EP2855718B1 - Stahlflachprodukt und verfahren zur herstellung eines stahlflachprodukts - Google Patents

Stahlflachprodukt und verfahren zur herstellung eines stahlflachprodukts Download PDF

Info

Publication number
EP2855718B1
EP2855718B1 EP13726805.8A EP13726805A EP2855718B1 EP 2855718 B1 EP2855718 B1 EP 2855718B1 EP 13726805 A EP13726805 A EP 13726805A EP 2855718 B1 EP2855718 B1 EP 2855718B1
Authority
EP
European Patent Office
Prior art keywords
cold
temperature
flat steel
steel product
rolled flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13726805.8A
Other languages
English (en)
French (fr)
Other versions
EP2855718A1 (de
Inventor
Ekatherina BOCHAROVA
Sigrun Voss
Dorothea MATTISSEN
Roland Sebald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP2855718A1 publication Critical patent/EP2855718A1/de
Application granted granted Critical
Publication of EP2855718B1 publication Critical patent/EP2855718B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a flat steel product produced from a cost-producible, high-strength steel and a method for producing such a flat steel product.
  • Dual-phase steels have been used in automotive engineering for some time.
  • alloying concepts for such steels known, each of which is composed so that they meet a wide variety of requirements.
  • Many of the known concepts are based on an alloy with molybdenum or require complex manufacturing processes, in particular a very rapid cooling in the cold strip annealing in order to produce the respectively desired structure of the steel.
  • the price of molybdenum in the market is subject to strong fluctuations, the production of steels containing high levels of Mo is associated with a high cost risk.
  • sufficiently high Mo contents retard the formation of perlite during cooling and thus ensure the formation of a favorable structure for the requirements imposed on the respective steel.
  • WO 03/018858 A1 discloses an ultra high strength steel composition, a process for producing an ultra-high strength steel product, and the resulting product, wherein the steel composition disclosed in this document does not contain niobium and molybdenum.
  • the object of the invention was to specify a flat steel product which has optimized mechanical properties and can be produced inexpensively without having to resort to expensive alloying elements that are subject to great variations in their procurement costs.
  • this object has been achieved with respect to the flat steel product in that such a flat steel product has the composition and properties specified in claim 1.
  • the flat steel product according to the invention contains at least 0.11% by weight C.
  • an excessively high C content has a negative effect on the welding behavior.
  • the weldability of a steel decreases with the level of its carbon content.
  • the maximum carbon content is limited to 0.16 wt .-% in the flat steel product according to the invention.
  • Silicon is also used to increase strength by increasing the hardness of the ferrite.
  • the minimum content of silicon of a flat steel product according to the invention is 0.1% by weight.
  • too high a content of silicon leads both to undesired grain boundary oxidation, which adversely affects the surface of a flat steel product according to the invention, and to difficulties when a flat steel product according to the invention is to be hot-dip coated with a metallic coating to improve its corrosion resistance.
  • the upper limit of the Si content of a flat steel product according to the invention is 0.3% by weight.
  • Manganese prevents the formation of perlite during cooling. As a result, the desired martensite formation is promoted in the flat steel product according to the invention and the strength of the flat steel product is increased. A sufficiently high manganese content to suppress perlite formation is 1.4% by weight here. Manganese, however, also has the negative property of forming segregations or reducing its suitability for welding. To avoid these effects, the upper limit of Mn intended content range of a flat steel product according to the invention at 1.9 wt .-%.
  • Aluminum is added to a flat steel product according to the invention for deoxidizing.
  • a content of at most 0.1 wt .-% is required.
  • an Al content of at most 0.05 wt .-% has proven to be particularly favorable. From a content of 0.02 wt .-%, the desired effect of Al safely occurs, so that the Al content of a flat steel product according to the invention 0.02 to 0.1 wt .-%, in particular 0.02 to 0.05 wt .-%, is.
  • Chromium is present in the flat steel product according to the invention such as manganese for increasing the strength.
  • the presence of Cr increases the hardenability and thus the proportion of martensite in the flat steel product.
  • the required Cr content is at least 0.45 wt .-%.
  • too high a content of chromium may promote grain boundary oxidation.
  • the Cr content of a flat steel product according to the invention is limited to a maximum of 0.85% by weight.
  • Titanium is added to a flat steel product according to the invention for increasing the strength through the formation of ultrafine precipitates.
  • Ti binds nitrogen in the steel flat product and thus prevents the undesired formation of boron nitrides.
  • the B provided in the flat steel product according to the invention can thus fully develop its strength-increasing effect.
  • a minimum content of 0.025 wt .-% Ti is essential for this. At higher titanium contents, the recrystallization is greatly delayed in the annealing. In extreme cases, this can be accompanied by a decrease in stretch.
  • the upper limit of the titanium content is limited to 0.06% by weight, in particular 0.055% by weight, with contents of up to 0.045% by weight having proven to be particularly practical.
  • Boron is also used to increase the strength in the flat steel product according to the invention.
  • a content of at least 0.0008 wt .-% B is necessary.
  • a B-content of more than 0.002 wt .-% leads to an undesirable embrittlement.
  • Phosphorus, sulfur, nitrogen and molybdenum are present in the flat steel product of the invention at most as impurities in such low levels that they have no influence on the properties of the flat steel product. Accordingly, in a flat steel product according to the invention in each case at most 0.02 wt .-% P, at most 0.003 wt .-% S, at most 0.008 wt .-% N and at most 0.1 wt .-% Mo, with the content of molybdenum preferred is below 0.05% by weight.
  • further impurities may be present which, for production-related reasons, enter the flat steel product, for example by scrap insertion. However, these impurities are also present in such small amounts that they do not affect the properties of the flat steel product.
  • the precursor should be further processed either while still hot, so kept at a temperature after casting be at least 300 ° C, or at a cooling rate of at most 60 ° C / h, in particular 50 ° C / h, slowly cooled.
  • the respective precursor may, if necessary, dwell in an oven for a period of up to 500 minutes at a sufficient oven temperature.
  • the reel temperature is set according to the invention to 480-650 ° C, because a lower coiler temperature would lead to a much firmer hot rolled steel flat product ("hot strip"), which could be further processed only under difficult conditions.
  • a coiler temperature above 650 ° C. in combination with the chromium content provided according to the invention would increase the risk of grain boundary oxidation.
  • the coiled hot-rolled coil cools to room temperature in the coil.
  • it can be pickled after cooling to remove scale and debris adhering to it.
  • cold rolling is carried out with a total cold rolling degree of 35-80% in order to achieve the desired cold strip thickness of 0.6-2.4 mm.
  • the cold strip is subjected to a continuous annealing. This is used first to set the desired mechanical properties.
  • the cold-rolled steel flat product can be used to prepare the cold-rolled steel flat product for subsequent coating with a metallic coating that protects the cold-rolled steel flat product from corrosive attack in later use.
  • a metallic coating that protects the cold-rolled steel flat product from corrosive attack in later use.
  • a coating can be applied by hot-dip coating.
  • the annealing provided according to the invention can be carried out in a pass-through, conventionally formed hot-dip coating installation. Alternatively, electrolytic galvanizing may also follow the annealing.
  • both the heating to the respective maximum annealing temperature, as well as the subsequent cooling in one or more steps can take place.
  • the heating takes place first in a preheating stage at a rate of 0.2 K / s to 45 K / s to a preheating temperature which is at most equal to the maximum annealing temperature, in particular in the range of 690-860 ° C or 690-840 ° C. , lies.
  • the flat steel product enters a holding stage in which, if its preheating temperature is less than the respectively targeted maximum annealing temperature, the respective maximum annealing temperature of 750-870 ° C. is reached with further heating.
  • the respective maximum annealing temperature the flat steel product is held until the end of the holding stage is reached.
  • the annealing time within which the flat steel product in the holding stage is kept at the maximum annealing temperature, is 8 - 260 s.
  • the material would not recrystallize.
  • unrecrystallized steel would result in a pronounced anisotropy.
  • a too long annealing time or an excessively high temperature lead to a very coarse microstructure and thus to poorer mechanical properties.
  • the cooling of the cold-rolled steel flat product takes place at a cooling rate of 0.5-110 K / s.
  • the cooling rate is set within this window so that a Perlit Struktur is largely avoided.
  • the cold-rolled steel flat product is to be dip-coated after heat treatment, it is cooled to a temperature of 455-550 ° C. in the course of cooling.
  • the thus tempered cold-rolled steel flat product then passes through a Zn-melt bath, which has a temperature of 450-480 ° C.
  • the steel strip can be held for up to 100 seconds before entering the zinc bath.
  • the temperature of the steel strip is greater than 480 ° C, the steel flat product is cooled until it enters the zinc bath at a cooling rate of up to 10 K / s until its temperature falls within the temperature range envisaged for the zinc bath, in particular equal to the zinc bath temperature is.
  • the thickness of the Zn-based protective layer present on the flat steel product is adjusted in a known manner by a stripping device.
  • the hot dip coating may be followed by another galvannealing, in which the hot dip coated steel flat product is heated up to 550 ° C to burn in the zinc layer.
  • the resulting cold rolled steel flat product is cooled to room temperature.
  • the process according to the invention for producing flat steel products according to the invention consequently comprises the following variants:
