EP2875535A1 - Electrode supportee transparente pour oled - Google Patents

Electrode supportee transparente pour oled

Info

Publication number
EP2875535A1
EP2875535A1 EP13744753.8A EP13744753A EP2875535A1 EP 2875535 A1 EP2875535 A1 EP 2875535A1 EP 13744753 A EP13744753 A EP 13744753A EP 2875535 A1 EP2875535 A1 EP 2875535A1
Authority
EP
European Patent Office
Prior art keywords
layer
transparent
electrode
metal
translucent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13744753.8A
Other languages
German (de)
English (en)
French (fr)
Inventor
Simon MAZOYER
Fabien Lienhart
Vincent Sauvinet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP2875535A1 publication Critical patent/EP2875535A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Definitions

  • the present invention relates to a supported electrode for use, preferably as anode, in an organic light-emitting diode.
  • An organic light-emitting diode is an opto-electronic device comprising two electrodes, at least one of which is transparent to visible light, and a stack of thin layers comprising at least one light-emitting layer. (EL layer).
  • This light-emitting layer is sandwiched at least between, on the one hand, an electron injection or transport layer (EIL or ETL) located between the EL layer and the cathode and, on the other hand, a injection or hole transport layer (HIL or HTL) located between the EL layer and the anode.
  • EIL or ETL electron injection or transport layer
  • HIL or HTL injection or hole transport layer
  • OLEDs having a transparent electrode support and a transparent electrode in contact therewith are conventionally referred to as OLEDs that emit through the substrate or OLEDs that emit downward (bottom emitting OLED).
  • the transparent electrode is typically the anode.
  • OLEDs with an opaque electrode support are called OLEDs (top emitting OLED), the emission then being through the transparent electrode which is not in contact with the support, usually the cathode.
  • the luminous power of an OLED depends directly on the potential difference between the anode and the cathode.
  • a known way to limit this ohmic drop is the reduction of the resistance per square (RD OR R s , of the English sheet resistance) of the electrodes, typically by increasing their thickness.
  • the materials used for these electrodes for example ⁇ (Indium Tin Oxide), have insufficient light transmission and a prohibitive cost that make thicknesses greater than 500 nm are very uninteresting.
  • the ITO layers do not exceed about 150 nm.
  • Mo-AI-Mo or Cr-AI-Cr triple layer metal grids are thus commonly used to limit the resistivity of transparent ITO anodes in electro-optical devices such as OLEDs (US 2006/0154550, US 2010/0079062).
  • Such means indeed serve to limit the phenomenon of trapping the light emitted in the high-index layers of the OLEDs (organic layers ETL / EL / HTL and transparent anode). It is usually a high-index enamel containing diffusing elements or a diffusing rough interface, located between the anode and the substrate.
  • a similar phenomenon of light trapping in the substrate exists at the glass / air interface and can be limited by an identical means, namely a diffusing layer or interface.
  • the diffusing layer or interface is between the anode and the substrate, it is generally referred to as an internal extraction layer (IEL), while a diffusing medium (diffusing layer or interface) located at the The exterior of the substrate is called the external extraction layer (EEL).
  • the scattering centers of these IELs or EELs by deflecting low-angle light rays, allow them to exit the "waveguide" where they are trapped. They are deflected either directly to the outside of the OLED, or inward and then reflected by the metal cathode before exiting the OLED.
  • Figure 1 shows the simulated evolution of the air extraction efficiency of an OLED with IEL and an OLED without IEL, as a function of the occultation rate of the active surface of the anode by the metal grid MAM.
  • the extraction efficiency in the air is the ratio of the energy flux reaching the outside of the OLED to the energy flux emitted by the emitting surface, the latter being equal to the active surface not obscured by the metal grid.
  • this extraction efficiency in the air was arbitrarily set at 100% for OLED with an IEL layer, and also at 100% for an OLED without IEL, although it is in absolute lower value. to the first.
  • n 1.9, absorption coefficient 150 mm -1 , thickness 1 ⁇ , with light source at the center of the stack,
  • Aluminum cathode characterized by its reflectivity spectrum as a function of the angle of incidence and the wavelength.
  • IEL seems to amplify the absorption of light by the electrode grid.
  • the present invention allows the skilled person to get out of this dilemma.
  • the Applicant has in fact discovered that by covering or replacing the molybdenum or chromium MAM grids by a metal with high reflectivity, it was possible not only not to reduce the extraction efficiency but to significantly increase it.
  • the present invention therefore relates to an electrode for organic light-emitting diode, comprising successively,
  • a transparent or translucent electrode layer formed of a transparent or translucent conductive oxide or a transparent or translucent conductive organic polymer
  • a continuous network of metal lines deposited on the transparent electrode layer preferably by physical vapor deposition (PVD), in particular by vacuum evaporation or by magnetron sputtering,
  • PVD physical vapor deposition
  • a translucent diffusing layer having a refractive index between 1.7 and 2.4, located between the non-conductive substrate (a) and the electrode layer,
  • a translucent diffusing layer having a refractive index greater than or equal to that of the non-conductive substrate, located on the non-conductive substrate face which is not facing the electrode layer, and in that the continuous network of metal lines is constituted, at least at the contact interface with the electrode layer, of a metal or metal alloy having a reflectivity of at least 80% over at least part of the spectrum of visible light.
  • the invention also relates to an OLED comprising such an electrode, preferably as anode.
  • the metal or metal alloy at the interface of the grid with the transparent or translucent electrode layer is selected from silver, aluminum and alloys based on silver or aluminum with a mean reflectivity of visible light (400 - 700 nm) at least equal to 80%.
  • silver and aluminum and alloys based on these metals are particularly preferred materials for forming the electrode grid, they may, in some particular cases be replaced by other metals.
  • silver and aluminum are characterized by a high reflectivity across the spectrum (400 - 700 nm) that is suitable for white OLEDs.
  • the OLED when the OLED emits a red light, it may be advantageous to use copper or copper-based alloys which have a high reflectivity especially for red light.
  • zinc and zinc alloys can be used advantageously.
  • the extraction efficiency in the air of an OLED according to the invention reaches 103%, whereas it is limited to 95% for a comparative OLED with a MAM grid (Mo -AI-Mo), which represents an efficiency gain of more than 8%. Thanks to the present invention, the skilled person is thus free to increase the occultation rate of the anode without risking a degradation of the extraction efficiency in the air of the OLED.
