURZBESCHREIBUNG DER ZEICHNUNG
  • Ausführungsbeispiele der Erfindung werden nun beispielhaft und unter Bezugnahme auf die beigefügten Zeichnungen beschrieben, in der:
    • Fig. 1 ein erstes Ausführungsbeispiel eines Zylinderdrehrostes gemäß der vorliegenden Erfindung in einer rein schematischen Darstellung veranschaulicht;
    • Fig. 2 den Zylinderdrehrost von Fig. 1 in einer Frontansicht veranschaulicht;
    • Fig. 3 eine Linearbewegung entlang einer Längsachse des Zylinderdrehrosts von Fig. 1 veranschaulicht.
    • Fig. 4 ein zweites Ausführungsbeispiel eines Zylinderdrehrostes gemäß der vorliegenden Erfindung in einer rein schematischen Darstellung veranschaulicht;
    • Fig. 5 ein drittes Ausführungsbeispiel eines Zylinderdrehrostes gemäß der vorliegenden Erfindung in einer rein schematischen Darstellung veranschaulicht;
    • Fig. 6a ein viertes Ausführungsbeispiel eines Zylinderdrehrostes gemäß der vorliegenden Erfindung in einer rein schematischen Darstellung veranschaulicht, wobei der Zylinderdrehrost in Betriebsstellung ist;
    • Fig. 6b den Zylinderdrehrost von Fig. 6a nach einer 180°-Drehung des Zylinderelements des Zylinderdrehrosts zeigt; und
    • Fig. 7 ein Ausführungsbeispiel eines Ofens mit einem Zylinderdrehrostes gemäß der vorliegenden Erfindung in einer rein schematischen Darstellung veranschaulicht.
    BESCHREIBUNG DER BEVORZUGTEN AUSFÜHRUNGSBEISPIELE
  • In den Fig. 1 bis 3 ist ein erstes Ausführungsbeispiel eines Zylinderdrehrosts 1 gemäß der vorliegenden Erfindung veranschaulicht. Vor einer detaillierten Beschreibung folgen zunächst allgemeine Erläuterungen zu den Ausführungsbeispielen und deren Vorteile.
  • Manche Ausführungsbeispiele betreffen einen Zylinderdrehrost für einen Ofen zur Wärmeerzeugung, insbesondere einen Holzofen, wie einen Scheitholzofen oder Pelletofen.
  • Der Zylinderdrehrost umfasst ein um seine Längsachse drehbar gelagertes Zylinder-element. Das Zylinderelement kann dabei einen kreisförmigen, elliptischen oder anderen Querschnitt aufweisen. Außerdem kann das Zylinderelement hohlförmig ausgestaltet sein oder als Vollzylinderelement oder teilweise hohlförmig. Das Zylinderelement kann auch nur als Teilzylinder ausgebildet sein und kann z.B. nach unten hin offen sein, während die geschlossene Seite nach oben hin angeordnet ist. Das Zylinderelement kann folglich einen nicht geschlossenen Querschnitt aufweisen, wie z.B. einen halbkreisförmigen Querschnitt, einen Querschnitt mit 270°, usw.
  • Das Zylinderelement weist eine Transportfläche zum Transportieren von Verbrennungsrückständen auf. Die Transportfläche ist an dem Zylinderelement außen angeordnet, d.h. sie kann als gesondertes Element auf dem Zylinderelement aufgebracht sein oder sie kann auch integral an dem Zylinderelement ausgebildet sein, sodass z.B. die Oberfläche des Zylinderelements die Transportfläche bildet. Die Transportfläche ist wenigstens teilweise zylindermantelförmig ausgestaltet. Sie kann z.B. die gleiche Form aufweisen, wie das Zylinderelement selbst oder sie kann eine davon abweichende Form aufweisen.
  • Der Zylinderdrehrost, das heißt das Zylinderelement und/oder die Transportfläche, muss nicht durchgehend in dem Sinne zylindrisch ausgeführt sein, dass der Abstand der Mantelfläche zur Längsachse hin über die gesamte Längsachse gleich ist. Der Zylinderdrehrost, das heißt das Zylinderelement und/oder die Transportfläche, kann auch konisch ausgebildet sein und kann sich z.B. zur Mitte hin verjüngen, sodass sich eine Querschnittsverengung zur Mitte hin ausbildet.
  • Der Zylinderdrehrost umfasst eine Brennmulde, die oberhalb der Transportfläche angeordnet ist, wobei zwischen der Transportfläche und der Brennmulde ein Spalt derart festgelegt ist, dass bei Drehung des Zylinderelements Verbrennungsrückstände aus der Brennmulde durch den Spalt transportiert werden. Der Spalt ist also so angeordnet, dass bei entsprechender Drehung des Zylinderelements, Verbrennungsrückstände in Richtung des Spalts transportiert werden. Die Brennmulde kann z.B. einen rechteckigen Querschnitt aufweisen und vier Wände umfassen. Die Brennmulde ist unten offen, das heißt an der Unterseite, an der das Zylinderelement unterhalb der Brennmulde angeordnet ist, ist sie offen. Der Spalt ist insbesondere zwischen der Transportfläche und einem unteren Rand einer Wand der Brennmulde ausgebildet. Der Spalt ist so festgelegt, dass durch ihn Verbrennungsrückstände, wie Aschereste und Schlacke, durch die Transportfläche des Zylinderelements geführt werden, während aber z.B. das Glutbett nicht durch den Spalt geführt wird, sondern an der Wand der Brennmulde hängen bleibt und somit innerhalb der Brennmulde verbleibt. Der Spalt legt folglich einen Abstand zwischen der Brennmulde bzw. einer Wand der Brennmulde und der Transportfläche fest, der z.B. der Höhe einer nach einer bestimmten Verbrennungsdauer zu erwartenden Verbrennungsrückstandsschicht auf der Transportfläche entspricht. Dadurch ist es möglich, gezielt Verbrennungsrückstände aus der Brennmulde zu entfernen, während das Glutbett in der Brennmulde verbleibt, wodurch ein Entfernen der Verbrennungsrückstände möglich ist, ohne, dass dabei die in der Brennmulde stattfindende Verbrennung unterbrochen wird. Dementsprechend ist nach Entfernen der Verbrennungsrückstände durch Drehen des Zylinderelements auch kein neues Anzünden des Brennmaterials in der Brennmulde erforderlich.
