EP2870048B1 - Schienenfahrzeugortung - Google Patents

Schienenfahrzeugortung Download PDF

Info

Publication number
EP2870048B1
EP2870048B1 EP13745371.8A EP13745371A EP2870048B1 EP 2870048 B1 EP2870048 B1 EP 2870048B1 EP 13745371 A EP13745371 A EP 13745371A EP 2870048 B1 EP2870048 B1 EP 2870048B1
Authority
EP
European Patent Office
Prior art keywords
extension
length
waveguide
rail vehicle
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13745371.8A
Other languages
English (en)
French (fr)
Other versions
EP2870048A2 (de
Inventor
Bernhard Evers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2870048A2 publication Critical patent/EP2870048A2/de
Application granted granted Critical
Publication of EP2870048B1 publication Critical patent/EP2870048B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/02Electric devices associated with track, e.g. rail contacts
    • B61L1/04Electric devices associated with track, e.g. rail contacts mechanically actuated by a part of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/14Devices for indicating the passing of the end of the vehicle or train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • B61L1/163Detection devices
    • B61L1/166Optical

Definitions

  • the invention relates to a method having the features according to the preamble of patent claim 1.
  • a waveguide is provided for locating a rail vehicle along a rail track, which is laid along the rail track. Electromagnetic pulses are fed one after the other into the waveguide. At least one backscatter pattern generated by vehicle-induced backscattering of the electromagnetic pulse is received and evaluated for each emitted pulse. By evaluating the backscatter patterns, the rail vehicle is located on the railway line.
  • the invention has for its object to provide a method for operating a locating device, which allows improved compared to previously known methods locating. This object is achieved by a method having the features according to claim 1. Advantageous embodiments of the method according to the invention are specified in subclaims.
  • the invention provides that the waveguide along the rail path has at least one extension section in which the length of the waveguide is longer by an excess length than this extension section associated portion of the rail track, the time backward pattern length of the received backscatter pattern is measured, determines the additional period of the backscatter pattern which results when passing the extension section compared to the backscatter pattern length before or after the extension section and the additional time period for generating an error signal or to calibrate the locating device is used.
  • a significant advantage of the method according to the invention is the fact that are used in this extension sections and measured by these induced additional periods measured and evaluated. If the additional periods of the extension sections are known in advance, the additional time periods measured during normal operation of the locating device can be used to generate an error signal if unusual deviations occur between the measured additional periods and the expected additional periods. If the additional periods of the extension sections are not yet known in advance, the additional time periods occurring can be measured and stored or used to calibrate the locating device in the course of a reference run (calibration run), so that subsequently in the further operation of the locating device an error signal formation can take place, as already has been described.
  • an error signal indicating a malfunction of the locating device is generated when the additional time period exceeds or falls below a predefined desired additional time duration by a predetermined amount when an extension section passes.
  • the desired additional period of time is preferably determined by multiplying the excess length of the extension section by a predetermined proportionality factor.
  • a calibration of the locating device takes place, wherein the calibration of the locating device or the extension sections of the waveguide is located and their respective excess length is measured by the rail track is traveled by a reference rail vehicle whose actual length is known , the temporal Backscatter pattern length of the backscatter pattern is measured over time during the travel of the reference rail vehicle, in the event of a time extension of the backscatter pattern on passing one of the extension sections is closed and calculated on the basis of the additional period of the backscatter pattern in the respective section, the excess length of the extension section and / or the measured Additional time is stored as a desired additional period for the respective extension section.
  • the length of the respective rail vehicle is measured, which travels the rail route by closing in the event of an occurring time extension of the backscatter pattern on passing one of the extension sections and on the basis of the additional period of the backscatter pattern in the respective section compared to the backscatter pattern length before or after the extension section, the length of the rail vehicle is calculated.
  • an error signal is generated when the deviation between the length of the rail vehicle measured for one of the extension sections and the length of the rail vehicle measured for another of the extension sections reaches or exceeds a predetermined threshold value.
  • the invention further relates to a locating device for locating a rail vehicle along a railway track with a waveguide laid along the railway track, a pulse generating device for generating and feeding temporally successive electromagnetic pulses into the waveguide, a detection device for detecting backscatter patterns generated by backscattering and a Evaluation device for evaluating the backscatter patterns.
  • the waveguide has at least one extension section along the rail section, in which the length of the waveguide is longer by an excess length than the section of the rail section assigned to this extension section, and the evaluation device is designed such that it delays the time Measures the backscatter pattern length of the received backscatter pattern and determines the additional time duration of the backscatter pattern that results when passing the extension section by the rail vehicle compared to the backscatter pattern length before or after the extension section.
  • the evaluation device is designed such that it generates an error signal indicating a malfunction of the locating device if the additional time duration exceeds or falls below a predefined desired additional time duration by a predetermined amount when passing through the extension section.
  • the evaluation device can be configured such that it locates the extension section or sections of the waveguide for calibration of the locating device, while the rail route is traveled by a reference rail vehicle whose actual length is known, wherein the time backward pattern length of the backscatter pattern over time is measured during the journey of the reference rail vehicle, in the event of an occurring time extension of the backscatter pattern on the passage of one of the extension sections is closed and on the basis of the additional period of the backscatter pattern in the respective section, the excess length of the extension section calculated and / or the measured additional period is stored as a desired additional period for the respective extension section.
  • the evaluation device can be designed such that during operation of the locating device it measures the length of the respective rail vehicle that travels along the rail route by closing the passage of one of the extension sections in the event of an occurring time extension of the backscatter pattern and by means of the additional period of time of the backscatter pattern in the respective section compared to the backscatter pattern length before or after the extension section calculates the length of the rail vehicle.
  • the waveguide preferably has a multiplicity of extension sections along the rail track. If a plurality of extension sections are present, then it is considered advantageous if the excess lengths of the extension sections differ in that at least two different overlengths are present.
  • At least two of the extension portions are separated from each other by waveguide portions which have no excess length.