  • a low occultation rate for example less than 5%, is satisfactory for obtaining resistances per square (RD) of the order of 2 ohms or more, which allow the manufacture of OLEDs with homogeneous brightness having dimensions up to about 50 - 100 mm.
  • the degree of occultation of the active zone of the transparent electrode layer by the continuous network of metallic lines is preferably between 5 and 50%, in particular between 10 and 35%, and particularly preferably between 15 and 30%. %.
  • the present invention thus makes it possible, by increasing the acceptable values for the occultation rates, to make OLEDs with homogeneous luminosity larger and more efficient.
  • the electrodes of the present invention and the OLEDs manufactured therefrom are advantageously of such sizes that their smallest dimension is greater than 10 cm, preferably greater than 15 cm, and particularly preferably greater than 20 cm.
  • the area of the active surface of the OLEDs of the present invention is preferably between 0.02 and 1 m 2 , in particular between 0.05 and 0.5 m 2 .
  • an electrode according to the invention advantageously limits this loss of life.
  • a blackout ratio of 20% resulting in a decrease in brightness of about 25%, compensated by a corresponding increase in the applied voltage would result in by a decrease in the life of the OLED estimated at 30%.
  • a blackout ratio of 20% causing a decrease in brightness of about 15%, compensated by a corresponding increase in voltage would result in a decrease in the life of 20% only.
  • the OLED electrode comprises, successively,
  • a transparent electrode layer formed of a transparent conductive oxide or a transparent conductive organic polymer
  • the network of metal lines can of course be made entirely of silver, aluminum or an alloy based on one of these metals. These two metals have indeed a conductivity and reflectivity as they would fulfill their role perfectly.
  • Silver is however a high cost metal and it is desirable to limit the quantities used.
  • this silver is preferably in the form of a first layer, in contact with the transparent electrode, having a thickness between 30 and 100 nm.
  • a second aluminum layer having a thickness of between 100 and 500 nm.
  • the network of metal lines comprises a MAM structure according to the state of the art, namely a three-layer structure Mo-Al-Mo or Cr-Al-Cr, a layer in silver or silver sufficiently thick or a sufficiently thick aluminum or aluminum layer being inserted between the MAM structure and the transparent anode.
  • This layer of silver or aluminum is considered sufficiently thick when it has a thickness of between 30 and 100 nm, preferably between 50 and 90 nm.
  • the diffusing layers between the nonconductive substrate and the anode are known in the art and are described for example in EP2178343 and WO2011 / 089343.
  • the refractive index of the enamel is preferably greater than or equal to the refractive index of the transparent anode, and the refractive index of the diffusing particles is preferably greater than that of enamel. .
  • the chemical nature of the scattering particles is not particularly limited, they are preferably selected from TiO 2 and SiO 2 particles. For optimum extraction efficiency, they are present in the light scattering means in a concentration of between 10 4 and 10 7 particles / mm 2 . The larger the size of the particles, the more their optimal concentration is located towards the lower limit of this range.
  • the diffusing enamel layer generally has a thickness of between 1 ⁇ m and 100 ⁇ m, in particular between 2 and 50 ⁇ m, and particularly preferably between 5 and 30 ⁇ m. average, determined by dynamic light scattering (DLS), between 0.05 and 5 ⁇ , in particular between 0.1 and 3 ⁇ .
  • the light extraction means may also be located on the outer face of the substrate, that is to say the face that will be opposite to that facing the anode. It may be a microlens array or micropyramid as described in the article in Japanese Journal of Applied Physics, Vol. 46, No. 7A, pages 4125-4137 (2007) or a satin, for example a frosted satin treatment with hydrofluoric acid.
  • any transparent or translucent conductive material having a sufficiently high refractive index, close to the average index of the HTL / EL / ETL stack examples include transparent conductive oxides such as aluminum-doped zinc oxide (AZO), indium-doped tin oxide (ITO) or carbon dioxide. tin (Sn0 2 ). These materials advantageously have a much lower absorption coefficient than the organic materials forming the stack HTL / EL / ITL, preferably an absorption coefficient of less than 0.005, in particular less than 0.0005.
  • the anode layer may have a multilayer type structure, for example having, on a relatively thick base layer, a thinner surface layer, intended to improve the adhesion of the metal grid on the anode.
  • This thin layer may be a metal layer, for example based on Ti, Ni or Cr.
  • the thickness of this layer should not exceed about 5 nm, preferably 2 nm (absorption less than 5%).
  • the overall thickness of the anode layer of transparent conductive oxide is typically between 50 and 200 nm.
  • the transparent conductive oxide is not il, it is generally recommended to cover the anode layer with a thin additional layer having a higher output work, for example a layer of ITO, MoO 3 , WO 3 or V 2 0 5 .
  • Deposition techniques for such oxides such as sputtering, magnetron deposition, sol-gel processes or pyrolysis, generally do not result in sufficiently smooth layers for application as an OLED electrode. . It will therefore generally be necessary to proceed, after deposition, to a polishing step.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • the continuous network of metal lines is advantageously covered with a passivation layer of organic polymer, typically polyimide, which serves mainly to prevent short circuits between these conductive lines and the cathode separated by the very thin stack of organic layers HTL / EL / ETL.
  • organic polymer typically polyimide
  • FIG. 3 very schematically shows an electrode supported according to the invention in cross section.
  • This electrode comprises a substantially transparent nonconductive substrate 1, covered on each of its two main faces with a transparent diffusing layer 4,5.
  • the diffusing layer 5 located at the interface with the air is called the outer extraction layer (EEL), while the diffusing layer 4, located on the inwardly facing face of the OLED, is called the optical layer.
  • internal extraction (IEL) is called the optical layer.
  • a transparent electrode layer 2 covers the IEL 4.
  • a continuous network of metal lines 3 is deposited on the surface of the transparent electrode layer. This network of metal lines 3 consists, at least at its interface with the transparent electrode 2, of a metal or an alloy having a mean reflectivity of the visible light of at least 80%.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
EP13744753.8A 2012-07-17 2013-07-16 Electrode supportee transparente pour oled Withdrawn EP2875535A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1256874A FR2993707B1 (fr) 2012-07-17 2012-07-17 Electrode supportee transparente pour oled
PCT/FR2013/051704 WO2014013183A1 (fr) 2012-07-17 2013-07-16 Electrode supportee transparente pour oled