  • Der Spalt kann folglich bei manchen Ausführungsbeispielen nur an einer Wand der Brennmulde vorgesehen sein, nämlich an der Wand, in deren Richtung die Transportfläche Verbrennungsrückstände bei einer vorgegebenen Drehrichtung des Zylinderelements transportiert. Bei manchen Ausführungsbeispielen ist die Wand, an der der Spalt zwischen Brennmulde und Transportfläche vorgesehen ist, weniger hoch ausgebildet als die gegenüberliegende Wand.
  • Der Zylinderdrehrost umfasst außerdem einen Abstreifer, der derart ausgebildet und angeordnet ist, dass er Verbrennungsrückstände von der Transportfläche bei Drehung des Zylinderelements abstreift. Es kommt vor, dass Verbrennungsrückstände, wie bspw. Schlacke oder dergleichen, an der Transportfläche haften bleiben und nicht durch die Schwerkraft nach unten, z.B. in einen Auffangbehälter für Verbrennungsrückstände (auch Aschelade genannt) fallen, wie es typischerweise für Asche der Fall ist, wenn das Zylinderelement z.B. um 360° gedreht wird. Solche an der Transportfläche haftenden Verbrennungsrückstände können durch den Abstreifer entfernt werden.
  • Der Abstreifer kann einen klingenförmigen Abschnitt oder Bereich aufweisen, der in Kontakt mit der Transportfläche steht, sodass bei Drehen des Zylinderelements, der Abstreifer Verbrennungsrückstände von der Transportfläche abstreift bzw. abschabt. Der Abstreifer kann in einem festen Abstand zu der Transportfläche befestigt sein oder er kann bspw. mit einer mechanischen Spannung beaufschlagt sein, sodass der Abstreifer mit einem vorgegebenen Anpressdruck auf die Transportfläche drückt. Der Abstreifer kann mittels einer Feder oder einem hydraulischen Mittel mechanisch vorgespannt sein.
  • Das Zylinderelement kann an der Längsachse, auch Zylinderachse genannt, drehbar gelagert sein, z.B. durch eine Welle oder dergleichen. Außerdem kann der Zylinderdrehrost bei manchen Ausführungsbeispielen mit einem Motor ausgestattet sein, der das Zylinderelement entsprechend drehen kann. Der Motor kann dabei bspw. von einer Steuerung angesteuert werden, die in dem Zylinderdrehrost oder dem Ofen enthalten ist. Der Motor kann sich zum Entfernen der Verbrennungsrückstande z.B. je nach Anforderung kontinuierlich langsam drehen oder er kann in Intervallen für eine vorgegebene Strecke gedreht werden oder er kann in Intervallen z.B. das Zylinderelement um 360° drehen, usw.
  • Bei manchen Ausführungsbeispielen umfasst der Zylinderdrehrost einen weiteren Abstreifer, der im Folgenden auch zweiter Abstreifer genannt wird. Der zweite Abstreifer kann gegenüberliegend zum (ersten) Abstreifer derart angeordnet sein, dass das Zylinderelement zwischen dem (ersten) Abstreifer und dem zweiten Abstreifer angeordnet ist. Der eine (z.B. erste) Abstreifer kann Verbrennungsrückstände bei einer Drehrichtung des Zylinderelements entfernen und der andere (zweite) Abstreifer kann bei der entgegensetzen Drehrichtung Verbrennungsrückstände entfernen. Dadurch ist es bei manchen Ausführungsbeispielen nicht notwendig, das Zylinderelement vollständig um 360° zu drehen, sondern, je nach Anordnung des Abstreifers, kann z.B. eine halbe Drehung des Zylinderelements ausreichen, um den Bereich der Transportfläche zu säubern, der in der Brennmulde angeordnet ist und auf dem Brennmaterial verbrannt wird. Dementsprechend kann z.B. das Zylinderelement auch nur als Halbzylinder oder dergleichen ausgestaltet sein und/oder unten offen sein, sodass das Zylinderelement weniger Platz benötigt und kostengünstig herstellbar ist, da weniger Material benötigt wird.
  • Bei manchen Ausführungsbeispielen weist die Transportfläche einen ersten und einen zweiten Abschnitt auf, wobei zwischen dem ersten und dem zweiten Abschnitt eine Stufe angeordnet ist. Dabei kann z.B. der Spalt zwischen dem ersten Abschnitt und der Brennmulde größer sein als der Spalt zwischen dem zweiten Abschnitt und der Brennmulde. Die Stufe zwischen dem ersten Abschnitt und dem zweiten Abschnitt kann senkrecht oder in einem anderen Winkel, z.B. 60° oder 45°, zur Transportfläche ausgebildet sein. Bei Drehung des Zylinderelements können sich z.B. die Verbrennungsrückstände zunächst auf dem ersten Abschnitt der Transportfläche ansammeln, der weiter von der Brennmulde entfernt ist als der zweite Abschnitt, wobei bei weiterer Drehung die Verbrennungsrückstände gegen die Stufe stoßen und der erste Abschnitt zusammen mit der Stufe die Verbrennungsrückstände aus der Brennmulde heraustransportiert.
  • Bei manchen Ausführungsbespielen umfasst der Zylinderdrehrost für einen Ofen zur Wärmeerzeugung, insbesondere einen Holzofen, wie einen Scheitholzofen oder Pelletofen, ein um seine Längsachse drehbar gelagertes Zylinderelement und eine Transportfläche zum Transportieren von Verbrennungsrückständen, die an dem Zylinderelement angeordnet ist, wobei die Transportfläche wenigstens teilweise zylindermantelförmig ausgestaltet ist, wie es oben bereits erläutert wurde.
  • Der Zylinderdrehrost umfasst bei manchen Ausführungsbeispielen eine Brennmulde, die oberhalb der Transportfläche angeordnet ist, wobei zwischen der Transportfläche und der Brennmulde ein Abstand vorgesehen ist und die Transportfläche exzentrisch zur Längsachse des Zylinderelements ausgebildet ist, sodass sich der Abstand zwischen Transportfläche und Brennmulde durch Drehung des Zylinderelements verändert und dadurch ein minimaler Spalt und ein maximaler Spalt zwischen der Brennmulde und der Transportfläche einstellbar ist.