  • the arrangement of the extension sections preferably forms a location coding.
  • the length of the waveguide in the extension sections at least 10 times, preferably at least 100 times, greater than the length of the respective associated portion of the rail track, in order to ensure a simple and reliable location.
  • the FIG. 1 shows a locating device 10, a pulse generating device 20, a detection device 30, an optical coupling device 40, a waveguide 50 z. B. in the form of an optical waveguide and an evaluation device 60 includes.
  • the pulse generating device 20 preferably has a laser, which is not further shown, and which makes it possible to generate pulses, for example at a fixed pulse rate, of short electromagnetic, in particular optical, pulses and to feed them into the waveguide 50 via the coupling device 40.
  • the pulse generating device 20 is preferably activated by the evaluation device 60, so that the evaluation device 60 is at least approximately aware of the times of pulse generation.
  • the detection device 30 has, for example, a photodetector which makes it possible to detect electromagnetic radiation.
  • the detection device 30 transmits its measurement signals to the evaluation device 60, which evaluates them.
  • the waveguide 50 is arranged along a rail track 100.
  • a rail vehicle 110 travels along the direction of the arrow P from left to right.
  • the movement of the rail vehicle 110 along the arrow direction P is symbolized by two further positions (compare rail vehicle positions 110 'and 110 ").
  • the FIG. 1 shows that the waveguide 50 is provided with extension sections 51, 52 and 53 in which the length of the waveguide 50 is greater than the length of the associated sections of the rail track 100. Outside the extension sections 51 to 53, the waveguide 50 is approximately the same length as the Rail section 100. The difference in length or the excess length in the extension sections 51 to 53 is based, for example, on the fact that the waveguide 50 is curved several times in these sections.
  • Embodiments of the embodiment of the extension portions 51 to 53 are in the FIGS. 5 to 7 shown; These figures will be discussed below.
  • the locating device 10 according to FIG. 1 can be operated to locate the rail vehicle 110, for example, as follows:
  • the evaluation device 60 controls the pulse generating device 20 in such a way that it feeds electromagnetic pulses Pin in succession via the coupling device 40 into the waveguide 50.
  • the generated electromagnetic pulses travel along the arrow direction P in FIG. 1 from left to right and are preferably absorbed at the waveguide end 50a by an absorber 200.
  • the waveguide 50 By traveling on the rail track 100 rail vehicle 110, the waveguide 50 is locally shaken or vibrated; this is in the FIG. 1 indicated by arrows with the reference Ms. Due to these vibrations or due to the vibrations of the waveguide 50, a backscattering of the electromagnetic radiation will occur locally in the area in which the rail vehicle 110 is currently located. The backscattered radiation has a backscatter pattern that is characteristic of the vibration caused by the rail vehicle 110 and coupled into the waveguide 50.
  • the backscattered radiation runs counter to the direction of travel P of the rail vehicle in the direction of the coupling device 40 and in the direction of the detection device 30 and is detected there by the detection device 30.
  • the detection device 30 is designed such that it measures the intensity of the backscattered radiation and forwards a corresponding measurement signal to the evaluation device 60.
  • the intensity the backscattered radiation is in the FIG. 1 marked with the reference Ir (t).
  • the evaluation device 60 will evaluate the backscattered radiation Ir (t) and the backscatter patterns contained therein. If the time length of the received backscatter patterns extends over time, it will infer the passage of one of the extension sections 51 to 53 and produce a location signal S o. This should be closer to the FIGS. 2 to 4 be explained.
  • the length of the received backscatter pattern Rm1 is in the FIG. 2 marked with the reference numeral dt1.
  • the backscatter pattern Rm1 refers to the position of the rail vehicle according to FIG. 1 as denoted by solid lines and the reference numeral 110.
  • the rail vehicle 110 along the direction of arrow P according to FIG. 1 further and reaches the position indicated by the reference numeral 110 ', it will put the extension portion 51 of the waveguide 50 in mechanical vibration.
  • the length of the waveguide 50 is much greater than the corresponding length of the associated section of the rail track 100, so that a temporal extension of the backscatter pattern occurs. This is in the FIG. 3 shown.
  • time length dt2 of the backscatter pattern Rm2 is much larger than the time length dt1 of the backscatter pattern Rm1.
  • the enlargement or temporal extension of the backscatter pattern Rm2 is due to the fact that the extension section 51 is much longer than the assigned section of the rail track 100.
  • the calculated additional period dtz can now be used to check the operation of the locating device, to calibrate the locating device or to measure the length of rail vehicles, as will be explained below by way of example:
  • the calculated additional time duration dtz can be compared with a desired additional time duration dtsoll specified for the extension section 51. If the deviation between the calculated additional time duration dtz and the desired additional time duration dtsoll is too great or greater than a predefined threshold value Dmax, the evaluation device 60 generates an error signal F indicating a malfunction of the positioning device: dtz - dtSoll ⁇ Dmax ⁇ error signal
  • the excess length dL of the extension portion 51 may be measured (see below in the section "Calibrating the Locator") or known from laying the waveguide 50.
  • the extension sections 51-53 of the waveguide 50 can be located and their respective excess length measured by the rail line 100 from a reference rail vehicle (eg the rail vehicle 110 according to FIG. 1 ), whose length is known in advance.
  • a reference rail vehicle eg the rail vehicle 110 according to FIG. 1
  • the temporal backscatter pattern length of the backscatter pattern is measured over time.
  • a time extension of the backscatter pattern see backscatter pattern Rm2 in FIG. 3
  • the extension portions eg, extension portion 51 in FIG. 1
  • the excess length dL of the extension section can be calculated and / or the measured additional period dtz can be stored as the desired additional period dtsoll for the respective extension section 51.
  • the factor 1/2 takes into account that the radiation must pass through the extension section 51 twice, namely once in execution and once in return.
  • V c 0 / n where c0 indicates the speed of light and n the refractive index in waveguide 50.
  • the rail vehicle length Lsf is determined for each of the extension sections 51-53, then a comparison with the values in the previously traveled extension sections is preferably carried out. If it is determined that the rail vehicle length Lsf has changed while driving, an error signal F is generated by the evaluation device 60, which indicates that either the locating device 10 is defective or the rail vehicle 110 has changed its length. The latter case may occur, for example, when a train separation has occurred, e.g. B. the rail vehicle 110 has lost a car by uncoupling.
  • the rail vehicle 110 leaves the area of the extension section 51 again and enters the area between the two extension sections 51 and 52 according to FIG FIG. 1 (See the position of the rail vehicle indicated by reference numeral 110 "in FIG. 1 ), the extension of the backscatter pattern will be repeated and the length dt3 of the backscatter pattern Rm3 (cf. FIG. 4 ) is again the original time length dt1 of the backscatter pattern Rm1 according to FIG. 2 correspond.
  • the evaluation device 60 is thus able to use the time lengths dt1, dt2 and dt3 of the backscatter patterns Rm1, Rm2 and Rm3 to determine the location of the rail vehicle 110 on the rail track 100, because the location of the extension sections 51 to 53 along the rail track 100 is known to perform a calibration of the locating device 10 based on a reference travel of a reference rail vehicle to determine the length of the extension sections 51-53 or their Sollzusatzzeitdauern, and / or to determine the length of the rail vehicles.