Publications (1)

Publication Number Publication Date
EP2875535A1 true EP2875535A1 (fr) 2015-05-27

Family

ID=47351799

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13744753.8A Withdrawn EP2875535A1 (fr) 2012-07-17 2013-07-16 Electrode supportee transparente pour oled

Country Status (9)

Country Link
US (1) US20150155521A1 (enrdf_load_stackoverflow)
EP (1) EP2875535A1 (enrdf_load_stackoverflow)
JP (1) JP2015528186A (enrdf_load_stackoverflow)
KR (1) KR20150036069A (enrdf_load_stackoverflow)
CN (1) CN104471738A (enrdf_load_stackoverflow)
FR (1) FR2993707B1 (enrdf_load_stackoverflow)
IN (1) IN2015DN00276A (enrdf_load_stackoverflow)
RU (1) RU2015105170A (enrdf_load_stackoverflow)
WO (1) WO2014013183A1 (enrdf_load_stackoverflow)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3020179B1 (fr) * 2014-04-22 2017-10-06 Saint Gobain Electrode supportee transparente pour oled
EP3082172A1 (en) * 2015-04-16 2016-10-19 Saint-Gobain Glass France Layered structure for an oled and a method for producing such a structure
US11362310B2 (en) * 2017-11-20 2022-06-14 The Regents Of The University Of Michigan Organic light-emitting devices using a low refractive index dielectric