  • Der maximale Spalt kann dabei so ausgebildet sein, dass er Verbrennungsrückstände aus der Brennmulde bei Drehung der Transportfläche herauslässt, aber, wie auch oben erklärt, das Glutbett im Wesentlichen in der Brennmulde verbleibt. Der Wechsel zwischen maximalem und minimalem Spalt kann bei manchen Ausführungsbeispielen dazu dienen, Verbrennungsrückstände in Drehrichtung des Zylinderelements zu transportieren und entsprechend aus der Brennmulde heraus zu transportieren.
  • Bei solchen Ausführungsbeispielen mit exzentrischer Transportfläche kann die Kante der Brennmulde als Abstreifer zum Abstreifen von Verbrennungsrückständen von der Transportfläche ausgebildet sein. Dabei kann z.B. der minimale Spalt so vorgesehen sein, dass die Kante der Brennmulde Kontakt zur Transportfläche hat oder der Spalt so klein ist, dass haftende Verbrennungsrückstände entfernt werden können, wie es weiter oben schon für einen Abstreifer beschrieben wurde. Die Kante der Brennmulde kann auch einen klingenförmigen Abschnitt oder dergleichen aufweisen.
  • Bei solchen Ausführungsbeispielen mit exzentrischer Transportfläche kann der Zylinderdrehrost zusätzlich einen Abstreifer umfassen, der derart ausgebildet und angeordnet ist, dass er Verbrennungsrückstände von der Transportfläche bei Drehung des Zylinderelements abstreift, wie es auch schon oben erläutert wurde.
  • Allgemein kann bei manchen Ausführungsbeispielen die Transportfläche Luftöffnungen aufweisen. Dadurch kann Primärluft durch die Transportfläche in die Brennmulde geführt werden. Außerdem kann, wie oben bereits angedeutet, bei manchen Ausführungsbeispielen das Zylinderelement einen Primärluftanschluss aufweisen, der Primärluft bspw. durch einen Hohlraum im Zylinderelement durch die Luftöffnungen führt. Bei manchen Ausführungsbeispielen kann auch eine Welle, an der das Zylinderelement drehbar gelagert ist, als Hohlwelle ausgebildet sein, die auch gleichzeitig eine Primärluftzufuhr bildet und z.B. Primärluft durch die Luftöffnungen in der Transportfläche führt.
  • Die Transportfläche kann bei manchen Ausführungseispielen auch eine Struktur zum Transportieren der Verbrennungsrückstände aufweisen. Die Struktur kann als Erhebungen ausgestaltet sein, z.B. als Noppen, Spitzen, oder dergleichen. Bei solchen Ausführungsbeispielen kann der Abstreifer und/oder die Brennmulde negative Aussparungen aufweisen, damit bei der Drehung des Zylinderelements die Elemente der Struktur nicht gegen die Wand der Brennmulde stoßen, bzw. damit der Abstreifer einen guten Kontakt zur Transportfläche herstellt und die Verbrennungsrückstände auch von den Strukturelementen und zwischen den Strukturelementen abstreifen kann.
  • Die Struktur kann auch spiralförmig oder schneckenförmig mit einer Steigung ausgebildet sein und dadurch den Transport der Verbrennungsrückstände in der Drehrichtung des Zylinderelements unterstützen. Die spiral- oder schneckenförmige Struktur kann außerdem einen Transport von Verbrennungsrückständen in die Längsrichtung der Transportfläche bewirken, d.h. einen Transport entlang der Steigung der Struktur. Dabei kann auch an einer Stirnseite der Brennmulde eine Austrittsöffnung vorgesehen sein, sodass dort die Verbrennungsrückstände austreten und bspw. mittels einer Bürste oder einem andersartig ausgebildeten Abstreifer von der Transportfläche abgereinigt werden können.
  • Das Zylinderelement kann auch entlang seiner Längsachse verschiebbar sein. Dadurch kann z.B. eine Rüttelbewegung ausgeführt werden, die Verbrennungsreste auf der Transportfläche gleichmäßig verteilt, z.B. bevor das Zylinderelement zum Heraustransportieren der Verbrennungsrückstände aus der Brennmulde gedreht wird.
  • Manche Ausführungsbeispiele betreffen einen Ofen zur Wärmeerzeugung, insbesondere Holzofen, wie Scheitholzofen oder Pelletofen. Der Ofen umfasst einen Brennraum, in dem Brennmaterial, wie Scheitholz oder Pellets oder ein anderes auf Biomasse beruhendes Brennmaterial verbrannt wird.
  • Weiter umfasst der Ofen einen Zylinderdrehrost, wie er oben beschrieben wurde, wobei die Brennmulde in dem Brennraum angeordnet ist. Außerdem umfasst der Ofen einen Auffangbehälter für Verbrennungsrückstände, wobei der Zylinderdrehrost oberhalb des Auffangbehälters angeordnet ist, sodass Verbrennungsrückstände durch Drehen des Zylinderelements durch die Transportfläche aus der Brennmulde heraustransportiert werden und von der Transportfläche durch die Schwerkraft in den Auffangbehälter fallen. Dabei können sowohl Verbrennungsrückstände in den Auffangbehälter fallen, die lose auf der Transportfläche liegen, als auch solche, die bspw. durch einen Abstreifer von der Transportfläche abgestreift werden.
  • Der Ofen kann auch eine automatische Brennstoffzufuhr aufweisen, wie es z.B. für Pelletöfen bekannt ist, sodass Brennmaterial automatisch für die Verbrennung in die Brennmulde geführt werden kann.