  • the detection device 30 can also make a location based on the time periods that result between the feeding of the electromagnetic pulses Pin in the waveguide 50 and the detection of the respective associated backscatter pattern Rm1, Rm2 and Rm3 ,
  • the evaluation device 60 is thus able to use the time periods T1, T2 and T3 to determine the distance and thus the location of the rail vehicle 110 and to generate a corresponding distance signal Se.
  • the time period T2 may be the measurement according to FIG. 3 be removed.
  • the factor 1/2 takes into account that the radiation must pass through the respective waveguide section twice, namely once in the direction of execution and once in the return direction.
  • V c 0 / n where c0 indicates the speed of light and n the refractive index in waveguide 50.
  • the detection device 30 is thus able to additionally determine the location of the rail vehicle 110 on the basis of the time periods T1, T2 and T3, which pass between the transmission of the pulses Pin and the reception of the respective backscatter pattern Rm1, Rm2 and Rm3.
  • the evaluation device 60 in the case of locating the rail vehicle 110 in the region of one of the extension sections 51 to 53 and the generation of a corresponding location signal So additionally performs a plausibility check.
  • Such a plausibility check can be carried out, for example, such that the evaluation device 60 recognizes one of the extension sections 51 to 53 and the generation of a location signal So the time interval between pulse generation and arrival of the backscatter pattern (cf. FIG. 3 ) and determines the distance Ls of the rail vehicle 110. Subsequently, the evaluation device 60 can check whether the distance signal Se coincides with the formed location signal So.
  • the evaluation device 60 will generate an error signal F if the difference between the position Ls indicated by the distance signal Se and the known position of the recognized extension section 51 exceeds a predetermined threshold value. The same applies to plausibility checks in the other extension sections.
  • FIG. 5 shows an embodiment of an extension portion 300, as it as extension portion 51 to 53 in the locating device 10 according to FIG. 1 can be used.
  • the waveguide 50 is wound several times in the region of the extension section 300 and forms a waveguide coil 310.
  • By winding or winding up the waveguide 50 a substantial extension of the waveguide 50 with respect to the associated section of the rail track 100 is achieved, so that the temporal extension of the backscatter patterns (see backscatter pattern Rm2 in FIG FIG. 3 ) is significant.
  • FIG. 6 shows another embodiment of an extension portion 300, as it as extension portion 51 to 53 in the locating device 10 according to FIG. 1 can be used.
  • the waveguide 50 has a meandering structure 320, through which a considerable extension of the waveguide 50 with respect to the associated portion of the rail line 100 is caused. This leads to the explained time extension of the backscatter pattern, by which a location of the rail vehicle 110 on the rail track 100 according to FIG. 1 is possible.
  • FIG. 7 For example, one embodiment of an extension portion 300 having both a waveguide coil 310 and a meandering structure 320 is shown.
  • the configuration of the waveguide coil 310 and the meander structure 320 reference is made to the above statements in connection with FIGS FIGS. 5 and 6 directed.
  • FIG. 8 shows a further embodiment of a locating device 10 according to the invention, in which the waveguide 50 has a plurality of extension sections 51 to 55, which are arranged so that they form a spatial coding.
  • this location coding it is possible to detect the location of the rail vehicle 110 on the railroad track 100 without having to observe and count the occurrence of the extension sections.
  • the location coding is indicated by a coded arrangement of the extension sections 51 to 55 only by means of a few extension sections; It goes without saying that the location coding can be optimized in terms of its accuracy and readability, if a much larger number of extension sections is used.
  • the spatial coding by a local coding of the arrangement of the extension sections can be effected, for example, by forming binary coding patterns by the extension sections.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren mit den Merkmalen gemäß dem Oberbegriff des Patentanspruchs 1.
  • Ein derartiges Verfahren ist aus der internationalen Patentanmeldung WO 2011/027166 A1 und auch aus der Patentschrift US 5 330 136 bekannt. Bei diesem vorbekannten Verfahren ist zum Orten eines Schienenfahrzeugs entlang einer Schienenstrecke ein Wellenleiter vorgesehen, der entlang der Schienenstrecke verlegt ist. In den Wellenleiter werden zeitlich nacheinander elektromagnetische Pulse eingespeist. Für jeden ausgesandten Puls wird jeweils zumindest ein durch fahrzeuginduzierte Rückstreuung des elektromagnetischen Pulses erzeugtes Rückstreumuster empfangen und ausgewertet. Durch das Auswerten der Rückstreumuster wird das Schienenfahrzeug auf der Schienenstrecke geortet.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Ortungseinrichtung anzugeben, das eine gegenüber vorbekannten Verfahren verbesserte Ortung ermöglicht. Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen gemäß Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind in Unteransprüchen angegeben.
  • Danach ist erfindungsgemäß vorgesehen, dass der Wellenleiter entlang der Schienenstrecke zumindest einen Verlängerungsabschnitt aufweist, in dem die Länge des Wellenleiters um eine Überlänge länger ist als der diesem Verlängerungsabschnitt zugeordnete Abschnitt der Schienenstrecke, die zeitliche Rückstreumusterlänge des empfangenen Rückstreumusters gemessen wird, die Zusatzzeitdauer des Rückstreumusters bestimmt wird, die sich beim Passieren des Verlängerungsabschnitts im Vergleich zur Rückstreumusterlänge vor oder nach dem Verlängerungsabschnitt ergibt und die Zusatzzeitdauer zum Erzeugen eines Fehlersignals oder zum Kalibrieren der Ortungseinrichtung herangezogen wird.
  • Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens ist darin zu sehen, dass bei diesem Verlängerungsabschnitte eingesetzt und die durch diese hervorgerufenen Zusatzzeitdauern gemessen und ausgewertet werden. Sind die Zusatzzeitdauern der Verlängerungsabschnitte vorab bekannt, so können die während des normalen Betriebs der Ortungseinrichtung gemessenen Zusatzzeitdauern zum Erzeugen eines Fehlersignals herangezogen werden, wenn es zu ungewöhnlichen Abweichungen zwischen den gemessenen Zusatzzeitdauern und den erwarteten Zusatzzeitdauern kommt. Sind die Zusatzzeitdauern der Verlängerungsabschnitte vorab noch nicht bekannt, so können im Rahmen einer Referenzfahrt (Kalibrierfahrt) die auftretenden Zusatzzeitdauern gemessen und gespeichert bzw. zum Kalibrieren der Ortungseinrichtung verwendet werden, so dass nachfolgend im weiteren Betrieb der Ortungseinrichtung eine Fehlersignalbildung erfolgen kann, wie sie bereits beschrieben wurde.
  • Gemäß einer bevorzugten Ausgestaltung des Verfahrens ist vorgesehen, dass ein eine Fehlfunktion der Ortungseinrichtung anzeigendes Fehlersignal erzeugt wird, wenn beim Passieren eines Verlängerungsabschnitts die Zusatzzeitdauer eine vorgegebene Soll-Zusatzzeitdauer um ein vorgegebenes Maß hinaus über- oder unterschreitet.
  • Die Soll-Zusatzzeitdauer wird vorzugsweise durch Multiplikation der Überlänge des Verlängerungsabschnitts mit einem vorgegebenen Proportionalitätsfaktor ermittelt.
  • Gemäß einer weiteren bevorzugten Ausgestaltung des Verfahrens ist vorgesehen, dass eine Kalibrierung der Ortungseinrichtung erfolgt, wobei zur Kalibrierung der Ortungseinrichtung der oder die Verlängerungsabschnitte des Wellenleiters geortet und deren jeweilige Überlänge gemessen wird, indem die Schienenstrecke von einem Referenzschienenfahrzeug abgefahren wird, dessen tatsächliche Länge bekannt ist, die zeitliche Rückstreumusterlänge des Rückstreumusters im zeitlichen Verlauf während der Fahrt des Referenzschienenfahrzeugs gemessen wird, im Falle einer auftretenden zeitlichen Verlängerung des Rückstreumusters auf das Passieren eines der Verlängerungsabschnitte geschlossen wird und anhand der Zusatzzeitdauer des Rückstreumusters in dem jeweiligen Abschnitt die Überlänge des Verlängerungsabschnitts berechnet und/oder die gemessene Zusatzzeitdauer als Soll-Zusatzzeitdauer für den jeweiligen Verlängerungsabschnitt gespeichert wird.