  • the cold-rolled steel flat product (“cold strip”) is heated in a preheating oven at a heating rate of 10 - 45 K / s to a preheating temperature of 660 - 840 ° C.
  • the preheated cold strip is passed through a furnace zone, in which the cold strip is maintained at a temperature of 760-860 ° C over a holding time of 8 - 24 s.
  • further heating occurs at a heating rate of 0.2 - 15 K / s.
  • the annealed cold strip is then cooled at a cooling rate of 2.0 - 30 K / s to an inlet temperature of 455 - 550 ° C, with which it then passes through a molten zinc bath and is held for a holding time of more than 45 s.
  • the zinc melt bath has a temperature of 455-465 ° C.
  • the cold strip in the molten zinc bath cools at a cooling rate of up to 10 K / s to the respective temperature of the molten zinc bath or is kept at a constant temperature.
  • the coating thickness is set in a conventional manner. Finally, the coated cold-rolled strip is cooled to room temperature.
  • the cold-rolled flat steel product is brought to a target temperature in an input heating zone of a continuous furnace at a heating rate of up to 25 K / s, which is 760-860 ° C.
  • a holding of the thus-heated cold-rolled steel flat product takes place at a 750-870 ° C., in particular 780-870 ° C., amounting annealing temperature.
  • a heating rate of up to 3 K / s to the respective annealing temperature is thereby during the holding time, i. heated within this holding zone, with a heating rate of up to 3 K / s to the respective annealing temperature.
  • a two-stage cooling is performed, in which the cold rolled steel flat product is first cooled slowly at a cooling rate of 0.5 - 10 K / s to an intermediate temperature of 640 - 730 ° C and a cooling rate of 5 - 110 K / s accelerated to a temperature of 455 - 550 ° C is cooled.
  • the cooled to the temperature in question cold-rolled steel flat product then passes through a molten zinc bath.
  • the zinc melt bath has a temperature of 450-480 ° C.
  • the coating thickness is set in a conventional manner.
  • a galvannealing may be performed to alloy in the zinc coating.
  • the cold strip provided with the zinc coating can be heated to 470-550 ° C. and kept at this temperature for a sufficient time.
  • the zinc coated cold strip may be subjected to temper rolling to improve its mechanical properties and surface finish of the coating.
  • the case-setting degrees are typically in the range of 0.1-2.0%, in particular 0.1-1.0%.
  • the cold rolled flat steel product assembled and produced according to the invention may alternatively undergo a heat treatment in a conventional annealing furnace in which the heating (step e.1)) and the annealing at the respective annealing temperature (step e.2) be completed in the manner described above, but in which the step e.3) is at least carried out in two stages by the cold-rolled steel flat product First cooled to a temperature range of 250 - 500 ° C, then dwells in this temperature range up to 760 s to perform an overaging treatment, and then cooled to room temperature. In this way, the retained austenite is stabilized in the microstructure of the flat steel product according to the invention.
  • the following heat treatment steps are then carried out in a continuous furnace:
  • the cold-rolled steel flat product is first heated in a heating zone at a heating rate of 1-8 K / s to 750-870, in particular 750-850 ° C.
  • the so-warmed cold-rolled steel flat product is passed through a furnace zone, in which the cold-rolled steel flat product over a holding time of 70 - 260 s at an annealing temperature of 750 - 870 ° C, in particular 750 - 850 ° C, is maintained.
  • a heating rate of up to 5 K / s.
  • the thus annealed cold-rolled steel flat product is then subjected to a two-stage cooling, in which it is first accelerated at a cooling rate of 3 - 30 K / s cooled to an intermediate temperature of 450 - 570 ° C.
  • This cooling can be carried out as air and / or gas cooling.
  • This is followed by a slower cooling, in which the cold-rolled steel flat product is cooled to 400-500 ° C at a cooling rate of 1-15 K / s.
  • the respective cooling can be followed by an over-aging treatment in which the cold-rolled steel flat product is maintained at a temperature of 250-500 ° C., in particular 250-330 ° C., over a holding time of 150-760 s.
  • cooling of the cold-rolled steel flat product occurs at a cooling rate of up to 1.5 K / s.
  • the cold-rolled flat steel product heat-treated in the above-described manner may be finally subjected to temper rolling to further improve its mechanical properties.
  • the applied skin passages are typically in the range of 0.1-2.0%, in particular 0.1-1%.
  • the thus heat-treated and optionally temper rolled cold-rolled steel flat product can then pass through a coating system for electrolytic coating, in which the respective metallic protective layer, for.
  • a coating system for electrolytic coating in which the respective metallic protective layer, for.
  • electrochemical electrochemical
  • a flat steel product according to the invention has an alloy according to the invention assembled in the manner described above and is additionally characterized by a structure comprising 60-90% by volume of ferrite including bainitic ferrite, 10% -40% by volume of martensite, up to 5% Vol% of retained austenite and up to 5% by volume due to production-related unavoidable other microstructural constituents.
  • the characteristic values determined in the tensile test according to DIN EN ISO 6892 lie in the following ranges: R p0,2 at least 440 MPa, in particular up to 550 MPa, R m at least 780 MPa, in particular up to 900 MPa, A 80 at least 14%, n 10-20 / Ag at least 0.10, Bra 2 at least 25 MPa, in particular at least 30 MPa.
  • flat steel products according to the invention can be reliably produced by using the method according to the invention.
  • the steel melts A - I, X, Y have been cast into slabs.
  • the cooling of the slabs was carried out so that a maximum cooling rate of 60 K / h was not exceeded.
  • the slabs were then heated in an oven to the respective hot rolling start temperature WAT.
  • the slabs entering the hot rolling scale at the hot rolling start temperature WAT were hot rolled at a final temperature WET into hot rolled steel strips having a thickness WBD.
  • the hot rolled steel strips cooled to a reeling temperature HT at which they have subsequently been wound into a coil.
  • the resulting hot-rolled steel strips were cold-rolled to a cold-rolled steel strip having a thickness KBD with a respective total deformation degree KWG.
  • hot rolling start temperature WAT hot rolling end temperature WET
  • hot rolled steel strip WBD hot rolled steel strip WBD
  • coiler temperature HT total deformation degree KWG
  • total deformation degree KWG total deformation degree KWG
  • the cold-rolled steel strips thus obtained have been subjected to different annealing tests.
  • the steel strips in a holding zone were first finished with a heating rate RF to a maximum annealing temperature TG, on which they were subsequently held.
  • a heating rate RF to a maximum annealing temperature TG, on which they were subsequently held.
  • a annealing time tG was required for the passage of the entire holding zone, d. H. including the finished heating and holding.
  • the cold-rolled steel strips were then cooled in one stage at a cooling rate RE to a temperature TE.
  • the from the melt bath Exiting steel strips had a Zn alloy coating which protects them against corrosion.
  • the operating parameters considered in the production of hot and cold rolled steel strip are "heating rate RV”, "preheating temperature TV”, “heating rate RF”, “annealing temperature TG”, “annealing time tG”, “cooling rate rE”, “temperature TE”, holding time tE “,” RB cooling rate “and” bath temperature TB “are given in Table 4.
  • heating rate RV heating temperature TV
  • heating rate RF heating temperature TG
  • annealing time tG annealing time tG
  • cooling rate rE cooling rate rE
  • heating rate RV preheating temperature TV
  • heating rate RF annealing temperature TG
  • annealing time tG cooling rate RE '
  • intermediate temperature TE' Cooling rate RE "
  • Temperature TE Holding time tE
  • Cooling rate RB and/or Temperature TB "are shown in Table 5.
  • the cold-rolled steel strips were then cooled in two stages.
  • the steel strips having a comparatively high cooling rate RZ ' have been cooled to an intermediate temperature TZ' by use of gas jet cooling.
  • the intermediate temperature TZ ' was the gas jet cooling ended and there was a roller cooling with a reduced cooling rate RZ "to an intermediate temperature TZ".
  • the two-stage cooling was followed by an over-aging treatment, via which the respective steel strip was cooled to the overaging temperature TU starting from the intermediate temperature TZ "at a cooling rate RU.
  • the yield strength Rp0.2, the tensile strength Rm, the elongation A80, the n value (10-20 / Ag) and the composition of the microstructure have been determined, these properties being determined on samples along the rolling direction ,
  • V-bend has been determined according to DIN EN ISO 7438.
  • the ratio of the minimum bending radius, ie the radius at which no visible crack occurs, to the sheet thickness should here be at most 2.0 and ideally does not exceed 1.7.
  • the minimum bending dome diameter has been determined at which no visible damage occurs. It should be 4 * sheet thickness, ideally 3 * sheet thickness. With respect to the present invention this means that the maximum bending dome diameter should not exceed 9.6 mm.
  • the hole expansion according to ISO 16630 with a hole diameter of 10 mm was determined with a drawing speed of 0.8 mm / s. It is at least 15%, ideally at least 18%.
  • Table 7 shows, for the total of 32 tests carried out in the manner described above, which of the steels specified in Table 1 has been used, which has been applied to the hot rolling variants indicated in Table 2, of which the cold rolling variants given in Table 3 have been used and which of the annealing process variants given in Tables 4, 5 and 6 has been passed through by the respective cold-rolled steel strip. Furthermore, Table 7 shows the mechanical properties and the composition of the microstructure as well as the properties determined according to DIN EN ISO 7438 ("V-bend", "U-bend”) and DIN ISO 16630 ("hole widening").
  • Table 1 stolen C Si Mn P S al Cr Ti Mo N B total A 0,147 0.29 1.61 0.011 0.001 0.027 0.62 0.037 0,007 0,004 0.0008 2.76 B 0.130 0.20 1.60 0,010 0.001 0.031 0.73 0,038 0,020 0,007 0.0008 2.77 C 0.140 0.20 1.57 0,008 0.001 0.037 0.71 0.047 0,020 0,008 0.0012 2.74 D 0.140 0.18 1.65 0,007 0.001 0.034 0.49 0.047 0,010 0,006 0.0011 2.57 e 0.130 0.21 1.68 0,010 0.001 0.037 0.51 0,045 0,020 0,006 0.0010 2.65 F 0.158 0.25 1.54 0,015 0,003 0,029 0.75 0,039 0,040 0,007 0.0013 2.83 G 0,119 0.23 1.75 0.009 0.001 0.032 0.63 0,051 0,010 0.005 0.0013 2.84 I 0.130 0.14 1.57 0,013 0,002