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231985A (ja) * 1999-02-12 2000-08-22 Denso Corp 有機el素子
CN1248547C (zh) * 1999-04-02 2006-03-29 出光兴产株式会社 有机电致发光显示装置及其制造方法
US7268485B2 (en) * 2003-10-07 2007-09-11 Eastman Kodak Company White-emitting microcavity OLED device
SG141472A1 (en) * 2003-12-19 2008-04-28 Idemitsu Kosan Co Organic electroluminescent device, conductive multilayer body, and display
CN1895005A (zh) * 2003-12-19 2007-01-10 出光兴产株式会社 有机电致发光元件、导电层叠体和显示装置
WO2006095632A1 (ja) * 2005-03-11 2006-09-14 Mitsubishi Chemical Corporation エレクトロルミネッセンス素子及び照明装置
FR2913972B1 (fr) * 2007-03-21 2011-11-18 Saint Gobain Procede de fabrication d'un masque pour la realisation d'une grille
WO2008126269A1 (ja) * 2007-03-30 2008-10-23 Pioneer Corporation 発光装置
JPWO2009116531A1 (ja) * 2008-03-18 2011-07-21 旭硝子株式会社 電子デバイス用基板、有機led素子用積層体及びその製造方法、有機led素子及びその製造方法
EP2383235B1 (en) * 2009-01-26 2017-09-13 Asahi Glass Company, Limited Glass for scattering layer of organic led device and organic led device
FR2955575B1 (fr) * 2010-01-22 2012-02-24 Saint Gobain Substrat verrier revetu d'une couche haut indice sous un revetement electrode et dispositif electroluminescent organique comportant un tel substrat.
DE102011079048B4 (de) * 2011-07-13 2025-09-11 Pictiva Displays International Limited Lichtemittierende bauelemente und verfahren zum herstellen eines lichtemittierenden bauelements
DE102011086277B4 (de) * 2011-11-14 2017-09-14 Osram Oled Gmbh Organisches Licht-emittierendes Bauelement
DE102012203583B4 (de) * 2012-03-07 2021-03-18 Pictiva Displays International Limited Organisches Licht emittierendes Bauelement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014013183A1 *

Also Published As

Publication number Publication date
FR2993707A1 (fr) 2014-01-24
WO2014013183A1 (fr) 2014-01-23
KR20150036069A (ko) 2015-04-07
IN2015DN00276A (enrdf_load_stackoverflow) 2015-06-12
CN104471738A (zh) 2015-03-25
RU2015105170A (ru) 2016-09-10
JP2015528186A (ja) 2015-09-24
US20150155521A1 (en) 2015-06-04
FR2993707B1 (fr) 2015-03-13

Similar Documents

Publication Publication Date Title
EP1151480B1 (fr) Cellule solaire a couche mince
WO2009019400A2 (fr) Substrat de face avant de cellule photovoltaïque et utilisation d'un substrat pour une face avant de cellule photovoltaïque
FR2949776A1 (fr) Element en couches pour l'encapsulation d'un element sensible
FR2949775A1 (fr) Substrat de protection pour dispositif collecteur ou emetteur de rayonnement
US8519435B2 (en) Flexible photovoltaic cells having a polyimide material layer and method of producing same
EP2399306A1 (fr) Susbstrat transparent pour dispositifs photoniques
EP2932539A1 (fr) Support conducteur pour dispositif oled, ainsi que dispositif oled l'incorporant.
EP2695216A1 (fr) Dispositif électronique á couches
BE1020676A3 (fr) Dispositif photonique organique.
EP1825536B1 (fr) Diode organique electroluminescente et panneau de diodes a couche anti-reflet favorisant l'extraction de lumiere
WO2012172258A1 (fr) Substrat a electrode pour dispositif oled et un tel dispositif oled
EP2875535A1 (fr) Electrode supportee transparente pour oled
EP2812932A1 (fr) Electrode supportee transparente pour oled
EP2883257A1 (fr) Support conducteur diffusant pour dispositif oled, ainsi que dispositif oled l'incorporant
EP1994579B1 (fr) Diode organique electroluminescente a electrode transparente multi-couche.
EP2883258A1 (fr) Support conducteur diffusant pour dispositif oled, ainsi que dispositif oled l'incorporant
BE1020675A3 (fr) Dispositif photonique organique.
BE1019243A3 (fr) Substrat transparent pour dispositifs photoniques.
FR2992475A1 (fr) Oled avec cathode d'argent
WO2023089286A1 (fr) Procede de fabrication d'un dispositif optoelectronique
WO2014091137A1 (fr) Support conducteur pour dispositif oled, ainsi que dispositif oled l'incorporant
FR2859823A1 (fr) Panneau organique electroluminescent comprenant une couche d'extraction de lumiere incorporant des particules reflechissantes
FR3065324A1 (fr) Pixel d'un micro-ecran a diodes electroluminescentes organiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: SAUVINET, VINCENT

Inventor name: MAZOYER, SIMON

Inventor name: LIENHART, FABIEN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170201