  • Gemäß einer weiteren bevorzugten Ausgestaltung des Verfahrens ist vorgesehen, dass während des Betriebs der Ortungseinrichtung die Länge des jeweiligen Schienenfahrzeugs gemessen wird, das die Schienenstrecke befährt, indem im Falle einer auftretenden zeitlichen Verlängerung des Rückstreumusters auf das Passieren eines der Verlängerungsabschnitte geschlossen wird und anhand der Zusatzzeitdauer des Rückstreumusters in dem jeweiligen Abschnitt im Vergleich zur Rückstreumusterlänge vor oder nach dem Verlängerungsabschnitt die Länge des Schienenfahrzeugs errechnet wird.
  • Vorzugsweise wird ein Fehlersignal erzeugt, wenn die Abweichung zwischen der für einen der Verlängerungsabschnitte gemessenen Länge des Schienenfahrzeugs und der für einen anderen der Verlängerungsabschnitte gemessenen Länge des Schienenfahrzeugs einen vorgegebenen Schwellenwert erreicht oder überschreitet.
  • Die Erfindung bezieht sich darüber hinaus auf eine Ortungseinrichtung zum Orten eines Schienenfahrzeugs entlang einer Schienenstrecke mit einem entlang der Schienenstrecke verlegten Wellenleiter, einer Pulserzeugungseinrichtung zum Erzeugen und Einspeisen zeitlich aufeinander folgender elektromagnetischer Pulse in den Wellenleiter, einer Detektionseinrichtung zum Detektieren von durch Rückstreuung erzeugten Rückstreumustern und einer Auswerteinrichtung zum Auswerten der Rückstreumuster.
  • Bezüglich einer solchen Ortungseinrichtung ist erfindungsgemäß vorgesehen, dass der Wellenleiter entlang der Schienenstrecke zumindest einen Verlängerungsabschnitt aufweist, in dem die Länge des Wellenleiters um eine Überlänge länger ist als der diesem Verlängerungsabschnitt zugeordnete Abschnitt der Schienenstrecke, und die Auswerteinrichtung derart ausgestaltet ist, dass sie die zeitliche Rückstreumusterlänge des empfangenen Rückstreumusters misst und die Zusatzzeitdauer des Rückstreumusters bestimmt, die sich beim Passieren des Verlängerungsabschnitts durch das Schienenfahrzeug im Vergleich zur Rückstreumusterlänge vor oder nach dem Verlängerungsabschnitt ergibt.
  • Bezüglich der Vorteile der erfindungsgemäßen Ortungseinrichtung sei auf die obigen Ausführungen im Zusammenhang mit dem erfindungsgemäßen Verfahren verwiesen, da die Vorteile des erfindungsgemäßen Verfahrens denen der erfindungsgemäßen Ortungseinrichtung im Wesentlichen entsprechen.
  • Als besonders vorteilhaft wird es angesehen, wenn die Auswerteinrichtung derart ausgestaltet ist, dass sie ein eine Fehlfunktion der Ortungseinrichtung anzeigendes Fehlersignal erzeugt, wenn beim Passieren des Verlängerungsabschnitts die Zusatzzeitdauer eine vorgegebene Soll-Zusatzzeitdauer um ein vorgegebenes Maß hinaus über- oder unterschreitet.
  • Alternativ oder zusätzlich kann die Auswerteinrichtung derart ausgestaltet sein, dass sie zur Kalibrierung der Ortungseinrichtung den oder die Verlängerungsabschnitte des Wellenleiters ortet und vermisst, während die Schienenstrecke von einem Referenzschienenfahrzeug abgefahren wird, dessen tatsächliche Länge bekannt ist, wobei die zeitliche Rückstreumusterlänge des Rückstreumusters im zeitlichen Verlauf während der Fahrt des Referenzschienenfahrzeugs gemessen wird, im Falle einer auftretenden zeitlichen Verlängerung des Rückstreumusters auf das Passieren eines der Verlängerungsabschnitte geschlossen wird und anhand der Zusatzzeitdauer des Rückstreumusters in dem jeweiligen Abschnitt die Überlänge des Verlängerungsabschnitts berechnet und/oder die gemessene Zusatzzeitdauer als Soll-Zusatzzeitdauer für den jeweiligen Verlängerungsabschnitt gespeichert wird.
  • Alternativ oder zusätzlich kann die Auswerteinrichtung derart ausgestaltet sein, dass sie während des Betriebs der Ortungseinrichtung die Länge des jeweiligen Schienenfahrzeugs misst, das die Schienenstrecke befährt, indem sie im Falle einer auftretenden zeitlichen Verlängerung des Rückstreumusters auf das Passieren eines der Verlängerungsabschnitte schließt und anhand der Zusatzzeitdauer des Rückstreumusters in dem jeweiligen Abschnitt im Vergleich zur Rückstreumusterlänge vor oder nach dem Verlängerungsabschnitt die Länge des Schienenfahrzeugs errechnet.
  • Vorzugsweise weist der Wellenleiter entlang der Schienenstrecke eine Vielzahl an Verlängerungsabschnitten auf. Sind mehrere Verlängerungsabschnitte vorhanden, so wird es als vorteilhaft angesehen, wenn sich die Überlängen der Verlängerungsabschnitte dahingehend unterscheiden, dass zumindest zwei unterschiedliche Überlängen vorhanden sind.
  • Vorzugsweise sind zumindest zwei der Verlängerungsabschnitte, vorzugsweise alle, voneinander durch Wellenleiterabschnitte getrennt, die keine Überlänge aufweisen.
  • Die Anordnung der Verlängerungsabschnitte bildet vorzugsweise eine Ortskodierung.
  • Besonders bevorzugt ist die Länge des Wellenleiters in den Verlängerungsabschnitten mindestens 10-mal, vorzugsweise mindestens 100-mal, größer als die Länge des jeweils zugeordneten Abschnitts der Schienenstrecke, um eine einfache und zuverlässige Ortung zu gewährleisten.
  • Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert; dabei zeigen beispielhaft
  • Figur 1
    ein Ausführungsbeispiel für eine erfindungsgemäße Ortungseinrichtung zum Orten eines Schienenfahrzeugs entlang einer Schienenstrecke,
    Figuren 2-4
    beispielhaft Rückstreumuster, die ein Schienenfahrzeug auf der Schienenstrecke gemäß Figur 1 erzeugt,
    Figur 5
    ein Ausführungsbeispiel für einen Verlängerungsabschnitt, wie er bei der Ortungseinrichtung gemäß Figur 1 eingesetzt werden kann, wobei der Verlängerungsabschnitt einen aufgespulten Wellenleiter umfasst,
    Figur 6
    ein zweites Ausführungsbeispiel für einen Verlängerungsabschnitt, wie er bei der Ortungseinrichtung gemäß Figur 1 eingesetzt werden kann, wobei der Verlängerungsabschnitt durch eine Mäanderstruktur gebildet ist,
    Figur 7
    ein drittes Ausführungsbeispiel für einen Verlängerungsabschnitt, wie er bei der Ortungseinrichtung gemäß Figur 1 verwendet werden kann, wobei der Verlängerungsabschnitt einen Mäanderabschnitt sowie einen aufgespulten Wellenleiterabschnitt umfasst, und
    Figur 8
    ein weiteres Ausführungsbeispiel für eine erfindungsgemäße Ortungseinrichtung, bei der Verlängerungsabschnitte eine Ortskodierung bilden.
  • In den Figuren werden der Übersicht halber für identische oder vergleichbare Komponenten stets dieselben Bezugszeichen verwendet.
  • Die Figur 1 zeigt eine Ortungseinrichtung 10, die eine Pulserzeugungseinrichtung 20, eine Detektionseinrichtung 30, eine optische Koppeleinrichtung 40, einen Wellenleiter 50 z. B. in Form eines optischen Lichtwellenleiters und eine Auswerteinrichtung 60 umfasst.
  • Die Pulserzeugungseinrichtung 20 weist vorzugsweise einen nicht weiter gezeigten Laser auf, der es ermöglicht, regelmäßig, beispielsweise mit einer fest vorgegebenen Pulsrate, kurze elektromagnetische, insbesondere optische, Pulse zu erzeugen und über die Koppeleinrichtung 40 in den Wellenleiter 50 einzuspeisen. Die Pulserzeugungseinrichtung 20 wird von der Auswerteinrichtung 60 vorzugsweise angesteuert, so dass der Auswerteinrichtung 60 die Zeitpunkte der Pulserzeugung zumindest näherungsweise bekannt sind.
  • Die Detektionseinrichtung 30 weist beispielsweise einen Fotodetektor auf, der das Detektieren elektromagnetischer Strahlung ermöglicht. Die Detektionseinrichtung 30 übermittelt ihre Messsignale an die Auswerteinrichtung 60, die diese auswertet.
  • In der Figur 1 lässt sich erkennen, dass der Wellenleiter 50 entlang einer Schienenstrecke 100 angeordnet ist. Auf der Schienenstrecke 100 fährt ein Schienenfahrzeug 110 entlang der Pfeilrichtung P von links nach rechts. Bei der Darstellung gemäß der Figur 1 ist die Bewegung des Schienenfahrzeugs 110 entlang der Pfeilrichtung P durch zwei weitere Positionen symbolisiert (vgl. Schienenfahrzeugpositionen 110' und 110").
  • Die Figur 1 zeigt, dass der Wellenleiter 50 mit Verlängerungsabschnitten 51, 52 und 53 ausgestattet ist, in denen die Länge des Wellenleiters 50 größer ist als die Länge der zugeordneten Abschnitte der Schienenstrecke 100. Außerhalb der Verlängerungsabschnitte 51 bis 53 ist der Wellenleiter 50 näherungsweise genauso lang wie die Schienenstrecke 100. Der Längenunterschied bzw. die Überlänge in den Verlängerungsabschnitten 51 bis 53 beruht beispielsweise darauf, dass der Wellenleiter 50 in diesen Abschnitten mehrfach gekrümmt ist.