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Description

  • Die Erfindung betrifft ein aus einem kostengünstig herstellbaren, höherfesten Stahl hergestelltes Stahlflachprodukt sowie ein Verfahren zur Herstellung eines solchen Stahlflachprodukts.
  • Wenn hier von Stahlflachprodukten die Rede ist, so sind damit durch Walzprozesse gewonnene Stahlbänder, Stahlbleche und daraus gewonnene Platinen, Zuschnitte und desgleichen gemeint. Sofern hier im Zusammenhang mit einer Legierungsvorschrift Angaben zum Gehalt eines Legierungselements gemacht werden, beziehen sich diese auf das Gewicht, sofern nicht ausdrücklich etwas anderes angegeben ist.
  • Dualphasenstähle werden bereits seit geraumer Zeit im Automobilbau eingesetzt. Dabei ist eine große Zahl von Legierungskonzepten für solche Stähle bekannt, die jeweils so zusammengesetzt sind, dass sie unterschiedlichsten Anforderungen genügen. Viele der bekannten Konzepte beruhen auf einer Legierung mit Molybdän oder setzen aufwändige Herstellungsverfahren, insbesondere eine sehr schnelle Abkühlung bei der Kaltbandglühung voraus, um das jeweils gewünschte Gefüge des Stahls zu erzeugen. Da der Preis von Molybdän auf dem Markt starken Schwankungen unterworfen ist, ist die Herstellung von Stählen, die hohe Anteile an Mo enthalten, mit einem hohen Kostenrisiko verbunden. Demgegenüber stehen die positiven Effekte, die Molybdän in Bezug auf die mechanischen Eigenschaften von Dualphasen-Stählen hat. So verzögern ausreichend hohe Mo-Gehalte die Perlitbildung bei der Abkühlung und gewährleisten so die Entstehung eines für die an den jeweiligen Stahl gestellten Anforderungen günstiges Gefüge.
  • WO 03/018858 A1 offenbart eine ultrahochfeste Stahlzusammensetzung, ein Verfahren zur Herstellung eines ultrahochfesten Stahlprodukts und das erhaltene Produkt, wobei die in diesem Dokument offenbarte Stahlzusammensetzung kein Niob und Kein Molybdän enthält.
  • Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, ein Stahlflachprodukt anzugeben, das optimierte mechanische Eigenschaften aufweist und sich dabei kostengünstig herstellen lässt, ohne dass dazu auf teure, hinsichtlich ihrer Beschaffungskosten großen Schwankungen unterworfene Legierungselemente zurückgegriffen werden muss.
  • Darüber hinaus sollte ein Verfahren angegeben werden, dass die zuverlässige Herstellung von kaltgewalzten Stahlflachprodukten der erfindungsgemäß zu erzeugenden Art erlaubt.
  • Erfindungsgemäß ist diese Aufgabe in Bezug auf das Stahlflachprodukt dadurch gelöst worden, dass ein solches Stahlflachprodukt die in Anspruch 1 angegebene Zusammensetzung und Beschaffenheit aufweist.
  • In Bezug auf das Verfahren ist die oben genannte Aufgabe schließlich dadurch gelöst worden, dass erfindungsgemäß bei der Herstellung eines kaltgewalzten Stahlflachprodukts die in Anspruch 5 angegebenen Arbeitsschritte durchlaufen werden.
  • Ein erfindungsgemäßes, die oben genannten Aufgaben lösendes Stahlflachprodukt weist demnach folgende Zusammensetzung (in Gew.-%) auf:
    • C: 0,11 - 0,16 %;
    • Si: 0,1 - 0,3 %;
    • Mn: 1,4 - 1,9 %;
    • Al: 0,02 - 0,1 %;
    • Cr: 0,45 - 0,85 %;
    • Ti: 0,025 - 0,06 %;
    • B: 0,0008 - 0,002 %;
    Rest Fe und herstellungsbedingt unvermeidbare Verunreinigungen, zu denen Gehalte an Phosphor, Schwefel, Stickstoff oder Molybdän mit der Maßgabe gehören, wobei für die Gehalte an P, S, N oder Mo jeweils gilt:
    • P: ≤ 0,02 %,
    • S: ≤ 0,003 %,
    • N: ≤ 0,008 %,
    • Mo: ≤ 0,1 %.
  • Bei einem erfindungsgemäßen Stahlflachprodukt sind folglich insbesondere die Gehalte an Mo auf ein Minimum reduziert und durch kostengünstige andere Legierungselemente substituiert, ohne dass dadurch wesentliche Festigkeitseinbußen oder eine Verschlechterung anderer mechanischer Eigenschaften hingenommen werden müssen.
  • Kohlenstoff ermöglicht die Ausbildung von Martensit im Gefüge und ist deshalb im erfindungsgemäßen Stahlflachprodukt ein für die Einstellung der angestrebt hohen Festigkeit wesentliches Element. Damit diese Wirkung im ausreichenden Maße eintritt, enthält das erfindungsgemäße Stahlflachprodukt mindestens 0,11 Gew.-% C. Ein zu hoher C-Gehalt wirkt sich jedoch negativ auf das Schweißverhalten aus. Generell gilt hier, dass die Verschweißbarkeit eines Stahls mit der Höhe seines Kohlenstoffgehalts abnimmt. Um negative Einflüsse des C-Gehalts auf seine Verarbeitbarkeit zu vermeiden, ist daher beim erfindungsgemäßen Stahlflachprodukt der maximale Kohlenstoffgehalt auf 0,16 Gew.-% beschränkt.
  • Silizium wird ebenfalls zur Festigkeitssteigerung eingesetzt, indem es die Härte des Ferrits erhöht. Der minimale Gehalt an Silizium eines erfindungsgemäßen Stahlflachprodukts liegt dazu bei 0,1 Gew.-%. Ein zu hoher Gehalt an Silizium führt allerdings sowohl zur unerwünschten Korngrenzenoxidation, welche die Oberfläche eines erfindungsgemäßen Stahlflachprodukts negativ beeinflusst, als auch zu Schwierigkeiten, wenn ein erfindungsgemäßes Stahlflachprodukt zur Verbesserung seiner Korrosionsbeständigkeit mit einem metallischen Überzug schmelztauchbeschichtet werden soll. Um derart negative, die Weiterverarbeitung erschwerende Einflüsse von Si im erfindungsgemäßen Stahlflachprodukt zu vermeiden, liegt die Obergrenze des Si-Gehalts eines erfindungsgemäßen Stahlflachprodukts bei 0,3 Gew.-%.
  • Mangan verhindert die Bildung von Perlit bei der Abkühlung. Hierdurch wird im erfindungsgemäßen Stahlflachprodukt die gewünschte Martensitbildung gefördert und die Festigkeit des Stahlflachprodukts erhöht. Ein hinreichend hoher Gehalt an Mangan zur Unterdrückung der Perlitbildung liegt hier bei 1,4 Gew.-%. Mangan hat aber auch die negative Eigenschaft, Seigerungen zu bilden bzw. die Schweißeignung herabzusetzen. Um diese Effekte zu vermeiden, liegt die Obergrenze des für Mn vorgesehenen Gehaltsbereichs eines erfindungsgemäßen Stahlflachprodukts bei 1,9 Gew.-%.
  • Aluminium wird einem erfindungsgemäßen Stahlflachprodukt zum Desoxidieren zugegeben. Hierzu wird ein Gehalt von maximal 0,1 Gew.-% benötigt. Für die Praxis hat sich dabei ein Al-Gehalt von maximal 0,05 Gew.-% als besonders günstig erwiesen. Ab einem Gehalt von 0,02 Gew.-% tritt die gewünschte Wirkung von Al sicher ein, so dass der Al-Gehalt eines erfindungsgemäßen Stahlflachprodukts 0,02 - 0,1 Gew.-%, insbesondere 0,02 - 0,05 Gew.-%, beträgt.
  • Chrom ist im erfindungsgemäßen Stahlflachprodukt wie Mangan zur Festigkeitssteigerung vorhanden. Durch die Anwesenheit von Cr wird die Härtbarkeit und damit der Anteil an Martensit im Stahlflachprodukt erhöht. Der hierzu erforderliche Cr-Gehalt beträgt mindestens 0,45 Gew.-%. Ein zu hoher Gehalt an Chrom kann jedoch die Korngrenzenoxidation fördern. Um diesen Effekt zu verhindern, ist der Cr-Gehalt eines erfindungsgemäßen Stahlflachprodukts auf maximal 0,85 Gew.-% beschränkt.
  • Titan ist einem erfindungsgemäßen Stahlflachprodukt zur Festigkeitssteigerung durch die Bildung von Feinstausscheidungen zugegeben. Zusätzlich bindet Ti Stickstoff im Stahlflachprodukt ab und unterbindet so die unerwünschte Bildung von Bornitriden. Das im erfindungsgemäßen Stahlflachprodukt vorgesehene B kann so seine festigkeitssteigernde Wirkung voll entfalten. Ein minimaler Gehalt von 0,025 Gew.-% Ti ist hierfür unerlässlich. Bei höheren Titangehalten wird die Rekristallisation bei der Glühung stark verzögert. Dies kann im Extremfall mit einer Dehnungsabnahme einhergehen. Um bei einem erfindungsgemäßen Stahlflachprodukt eine Mindestbruchdehnung von 14 % zu gewährleisten, ist daher die Obergrenze des Titangehalts erfindungsgemäß auf 0,06 Gew.-%, insbesondere 0,055 Gew.-%, beschränkt, wobei sich Gehalte von bis zu 0,045 Gew.-% als besonders praxisgerecht herausgestellt haben.
  • Bor wird im erfindungsgemäßen Stahlflachprodukt ebenfalls zur Festigkeitssteigerung eingesetzt. Hierzu ist ein Gehalt von mindestens 0,0008 Gew.-% B notwendig. Ein B-Gehalt von mehr als 0,002 Gew.-% führt zu einer unerwünschten Versprödung.
  • Phosphor, Schwefel, Stickstoff und Molybdän sind im erfindungsgemäßen Stahlflachprodukt allenfalls als Verunreinigungen in so geringen Gehalten vorhanden, dass sie keinen Einfluss auf die Eigenschaften des Stahlflachprodukts haben. Dementsprechend sind in einem erfindungsgemäßen Stahlflachprodukt jeweils höchstens 0,02 Gew.-% P, höchstens 0,003 Gew.-% S, höchstens 0,008 Gew.-% N und höchstens 0,1 Gew.-% Mo vorhanden, wobei der Gehalt an Molybdän bevorzugt unterhalb von 0,05 Gew.-% liegt. Selbstverständlich können im erfindungsgemäßen Stahlflachprodukt weitere Verunreinigungen vorhanden sein, die produktionsbedingt, beispielsweise durch Schrotteinsatz, in den Stahlflachprodukt gelangen. Diese Verunreinigungen sind jedoch ebenfalls jeweils in so geringen Mengen anwesend, dass sie die Eigenschaften des Stahlflachprodukts nicht beeinflussen.
  • Das erfindungsgemäße Verfahren zur Herstellung eines erfindungsgemäßen Stahlflachprodukts umfasst folgende Arbeitsschritte:
    1. a) Vergießen eines erfindungsgemäß zusammengesetzten Stahls zu einem Vorprodukt, wobei es sich bei dem Vorprodukt um eine Bramme oder eine Dünnbramme handeln kann;
    2. b) Warmwalzen des Vorprodukts zu einem Warmband mit einer Dicke von 2 bis 5,5 mm, wobei die Warmwalzanfangstemperatur 1000 - 1300 °C, insbesondere 1050 - 1200 °C, und die Warmwalzendtemperatur 840 - 950 °C, insbesondere 890 - 950 °C, beträgt;
    3. c) Haspeln des Warmbands zu einem Coil bei einer Haspeltemperatur von 480 -650 °C;
    4. d) Kaltwalzen des Warmbands zu einem 0,6 - 2,4 mm dicken kaltgewalzten Stahlflachprodukt, wobei der über das Kaltwalzen erzielte Kaltwalzgrad 35 - 80 % beträgt;
    5. e) im kontinuierlichen Durchlauf erfolgendes Wärmebehandeln des kaltgewalzten Stahlflachprodukts, wobei
      • e.1) das kaltgewalzte Stahlflachprodukt zunächst in einer Vorwärmstufe mit einer Aufheizrate von 0,2 - 45 °C/s auf eine Vorwärmtemperatur von bis zu 870 °C, insbesondere 690 - 860 °C, erwärmt wird,