  • Bei manchen Ausführungsbeispielen umfasst der Ofen bzw. der Zylinderdrehrost, wie auch schon oben angedeutet, eine Steuerung, die dazu eingerichtet ist, einen Antrieb, der z.B. einen Elektromotor aufweist, für das Zylinderelement zu steuern. Die Steuerung kann den Antrieb bspw. derart ansteuern, dass das Zylinderelement kontinuierlich angetrieben wird und dadurch kontinuierlich Verbrennungsrückstände aus der Brennmulde entfernt. Der Antrieb kann aber auch so gesteuert werden, dass das Zylinderelement in Zeitintervallen, das heißt nach einer vorgegebenen Zeitdauer, das Zylinderelement antreibt und um einen vorgegebenen Winkelbetrag dreht. Je nach Ausführungsvariante, kann das Zylinderelement dabei eine vollständige 360°-Drehung ausführen oder nur einen Teilwinkelbereich abdecken, z.B. 45°, 60°, 90°, etc. Bei manchen Ausführungsbeispielen kann das Zylinderelement auch um einen bestimmten Drehwinkel vorwärts und rückwärts gedreht werden, wie es z.B. bei dem oben beschriebenen Ausführungsbeispiel mit zwei Abstreifen sinnvoll ist. Außerdem kann bei manchen Ausführungsbeispielen die Steuerung dazu eingerichtet sein, das Zylinderelement entlang seiner Längsrichtung zu bewegen, wie es oben erläutert wurde. Der Antrieb kann dabei dazu ausgelegt sein, ebenfalls neben der Drehbewegung auch die Linearbewegung auszuführen oder es ist entsprechend ein Linearantrieb vorgesehen.
  • Zurückkommend zu den Fig. 1 bis 3 ist dort ein erstes Ausführungsbeispiel eines Zylinderdrehrostes 1 in einer dreidimensionalen Ansicht gezeigt. Im Folgenden werden gleiche Bezugszeichen für gleiche Elemente verwendet und gleiche Bezugszeichen, die sich nur durch einen Strich unterscheiden, für ähnliche Elemente verwendet, sodass Ausführungen für solche Elemente, die in Zusammenhang mit einem Ausführungsbeispiel gemacht werden, analog für das gleiche oder ähnliche Element in einem anderen Ausführungsbeispiel gelten.
  • Der Zylinderdrehrost hat ein Zylinderelement 2 mit einer Transportfläche 3, die als Oberfläche des Zylinderelements 2 ausgebildet ist. Oberhalb des Zylinderelements 2 und damit auch oberhalb der als Oberfläche des Zylinderelements 2 ausgebildeten Transportfläche 3 ist eine Brennmulde 4 angeordnet, in der Brennmaterial, wie z.B. Scheitholz oder Pellets zur Verbrennung eingefüllt werden kann.
  • Die Brennmulde 4 ist unten offen, sodass Brennmaterial direkt auf der Transportfläche 3 aufliegt, die im Betriebszustand des Zylinderdrehrosts 1 in der unteren Öffnung der Brennmulde 4 zugänglich ist. Die Brennmulde 4 hat vier Wände und hat eine ähnliche Längsausdehnung wie das Zylinderelement 2 bzw. die Transportfläche 3. Die Brennmulde 4 hat zwei längere gegenüberliegende Wände 10 und 11 und zwei kürzer Stirnwände 15 und 16. Die Stirnwände 15 und 16 sind jeweils am unteren Rand derart kreisförmig ausgeschnitten, dass sie der kreiszylindermantelförmigen Oberfläche teilweise folgen, sodass der Abstand zwischen den Stirnwänden 15 und 16 der Brennmulde 4 zur Transportfläche 3 gering ist und z.B. Glut und/oder Verbrennungsrückstände sowie Brennmaterial nicht durch den Spalt zwischen Transportfläche 3 und der jeweiligen Stirnwand 15 und 16 fällt.
  • Die längeren Wände 11 und 10 sind hingegen jeweils gerade an dem unteren Rand ausgebildet, wobei die in Fig. 2 gezeigte linke Seitenwand 11 höher ist, als die rechte Seitenwand 10. Die linke Seitenwand 11 ist knapp oberhalb der Transportfläche 3 angeordnet, sodass durch den entstehenden Spalt 12 keine Verbrennungsrückstände, Glut oder Brennmaterialteile fallen können. Die rechte Seitenwand 10, die in Fig. 2 rechts von der Längsachse des Zylinderelements 2 angeordnet ist, ist derart verkürzt, dass ein vorgegebenen Abscheidespalt 5 zwischen der Transportfläche 3 und dem unteren Rand der rechten Seitenwand 10 festgelegt ist.
  • Wie in Fig. 2 gezeigt ist, ist bei der gezeigten Ansicht die Drehrichtung des Zylinderelements 2 im Uhrzeigersinn, sodass Verbrennungsrückstände, die in der Brennmulde 4 auf der Transportfläche 3 des Zylinderelements 2 liegen, bei Drehung des Zylinderelements 2 im Uhrzeigersinn in Richtung des Abscheidespalts 5 geschoben werden und bei weiterer Drehung durch ihn hindurchgeschoben werden. Dabei fallen Verbrennungsrückstände, die nicht auf der Transportfläche 3 anhaften oder festkleben, aufgrund der auf sie wirkenden Schwerkraft von der Transportfläche 3 nach unten.
  • Das Zylinderelement 2 ist innen mit einem Hohlraum 9 versehen und ist über eine Welle 7 gelagert, die als Hohlwelle ausgestaltet ist und über die Primärluft zugeführt werden kann, die über Löcher 13 in der Transportfläche 3 des Zylinderelements 2 von unten in die Brennmulde 4 geführt werden kann. Die Welle 9 ist über Streben 8 (oder vollflächig) mit der Mantelfläche des hohlzylinderförmigen Zylinderelements 2 verbunden und dadurch befestigt.
  • Ein Abstreifer 6 ist auf der gegenüberliegenden Seite des Abscheidespalts 5 am Umfang des Zylinderelements 2 angeordnet. Der Abstreifer 6 hat einen klingenförmigen Endabschnitt 6a, dessen scharfe Kante in kleinem Abstand zur Transportfläche 3 angeordnet ist, sodass die scharfe Kante Verbrennungsrückstände, die an der Transportfläche 3 anhaften, abstreift, wenn die Transportfläche 3 durch Drehung des Zylinderelements 2 an ihr entlangfährt.
  • Im vorliegenden Ausführungsbeispiel ist der Abstreifer 6 in einer festen Position angebracht. Wie oben ausgeführt, kann der Abstreifer 6 aber auch z.B. mit einer Feder beaufschlagt sein und mit einem vorgegebenen Anpressdruck auf die Transportfläche 3 drücken.
  • Außerdem kann das Zylinderelement 2 noch in Längsrichtung verschiebbar sein, wie es auch durch den in Fig. 3 gezeigten Doppelpfeil veranschaulicht ist. Dadurch kann das Zylinderelement 2 eine Rüttelbewegung ausführen, durch die Verbrennungsrückstände, die in der Brennmulde 4 auf der Transportfläche 3 liegen, auf der Transportfläche 3 verteilt werden, bevor sie durch Drehung des Zylinderelements 2 durch den Abscheidespalt 5 herausgeschoben werden.