  • Ausführungsbeispiele für die Ausgestaltung der Verlängerungsabschnitte 51 bis 53 sind in den Figuren 5 bis 7 dargestellt; auf diese Figuren wird weiter unten eingegangen.
  • Die Ortungseinrichtung 10 gemäß Figur 1 lässt sich zum Orten des Schienenfahrzeugs 110 beispielsweise wie folgt betreiben:
  • Die Auswerteinrichtung 60 steuert die Pulserzeugungseinrichtung 20 derart an, dass diese zeitlich nacheinander elektromagnetische Pulse Pin über die Koppeleinrichtung 40 in den Wellenleiter 50 einspeist. Die erzeugten elektromagnetischen Pulse laufen entlang der Pfeilrichtung P in der Figur 1 von links nach rechts und werden vorzugsweise am Wellenleiterende 50a von einer Absorptionseinrichtung 200 absorbiert.
  • Durch das auf der Schienenstrecke 100 fahrende Schienenfahrzeug 110 wird der Wellenleiter 50 lokal erschüttert bzw. in Schwingungen versetzt; dies ist in der Figur 1 durch Pfeile mit dem Bezugszeichen Ms gekennzeichnet. Aufgrund dieser Schwingungen bzw. aufgrund der Erschütterungen des Wellenleiters 50 wird es lokal in dem Bereich, in dem sich das Schienenfahrzeug 110 gerade befindet, zu einer Rückstreuung der elektromagnetischen Strahlung kommen. Die rückgestreute Strahlung weist ein Rückstreumuster auf, das charakteristisch für die Erschütterung ist, die von dem Schienenfahrzeug 110 hervorgerufen und in den Wellenleiter 50 eingekoppelt wird.
  • Die rückgestreute Strahlung läuft entgegen der Fahrtrichtung P des Schienenfahrzeugs in Richtung Koppeleinrichtung 40 und in Richtung Detektionseinrichtung 30 und wird dort von der Detektionseinrichtung 30 detektiert. Die Detektionseinrichtung 30 ist derart ausgestaltet, dass sie die Intensität der zurückgestreuten Strahlung misst und ein entsprechendes Messsignal an die Auswerteinrichtung 60 weiterleitet. Die Intensität der zurückgestreuten Strahlung ist in der Figur 1 mit dem Bezugszeichen Ir(t) gekennzeichnet.
  • Die Auswerteinrichtung 60 wird die zurückgestreute Strahlung Ir(t) und die darin enthaltenen Rückstreumuster auswerten. Wenn sich die zeitliche Länge der empfangenen Rückstreumuster im zeitlichen Verlauf verlängert, so wird sie auf das Passieren eines der Verlängerungsabschnitte 51 bis 53 schließen und ein Ortsignal So erzeugen. Dies soll näher anhand der Figuren 2 bis 4 erläutert werden.
  • In der Figur 2 ist beispielhaft ein Rückstreumuster Rm1 dargestellt, das in der Auswerteinrichtung 60 eintrifft, wenn zum Zeitpunkt t=0 ein elektromagnetischer Puls von der Pulseinrichtung 20 in den Wellenleiter 50 eingestrahlt worden ist. Die Länge des empfangenen Rückstreumusters Rm1 ist in der Figur 2 mit dem Bezugszeichen dt1 gekennzeichnet.
  • Das Rückstreumuster Rm1 bezieht sich auf die Position des Schienenfahrzeugs gemäß Figur 1, wie sie dort mit durchgezogenen Linien und dem Bezugszeichen 110 gekennzeichnet ist.
  • Bewegt sich nun das Schienenfahrzeug 110 entlang der Pfeilrichtung P gemäß Figur 1 weiter und erreicht die mit dem Bezugszeichen 110' gekennzeichnete Position, so wird es den Verlängerungsabschnitt 51 des Wellenleiters 50 in mechanische Schwingungen versetzen. Im Bereich des Verlängerungsabschnitts 51 ist die Länge des Wellenleiters 50 jedoch sehr viel größer als die entsprechende Länge des zugeordneten Abschnitts der Schienenstrecke 100, so dass es zu einer zeitlichen Streckung bzw. Verlängerung des Rückstreumusters kommt. Dies ist in der Figur 3 dargestellt.
  • In der Figur 3 lässt sich erkennen, dass die zeitliche Länge dt2 des Rückstreumusters Rm2 sehr viel größer ist als die zeitliche Länge dt1 des Rückstreumusters Rm1. Die Vergrößerung bzw. zeitliche Streckung des Rückstreumusters Rm2 ist darauf zurückzuführen, dass der Verlängerungsabschnitt 51 sehr viel länger ist als der zugeordnete Abschnitt der Schienenstrecke 100. Die zeitliche Länge dt2 des Rückstreumusters Rm2 setzt sich zusammen aus der zeitlichen Länge dt1 des Rückstreumusters Rm1 und einer Zusatzzeitdauer dtz gemäß: dt 2 = dt 1 + dtz .
    Figure imgb0001
  • Werden die zeitlichen Längen dt1 des Rückstreumusters Rm1 und dt2 des Rückstreumusters Rm2 gemessen, so lässt sich die Zusatzzeitdauer dtz berechnen, gemäß dtz = dt 2 dt 1
    Figure imgb0002
  • Die berechnete Zusatzzeitdauer dtz kann nun zum Überprüfen der Funktionsweise der Ortungseinrichtung, zum Kalibrieren der Ortungseinrichtung oder zum Messen der Länge von Schienenfahrzeugen herangezogen werden, wie nachfolgend beispielhaft erläutert wird:
  • 1. Überprüfen der Funktionsweise der Ortungseinrichtung:
  • Zum Überprüfen der Funktionsweise der Ortungseinrichtung kann die berechnete Zusatzzeitdauer dtz mit einer für den Verlängerungsabschnitt 51 vorgegebenen Soll-Zusatzzeitdauer dtsoll verglichen werden. Ist die Abweichung zwischen der berechneten Zusatzzeitdauer dtz und der Soll-Zusatzzeitdauer dtsoll zu groß bzw. größer als ein vorgegebener Schwellenwert Dmax, so wird von der Auswerteinrichtung 60 ein eine Fehlfunktion der Ortungseinrichtung anzeigendes Fehlersignal F erzeugt: dtz dtsoll Dmax Fehlersignal
    Figure imgb0003
  • Die Soll-Zusatzzeitdauer dtsoll für den Verlängerungsabschnitt 51 kann beispielsweise durch Multiplikation der Überlänge dL des Verlängerungsabschnitts 51 des Wellenleiters 50 mit einem vorgegebenen Proportionalitätsfaktor k ermittelt wird, gemäß: dtsoll = dL * k
    Figure imgb0004
  • Die Überlänge dL des Verlängerungsabschnitts 51 kann gemessen werden (siehe unten in Abschnitt "Kalibrieren der Ortungseinrichtung") oder von der Verlegung des Wellenleiters 50 her bekannt sein.
  • 2. Kalibrieren der Ortungseinrichtung
  • Zum Kalibrieren der Ortungseinrichtung, insbesondere zum Ermitteln der Soll-Zusatzzeitdauern dtsoll oder der Überlängen dL der Verlängerungsabschnitte, können die Verlängerungsabschnitte 51-53 des Wellenleiters 50 geortet und deren jeweilige Überlänge gemessen werden, indem die Schienenstrecke 100 von einem Referenzschienenfahrzeug (z. B dem Schienenfahrzeug 110 gemäß Figur 1) abgefahren wird, dessen Länge vorab bekannt ist. Während der Fahrt des Schienenfahrzeugs 110 wird die zeitliche Rückstreumusterlänge des Rückstreumusters im zeitlichen Verlauf gemessen. Im Falle einer auftretenden zeitlichen Verlängerung des Rückstreumusters (siehe Rückstreumuster Rm2 in Figur 3) wird auf das Passieren eines der Verlängerungsabschnitte (z. B. Verlängerungsabschnitt 51 in Figur 1) geschlossen. Anhand der Zusatzzeitdauer dtz des Rückstreumusters Rm2 in dem jeweiligen Abschnitt kann die Überlänge dL des Verlängerungsabschnitts berechnet und/oder die gemessene Zusatzzeitdauer dtz als Soll-Zusatzzeitdauer dtsoll für den jeweiligen Verlängerungsabschnitt 51 gespeichert werden. Das Berechnen der Überlänge dL kann beispielsweise wie folgt geschehen: dL = dt 2 dt 1 / k
    Figure imgb0005
    wobei k einen Proportionalitätsfaktor angibt, für den näherungsweise gilt: k = 1 / 2 * 1 / V
    Figure imgb0006
    wobei V die Geschwindigkeit der Pulse im Wellenleiter 50 angibt. Der Faktor 1/2 berücksichtigt, dass die Strahlung den Verlängerungsabschnitt 51 zweimal durchlaufen muss, nämlich einmal in Hinrichtung und einmal in Rückrichtung. Für die Geschwindigkeit V gilt beispielsweise: V = c 0 / n
    Figure imgb0007
    wobei c0 die Lichtgeschwindigkeit und n die Brechzahl im Wellenleiter 50 angibt.
  • 3. Messen der Länge von Schienenfahrzeugen:
  • Neben einer Ortung von Schienenfahrzeugen ist es darüber hinaus möglich, die Länge des jeweiligen Schienenfahrzeugs 100 zu messen. Im Falle einer auftretenden zeitlichen Verlängerung des Rückstreumusters (vgl. Rückstreumuster Rm2 in Figur 3) wird auf das Passieren des Verlängerungsabschnitts 51 in Figur 1 geschlossen, wie oben bereits erläutert wurde. Anhand der Zusatzzeitdauer dtz des Rückstreumusters Rm2 in dem Verlängerungsabschnitts 51 im Vergleich zur Rückstreumusterlänge vor oder nach dem Verlängerungsabschnitt 51 kann die Länge Lsf des Schienenfahrzeugs 100 errechnet werden, gemäß: Lsf = dt 2 dtz / k
    Figure imgb0008
    wobei k den o. g. Proportionalitätsfaktor angibt, für den näherungsweise gilt: k = 1 / 2 * 1 / V .
    Figure imgb0009
  • Wird für jeden der Verlängerungsabschnitte 51-53 jeweils die Schienenfahrzeuglänge Lsf bestimmt, so wird vorzugsweise ein Vergleich mit den Werten bei den vorher befahrenen Verlängerungsabschnitten durchgeführt. Wird dabei festgestellt, dass sich die Schienenfahrzeuglänge Lsf während der Fahrt geändert hat, wird von der Auswerteinrichtung 60 ein Fehlersignal F erzeugt, das angibt, dass entweder die Ortungseinrichtung 10 defekt ist oder das Schienenfahrzeug 110 seine Länge geändert hat. Der letztgenannte Fall kann beispielsweise eintreten, wenn eine Zugtrennung aufgetreten ist, z. B. das Schienenfahrzeug 110 einen Waggon durch Abkuppeln verloren hat.