      • e.2) das kaltgewalzte Stahlflachprodukt anschließend in einer Haltestufe über eine Glühdauer von 8 - 260 s bei einer Glühtemperatur von 750 - 870 °C gehalten wird, wobei optional das vorerwärmte Stahlflachprodukt innerhalb der Haltestufe auf die jeweilige Glühtemperatur fertigerwärmt wird,
      • e.3) das kaltgewalzte Stahlflachprodukt nach Ende der Glühdauer mit einer Abkühlrate von 0,5 - 110 K/s abgekühlt wird.
  • Um Spannungsrisse im Vorprodukt zu vermeiden, sollte das Vorprodukt entweder im noch heißen Zustand weiter prozessiert werden, also nach dem Vergießen bei einer Temperatur gehalten werden, die mindestens 300 °C beträgt, oder mit einer Abkühlrate von höchstens 60 °C/h, insbesondere 50 °C/h, langsam abgekühlt werden.
  • Um vor dem Fertigwarmwalzen auf die jeweils geforderte Warmwalzanfangstemperatur gebracht zu werden, kann das jeweilige Vorprodukt erforderlichenfalls in einem Ofen über eine Dauer von bis zu 500 Minuten bei einer ausreichenden Ofentemperatur verweilen.
  • Die Haspeltemperatur ist erfindungsgemäß auf 480 - 650 °C festgelegt, weil eine niedrigere Haspeltemperatur zu einem wesentlich festeren warmgewalzten Stahlflachprodukt ("Warmband") führen würde, das sich nur unter erschwerten Bedingungen weiterverarbeiten ließe. Eine Haspeltemperatur oberhalb von 650 °C würde dagegen in Kombination mit dem erfindungsgemäß vorgesehenen Chromgehalt die Gefahr der Korngrenzenoxidation erhöhen.
  • Das gehaspelte Warmband kühlt im Coil auf Raumtemperatur ab. Optional kann es nach dem Abkühlen gebeizt werden, um auf ihm haftenden Zunder und Verschmutzungen zu entfernen.
  • Nach dem Haspeln und dem erforderlichenfalls durchgeführten Beizen wird das Warmband in einem oder mehreren Kaltwalzschritten zu einem kaltgewalzten Stahlflachprodukt ("Kaltband") gewalzt. Ausgehend von der erfindungsgemäß vorgegebenen Dicke des Warmbands wird dabei mit einem Gesamtkaltwalzgrad von 35 - 80 % kaltgewalzt, um die angestrebte Kaltbanddicke von 0,6 - 2,4 mm zu erzielen.
  • Im nächsten Fertigungsschritt wird das Kaltband einer kontinuierlichen Glühung unterzogen. Diese dient zuerst zur Einstellung der gewünschten mechanischen Eigenschaften.
  • Gleichzeitig kann sie zur Vorbereitung des kaltgewalzten Stahlflachprodukts für eine nachfolgende Beschichtung mit einem metallischen Überzug genutzt werden, der das kaltgewalzte Stahlflachprodukt vor korrosiven Angriffen im späteren Einsatz schützt. Großtechnisch besonders kostengünstig lässt sich ein solcher Überzug durch Schmelztauchbeschichten aufbringen. Die erfindungsgemäß vorgesehene Glühung kann dabei in einer im Durchlauf absolvierten, konventionell ausgebildeten Schmelztauchbeschichtungsanlage durchgeführt werden. Alternativ kann sich an die Glühung auch eine elektrolytische Verzinkung anschließen.
  • Im Zuge des Wärmebehandelns kann sowohl das Aufheizen auf die jeweilige maximale Glühtemperatur, als auch das anschließende Abkühlen in einem oder mehreren Schritten erfolgen. Das Aufheizen erfolgt dabei zunächst in einer Vorwärmstufe mit einer Rate von 0,2 K/s bis 45 K/s auf eine Vorwärmtemperatur, die maximal gleich der maximalen Glühtemperatur ist, insbesondere im Bereich von 690 - 860 °C oder 690 - 840 °C, liegt.
  • Anschließend läuft das Stahlflachprodukt in eine Haltestufe ein, in der es, sofern seine Vorwärmtemperatur weniger als die jeweils angezielte maximale Glühtemperatur beträgt, unter weiterer Erwärmung die jeweilige maximale Glühtemperatur von 750 - 870 °C erreicht. Bei der jeweiligen maximalen Glühtemperatur wird das Stahlflachprodukt gehalten, bis das Ende der Haltestufe erreicht ist. Die Glühdauer, innerhalb der das Stahlflachprodukt in der Haltestufe jeweils auf der maximalen Glühtemperatur gehalten wird, beträgt 8 - 260 s. Bei einer zu geringen Temperatur oder zu geringen Zeit würde das Material nicht rekristallisieren. Infolgedessen würde zum einen für die Gefügeumwandlung bei der Abkühlung nicht genügend Austenit zur Martensitbildung zur Verfügung stehen. Zum anderen hätte unrekristallisierter Stahl eine ausgeprägte Anisotropie zur Folge. Eine zu lange Glühdauer oder eine zu hohe Temperatur führen dagegen zu einem sehr groben Gefüge und damit zu schlechteren mechanischen Eigenschaften.
  • Nach Abschluss der Glühdauer erfolgt mit einer Abkühlrate von 0,5 - 110 K/s die Abkühlung des kaltgewalzten Stahlflachprodukts. Die Abkühlrate wird dabei innerhalb dieses Fensters so eingestellt, dass eine Perlitbildung weitestgehend vermieden wird.
  • Soll das kaltgewalzte Stahlflachprodukt nach dem Wärmebehandeln schmelztauchbeschichtet werden, so wird es im Zuge der Abkühlung auf eine Temperatur von 455 - 550 °C abgekühlt. Das derart temperierte kaltgewalzte Stahlflachprodukt durchläuft dann ein Zn-Schmelzenbad, das eine Temperatur von 450 - 480 °C hat. Wenn die Temperatur des kaltgewalzten Stahlflachprodukts in den für das Zinkbad vorgesehenen Bereich fällt, kann das Stahlband mit einer Dauer von bis zu 100 s vor dem Eintritt ins Zinkbad gehalten werden. Wenn dagegen die Temperatur des Stahlbands größer als 480 °C ist, so wird das Stahlflachprodukt bis zum Eintritt ins Zinkbad mit einer Abkühlrate von bis zu 10 K/s abgekühlt, bis seine Temperatur in den für das Zinkbad vorgesehenen Temperaturbereich fällt, insbesondere gleich der Zinkbadtemperatur ist.
  • Bei Austritt aus dem Zn-Bad wird die Dicke der auf dem Stahlflachprodukt vorhandenen Zn-basierten Schutzschicht in bekannter Weise durch eine Abstreifeinrichtung eingestellt.
  • Optional kann sich an die Schmelztauchbeschichtung eine weitere Wärmebehandlung ("Galvannealing") anschließen, bei der das schmelztauchbeschichtete Stahlflachprodukt auf bis zu 550 °C erwärmt wird, um die Zinkschicht einzubrennen.
  • Entweder unmittelbar nach dem Austritt aus dem Zinkbad oder im Anschluss an die zusätzliche Wärmebehandlung wird das erhaltene kaltgewalzte Stahlflachprodukt auf Raumtemperatur abgekühlt.
  • Das erfindungsgemäße Verfahren zur Erzeugung erfindungsgemäßer Stahlflachprodukte umfasst folglich folgende Varianten:
  • Variante a)
  • Das kaltgewalzte Stahlflachprodukt ("Kaltband") wird in einem Vorwärmofen mit einer Aufheizrate von 10 - 45 K/s auf eine Vorwärmtemperatur von 660 - 840 °C erwärmt.
  • Anschließend wird das vorerwärmte Kaltband durch eine Ofenzone geleitet, in der das Kaltband über eine Haltezeit von 8 - 24 s bei einer Temperatur von 760 - 860 °C gehalten wird. Abhängig von der im vorangegangenen Arbeitsschritt erreichten Vorwärmtemperatur kommt es dabei zu einer weiteren Erwärmung mit einer Aufheizrate von 0,2 - 15 K/s.
  • Das so geglühte Kaltband wird dann mit einer Abkühlrate von 2,0 - 30 K/s auf eine Eintrittstemperatur von 455 - 550 °C abgekühlt, mit der es anschließend ein Zinkschmelzenbad durchläuft und über eine Haltezeit von höchstens 45 s gehalten wird. Das Zinkschmelzenbad weist dabei eine Temperatur von 455 - 465 °C auf. Abhängig von seiner Eintrittstemperatur kühlt das Kaltband im Zinkschmelzenbad mit einer Abkühlrate von bis zu 10 K/s auf die jeweilige Temperatur des Zinkschmelzenbads ab oder wird bei konstanter Temperatur gehalten. An dem aus dem Zinkschmelzenbad austretenden, nun mit einer Zinkbeschichtung versehenen Kaltband wird in an sich bekannter Weise die Beschichtungsdicke eingestellt. Abschließend wird das beschichtete Kaltband auf Raumtemperatur gekühlt.
  • Variante b)
  • Das kaltgewalzte Stahlflachprodukt wird in einer Eingangsheizzone eines Durchlaufofens mit einer Aufheizrate von bis zu 25 K/s auf eine Zieltemperatur gebracht, die 760 - 860 °C beträgt.
  • Anschließend erfolgt in einer Haltezone des Ofens über 35 - 150 s ein Halten des so aufgeheizten kaltgewalzten Stahlflachprodukts bei einer 750 - 870 °C, insbesondere 780 - 870 °C, betragenden Glühtemperatur. Abhängig von der Temperatur, mit der das kaltgewalzte Stahlflachprodukt in die Haltezone eintritt, wird es dabei während der Haltezeit, d.h. innerhalb dieser Haltezone, mit einer Aufheizrate von bis zu 3 K/s auf die jeweilige Glühtemperatur erwärmt.
  • Nach dem Halten bei der Glühtemperatur erfolgt eine zweistufige Abkühlung, bei der das kaltgewalzte Stahlflachprodukt zunächst langsam mit einer Abkühlrate von 0,5 - 10 K/s auf eine Zwischentemperatur abgekühlt wird, die 640 - 730 °C beträgt, und mit einer Abkühlrate von 5 - 110 K/s beschleunigt auf eine Temperatur von 455 - 550 °C abgekühlt wird.
  • Das auf die betreffende Temperatur abgekühlte kaltgewalzte Stahlflachprodukt durchläuft dann ein Zinkschmelzenbad. Das Zinkschmelzenbad weist dabei eine Temperatur von 450 - 480 °C auf. An dem aus dem Zinkschmelzenbad austretenden, nun mit einer Zinkbeschichtung versehenen kaltgewalzten Stahlflachprodukt wird in an sich bekannter Weise die Beschichtungsdicke eingestellt.
  • Im Anschluss an den Auftrag der Zinkbeschichtung kann eine Glühbehandlung ("Galvannealing") durchgeführt werden, um in der Zinkbeschichtung eine Legierungsbildung zu bewirken. Hierzu kann das mit der Zinkbeschichtung versehene Kaltband auf 470 - 550 °C erwärmt und über eine ausreichende Zeit bei dieser Temperatur gehalten werden.
  • Nach dem Zinkbeschichten oder, falls eine solche Behandlung durchgeführt wird, nach der Galvannealing-Behandlung kann das zinkbeschichtete Kaltband einem Dressierwalzen unterzogen werden, um seine mechanischen Eigenschaften und die Oberflächenbeschaffenheit der Beschichtung zu verbessern. Die dabei eingestellten Dressiergrade liegen typischerweise im Bereich von 0,1 - 2,0 %, insbesondere 0,1 - 1,0 %.
  • Zum Einstellen seiner mechanischen Eigenschaften kann das erfindungsgemäß zusammengesetzte und erzeugte kaltgewalzte Stahlflachprodukt alternativ zu der voranstehend beschriebenen Möglichkeit einer Schmelztauchbeschichtung auch eine Wärmebehandlung in einem konventionellen Glühofen durchlaufen, bei der das Aufheizen (Arbeitsschritt e.1)) und das Glühen bei der jeweiligen Glühtemperatur (Arbeitsschritt e.2) in der voranstehend beschriebenen Weise absolviert werden, bei dem jedoch der Arbeitsschritt e.3) mindestens zweistufig durchgeführt wird, indem das kaltgewalzte Stahlflachprodukt zunächst auf einen Temperaturbereich von 250 - 500 °C abgekühlt, dann in diesem Temperaturbereich bis zu 760 s verweilt, um eine Überalterungsbehandlung durchzuführen, und anschließend auf Raumtemperatur abgekühlt wird. Auf diese Weise wird der Restaustenit im Gefüge des erfindungsgemäßen Stahlflachprodukts stabilisiert.
