EP2824414B1 - Method and device for controlling the performance of an active system - Google Patents
Method and device for controlling the performance of an active system Download PDFInfo
- Publication number
- EP2824414B1 EP2824414B1 EP14002293.0A EP14002293A EP2824414B1 EP 2824414 B1 EP2824414 B1 EP 2824414B1 EP 14002293 A EP14002293 A EP 14002293A EP 2824414 B1 EP2824414 B1 EP 2824414B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- charge
- igniting
- explosive
- initiation
- active system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002360 explosive Substances 0.000 claims description 42
- 230000000977 initiatory effect Effects 0.000 claims description 26
- 238000004200 deflagration Methods 0.000 claims description 16
- 238000005259 measurement Methods 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 claims description 2
- 230000001960 triggered effect Effects 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 description 29
- 238000005474 detonation Methods 0.000 description 23
- 230000000694 effects Effects 0.000 description 16
- 239000000523 sample Substances 0.000 description 8
- 206010041662 Splinter Diseases 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C19/00—Details of fuzes
- F42C19/08—Primers; Detonators
- F42C19/0838—Primers or igniters for the initiation or the explosive charge in a warhead
- F42C19/0842—Arrangements of a multiplicity of primers or detonators, dispersed within a warhead, for multiple mode selection
Definitions
- the invention relates to a device for power control of an active system comprising at least one ignition system, a first ignition device for the detonative initiation of a first charge, wherein the first charge initiates the deflagration of a second charge, and a second igniter for the detonative initiation of the second charge,
- the effect of flexible warhead systems is more precise and adaptable to the target, on the ground with the detonator setting or, if possible, in the field of use (e.g., cockpit selectable). This can at least reduce unintentional damage and, ideally, avoid it.
- warheads or bombs with Blast horrin- and splinter effect are used primarily against soft and possibly also semi-hard targets, such as unarmoured vehicles, standing on the ground aircraft, radar positions and / or individuals or groups of people. Also, the effect on intrusion inside infrastructure buildings can be limited. Other applications exist in the coastal environment, especially in harbors where e.g. small, fast pirate boats to the target range to be added. These tasks are covered by previously known solutions only insufficient.
- the DE 102 22 184 A1 shows a warhead with two adjacent arranged ignition devices, which is adjustable depending on the target to be combated.
- the DE 10 2009 017 160 B3 deals with a warhead, which on the one hand has a detonative initiation that is locally displaceable around to be able to achieve different splitter sizes. Furthermore, the warhead has a subdetonative ignition device, which is usually spatially separated from the detonative initiation.
- a subdetonative reaction e.g. a deflagration
- a detonation for the purpose of power control and limitation of the effective areas to take over, while avoiding the mentioned weaknesses.
- the principle should also be applicable to effective systems with a significantly larger form factor and increase their reliability.
- the two initiation locations are spatially next to each other, can even be integrated in a detonator with two ignition points.
- Charge at a second time e.g. according to calculated specifications or by means of an evaluation of the measurement of the reaction progress of the first charge.
- the object is further achieved according to the invention by a device having a first ignition device for the initiation of a first charge, and a second ignition device for the detonative initiation of a second charge, wherein the arrangement of the first and the second ignition device is selected such that these ignition devices lie directly adjacent, and wherein the second ignition device is arranged directly at the rear end of the system enclosing the active system.
- the first ignition device is ignited at a first time and the second ignition device at a second time, wherein t1 ⁇ t2 and wherein the time interval between t1 and t2 is decisive for the quantitative ratio of the subdetonatively converted explosive component to the detonatively converted explosive component.
- the ignition times are controlled according to specifications or are spontaneously adjustable. It is equally possible to set one of the ignition times in dependence on the other ignition timing and the resulting measured reaction progress.
- the first charge is designed as a detonating cord arranged in the region of the longitudinal axis of the active system. It is also possible to carry out the first charge as a plurality of detonating cords arranged parallel to the longitudinal axis of the active system.