  • Verlässt das Schienenfahrzeug 110 den Bereich des Verlängerungsabschnitts 51 wieder und gelangt in den Bereich zwischen den beiden Verlängerungsabschnitten 51 und 52 gemäß Figur 1 (vgl. die mit dem Bezugszeichen 110'' gekennzeichnete Position des Schienenfahrzeugs in Figur 1), so wird sich die Streckung des Rückstreumusters wieder geben und die Länge dt3 des Rückstreumusters Rm3 (vgl. Figur 4) wird wieder der ursprünglichen zeitlichen Länge dt1 des Rückstreumusters Rm1 gemäß Figur 2 entsprechen.
  • Zusammengefasst ist die Auswerteinrichtung 60 somit in der Lage, anhand der zeitlichen Länge dt1, dt2 und dt3 der Rückstreumuster Rm1, Rm2 und Rm3 den Ort des Schienenfahrzeugs 110 auf der Schienenstrecke 100 zu bestimmen, weil die örtliche Lage der Verlängerungsabschnitte 51 bis 53 entlang der Schienenstrecke 100 bekannt ist, eine Kalibrierung der Ortungseinrichtung 10 anhand einer Referenzfahrt eines Referenzschienenfahrzeugs durchzuführen, um die Länge der Verlängerungsabschnitte 51-53 bzw. deren Sollzusatzzeitdauern zu bestimmen, und/oder die Länge der Schienenfahrzeuge zu ermitteln.
  • Durch ein Abzählen der von der Auswerteinrichtung 60 ausgangsseitig erzeugten Ortsignale So kann außerdem die Fahrt des Schienenfahrzeugs verfolgt werden.
  • Neben einer Ortung des Schienenfahrzeugs 110 anhand der Verlängerungsabschnitte 51 bis 53 kann die Detektionseinrichtung 30 auch eine Ortung anhand der Zeitspannen vornehmen, die sich zwischen dem Einspeisen der elektromagnetischen Pulse Pin in den Wellenleiter 50 und dem Detektieren des jeweils zugehörigen Rückstreumusters Rm1, Rm2 und Rm3 ergeben.
  • In den Figuren 2-4 lässt sich erkennen, dass die Zeitspannen zwischen dem jeweiligen elektromagnetischem Anregepuls Pin und dem zugehörigen Rückstreumuster Rm1, Rm2 und Rm3 während der Fahrt des Schienenfahrzeugs 110 auf der Schienenstrecke 100 anwachsen; dies ist darauf zurückzuführen, dass die Laufzeit der elektromagnetischen Pulse und die Laufzeit der elektromagnetischen Rückstreumuster in dem Wellenleiter 50 mit zunehmendem Abstand des Schienenfahrzeugs 110 von der Pulserzeugungseinrichtung 20 bzw. der Detektionseinrichtung 30 zunehmen.
  • Die Auswerteinrichtung 60 ist somit in der Lage, anhand der Zeitspannen T1, T2 und T3 die Entfernung und damit den Ort des Schienenfahrzeugs 110 zu bestimmen und ein entsprechendes Entfernungssignal Se zu erzeugen. Die Entfernung Ls des Schienenfahrzeugs 110' in Figur 1 kann beispielsweise berechnet werden gemäß: Ls = 1 / 2 * T 2 / V
    Figure imgb0010
    wobei V die Geschwindigkeit der Pulse im Wellenleiter 50 angibt. Die Zeitspanne T2 kann der Messung gemäß Figur 3 entnommen werden. Der Faktor 1/2 berücksichtigt, dass die Strahlung den jeweiligen Wellenleiterabschnitt zweimal durchlaufen muss, nämlich einmal in Hinrichtung und einmal in Rückrichtung. Für die Geschwindigkeit V gilt beispielsweise: V = c 0 / n
    Figure imgb0011
    wobei c0 die Lichtgeschwindigkeit und n die Brechzahl im Wellenleiter 50 angibt.
  • Die Detektionseinrichtung 30 ist also in der Lage, den Ort des Schienenfahrzeugs 110 zusätzlich auch anhand der Zeitspannen T1, T2 und T3 zu bestimmen, die zwischen dem Senden der Pulse Pin und dem Empfang des jeweiligen Rückstreumusters Rm1, Rm2 und Rm3 vergehen.
  • Als besonders vorteilhaft wird es angesehen, wenn die Auswerteinrichtung 60 im Falle einer Ortung des Schienenfahrzeugs 110 im Bereich eines der Verlängerungsabschnitte 51 bis 53 und der Erzeugung eines entsprechenden Ortsignals So zusätzlich eine Plausibilitätsprüfung vornimmt.
  • Eine solche Plausibilitätsprüfung kann beispielsweise derart erfolgen, dass die Auswerteinrichtung 60 bei Erkennen eines der Verlängerungsabschnitte 51 bis 53 und der Erzeugung eines Ortsignals So die Zeitspanne zwischen Pulserzeugung und Eintreffen des Rückstreumusters (vgl. Zeitspanne T2 gemäß Figur 3) auswertet und die Entfernung Ls des Schienenfahrzeugs 110 bestimmt. Anschließend kann die Auswerteinrichtung 60 prüfen, ob das Entfernungssignal Se mit dem gebildeten Ortsignal So übereinstimmt.
  • Beispielsweise wird die Auswerteinrichtung 60 ein Fehlersignal F erzeugen, wenn die Differenz zwischen der durch das Entfernungssignal Se angegebenen Position Ls und der bekannten Position des erkannten Verlängerungsabschnitts 51 einen vorgegebenen Schwellenwert überschreitet. Entsprechendes gilt für Plausibilitätsprüfungen bei den anderen Verlängerungsabschnitten.
  • Die Figur 5 zeigt ein Ausführungsbeispiel für einen Verlängerungsabschnitt 300, wie er als Verlängerungsabschnitt 51 bis 53 bei der Ortungseinrichtung 10 gemäß Figur 1 eingesetzt werden kann. Man erkennt, dass der Wellenleiter 50 im Bereich des Verlängerungsabschnitts 300 mehrfach aufgewickelt bzw. aufgespult ist und eine Wellenleiterspule 310 bildet. Durch das Aufspulen bzw. Aufwickeln des Wellenleiters 50 wird eine erhebliche Verlängerung des Wellenleiters 50 gegenüber dem zugeordneten Abschnitt der Schienenstrecke 100 erreicht, so dass die zeitliche Streckung der Rückstreumuster (vgl. Rückstreumuster Rm2 in Figur 3) erheblich ist.
  • Die Figur 6 zeigt ein anderes Ausführungsbeispiel für einen Verlängerungsabschnitt 300, wie er als Verlängerungsabschnitt 51 bis 53 bei der Ortungseinrichtung 10 gemäß Figur 1 eingesetzt werden kann. Man erkennt, dass der Wellenleiter 50 eine Mäanderstruktur 320 aufweist, durch die eine erhebliche Verlängerung des Wellenleiters 50 gegenüber dem zugeordneten Abschnitt der Schienenstrecke 100 hervorgerufen wird. Dies führt zu der erläuterten zeitlichen Streckung der Rückstreumuster, durch die eine Ortung des Schienenfahrzeugs 110 auf der Schienenstrecke 100 gemäß Figur 1 möglich ist.
  • In der Figur 7 ist ein Ausführungsbeispiel für einen Verlängerungsabschnitt 300 gezeigt, der sowohl eine Wellenleiterspule 310 als auch eine Mäanderstruktur 320 aufweist. Bezüglich der Ausgestaltung des Wellenleiterspule 310 und der Mäanderstruktur 320 sei auf die obigen Ausführungen im Zusammenhang mit den Figuren 5 und 6 verwiesen.
  • Die Figur 8 zeigt ein weiteres Ausführungsbeispiel für eine erfindungsgemäße Ortungseinrichtung 10, bei der der Wellenleiter 50 eine Vielzahl an Verlängerungsabschnitten 51 bis 55 aufweist, die derart angeordnet sind, dass sie eine Ortskodierung bilden. Durch diese Ortskodierung ist es möglich, den Ort des Schienenfahrzeugs 110 auf der Schienenstrecke 100 festzustellen, ohne dass das Auftreten der Verlängerungsabschnitte beobachtet und gezählt werden muss.
  • Aus Gründen der Übersicht ist die Ortskodierung durch eine kodierte Anordnung der Verlängerungsabschnitte 51 bis 55 nur anhand weniger Verlängerungsabschnitte angedeutet; es ist selbstverständlich, dass sich die Ortskodierung hinsichtlich ihrer Genauigkeit und Auswertbarkeit optimieren lässt, wenn eine sehr viel größere Anzahl an Verlängerungsabschnitten eingesetzt wird.
  • Die Ortskodierung durch eine örtliche Kodierung der Anordnung der Verlängerungsabschnitte kann beispielsweise dadurch erfolgen, dass durch die Verlängerungsabschnitte binäre Kodierungsmuster gebildet werden.
  • Obwohl die Erfindung im Detail durch bevorzugte Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.
  • Bezugszeichenliste
  • 10
    Ortungseinrichtung
    20
    Pulserzeugungseinrichtung
    30
    Detektionseinrichtung
    40
    Koppeleinrichtung
    50
    Wellenleiter
    50a
    Wellenleiterende
    51-55
    Verlängerungsabschnitte
    60
    Auswerteinrichtung
    100
    Schienenstrecke
    110
    Schienenfahrzeug
    110'
    Schienenfahrzeugposition
    110"
    Schienenfahrzeugposition
    200
    Absorptionseinrichtung
    300
    Verlängerungsabschnitt
    310
    Wellenleiterspule
    320
    Mäanderabschnitt
    dt1
    Länge des Rückstreumusters
    dt2
    Länge des Rückstreumusters
    dt3
    Länge des Rückstreumusters
    F
    Fehlersignal
    Ir(t)
    rückgestreute Strahlung
    Ls
    Entfernung/Ort
    Ms
    Pfeil/Schwingung
    P
    Pfeilrichtung/Fahrtrichtung
    Pin
    elektromagnetische Pulse
    Rm1
    Rückstreumuster
    Rm2
    Rückstreumuster
    Rm3
    Rückstreumuster
    Se
    Entfernungssignal
    So
    Ortsignal
    T1
    Zeitspanne
    T2
    Zeitspanne
    T3
    Zeitspanne