  • Bei einer unter diese Vorgehensweise fallenden Variante des erfindungsgemäßen Verfahrens werden dann in einem Durchlaufofen folgende Wärmebehandlungsschritte durchlaufen:
    Das kaltgewalzte Stahlflachprodukt wird zuerst in einer Heizzone mit einer Aufheizrate von 1 - 8 K/s auf 750 - 870, insbesondere 750 - 850 °C, erwärmt.
  • Anschließend wird das so erwärmte kaltgewalzte Stahlflachprodukt durch eine Ofenzone geleitet, in der das kaltgewalzte Stahlflachprodukt über eine Haltezeit von 70 - 260 s bei einer Glühtemperatur von 750 - 870 °C, insbesondere 750 - 850 °C, gehalten wird. Abhängig von der im vorangegangenen Arbeitsschritt erreichten Vorwärmtemperatur kommt es dabei zu einer weiteren Erwärmung mit einer Aufheizrate von bis zu 5 K/s.
  • Das so geglühte kaltgewalzte Stahlflachprodukt wird anschließend einer zweistufigen Kühlung unterzogen, bei der es zunächst mit einer Abkühlrate von 3 - 30 K/s beschleunigt auf eine Zwischentemperatur von 450 - 570 °C abgekühlt wird. Diese Abkühlung kann als Luft- und/oder Gaskühlung ausgeführt werden. Darauf folgt eine langsamere Abkühlung, bei der das kaltgewalzte Stahlflachprodukt mit einer Abkühlrate von 1 - 15 K/s auf 400 - 500 °C abgekühlt wird.
  • An die jeweilige Abkühlung kann sich eine Überalterungsbehandlung anschließen, bei der das kaltgewalzte Stahlflachprodukt über eine Haltezeit von 150 - 760 s auf einer Temperatur von 250 - 500 °C, insbesondere 250 - 330 °C, gehalten wird. Abhängig von der jeweiligen Eintrittstemperatur kommt es dabei zu einer Abkühlung des kaltgewalzten Stahlflachprodukts mit einer Abkühlrate von bis zu 1,5 K/s.
  • Auch das in der voranstehend beschriebenen Weise wärmebehandelte kaltgewalzte Stahlflachprodukt kann abschließend einem Dressierwalzen unterzogen werden, um seine mechanischen Eigenschaften weiter zu verbessern. Die dabei eingestellten Dressiergrade liegen auch hier typischerweise im Bereich von 0,1 - 2,0 %, insbesondere 0,1 - 1 %.
  • Das so wärmebehandelte und gegebenenfalls dressiergewalzte, kaltgewalzte Stahlflachprodukt kann anschließend eine Beschichtungsanlage zum elektrolytischen Beschichten durchlaufen, in der die jeweilige metallische Schutzschicht, z. B. eine Zinklegierungsschicht, in an sich bekannter Weise elektrisch-chemisch ("elektrolytisch") auf dem kaltgewalzten Stahlflachprodukt abgeschieden wird.
  • Ein erfindungsgemäßes Stahlflachprodukt weist eine in der voranstehend erläuterten Weise zusammengesetzte erfindungsgemäße Legierung auf und ist zudem durch ein Gefüge gekennzeichnet, das zu 60 - 90 Vol-% aus Ferrit einschließlich bainitischem Ferrit, zu 10 - 40 Vol-% aus Martensit, zu bis zu 5 Vol-% aus Restaustenit und zu bis zu 5 Vol-% aus herstellungsbedingt unvermeidbaren sonstigen Gefügebestandteilen besteht.
  • Dabei liegen die im Zugversuch gemäß DIN EN ISO 6892 (Probenform 2, Längsproben) ermittelten Kennwerte in folgenden Bereichen:
    Rp0,2 mindestens 440 MPa, insbesondere bis zu 550 MPa,
    Rm mindestens 780 MPa, insbesondere bis zu 900 MPa,
    A80 mindestens 14 %,
    n10-20/Ag mindestens 0,10,
    BH2 mindestens 25 MPa, insbesondere mindestens 30 MPa.
  • In der Praxis lassen sich erfindungsgemäße Stahlflachprodukte durch Anwendung des erfindungsgemäßen Verfahrens zuverlässig erzeugen.
  • In den in den Figuren 1 und 2 wiedergegebenen Diagrammen sind jeweils unterschiedliche Temperaturverläufe dargestellt, die sich einstellen, wenn das kaltgewalzte Stahlflachprodukt eine in erfindungsgemäßer Weise vorgenommene Glühung mit unmittelbar anschließender Schmelztauchbeschichtung durchläuft:
    • Vorerwärmung auf eine Vorwärmtemperatur TV mittels einer Aufheizrate RV;
    • Halten bei einer maximalen Glühtemperatur TG über eine Glühdauer tG, wobei das Halten eine Fertigerwärmung auf die Glühtemperatur TG umfasst, wenn die Vorwärmtemperatur TV niedriger als die Glühtemperatur TG ist (gestrichelte Linie TV = TG; durchgezogene Linie TV < TG);
    • Abkühlen in einer Stufe (Fig. 1) oder zwei Stufen (Fig. 2) mit folgender Maßgabe:
    • Abkühlen des Stahlflachprodukts auf eine Temperatur TE (Fig. 1) oder TE' (Fig. 2),
    • optionales Halten auf der Temperatur TE über eine Dauer tH, wenn die jeweilige Temperatur TE in den für die Temperatur TB des Schmelzenbads vorgesehenen Temperaturbereich fällt, insbesondere gleich der Temperatur TB ist, (Fig. 1)
      oder
    • von der Temperatur TE' ausgehendes weiteres Abkühlen auf eine Temperatur TE", wenn die Temperatur TE' größer als die Obergrenze des für das Schmelzenbad vorgesehenen Temperaturbereichs ist, wobei die im zweiten Kühlschritt erreichte Temperatur TE" in den für die Temperatur TB des Schmelzenbads vorgesehenen Temperaturbereich fällt, insbesondere gleich der Temperatur TB ist, (Fig. 2);
    • Durchleiten des Stahlflachprodukts durch ein Schmelzenbad innerhalb einer Durchlaufzeit tB;
    • Abkühlen auf Raumtemperatur RT.
  • Im Diagramm gemäß Fig. 3 ist dagegen beispielhaft ein Temperaturverlauf angegeben, der sich einstellt, wenn das Stahlflachprodukt eine kontinuierliche Glühung ohne anschließende Schmelztauchbeschichtung durchläuft:
    • Vorerwärmung auf eine Vorwärmtemperatur TV innerhalb einer Vorwärmdauer tV bei einer Aufheizrate RV;
    • Halten bei einer maximalen Glühtemperatur TG über eine Glühdauer tG, wobei das Halten eine Fertigerwärmung auf die Glühtemperatur TG umfasst, wenn die Vorwärmtemperatur TV niedriger als die Glühtemperatur TG ist (gestrichelte Linie TV = TG; durchgezogene Linie TV < TG);
    • Abkühlen in zwei Stufen, wobei in der ersten Stufe mit höherer Abkühlgeschwindigkeit auf eine Zwischentemperatur TZ' und anschließend mit geminderter Abkühlgeschwindigkeit auf eine Zwischentemperatur TZ" abgekühlt wird;
    • Durchführen einer Überalterungsbehandlung, bei der das Stahlflachprodukt ausgehend von der Zwischentemperatur TZ" über eine Behandlungsdauer tU mit einer Abkühlrate RU bis zu einer Überalterungstemperatur TU abkühlt;
    • Abkühlen auf Raumtemperatur RT.
  • Zur Überprüfung der durch die Erfindung erzielten Effekte sind neun Stahlschmelzen A - I und X, Y erschmolzen worden, deren Zusammensetzungen in Tabelle 1 angegeben sind. Bei den Stählen A - I handelt es sich um erfindungsgemäße Stähle, während die Stähle X und Y außerhalb der Erfindung liegen.
  • Die Stahlschmelzen A - I, X, Y sind zu Brammen vergossen worden. Die Abkühlung der Brammen erfolgte dabei so, dass eine maximale Abkühlgeschwindigkeit von 60 K/h nicht überschritten wurde. Für das anschließend absolvierte Warmwalzen wurden die Brammen dann in einem Ofen auf die jeweilige Warmwalzanfangstemperatur WAT erwärmt .
  • Im Zuge des Warmwalzens sind die mit der Warmwalzanfangstemperatur WAT in die Warmwalzstaffel einlaufenden Brammen bei einer Endtemperatur WET zu warmgewalzten Stahlbändern mit einer Dicke WBD warmgewalzt worden. Nach dem Warmwalzen sind die warmgewalzten Stahlbänder auf eine Haspeltemperatur HT abgekühlt worden, bei der sie anschließend zu einem Coil gewickelt worden sind.
  • Die so erhaltenen warmgewalzten Stahlbänder sind mit einem jeweiligen Gesamtverformungsgrad KWG zu kaltgewalztem Stahlband mit einer Dicke KBD kaltgewalzt worden.
  • Die bei der Herstellung der warm- und kaltgewalzten Stahlbänder berücksichtigten Betriebsparameter "Warmwalzanfangstemperatur WAT", "Warmwalzendtemperatur WET", "Dicke des warmgewalzten Stahlbands WBD", "Haspeltemperatur HT", "Gesamtverformungsgrad KWG" und "Dicke des kaltgewalzten Stahlbands KBD" sind in den Tabellen 2 und 3 angegeben.
  • Die so erhaltenen kaltgewalzten Stahlbänder sind unterschiedlichen Glühversuchen unterzogen worden.
  • Bei der dem in Fig. 1 dargestellten Verlauf folgenden ersten Variante dieser Versuche sind Stahlbänder in einer konventionellen Schmelztauchbeschichtungsanlage zunächst in einer Vorwärmzone mit einer Aufheizrate RV auf eine Vorwärmtemperatur TV erwärmt worden.
  • Im unmittelbaren Anschluss an die Vorerwärmung sind die Stahlbänder in einer Haltezone zunächst mit einer Aufheizrate RF auf eine maximale Glühtemperatur TG fertigerwärmt worden, auf der sie anschließend gehalten worden sind. Für den Durchlauf der gesamten Haltezone, d. h. einschließlich der Fertigerwärmung und des Haltens, wurde eine Glühdauer tG benötigt.
  • Ebenso unterbrechungsfrei folgend sind die kaltgewalzten Stahlbänder dann in einer Stufe mit einer Abkühlrate RE auf eine Temperatur TE abgekühlt worden. Die aus dem Schmelzenbad austretenden Stahlbänder wiesen eine Zn-Legierungsbeschichtung auf, die sie gegen Korrosion schützt.
  • Die bei der Herstellung der warm- und kaltgewalzten Stahlbänder berücksichtigten Betriebsparameter "Aufheizrate RV", "Vorwärmtemperatur TV", "Aufheizrate RF", "Glühtemperatur TG", "Glühdauer tG", "Abkühlrate rE", "Temperatur TE", "Haltezeit tE", "Abkühlrate RB" und "Badtemperatur TB" sind in Tabelle 4 angegeben. Zusätzlich sind in Tabelle 4 auch die für die Praxis besonders geeigneten Parameter der in dieser Weise durchgeführten erfindungsgemäßen Schmelztauchbeschichtung in allgemeiner Form genannt.