  • Ein zweites Ausführungsbeispiel eines Zylinderdrehrostes 1' ist in Fig. 4 veranschaulicht. Der Zylinderdrehrost 1' hat zwei Abstreifer einen ersten Abstreifer 6 (linke Seite) mit einem klingenförmigen Endabschnitt 6a und gegenüberliegend einen zweiten Abstreifer 6' (rechte Seite), der einen klingenförmigen Endabschnitt 6a' hat. Das Zylinderelement 2' ist unten mit einem Ausschnitt 17 versehen und hat einen Hohlraum 9'.
  • Das Zylinderelement 2' ist, wie auch durch die Pfeile angedeutet, im und gegen den Uhrzeigersinn drehbar, sodass je nach Drehrichtung der linke Abstreifer 6 oder der rechte Abstreifer 6' Verbrennungsrückstände von der Transportfläche 3' des Zylinderelements 2' abstreift.
  • Die restlichen Elemente des Zylinderdrehrosts 1' entsprechenden denjenigen des ersten Ausführungsbeispiels. Der Zylinderdrehrost 1' hat eine Brennmulde 4, die oberhalb des Zylinderelements 2' angeordnet ist, sodass die Seitenwände 11 bzw. 10 in einem kleinen Abstand 12 bzw. mit dem Abscheidespalt 5 oberhalb der Transportfläche 3 angeordnet sind, wie es oben im Detail beschrieben wurde.
  • Durch Drehung des Zylinderelements 2' gegen den Uhrzeigersinn werden Verbrennungsrückstände, Glutteile oder Brennmittelteile gegen die in Fig. 4 linke Seitenwand 11 gedrückt, während bei einer Drehung im Uhrzeigersinn Verbrennungsrückstände durch den Abscheidespalt 5 nach außen geführt werden und durch die Schwerkraft auf den Abstreifer 6' fallen. Der linke 6 und der rechte 6' Abstreifer sind nicht waagerecht angeordnet, sondern in einem Winkel schräg abwärtslaufend, sodass Verbrennungsrückstände, die auf die Oberseite des linken 6 oder rechten 6' Abstreifers fallen auf der Oberseite nach unten rutschen und von dort weiter z.B. in eine Aschelade fallen. Der Abscheidespalt 5 kann auch auf beiden Seiten angeordnet sein, sodass in beiden Drehrichtungen Verbrennungsrückstände nach außen geführt werden.
  • Ein drittes Ausführungsbeispiel eines Zylinderdrehrost 1" ist in Fig. 5 veranschaulicht. Hier ist die Transportfläche 3" des Zylinderelements 2" so ausgebildet, dass zwei Stufen 14a und 14b jeweils an einem Übergang zwischen einem ersten Transportflächenabschnitt 3a" und einem zweiten Transportflächenabschnitt 3b" gebildet sind.
  • Der erste Transportflächenabschnitt 3a" ist weiter entfernt von der Längsachse des Zylinderelements 2" und folglich näher an der Brennmulde 4, während der zweite Transportflächenabschnitt 3b" näher an der Längsachse verläuft und daher weiter von der Brennmulde 4 entfernt ist.
  • Die Brennmulde 4 ist genauso ausgestaltet, wie es bereits im Zusammenhang mit dem ersten Ausführungsbeispiel erläutert wurde. Je nach Stellung des Zylinderelements 2" können der Abscheidespalt 5, der wie oben beschrieben zwischen der rechten Seitenwand 10 der Brennmulde 4 und der Transportfläche 3" definiert ist, und der Spalt 12, der wie oben beschrieben zwischen der linken Seitenwand 11 und der Transportfläche 3" gebildet ist, variieren.
  • Bei der Betriebsstellung in Fig. 5, ist der erste Transportflächenabschnitt 3a" oben angeordnet, sodass dieser den Boden der Brennmulde 4 bildet. In dieser Stellung entspricht die Konfiguration der von Fig. 1, da hier der Spalt 12 klein ist und der Abscheidespalt 5 im Wesentlichen so ausgestaltet ist, wie es auch beim ersten Ausführungsbeispiel der Fall ist, das heißt, er ist so dimensioniert, dass die Verbrennungsrückstände bei Drehung des Zylinderelements 2" im Uhrzeigersinn heraustransportiert werden, während die Glut in der Brennmulde 4 verbleibt. Der Abstreifer 6 ist hier so angeordnet, dass er die Verbrennungsrückstände auf dem ersten Transportflächenabschnitt 3a" abstreifen kann, da auf dem zweiten Transportflächenabschnitt 3b" keine anhaftenden Verbrennungsrückstände zu erwarten sind, da die Verbrennung im Wesentlichen auf dem ersten Transportflächenabschnitt 3a" stattfindet und die Glut nur beim Drehen des Zylinderelements 2" um 360° für kurze Zeit mit dem zweiten Transportflächenabschnitt 3b" in Berührung kommt.
  • Bei Drehung des Zylinderelements 2" im Uhrzeigersinn kommt die Stufe 14a in den Bereich der Brennmulde 4, sodass das in der Brennmulde 4 befindliche Material, d.h. Verbrennungsrückstände, Glut und Brennmaterial nach Passieren der Stufe 14a auf den zweiten Transportflächenabschnitt 3b" fallen und durch ihn und durch Drehung des Zylinderelements 2 mitgenommen werden und durch den nun um die Höhendifferenz zwischen dem ersten 3a" und zweiten 3b" Transportflächenabschnitt vergrößerten Abscheidespalt 5 aus der Brennmulde 4 transportiert werden.
  • Nach einer weiteren halben Drehung, also insgesamt nach ca. einer dreiviertel Umdrehung des Zylinderelements 2" gelangt die zweite Stufe 14b in den Bereich der Brennmulde 4 und schiebt Verbrennungsrückstände, die auf dem zweiten Transportflächenabschnitt 3b" liegen, vor sich her und aus dem vergrößerten Abscheidespalt 5 aus der Brennmulde 4 heraus.
  • Damit ist es insgesamt möglich, im Gegensatz zum ersten Ausführungsbeispiel, eine größere Menge an Verbrennungsrückständen aus der Brennmulde 4 durch den Abscheidespalt 5 heraus zu transportieren.