Claims (14)

  1. Verfahren zum Betreiben einer Ortungseinrichtung (10), die zum Orten eines Schienenfahrzeugs (110) auf einer Schienenstrecke (100) einen entlang der Schienenstrecke (100) verlegten Wellenleiter (50) umfasst, wobei bei dem Verfahren zeitlich nacheinander elektromagnetische Pulse (Pin) in den Wellenleiter (50) eingespeist werden und für jeden ausgesandten Puls jeweils durch Rückstreuung des elektromagnetischen Pulses erzeugte Rückstreumuster (Rm1-Rm3) empfangen und ausgewertet werden,
    dadurch gekennzeichnet, dass
    - der Wellenleiter (50) entlang der Schienenstrecke (100) zumindest einen Verlängerungsabschnitt (51-55) aufweist, in dem die Länge des Wellenleiters (50) um eine Überlänge länger ist als der diesem Verlängerungsabschnitt (51-55) zugeordnete Abschnitt der Schienenstrecke (100),
    - die zeitliche Rückstreumusterlänge des empfangenen Rückstreumusters (Rm1-Rm3) gemessen wird,
    - die Zusatzzeitdauer des Rückstreumusters (Rm1-Rm3) bestimmt wird, die sich beim Passieren des Verlängerungsabschnitts (51-55) im Vergleich zur Rückstreumusterlänge vor oder nach dem Verlängerungsabschnitt (51-55) ergibt und
    - die Zusatzzeitdauer zum Erzeugen eines Fehlersignals (F) oder zum Kalibrieren der Ortungseinrichtung (10) herangezogen wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass ein eine Fehlfunktion der Ortungseinrichtung (10) anzeigendes Fehlersignal (F) erzeugt wird, wenn beim Passieren des Verlängerungsabschnitts (51-55) die Zusatzzeitdauer eine vorgegebene Soll-Zusatzzeitdauer um ein vorgegebenes Maß hinaus über- oder unterschreitet.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet, dass die Soll-Zusatzzeitdauer durch Multiplikation der Überlänge des Verlängerungsabschnitts (51-55) mit einem vorgegebenen Proportionalitätsfaktor ermittelt wird.
  4. Verfahren nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass zur Kalibrierung der Ortungseinrichtung (10) der oder die Verlängerungsabschnitte (51-55) des Wellenleiters (50) geortet und vermessen werden, indem
    - die Schienenstrecke (100) von einem Referenzschienenfahrzeug abgefahren wird, dessen tatsächliche Länge bekannt ist,
    - die zeitliche Rückstreumusterlänge des Rückstreumusters (Rm1-Rm3) im zeitlichen Verlauf während der Fahrt des Referenzschienenfahrzeugs gemessen wird,
    - im Falle einer auftretenden zeitlichen Verlängerung des Rückstreumusters (Rm1-Rm3) auf das Passieren eines der Verlängerungsabschnitte (51-55) geschlossen wird und
    - anhand der Zusatzzeitdauer des Rückstreumusters (Rm1-Rm3) in dem jeweiligen Abschnitt die Überlänge des Verlängerungsabschnitts (51-55) berechnet und/oder die gemessene Zusatzzeitdauer als Soll-Zusatzzeitdauer für den jeweiligen Verlängerungsabschnitt (51-55) gespeichert wird.
  5. Verfahren nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass während des Betriebs der Ortungseinrichtung (10) die Länge des jeweiligen Schienenfahrzeugs (110) gemessen wird, das die Schienenstrecke (100) befährt, indem
    - im Falle einer auftretenden zeitlichen Verlängerung des Rückstreumusters (Rm1-Rm3) auf das Passieren eines der Verlängerungsabschnitte (51-55) geschlossen wird und
    - anhand der Zusatzzeitdauer des Rückstreumusters (Rm1-Rm3) in dem jeweiligen Abschnitt im Vergleich zur Rückstreumusterlänge vor oder nach dem Verlängerungsabschnitt (51-55) die Länge des Schienenfahrzeugs (110) errechnet wird.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet, dass ein Fehlersignal (F) erzeugt wird, wenn die Abweichung zwischen der für einen der Verlängerungsabschnitte (51-55) gemessenen Länge des Schienenfahrzeugs (110) und der für einen anderen der Verlängerungsabschnitte (51-55) gemessenen Länge des Schienenfahrzeugs (110) einen vorgegebenen Schwellenwert erreicht oder überschreitet.
  7. Ortungseinrichtung (10) zum Orten eines Schienenfahrzeugs (110) entlang einer Schienenstrecke (100) mit
    - einem entlang der Schienenstrecke (100) verlegten Wellenleiter (50),
    - einer Pulserzeugungseinrichtung (20) zum Erzeugen und Einspeisen zeitlich aufeinander folgender elektromagnetischer Pulse (Pin) in den Wellenleiter (50),
    - einer Detektionseinrichtung (30) zum Detektieren von durch Rückstreuung erzeugten Rückstreumustern (Rm1-Rm3) und
    - einer Auswerteinrichtung (60) zum Auswerten der Rückstreumuster (Rm1-Rm3),
    dadurch gekennzeichnet, dass
    - der Wellenleiter (50) entlang der Schienenstrecke (100) zumindest einen Verlängerungsabschnitt (51-55) aufweist, in dem die Länge des Wellenleiters (50) um eine Überlänge länger ist als der diesem Verlängerungsabschnitt (51-55) zugeordnete Abschnitt der Schienenstrecke (100), und
    - die Auswerteinrichtung (60) derart ausgestaltet ist, dass sie die zeitliche Rückstreumusterlänge des empfangenen Rückstreumusters (Rm1-Rm3) misst und die Zusatzzeitdauer des Rückstreumusters (Rm1-Rm3) bestimmt, die sich beim Passieren des Verlängerungsabschnitts (51-55) durch das Schienenfahrzeug (110) im Vergleich zur Rückstreumusterlänge vor oder nach dem Verlängerungsabschnitt (51-55) ergibt.
  8. Ortungseinrichtung (10) nach Anspruch 7,
    dadurch gekennzeichnet, dass die Auswerteinrichtung (60) derart ausgestaltet ist, dass sie ein eine Fehlfunktion der Ortungseinrichtung (10) anzeigendes Fehlersignal (F) erzeugt, wenn beim Passieren des Verlängerungsabschnitts (51-55) die Zusatzzeitdauer eine vorgegebene Soll-Zusatzzeitdauer um ein vorgegebenes Maß hinaus über- oder unterschreitet.
  9. Ortungseinrichtung (10) nach Anspruch 7 oder 8,
    dadurch gekennzeichnet, dass die Auswerteinrichtung (60) derart ausgestaltet ist, dass sie zur Kalibrierung der Ortungseinrichtung (10) den oder die Verlängerungsabschnitte (51-55) des Wellenleiters (50) ortet und vermisst, während die Schienenstrecke (100) von einem Referenzschienenfahrzeug abgefahren wird, dessen tatsächliche Länge bekannt ist,
    - wobei die zeitliche Rückstreumusterlänge des Rückstreumusters (Rm1-Rm3) im zeitlichen Verlauf während der Fahrt des Referenzschienenfahrzeugs gemessen wird,
    - im Falle einer auftretenden zeitlichen Verlängerung des Rückstreumusters (Rm1-Rm3) auf das Passieren eines der Verlängerungsabschnitte (51-55) geschlossen wird und
    - anhand der Zusatzzeitdauer des Rückstreumusters (Rm1-Rm3) in dem jeweiligen Abschnitt die Überlänge des Verlängerungsabschnitts (51-55) berechnet und/oder die gemessene Zusatzzeitdauer als Soll-Zusatzzeitdauer für den jeweiligen Verlängerungsabschnitt (51-55) gespeichert wird.
  10. Ortungseinrichtung (10) nach einem der voranstehenden Ansprüche 7-9,
    dadurch gekennzeichnet, dass die Auswerteinrichtung (60) derart ausgestaltet ist, dass sie während des Betriebs der Ortungseinrichtung (10) die Länge des jeweiligen Schienenfahrzeugs (110) misst, das die Schienenstrecke (100) befährt, indem
    - sie im Falle einer auftretenden zeitlichen Verlängerung des Rückstreumusters (Rm1-Rm3) auf das Passieren eines der Verlängerungsabschnitte (51-55) schließt und
    - anhand der Zusatzzeitdauer des Rückstreumusters (Rm1-Rm3) in dem jeweiligen Abschnitt im Vergleich zur Rückstreumusterlänge vor oder nach dem Verlängerungsabschnitt (51-55) die Länge des Schienenfahrzeugs (110) errechnet.
  11. Ortungseinrichtung (10) nach einem der Ansprüche 7-10,
    dadurch gekennzeichnet, dass der Wellenleiter (50) entlang der Schienenstrecke (100) eine Vielzahl an Verlängerungsabschnitten (51-55) aufweist.
  12. Ortungseinrichtung (10) nach Anspruch 11,
    dadurch gekennzeichnet, dass sich die Überlängen der Verlängerungsabschnitte (51-55) dahingehend unterscheiden, dass zumindest zwei unterschiedliche Überlängen vorhanden sind.
  13. Ortungseinrichtung (10) nach einem der Ansprüche 7-12,
    dadurch gekennzeichnet, dass zumindest zwei der Verlängerungsabschnitte (51-55), vorzugsweise alle, voneinander durch Wellenleiterabschnitte getrennt sind, die keine Überlänge aufweisen.
  14. Ortungseinrichtung (10) nach einem der Ansprüche 7-13,
    dadurch gekennzeichnet, dass die Anordnung der Verlängerungsabschnitte (51-55) eine Ortskodierung bildet.
EP13745371.8A 2012-07-31 2013-07-23 Schienenfahrzeugortung Active EP2870048B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012213487.5A DE102012213487A1 (de) 2012-07-31 2012-07-31 Schienenfahrzeugortung
PCT/EP2013/065478 WO2014019889A2 (de) 2012-07-31 2013-07-23 Schienenfahrzeugortung