  • Bei der dem in Fig. 2 dargestellten Verlauf folgenden zweiten Variante dieser Versuche sind Stahlbänder wiederum in einer konventionellen Schmelztauchbeschichtungsanlage zunächst in einer Vorwärmzone mit einer Aufheizrate RV auf eine Vorwärmtemperatur TV erwärmt worden. Im unmittelbaren Anschluss an die Vorerwärmung sind die Stahlbänder in einer zweiten Zone des jeweiligen Ofens eingelaufen. Sofern ihre Vorerwärmungstemperatur TV weniger als die vorgeschriebene maximale Glühtemperatur TG betrug, sind die Stahlbänder dabei mit einer Aufheizrate RF auf die geforderte maximale Glühtemperatur TG fertigerwärmt worden. Im unterbrechungsfreien Anschluss sind die kaltgewalzten Stahlbänder dann in zwei Stufen abgekühlt worden. In der ersten Stufe der Abkühlung sind die Stahlbänder mit einer vergleichbar geringen Abkühlrate RE' auf eine Zwischentemperatur TE' abgekühlt worden. Mit Erreichen der Zwischentemperatur TE' sind die jeweiligen Stahlbänder mit erhöhter Abkühlrate RE schnell auf die jeweilige Temperatur TE abgekühlt worden. Die aus dem Schmelzenbad austretenden Stahlbänder wiesen eine Zn-Legierungsbeschichtung auf, die sie gegen Korrosion schützt.
  • Die bei der Herstellung der warm- und kaltgewalzten Stahlbänder berücksichtigten Betriebsparameter "Aufheizrate RV", "Vorwärmtemperatur TV", "Aufheizrate RF", "Glühtemperatur TG", "Glühdauer tG", "Abkühlrate RE'", "Zwischentemperatur TE'", "Abkühlrate RE", "Temperatur TE", "Haltezeit tE", "Abkühlrate RB" und "Temperatur TB" sind in Tabelle 5 angegeben.
  • Bei der dem in Fig. 3 dargestellten Verlauf folgenden dritten Variante der Versuche sind Stahlbänder in einer konventionellen Wärmebehandlungsanlage zunächst in einer Vorwärmzone mit einer Aufheizrate RV auf eine Vorwärmtemperatur TV erwärmt worden. Im unmittelbaren Anschluss an die Vorerwärmung sind die Stahlbänder in einer zweiten Zone des jeweiligen Ofens eingelaufen. Sofern ihre Vorerwärmungstemperatur TV weniger als die vorgeschriebene maximale Glühtemperatur TG betrug, sind die Stahlbänder in dieser Haltezone mit einer Aufheizrate RG auf die geforderte maximale Glühtemperatur TG fertigerwärmt worden. Die auf die jeweilige Glühtemperatur TG erwärmten Stahlbänder sind anschließend bei dieser Temperatur gehalten worden. Die Fertigerwärmung und das Halten erfolgten dabei ebenfalls insgesamt in einer Glühdauer tG.
  • Im unterbrechungsfreien Anschluss sind die kaltgewalzten Stahlbänder daraufhin in zwei Stufen abgekühlt worden. In der ersten Stufe der Abkühlung sind die Stahlbänder mit einer vergleichbar hohen Abkühlrate RZ' auf eine Zwischentemperatur TZ' durch Einsatz einer Gasjetkühlung abgekühlt worden. Mit Erreichen der Zwischentemperatur TZ' wurde die Gasjetkühlung beendet und es erfolgte eine Rollenkühlung mit einer verminderten Abkühlrate RZ" bis auf eine Zwischentemperatur TZ". An die zweistufige Abkühlung schloss sich eine Überalterungsbehandlung an, über die das jeweilige Stahlband ausgehend von der Zwischentemperatur TZ" mit einer Abkühlrate RU auf die Überalterungstemperatur TU abgekühlt worden ist.
  • Die bei der Herstellung der warm- und kaltgewalzten Stahlbänder berücksichtigten Betriebsparameter "Aufheizrate RV", "Vorwärmtemperatur TV", "Aufheizrate RG", "Glühtemperatur TG", "Glühdauer tG", "Abkühlrate RZ"', "Zwischentemperatur TZ"', "Abkühlrate RZ"", "Zwischentemperatur TZ"", "Abkühlrate RU" und "Überalterungstemperatur TU" sind in Tabelle 6 angegeben.
  • An den kaltgewalzten Stahlbändern sind die Dehngrenze Rp0,2, die Zugfestigkeit Rm, die Dehnung A80, der n-Wert (10-20/Ag) und die Zusammensetzung des Gefüges bestimmt worden, wobei diese Eigenschaften jeweils an Proben längs zur Walzrichtung bestimmt worden sind.
  • Zusätzlich ist das Verhalten im V-bend nach DIN EN ISO 7438 ermittelt worden. Das Verhältnis des minimalen Biegeradius, also des Radius, bei dem kein sichtbarer Riss auftritt, zur Blechdicke soll hier höchstens 2,0 betragen und überschreitet idealer Weise 1,7 nicht.
  • Ebenso ist im Biegeversuch nach DIN EN ISO 7438 (Probenabmessung Blechdicke* 20mm*120mm) der minimale Biegedomdurchmesser bestimmt worden, bei dem keine sichtbare Schädigung auftritt. Er sollte 4*Blechdicke, idealer Weise 3*Blechdicke, betragen. In Bezug auf die vorliegende Erfindung bedeutet dies, dass der maximale Biegedomdurchmesser 9,6 mm nicht überschreiten soll.
  • Schließlich ist an gestanzten Proben von den in der voranstehend beschriebenen Weise erzeugten kaltgewalzten Stahlbändern die Lochaufweitung nach ISO 16630 mit einem Lochdurchmesser von 10 mm mit einer Ziehgeschwindigkeit von 0,8 mm/s bestimmt worden. Sie beträgt mindestens 15 %, idealer Weise mindestens 18 %.
  • In Tabelle 7 sind für die insgesamt 32 in der voranstehend beschriebenen Weise durchgeführten Versuche angegeben, welcher der jeweils in Tabelle 1 angegebenen Stähle verarbeitet worden ist, welche der in Tabelle 2 angegebenen Warmwalzvarianten angewendet worden ist, welche der in Tabelle 3 angegebenen Kaltwalzvarianten zum Einsatz gekommen ist und welche der in den Tabellen 4, 5 und 6 jeweils angegebenen Glühverfahrensvarianten von dem jeweiligen kaltgewalzten Stahlband durchlaufen worden ist. Des Weiteren sind in Tabelle 7 die mechanischen Eigenschaften und die Zusammensetzung des Gefüges sowie die nach DIN EN ISO 7438 ("V-bend", "U-bend") und DIN ISO 16630 ("Lochaufweitung") ermittelten Eigenschaften angegeben. Tabelle 1
    Stahl C Si Mn P S Al Cr Ti Mo N B Summe
    A 0,147 0,29 1,61 0,011 0,001 0,027 0,62 0,037 0,007 0,004 0,0008 2,76
    B 0,130 0,20 1,60 0,010 0,001 0,031 0,73 0,038 0,020 0,007 0,0008 2,77
    C 0,140 0,20 1,57 0,008 0,001 0,037 0,71 0,047 0,020 0,008 0,0012 2,74
    D 0,140 0,18 1,65 0,007 0,001 0,034 0,49 0,047 0,010 0,006 0,0011 2,57
    E 0,130 0,21 1,68 0,010 0,001 0,037 0,51 0,045 0,020 0,006 0,0010 2,65
    F 0,158 0,25 1,54 0,015 0,003 0,029 0,75 0,039 0,040 0,007 0,0013 2,83
    G 0,119 0,23 1,75 0,009 0,001 0,032 0,63 0,051 0,010 0,005 0,0013 2,84
    I 0,130 0,14 1,57 0,013 0,002 0,035 0,72 0,057 0,050 0,007 0,0008 2,72
    X 0,135 0,21 1,60 0,014 0,002 0,033 0,73 0,020 0,020 0,005 0,0010 2,77
    Y 0,140 0,18 1,63 0,007 0,001 0,041 0,50 0,040 0,010 0,004 0,0003 2,55
    (alle Angaben in Gew.-%, Rest Eisen und unvermeidbare Verunreinigungen)
    Tabelle 2
    Warmwalzen
    WAT [°C] WET [°C] HT [°C]
    I 1050 920 550
    II 1200 920 550
    III 1150 880 550
    IV 1150 950 580
    V 1150 900 490
    VI 1150 920 610
    VII 1150 920 550
    Tabelle 3
    Kaltwalzen
    WBD [mm] KWG [%] KBD [mm]
    a 2,29 65 0,8
    b 2,86 65 1,0
    c 5,00 80 1,0
    d 4,44 55 2,0
    e 5,00 60 2,0
    f 4,00 40 2,4
    Tabelle 4
    Heizzone (Erwärmen) Haltezone (Fertigerwärmen-Halten) Schnellkühlung (1. Kühlschritt) Zinkbad
    RV [°C/s] TV [°C] RF [°C/s] TG [°C] tG [s] RE [°C/s] TE [°C] tE [°C] RB [°C/s] TB [°C]
    1.1 16 690 1,4 780 17 4,7 460 28 460
    1.2 18 740 1,4 830 20 5,4 460 30 460
    1.3 12 700 0,9 780 24 3,3 465 40 0,1 460
    1.4 26 760 1,4 820 12 7,4 465 20 0,5 455
    1.5 36 760 1,9 820 9 10,2 465 14 0,7 455
    1.6 18 690 2,4 830 16 5,0 510 26 2,1 460
    1.7 30 710 4 800 10 13,0 490 10 1,6 465
    Tabelle 5
    Heizzone (Erwärmen) Haltezone (Fertigerwärmen-Halten) Langsamkühlung (1. Kühlschritt) Schnellkühlung (2. Kühlschritt) Zinkbad
    RV [°C/s] TV [°C] RF [°C/s] TG [°C] tG [°C/s] RE' [°C/s] TE' [°C] RE [°C/s] TE [°C] tE [s] RB [°C/s] TB [°C]
    2.1 9,5 780 0,9 840 2,4 700 26,6 530 2,8 455
    2.2 8,8 780 0,2 800 1,7 690 27,9 500 0,6 465
    2.3 15,9 860 0,2 870 4,9 695 52,1 495 1,1 455
    2.4 19,1 820 0,3 835 6,3 650 60,1 460 30 460
    2.5 3,9 835 835 70 2,3 740 54,2 495 0,8 460
    2.6 2,2 810 0,2 830 1,8 700 31,3 460 75 460
    2.7 11,1 820 0,2 835 2,8 695 36,5 495 0,7 460
    Tabelle 6
    Heizzone (Erwärmen) Haltezone (Fertigerwärmen-Halten) Gasjetkühlung (1. Kühlschritt) Rollenkühlung (2. Kühlschritt) Überalterung
    RV [°C/s] TV [°C] RG [°C/s] TG [°C] tG [s] RZ' [°C/s] TZ' [°C] RZ" [°C/s] TZ" [°C] RU [°C/s] TU [°C]
    3.1 1,5 780 780 235 6,6 500 1,1 470 0,3 290
    3.2 2,1 810 810 170 11,7 450 1,9 500 0,5 260
    3.3 2,1 750 0,5 830 9,8 560 2,5 500 0,5 290
    3.4 2 830 830 180 8,6 550 4,6 420 0,2 320
    3.5 2,6 810 0,3 850 12 550 3,7 470 0,4 290
    3.6 5,2 850 850 73 11,3 570 8,8 470 0,8 290
    Tabelle 7 (Teil 1)
    Stahl Wärmebehandlung Kaltwalzen Glühung Rp0,2 [MPa] Rm [MPa] A80 [%] n-Wert Gefüge [Vol.-%] V-bend [minR1/d] U-bend [D1] Lochaufweitung
    Ferrit Martensit Rest-Austenit Sonstige
    1 A I a 1.1 495 834 18,2 0,114 62 35 1,0 2,0 0,8 2,8 18
    2 A II a 1.2 517 824 19,8 0,114 62 32 2,5 3,5 1,3 1,6 20
    3 A II a 3.4 526 824 16,3 0,113 62 35 2,0 1,0 1,9 2,4 15
    4 B III b 1.2 541 831 20,2 0,112 60 35 5,0 0,0 1,0 3,5 19
    5 B III c 2.1 503 808 18,7 0,118 63 30 2,5 4,5 1,5 4 23
    6 B III c 3.1 542 859 19,3 0,111 60 38 2,0 0,0 2,0 3 17
    7 C III c 1.1 508 812 19,0 0,113 62 35 1,5 1,5 1,5 3 22
    8 C III c 2.1 527 833 17,0 0,114 65 30 1,5 3,5 2,0 3 17
    9 C IV c 1.6 519 837 18,3 0,111 66 30 2,5 1,5 1,5 2,5 16
    10 C IV c 3.3 475 796 21,3 0,121 69 23 3,5 4,5 0,5 3,5 27
    11 D IV d 1.3 495 827 18,2 0,114 69 25 3,5 2,5 1,8 8 18
    12 D V d 1.4 539 827 18,7 0,115 67 25 3,0 5,0 1,3 7 21
    13 D V d 2.2 491 818 19,8 0,127 67 28 3,5 1,5 1,3 6 18
    14 D V d 3.3 486 869 16,9 0,117 61 35 2,5 1,5 2,0 7 16
    15 E V d 1.5 508 803 19,1 0,114 76 20 3,0 1,0 1,5 7 19
    16 E V e 2.3 645 856 19,5 0,113 61 35 2,5 1,5 1,3 8 19
    17 E V e 2.4 509 781 14,9 0,125 82 15 1,5 1,5 1,8 3 28
    18 E V e 3.2 474 854 18,5 0,116 64 30 2,0 4,0 0,5 2 18
    19 F VI e 1.5 478 802 17,6 0,115 71 25 2,0 2,0 1,8 7 24
    20 F VI f 1.5 497 785 18,5 0,118 76 20 2,5 1,5 1,7 7,2 25
    21 F VI f 3.5 497 832 19,3 0,116 72 25 1,5 1,5 1,5 2,4 23
    22 G VI e 2.4 531 841 19,6 0,114 60 37 1,5 1,5 1,3 5 18
    23 G VII f 2.4 519 839 16,0 0,112 62 35 1,5 1,5 1,9 6 20
    24 G VII f 3.6 448 791 16,0 0,120 81 15 1,0 3,0 1,5 2,4 28
    Tabelle 7 (Teil 2)
    Stahl Wärmebehandlung Kaltwalzen Glühung Rp0,2 [MPa] Rm [MPa] A80 [%] n-Wert Gefüge [Vol.-%] V-bend [minR1/d] U-bend [D1] Lochaufweitung
    28 I VII d 2.5 527 856 19,5 0,122 60 37 1,0 2,0 1,5 4 15
    29 I VII d 2.6 487 796 20,3 0,118 69 25 4,5 1,5 1,5 3 23
    30 I VII d 2.7 544 851 18,7 0,111 61 35 2,5 1,5 2,0 6 16
    31 X VII d 1.1 438 764 23,8 0,167 88 6 5,0 2,0 1,5 4 30
    32 Y VII d 1.1 423 759 23,8 0,171 86 5 4,5 5,0 1,3 4 28