  • Das Zylinderelement 2" hat einen Hohlraum 9" und eine Welle 7, die über Streben 8" (oder vollflächig) mit der Mantelfläche des Zylinderelements 2" befestigt ist. Die Streben 8" sind unterschiedlich lang, da der erste Transportflächenabschnitt 3a" weiter von der Mittelachse entfernt ist, als der zweite Transportflächenabschnitt 3b" und folglich die Streben 8", die von der Welle 7 zum ersten Transportflächenabschnitt 3a" führen, länger ausgeführt sind, als Streben 8", die zum zweiten Transportflächenabschnitt 3b" führen.
  • Die beiden Stufen 14a und 14b sind bei dem vorliegenden Ausführungsbeispiel derart angeordnet, dass der erste Transportflächenabschnitt 3a" eine größere Oberfläche von der gesamten Transportfläche 3" einnimmt, als der zweite Transportflächenabschnitt 3b". Bei anderen Ausführungsbeispielen können der erste 3a" und zweite 3b" Transportflächenabschnitt gleich groß sein oder es ist der zweite 3b" größer als der erste 3a".
  • Ein viertes Ausführungsbeispiel eines Zylinderdrehrosts 1'" ist in den Fig. 6a und 6b veranschaulicht, wobei hier die Transportfläche 3'" exzentrisch ausgestaltet ist und wobei kein Abstreifer vorgesehen ist. Von der Wirkung des Austrages von Verbrennungsrückständen aus der Brennmulde 4 ist der Zylinderdrehrost 1'" ähnlich wie der der des dritten Ausführungsbeispiels.
  • Im Gegensatz zu den vorherigen Ausführungsbeispielen der Fig. 1 bis 5 sind hier die linke 11"' und rechte 10'" Seitenwand der Brennmulde 4'" gleich hoch ausgestaltet.
  • Durch die Exzentrizität der Transportfläche 3"' gibt es eine Stellung des Zylinderelements 2'" mit einem minimalen Abstand 12'" zwischen der Transportfläche 3'" und dem unteren Rand der Brennmulde 4'" (Fig. 6a) und eine Stellung mit maximalen Abstand 5'" zwischen der der Transportfläche 3'" und dem unteren Rand der Brennmulde 4'" (Fig. 6b).
  • Die Stellung mit minimalen Abstand 12'" ist die Betriebsstellung, in der eine Verbrennung auf dem Bereich der Transportfläche 3"', die in der Brennmulde 4'" angeordnet ist, stattfindet. Der minimale Abstand 12'" ist hier zwischen den beiden Seitenwänden 11'" und 10'" vorhanden und so festgelegt, dass keine Verbrennungsrückstände, Glutteile oder Brennstoffteile hindurchfallen.
  • Bei Drehung des Zylinderelements 2'" im Uhrzeigersinn vergrößert sich aufgrund der exzentrischen Ausgestaltung der Transportfläche 3'" der Abstand zwischen dem unteren Rand der Brennmulde 4'" und der Transportfläche 3"', bis schließlich nach einer halben Drehung die Transportfläche 3'" maximal von dem unteren Rand der Brennmulde 4'" entfernt ist und so den maximalen Abstand 5'" oder Abscheidespalt festlegt. Durch die Drehung des Zylinderelements 2'" mit der Transportfläche 3'" werden Verbrennungsrückstände auf der Transportfläche 3'" mitbewegt und durch den sich mit der Drehung vergrößernden Abstand zwischen der Transportfläche 3'" und dem unteren Rand der Brennmulde 4'" aus der Brennmulde 4'" heraustransportiert. Nach Vollendung einer vollständigen Umdrehung ist wieder der minimale Abstand 12'" eingestellt und die Betriebsstellung ist erreicht.
  • Das Zylinderelement 2'" ist mit einem Hohlraum 9'" versehen und eine Welle 7 ist außermittig (exzentrisch) angeordnet und mit Streben 8'" (oder vollflächig) an der Mantelfläche des Zylinderelements 2'" befestigt.
  • Wie oben ausgeführt, kann auch ein Rand einer Seitenwand, z.B. der untere Rand der linken Seitenwand 11, als Abstreifer ausgebildet sein. Außerdem kann auch ein gesonderter Abstreifer, wie z.B. der Abstreifer 6 vom ersten Ausführungsbeispiel oder sogar zwei Abstreifer 6, 6', wie beim zweiten Ausführungsbeispiel, vorgesehen sein. Der Abstreifer kann so ausgestaltet sein, dass er der exzentrisch ausgebildeten Transportfläche 3'" bei Drehung des Zylinderelements 2'" folgt. Dazu kann der Abstreifer verschiebbar sein und mit einer Feder gespannt sein.
  • Fig. 7 veranschaulicht schematisch einen Holzofen 20 mit einem Brennraum 21, in dem beispielhaft der Zylinderdrehrost 1 des ersten Ausführungsbeispiels angeordnet ist. Die Brennmulde 4 ist in dem Brennraum 21 angeordnet und unterhalb des Zylinderdrehrosts 1 ist eine Aschelade 22 angeordnet.
  • Eine Primärluftzufuhr 23 ist mit der hohlförmigen Welle 7 des Zylinderdrehrosts 1 gekoppelt und führt Primärluft durch das Zylinderelement 2 in die Brennmulde 4, wie es auch im Zusammenhang oben mit dem ersten Ausführungsbeispiel der Fig. 1 bis 3 erläutert wurde. Eine Rauchgasabzug 24 ist oberhalb des Brennraums 21 angeordnet.
  • Im Betrieb des Holzofens 20 wird folglich Holz in die Brennmulde 4 eingefüllt und die Verbrennung startet. Primärluft strömt durch den Primärluftanschluss 23 durch das Zylinderelement 2 in die Brennmulde 4 und versorgt die Verbrennung mit Sauerstoff. Nach einer vorgegebenen Brenndauer wird das Zylinderelement 2 durch einen Antrieb (nicht gezeigt) eine definierte Zeitdauer gedreht und entfernt dadurch die unteren Verbrennungsschichten (Verbrennungsrückstände) aus der Brennmulde 4, die in die Aschelade 22 fallen, wobei der Abstreifer 6 an der Transportfläche 3 des Zylinderelements 2 haftende Verbrennungsrückstände abstreift, die ebenfalls in die Aschelade 22 fallen. Die oberen unverbrannten Verbrennungsschichten (Glutbett) verbleiben in der Brennmulde 4, wodurch eine Entfernung von Verbrennungsrückständen aus der Brennmulde 4 möglich ist, ohne die Verbrennung zu unterbrechen. Aufgrund der Drehung des Zylinderelements werden auch die oberen unverbrannten Verbrennungsschichten (Glutbett) aufgelockert, wodurch einer Verschlackung (vor allem bei schlechter Brennstoffqualität) zusätzlich entgegengewirkt wird.