Publications (2)

Publication Number Publication Date
EP2870048A2 EP2870048A2 (de) 2015-05-13
EP2870048B1 true EP2870048B1 (de) 2016-04-27

Family

ID=48917510

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13745371.8A Active EP2870048B1 (de) 2012-07-31 2013-07-23 Schienenfahrzeugortung

Country Status (3)

Country Link
EP (1) EP2870048B1 (de)
DE (1) DE102012213487A1 (de)
WO (1) WO2014019889A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016210968A1 (de) 2016-06-20 2017-12-21 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Ortungseinrichtung sowie Ortungseinrichtung
EP3925850A1 (de) * 2020-06-16 2021-12-22 Frauscher Sensor Technology Group GmbH Verfahren zur überwachung eines eisenbahngleises und überwachungssystem zur überwachung eines eisenbahngleises

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1154502B (de) * 1959-04-09 1963-09-19 Hermann Lagershausen Dr Ing Sicherungssystem fuer Fahrzeuge, insbesondere Eisenbahnfahrzeuge
DE3610045A1 (de) * 1986-03-22 1987-09-24 Licentia Gmbh Einrichtung zur ortung auf streckengebundenen fahrzeugen
US5330136A (en) * 1992-09-25 1994-07-19 Union Switch & Signal Inc. Railway coded track circuit apparatus and method utilizing fiber optic sensing
ES2401127T3 (es) * 2004-03-29 2013-04-17 The Hong Kong Polytechnic University Sistema y procedimiento para controlar vías ferroviarias
GB0915322D0 (en) 2009-09-03 2009-10-07 Westinghouse Brake & Signal Railway systems using fibre optic hydrophony systems

Also Published As

Publication number Publication date
WO2014019889A3 (de) 2014-09-25
EP2870048A2 (de) 2015-05-13
DE102012213487A1 (de) 2014-02-06
WO2014019889A2 (de) 2014-02-06

Similar Documents

Publication Publication Date Title
EP2903879B1 (de) Fahrzeugortung
EP2858875B1 (de) Schienenfahrzeugortung
EP3038879B1 (de) Positionsbestimmung eines schienenfahrzeugs
EP3445635B1 (de) Verfahren zum betreiben einer ortungseinrichtung sowie ortungseinrichtung
EP2394882B1 (de) Funktionsgesicherter Scanner
EP3237266B1 (de) Verfahren und ortungseinrichtung zum bestimmen der position eines spurgeführten fahrzeugs, insbesondere eines schienenfahrzeugs
WO2014048710A2 (de) Verfahren zum orten eines schienenfahrzeugs
WO2016030208A1 (de) Verfahren zur positionsbestimmung eines spurgeführten fahrzeugs, anwendung des verfahrens und system zur positionsbestimmung eines spurgeführten fahrzeugs
DE102016108273A1 (de) Verfahren zur Auswertung von Signalen wenigstens eines Vibrationssensors
EP2870048B1 (de) Schienenfahrzeugortung
DE102015214425A1 (de) Verfahren zum Erkennen eines Verlaufs von Schienen
DE102015215572A1 (de) Prüfeinrichtung und Verfahren zur Überprüfung eines definierten Profils von einem Zugverband aus Fahrzeugen, insbesondere Schienenfahrzeugen
DE102011106345A1 (de) Streckenvalidierung
WO2020001924A1 (de) Verfahren und einrichtung zum erkennen hinterherfahrender fahrzeuge
DE102016223439A1 (de) Verfahren zur Positionsbestimmung eines Schienenfahrzeugs und Schienenfahrzeug mit Positionsbestimmungseinrichtung
DE102006062559A1 (de) Verfahren zum Messen einer maximalen Zuglänge
EP2858876B1 (de) Fahrzeugortung
EP3795451B1 (de) Verfahren zum orten eines fahrzeugs an einer für einen halt des fahrzeugs vorgesehenen station
DE2735422A1 (de) Einrichtung zum erfassen einer fahrzeugposition
EP2718163B1 (de) Verfahren sowie steuereinrichtung zum bestimmen der länge zumindest eines gleisabschnitts
EP4129800A1 (de) Überwachungseinrichtung für einen prellbock
DE3300429A1 (de) Einrichtung zur zuglaengenmessung
DE102016212395A1 (de) Verfahren sowie Vorrichtung zum Bestimmen einer Länge eines spurgebundenen Fahrzeugs
DE19929984C1 (de) Einrichtung zur Positionserfassung
DE102014213761A1 (de) Vorrichtung zur Detektion eines Verkehrsteilnehmers auf einem Verkehrsweg, Weg mit einer solchen Vorrichtung, Schienenweg mit solch einer Vorrichtung und Verfahren zum Messen von Krafteinwirkungen auf einen Verkehrsweg

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150107

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 794412

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013002837

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160829

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160728

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013002837

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

26N No opposition filed

Effective date: 20170130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160723

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013002837

Country of ref document: DE

Owner name: SIEMENS MOBILITY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS MOBILITY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190207 AND 20190213

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 794412

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS MOBILITY GMBH, DE

Effective date: 20190506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230807

Year of fee payment: 11

Ref country code: AT

Payment date: 20230609

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230918

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231024

Year of fee payment: 11