Claims (12)

  1. Kaltgewalztes Stahlflachprodukt mit folgender Zusammensetzung in Gew.-%
    C: 0,11 - 0,16 %;
    Si: 0,1 - 0,3 %;
    Mn: 1,4 - 1,9 %;
    Al: 0,02 - 0,1 %;
    Cr: 0,45 - 0,85 %;
    Ti: 0,025 - 0,06 %;
    B: 0,0008 - 0,002 %;
    Rest Fe und herstellungsbedingt unvermeidbare Verunreinigungen, zu denen Gehalte an Phosphor, Schwefel, Stickstoff oder Molybdän mit der Maßgabe gehören, dass für ihre Gehalte jeweils gilt:
    P: ≤ 0,02 %,
    S: ≤ 0,003 %,
    N: ≤ 0,008 %,
    Mo: ≤ 0,05 Gew.-%,
    welches ein Gefüge aufweist, das zu 60 - 90 Vol.-% aus Ferrit einschließlich bainitischem Ferrit, zu 10 - 40 Vol.-% aus Martensit, bis zu 5 Vol.-% aus Restaustenit und bis zu 5 Vol.-% aus herstellungsbedingt unvermeidbaren sonstigen Gefügebestandteilen besteht und seine Dehngrenze Rp0,2 mindestens 440 MPa, seine Zugfestigkeit mindestens 780 MPa, seine Bruchdehnung A80 mindestens 14 %, sein n10-20/Ag-Wert mindestens 0,11 und sein BH2-Wert mindestens 25 MPa beträgt, jeweils im Zugversuch gemäß DIN EN ISO 6892, Probenform 2, Längsproben, ermittelt.
  2. Kaltgewalztes Stahlflachprodukt nach Anspruch 1,
    dadurch gekennzeichnet, dass sein Al-Gehalt höchstens 0,05 Gew.-% beträgt.
  3. Kaltgewalztes Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass sein Ti-Gehalt höchstens ≤ 0,055 Gew.-% beträgt.
  4. Kaltgewalztes Stahlflachprodukt nach Anspruch 3,
    dadurch gekennzeichnet, dass sein Ti-Gehalt höchstens 0,045 Gew.-% beträgt.
  5. Verfahren zur Herstellung eines gemäß einem der Ansprüche 1 bis 4 beschaffenen kaltgewalzten Stahlflachprodukts umfassend folgende Arbeitsschritte:
    a) Vergießen eines gemäß einem der Ansprüche 1 bis 4 zusammengesetzten Stahls zu einem Vorprodukt;
    b) Warmwalzen des Vorprodukts zu einem Warmband mit einer Dicke von 2 bis 5,5 mm, wobei die Warmwalzanfangstemperatur 1000 - 1300 °C und die Warmwalzendtemperatur 840 - 950 °C beträgt;
    c) Haspeln des Warmbands zu einem Coil bei einer Haspeltemperatur von 480 - 650 °C;
    d) Kaltwalzen des Warmbands zu einem 0,6 - 2,4 mm dicken kaltgewalzten Stahlflachprodukt, wobei der über das Kaltwalzen erzielte Kaltwalzgrad 35 - 80 % beträgt;
    e) im kontinuierlichen Durchlauf erfolgendes Wärmebehandeln des kaltgewalzten Stahlflachprodukts, wobei
    e.1) das kaltgewalzte Stahlflachprodukt zunächst in einer Vorwärmstufe mit einer Aufheizrate von 0,2 - 45 °C/s auf eine Vorwärmtemperatur von bis zu 870 °C erwärmt wird,
    e.2) das kaltgewalzte Stahlflachprodukt anschließend in einer Haltestufe über eine Glühdauer von 8 - 260 s bei einer Glühtemperatur von 750 - 870 °C gehalten wird, wobei optional das vorerwärmte Stahlflachprodukt innerhalb der Haltestufe auf die jeweilige Glühtemperatur fertigerwärmt wird,
    e.3) das kaltgewalzte Stahlflachprodukt nach Ende der Glühdauer mit einer Abkühlrate von 0,5 - 110 K/s abgekühlt wird.
  6. Verfahren nach Anspruch 5, dadurch
    gekennzeichnet, dass das Vorprodukt zwischen den Arbeitsschritten a) und b) auf einer Temperatur ≥ 300 °C gehalten wird.
  7. Verfahren nach Anspruch 5, dadurch
    gekennzeichnet, dass das Vorprodukt zwischen den Arbeitsschritten a) und b) mit einer Abkühlgeschwindigkeit ≤ 60 °C/h auf Raumtemperatur abgekühlt wird.
  8. Verfahren nach Anspruch 6 oder 7, dadurch
    gekennzeichnet, dass das Vorprodukt vor dem Arbeitsschritt b) über eine Aufheizdauer von bis zu 500 Minuten auf die jeweilige Warmwalzanfangstemperatur erwärmt wird.
  9. Verfahren nach einem der Ansprüche 5 bis 8, dadurch
    gekennzeichnet, dass das kaltgewalzte Stahlflachprodukt eine Schmelztauchbeschichtung durchläuft, die sich im kontinuierlichen Durchlauf an den Arbeitsschritt e.3) anschließt, und dass die Temperatur, auf die das kaltgewalzte Stahlflachprodukt im Arbeitsschritt e.3) abgekühlt wird, 455 - 550 °C beträgt.
  10. Verfahren nach einem der Ansprüche 5 bis 8, dadurch
    gekennzeichnet, dass das kaltgewalzte Stahlflachprodukt im Arbeitsschritt e.3) auf Raumtemperatur abgekühlt wird.
  11. Verfahren nach Anspruch 10, dadurch
    gekennzeichnet, dass das kaltgewalzte Stahlflachprodukt im Arbeitsschritt e.3) in mindestens zwei Abkühlschritten auf Raumtemperatur abgekühlt wird, dass das kaltgewalzte Stahlflachprodukt im ersten Abkühlschritt auf 250 - 500 °C abgekühlt und in diesem Temperaturbereich für bis zu 760 s gehalten wird, und dass das kaltgewalzte Stahlflachprodukt anschließend auf Raumtemperatur abgekühlt wird.
  12. Verfahren nach einem der Ansprüche 10 oder 11,
    dadurch gekennzeichnet, dass das kaltgewalzte Stahlflachprodukt nach der Abkühlung auf Raumtemperatur elektrolytisch mit einer metallischen Schutzbeschichtung belegt wird.
EP13726805.8A 2012-06-05 2013-06-05 Stahlflachprodukt und verfahren zur herstellung eines stahlflachprodukts Active EP2855718B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012104894 2012-06-05
PCT/EP2013/061629 WO2013182622A1 (de) 2012-06-05 2013-06-05 Stahl, stahlflachprodukt und verfahren zur herstellung eines stahlflachprodukts

Publications (2)

Publication Number Publication Date
EP2855718A1 EP2855718A1 (de) 2015-04-08
EP2855718B1 true EP2855718B1 (de) 2019-05-15

Family

ID=48570186

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13726583.1A Active EP2855717B1 (de) 2012-06-05 2013-06-05 Stahlflachprodukt und verfahren zur herstellung eines stahlflachprodukts
EP13726805.8A Active EP2855718B1 (de) 2012-06-05 2013-06-05 Stahlflachprodukt und verfahren zur herstellung eines stahlflachprodukts

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13726583.1A Active EP2855717B1 (de) 2012-06-05 2013-06-05 Stahlflachprodukt und verfahren zur herstellung eines stahlflachprodukts

Country Status (6)