Claims (12)

  1. Zylinderdrehrost für einen Ofen zur Wärmeerzeugung, insbesondere einen Holzofen, wie einen Scheitholzofen oder Pelletofen, umfassend:
    ein um seine Längsachse drehbar gelagertes Zylinderelement (2, 2', 2"),
    eine Transportfläche (3, 3', 3") zum Transportieren von Verbrennungsrückständen, die an dem Zylinderelement (2, 2', 2") angeordnet ist, wobei die Transportfläche (3, 3', 3") wenigstens teilweise zylindermantelförmig ausgestaltet ist;
    eine Brennmulde (4), die oberhalb der Transportfläche (3, 3', 3") angeordnet ist, wobei zwischen der Transportfläche (3, 3', 3") und der Brennmulde (4) ein Spalt (5) derart festgelegt ist, dass bei Drehung des Zylinderelements (2, 2', 2") Verbrennungsrückstände aus der Brennmulde (4) durch den Spalt transportiert werden; und
    einen Abstreifer (6, 6'), der derart ausgebildet und angeordnet ist, dass er Verbrennungsrückstände von der Transportfläche (3, 3', 3") bei Drehung des Zylinderelements (2, 2', 2") abstreift.
  2. Zylinderdrehrost für einen Ofen zur Wärmeerzeugung, insbesondere einen Holzofen, wie einen Scheitholzofen oder Pelletofen, umfassend:
    ein um seine Längsachse drehbar gelagertes Zylinderelement (2"'),
    eine Transportfläche (3"') zum Transportieren von Verbrennungsrückständen, die an dem Zylinderelement (2"') angeordnet ist, wobei die Transportfläche (3"') wenigstens teilweise zylindermantelförmig ausgestaltet ist;
    eine Brennmulde (4"'), die oberhalb der Transportfläche (3'") angeordnet ist, wobei zwischen der Transportfläche (3"') und der Brennmulde ein Abstand vorgesehen ist und die Transportfläche (3"') exzentrisch zur Längsachse des Zylinderelements (2'") ausgebildet ist, sodass sich der Abstand durch Drehung des Zylinderelements (2"') verändert und dadurch ein minimaler Spalt (12"') und ein maximaler Spalt (5'") zwischen der Brennmulde (4"') und der Transportfläche (3"') einstellbar ist.
  3. Zylinderdrehrost nach Anspruch 1, wobei der Abstreifer (6, 6') einen klingenförmigen Bereich (6a, 6a') aufweist.
  4. Zylinderdrehrost nach einem der Ansprüche 1 oder 3, weiter einen zweiten Abstreifer (6') umfassend, der gegenüberliegend zum Abstreifer (6) derart angeordnet ist, dass das Zylinderelement (2, 2', 2") zwischen dem Abstreifer (6) und dem zweiten Abstreifer (6') angeordnet ist
  5. Zylinderdrehrost nach einem der Ansprüche 1 oder 3 bis 4, wobei die Transportfläche (3") einen ersten (3a") und einen zweiten (3b") Abschnitt aufweist, wobei zwischen dem ersten (3a") und dem zweiten (3b") Abschnitt eine Stufe (14a, 14b) angeordnet ist.
  6. Zylinderdrehrost nach Anspruch 2, wobei eine Kante der Brennmulde (4'") als Abstreifer zum Abstreifen von Verbrennungsrückständen von der Transportfläche (3"') ausgebildet ist.
  7. Zylinderdrehrost nach einem der Ansprüche 2 oder 6, zusätzlich einen Abstreifer umfassend, der derart ausgebildet und angeordnet ist, dass er Verbrennungsrückstände von der Transportfläche (3'") bei Drehung des Zylinderelements (2"') abstreift.
  8. Zylinderdrehrost nach einem der vorhergehenden Ansprüche, wobei die Transportfläche (3) Luftöffnungen (13) aufweist.
  9. Zylinderdrehrost nach einem der vorhergehenden Ansprüche, wobei die Transportfläche eine Struktur zum Transportieren der Verbrennungsrückstände aufweist.
  10. Zylinderdrehrost nach einem der vorhergehenden Ansprüche, wobei das Zylinderelement (2) entlang seiner Längsachse verschiebbar ist.
  11. Zylinderdrehrost nach einem der vorhergehenden Ansprüche, wobei das Zylinderelement (2) einen Primärluftanschluss zum Zuführen von Primärluft aufweist.
  12. Ofen zur Wärmeerzeugung, insbesondere Holzofen, wie Scheitholzofen oder Pelletofen, umfassend:
    einen Brennraum (21),
    einen Zylinderdrehrost (1, 1', 1", 1"') nach einem der vorhergehenden Ansprüche, und
    einen Auffangbehälter (22) für Verbrennungsrückstände, wobei der Zylinderdrehrost (1, 1', 1", 1"') oberhalb des Auffangbehälters (22) angeordnet ist, sodass Verbrennungsrückstände durch Drehen des Zylinderelements (2, 2', 2", 2"') durch die Transportfläche (3, 3', 3", 3"') aus der Brennmulde (4, 4") heraustransportiert werden und von der Transportfläche (3, 3', 3", 3'") durch die Schwerkraft in den Auffangbehälter (22) fallen.
EP14003945.4A 2013-11-27 2014-11-24 Zylinderdrehrost für einen Holzofen Active EP2881661B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013019953.0A DE102013019953A1 (de) 2013-11-27 2013-11-27 Zylinderdrehrost und Ofen mit Zylinderdrehrost