Country Link
US (2) US20150152533A1 (de)
EP (2) EP2855717B1 (de)
JP (2) JP6374864B2 (de)
KR (2) KR102073441B1 (de)
CN (2) CN104520448B (de)
WO (2) WO2013182621A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516464B1 (de) * 2014-11-03 2018-02-15 Berndorf Band Gmbh Metallische Bänder und deren Herstellungsverfahren
AT516453B1 (de) * 2014-11-03 2018-02-15 Berndorf Band Gmbh Metallische Bänder und deren Herstellungsverfahren
DE102014017274A1 (de) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Höchstfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
CN104831177B (zh) * 2015-05-11 2017-11-17 首钢总公司 一种冷轧热镀锌双相钢及其制备方法
US10704117B2 (en) 2015-07-29 2020-07-07 Jfe Steel Corporation Cold-rolled steel sheet, coated steel sheet, method for manufacturing cold-rolled steel sheet, and method for manufacturing coated steel sheet
DE102015116517A1 (de) 2015-09-29 2017-03-30 Thyssenkrupp Ag Vorrichtung und Verfahren zur kontinuierlichen Herstellung eines bandförmigen, metallischen Werkstücks
WO2017125773A1 (en) 2016-01-18 2017-07-27 Arcelormittal High strength steel sheet having excellent formability and a method of manufacturing the same
WO2017203310A1 (en) 2016-05-24 2017-11-30 Arcelormittal Method for producing a twip steel sheet having an austenitic microstructure
WO2017203315A1 (en) 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
KR101822292B1 (ko) 2016-08-17 2018-01-26 현대자동차주식회사 고강도 특수강
KR101822295B1 (ko) 2016-09-09 2018-01-26 현대자동차주식회사 고강도 특수강
WO2018096387A1 (en) * 2016-11-24 2018-05-31 Arcelormittal Hot-rolled and coated steel sheet for hot-stamping, hot-stamped coated steel part and methods for manufacturing the same
CN106947919B (zh) * 2017-03-21 2020-01-14 马钢(集团)控股有限公司 一种高韧性热成形钢及其生产方法
DE102017130237A1 (de) * 2017-12-15 2019-06-19 Salzgitter Flachstahl Gmbh Hochfestes, warmgewalztes Stahlflachprodukt mit hohem Kantenrisswiderstand und gleichzeitig hohem Bake-Hardening Potential, ein Verfahren zur Herstellung eines solchen Stahlflachprodukts
CN111386229B (zh) 2017-12-15 2021-12-24 赫斯基注塑系统有限公司 用于容器的封闭盖
WO2019122963A1 (en) 2017-12-19 2019-06-27 Arcelormittal Cold rolled and heat treated steel sheet and a method of manufacturing thereof
CN108754307B (zh) * 2018-05-24 2020-06-09 山东钢铁集团日照有限公司 一种生产不同屈服强度级别的经济型冷轧dp780钢的方法
WO2020239905A1 (de) * 2019-05-29 2020-12-03 Thyssenkrupp Steel Europe Ag Bauteil, hergestellt durch umformen einer stahlblechplatine und verfahren zu seiner herstellung
WO2020245626A1 (en) * 2019-06-03 2020-12-10 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
US20230151468A1 (en) * 2020-04-22 2023-05-18 Thyssenkrupp Steel Europe Ag Hot-Rolled Flat Steel Product and Method for the Production Thereof
DE102021121997A1 (de) 2021-08-25 2023-03-02 Thyssenkrupp Steel Europe Ag Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP4261309A1 (de) 2022-04-13 2023-10-18 ThyssenKrupp Steel Europe AG Kaltgewalztes stahlflachprodukt und verfahren zur herstellung eines kaltgewalzten stahlflachprodukts
CN117305716B (zh) * 2023-11-10 2024-03-15 常熟市龙腾特种钢有限公司 一种抗震耐蚀球扁钢的制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101125473B (zh) * 2001-06-06 2012-07-18 新日本制铁株式会社 热浸镀锌薄钢板和热浸镀锌层扩散处理薄钢板及制造方法
EP1288322A1 (de) * 2001-08-29 2003-03-05 Sidmar N.V. Ultrahochfester Stahl, Produkt aus diesem Stahl und Verfahren zu seiner Herstellung
JP4380348B2 (ja) * 2004-02-09 2009-12-09 Jfeスチール株式会社 表面品質に優れる高強度溶融亜鉛めっき鋼板
JP4575799B2 (ja) * 2005-02-02 2010-11-04 新日本製鐵株式会社 成形性に優れたホットプレス高強度鋼製部材の製造方法
JP4736617B2 (ja) * 2005-08-16 2011-07-27 Jfeスチール株式会社 剛性の高い高強度冷延鋼板およびその製造方法
JP4665692B2 (ja) * 2005-09-29 2011-04-06 Jfeスチール株式会社 曲げ剛性に優れた高強度薄鋼板およびその製造方法
JP5114860B2 (ja) * 2006-03-30 2013-01-09 Jfeスチール株式会社 溶融亜鉛めっき鋼板及びその製造方法
JP5088023B2 (ja) * 2006-09-29 2012-12-05 新日本製鐵株式会社 加工性に優れた高強度冷延鋼板及びその製造方法
EP1918406B1 (de) * 2006-10-30 2009-05-27 ThyssenKrupp Steel AG Verfahren zum Herstellen von Stahl-Flachprodukten aus einem mit Bor mikrolegierten Mehrphasenstahl
JP5352963B2 (ja) * 2007-03-28 2013-11-27 Jfeスチール株式会社 形状凍結性に優れた高張力鋼板およびその製造方法
JP5151246B2 (ja) * 2007-05-24 2013-02-27 Jfeスチール株式会社 深絞り性と強度−延性バランスに優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板ならびにその製造方法
ES2387040T3 (es) * 2007-08-15 2012-09-12 Thyssenkrupp Steel Europe Ag Acero de doble fase, producto plano de un acero de doble fase de este tipo y procedimiento para la fabricación de un producto plano
CN101229565A (zh) * 2008-02-26 2008-07-30 重庆钢铁(集团)有限责任公司 高强度球扁钢的生产工艺
JP4903915B2 (ja) * 2010-01-26 2012-03-28 新日本製鐵株式会社 高強度冷延鋼板及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2013182621A1 (de) 2013-12-12
EP2855718A1 (de) 2015-04-08
WO2013182622A1 (de) 2013-12-12
KR20150023566A (ko) 2015-03-05
CN104583424A (zh) 2015-04-29
JP6310452B2 (ja) 2018-04-11
US9976205B2 (en) 2018-05-22
KR102073441B1 (ko) 2020-02-04
EP2855717B1 (de) 2020-01-22
JP2015525293A (ja) 2015-09-03
CN104520448B (zh) 2017-08-11
KR20150028267A (ko) 2015-03-13
US20150152533A1 (en) 2015-06-04
CN104520448A (zh) 2015-04-15
KR102073442B1 (ko) 2020-02-04
JP2015525292A (ja) 2015-09-03
EP2855717A1 (de) 2015-04-08
CN104583424B (zh) 2017-03-08
JP6374864B2 (ja) 2018-08-15
US20150122377A1 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
EP2855718B1 (de) Stahlflachprodukt und verfahren zur herstellung eines stahlflachprodukts
EP2809819B1 (de) Höchstfester mehrphasenstahl mit verbesserten eigenschaften bei herstellung und verarbeitung
EP3027784B1 (de) Siliziumhaltiger, mikrolegierter hochfester mehrphasenstahl mit einer mindestzugfestigkeit von 750 mpa und verbesserten eigenschaften und verfahren zur herstellung eines bandes aus diesem stahl
EP2924141B1 (de) Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP3221484B1 (de) Verfahren zur herstellung eines hochfesten lufthärtenden mehrphasenstahls mit hervorragenden verarbeitungseigenschaften
DE102012013113A1 (de) Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl mit einer Mindestzugfestigkleit von 580MPa
EP3535431B1 (de) Mittelmanganstahlprodukt zum tieftemperatureinsatz und verfahren zu seiner herstellung
EP2905348B1 (de) Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts
EP3504349B1 (de) Verfahren zur herstellung eines höchstfesten stahlbandes mit verbesserten eigenschaften bei der weiterverarbeitung und ein derartiges stahlband
DE102015111177A1 (de) Höchstfester Mehrphasenstahl und Verfahren zur Herstellung eines kaltgewalzten Stahlbandes hieraus
EP3974554A1 (de) Stahlflachprodukt mit guter alterungsbeständigkeit und verfahren zu seiner herstellung
EP2840159B1 (de) Verfahren zum Herstellen eines Stahlbauteils
DE102014017275A1 (de) Hochfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
EP3221483A1 (de) Höchstfester lufthärtender mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines bandes aus diesem stahl
EP2690184A1 (de) Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
DE102018132860A1 (de) Verfahren zur Herstellung von konventionell warmgewalzten, profilierten Warmbanderzeugnissen
WO2019068560A1 (de) Höchstfester mehrphasenstahl und verfahren zur herstellung eines stahlbandes aus diesem mehrphasenstahl
EP3658307B9 (de) Blechbauteil, hergestellt durch warmumformen eines stahlflachprodukts und verfahren zu dessen herstellung
DE102018132901A1 (de) Verfahren zur Herstellung von konventionell warmgewalzten Warmbanderzeugnissen
DE102018132816A1 (de) Verfahren zur Herstellung von thermo-mechanisch hergestellten profilierten Warmbanderzeugnissen
EP3781717A1 (de) Kaltgewalztes stahlflachprodukt sowie verwendung und verfahren zur herstellung eines solchen stahlflachprodukts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013012843

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0006020000

Ipc: C22C0038020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/32 20060101ALI20180822BHEP

Ipc: C22C 38/48 20060101ALI20180822BHEP

Ipc: C23C 2/06 20060101ALI20180822BHEP

Ipc: C23C 2/40 20060101ALI20180822BHEP

Ipc: C21D 8/04 20060101ALI20180822BHEP

Ipc: C25D 7/06 20060101ALI20180822BHEP

Ipc: C22C 38/54 20060101ALI20180822BHEP

Ipc: C22C 38/06 20060101ALI20180822BHEP

Ipc: C22C 38/58 20060101ALI20180822BHEP

Ipc: C22C 38/42 20060101ALI20180822BHEP

Ipc: C22C 38/50 20060101ALI20180822BHEP

Ipc: C22C 38/28 20060101ALI20180822BHEP

Ipc: C22C 38/02 20060101AFI20180822BHEP

Ipc: C22C 38/38 20060101ALI20180822BHEP

Ipc: C21D 9/46 20060101ALI20180822BHEP

Ipc: C22C 38/04 20060101ALI20180822BHEP

Ipc: C23C 2/02 20060101ALI20180822BHEP

Ipc: C22C 38/44 20060101ALI20180822BHEP

Ipc: C21D 6/00 20060101ALI20180822BHEP

Ipc: C22C 38/26 20060101ALI20180822BHEP

Ipc: C21D 8/02 20060101ALI20180822BHEP

INTG Intention to grant announced

Effective date: 20180926

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SEBALD, ROLAND

Inventor name: BOCHAROVA, EKATHERINA

Inventor name: MATTISSEN,DOROTHEA

Inventor name: VOSS, SIGRUN

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012843

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190815

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190915

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190815

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190816

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012843

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

26N No opposition filed

Effective date: 20200218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190605

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130605

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230620

Year of fee payment: 11

Ref country code: FR

Payment date: 20230628

Year of fee payment: 11

Ref country code: DE

Payment date: 20230620

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230621

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 11