Publications (3)

Publication Number Publication Date
EP2881661A2 true EP2881661A2 (de) 2015-06-10
EP2881661A3 EP2881661A3 (de) 2015-07-29
EP2881661B1 EP2881661B1 (de) 2019-04-24

Family

ID=52016360

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14003945.4A Active EP2881661B1 (de) 2013-11-27 2014-11-24 Zylinderdrehrost für einen Holzofen

Country Status (2)

Country Link
EP (1) EP2881661B1 (de)
DE (1) DE102013019953A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106765231A (zh) * 2016-12-13 2017-05-31 河南神猴实业有限公司 生物质颗粒壁炉自动除渣结构
CN106918047A (zh) * 2017-05-17 2017-07-04 安徽久能信息科技有限公司 一种新型生物质燃烧机旋转式炉箅
CN115446084A (zh) * 2022-10-13 2022-12-09 桦甸市润洁环保有限公司 一种生活垃圾衍生燃料加工设备及其加工工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105650653A (zh) * 2016-02-25 2016-06-08 王连门 一种生物质颗粒燃烧炉的自动清灰系统及其方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19832115A1 (de) 1997-07-25 1999-01-28 Karl Stefan Riener Aufnahmeeinrichtung für Brennmaterial
AT410128B (de) 2000-11-08 2003-02-25 Ferdinand Dipl Ing Tischler Rost für feste brennstoffe
AT506411B1 (de) 2008-04-29 2009-09-15 Eta Heiztechnik Gmbh Rost für feste brennstoffe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB386845A (en) * 1931-04-29 1933-01-26 Theophane Jules Venien Improvements in fire chambers for furnaces
FR1128822A (fr) * 1955-08-04 1957-01-10 Perfectionnement aux grilles de foyer
HU178846B (en) * 1980-03-11 1982-07-28 Ernoe Biro Stoker for firing solid fuel first for fulfilling the heat demand of family houses and single aparatments or smaller group of them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19832115A1 (de) 1997-07-25 1999-01-28 Karl Stefan Riener Aufnahmeeinrichtung für Brennmaterial
AT410128B (de) 2000-11-08 2003-02-25 Ferdinand Dipl Ing Tischler Rost für feste brennstoffe
AT506411B1 (de) 2008-04-29 2009-09-15 Eta Heiztechnik Gmbh Rost für feste brennstoffe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106765231A (zh) * 2016-12-13 2017-05-31 河南神猴实业有限公司 生物质颗粒壁炉自动除渣结构
CN106765231B (zh) * 2016-12-13 2024-01-02 河南神猴实业有限公司 生物质颗粒壁炉自动除渣结构
CN106918047A (zh) * 2017-05-17 2017-07-04 安徽久能信息科技有限公司 一种新型生物质燃烧机旋转式炉箅
CN115446084A (zh) * 2022-10-13 2022-12-09 桦甸市润洁环保有限公司 一种生活垃圾衍生燃料加工设备及其加工工艺
CN115446084B (zh) * 2022-10-13 2023-08-04 桦甸市润洁环保有限公司 一种生活垃圾衍生燃料加工设备及其加工工艺

Also Published As

Publication number Publication date
EP2881661A3 (de) 2015-07-29
EP2881661B1 (de) 2019-04-24
DE102013019953A1 (de) 2015-05-28

Similar Documents

Publication Publication Date Title
EP2881661B1 (de) Zylinderdrehrost für einen Holzofen
DE3205366C2 (de) Austragsvorrichtung für einen Drehrohrofen
AT506411B1 (de) Rost für feste brennstoffe
CH704571B1 (de) Brenngut-Zufuhreinrichtung für einen Ofen für Leistungen bis hinunter zu weniger als 1kW.
DE2751091C2 (de) Vorrichtung zum Abtrennen von Flüssigkeit aus einem schlammartigen Brei oder Gemenge
WO1998025079A1 (de) Mit wasser gekühlter verbrennungsrost
EP0710504A1 (de) Schubzentrifuge
DE102007041156A1 (de) Kohlenbecken für feste Brennstoffe insbesondere für Öfen und Kessel
EP3693663B1 (de) Pelletbrenner
DE102011102678A1 (de) Dosiervorrichtung zum Dosieren von Holzbrennstoffpellets
DE102011055015B4 (de) Heizkessel für feste Brennstoffe
EP4073430B1 (de) Holzgaskessel
EP2848863A2 (de) Schwenkbarer Ofenrost mit Reinigungseinrichtung
DE3443832C2 (de) Schüttschichtfilter, insbesondere für Rauchgase
EP1854767A1 (de) Querverteilungsvorrichtung für Feuchtgut
DE2611636B1 (de) Vorrichtung zur gewinnung von ruebenbrei
AT410128B (de) Rost für feste brennstoffe
DE2932224A1 (de) Feuerungsanlage fuer feste brennstoffe
DE3421972A1 (de) Festbrennstoffheizkessel
EP1614965B1 (de) Heizkessel für die Verbrennung von festem Brennstoff, insbesondere für Biomasse
DE617703C (de) Schleudertrommel mit Klaereinsatz
DE19851085A1 (de) Schubrostanordnung für einen Festbrennstoff-Kessel o. dgl.
DE3524961A1 (de) Verbrennungsofen oder heizkessel
DE60220943T2 (de) Rost für brenner zum verbrennen von festbrennstoffkörpern und brenner mit einem solchen rost
DE415537C (de) Unterschubfeuerung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141124

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F23J 1/02 20060101ALI20150622BHEP

Ipc: F23H 15/00 20060101ALI20150622BHEP

Ipc: F23H 9/02 20060101ALI20150622BHEP

Ipc: F23B 60/02 20060101AFI20150622BHEP

R17P Request for examination filed (corrected)

Effective date: 20160119

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171010

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1124584

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014011489

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190424

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190725

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014011489

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

26N No opposition filed

Effective date: 20200127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191124

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191124

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 10

Ref country code: DE

Payment date: 20231120

Year of fee payment: 10

Ref country code: CH

Payment date: 20231201

Year of fee payment: 10

Ref country code: AT

Payment date: 20231117

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231121

Year of fee payment: 10