- the function of the first charge is designed as a shaped charge or as a charge forming several projectiles.
- the hollow charge may be provided with an upstream plate.
- a further alternative according to the invention is that the first charge is implemented by an explosive charge core with an explosive charge of higher sensitivity than the second charge.
- This explosive charge core can also be sheathed, e.g. with a plastic jacket.
- the device can also be designed so that the first charge L1 is designed as a multiplicity of explosive charge cores having a higher sensitivity arranged in the region of the longitudinal axis LA. These explosive charge cores can also be encased in plastic.
- the initial velocity of the splinters is reduced in the first place, which (regardless of fragmentation masses and numbers) ultimately leads to a reduction in the effects and effects (Collateral) damage surfaces leads.
- the blast pressure in particular the first peak overpressure, is significantly reduced. The latter also depends on the damming by a shell.
- the scalability device described here initiates the detonating cord arranged centrally, for example, and the subsequent detonation by means of a detonator from the same side.
- This has two main advantages.
- the detonation velocity of detonating cord and explosive is approximately the same over the entire charge length, resulting in approximately the same superposition ratios of the two subdetonative reaction and detonation modes.
- the installation of a compact ignition system instead of spatially distributed ignition points offers advantages in terms of installation, cost and reliability as well as impact surfaces against military targets on the ground and damage surfaces against non-military targets or objects on the ground. No cable ducts / connections, neither inside nor outside, need to be routed from the rear part to the front side.
- the initiation of the subdetonative reaction here, for example, the centrally arranged detonating cord
- the initiation of the subdetonative reaction here, for example, the centrally arranged detonating cord
- one or more, also curved, eccentrically arranged detonating cords or a combination of several subdetonation triggers can be effected.
- the detonation cord can basically also be replaced by a hollow charge, the effect being set by the design of the hollow charge and possibly by additional ballasts so that the explosive charge L2 is only excited to a subdetonative conversion.
- the spike tip speed (possibly after the ballast plate) is then designed to be on a similar order of magnitude as the detonation rate of the explosive charge.
- the subdetonator triggers a subdetonative reaction called deflagration or low velocity detonation (LVD).
- deflagration low velocity detonation
- the pressure and flame front of the multiphase reaction zone are spatially separated and can propagate at different rates. The speeds also depend on the damming, i. Thickness and strength of the metal shell, from.
- the speed of the pressure front is in the range of the speed of sound of the explosive, i. at a deflagration just below the speed of sound and at an LVD up to 1.4 times the speed of sound.
- This deflagration is e.g. initiated by the detonating cord and then propagates radially outward from the warhead center. Since the speed of this deflagration reaction is in the order of magnitude of the speed of the explosive and thus much slower than a detonation (the detonating cord is detonated), the reaction front of the deflagration is similar to a Mach cone.
- the in FIG. 3 schematically simplified, results in a superimposed effect, which lies between the effects of a subdetonative reaction and a detonation. It can be done by initiation of the subdetonator (deflagrator) and later time-delayed initiation of the detonator.
- the reduction of the effect compared to a pure detonation becomes greater, the greater the time interval between the intions of the subdetonator and the detonator.
- the firing interval must be at least so long that, depending on the length of the warhead or the bomb, the subdetonative reaction is in no case overtaken, especially if the detonation speed of the detonating cord is smaller than that of the explosive itself.
- the other limit results from the period of time after the subdetonative reaction reaches the charge edge and thus the explosive charge is implemented radially completely subdetonatively.
- the time delay of the detonator determines the pyrotechnic scaling factor.
- the ignition system is programmable on it.
- the ignition delay time ⁇ t can be determined in several ways: once from continuously measuring the progress of the reaction (e.g., through one or more corresponding probes in the explosive charge) or as a fixed value determined from known quantities such as reaction rates of e.g. Detonating cord and radial velocity of the subdetonative reaction front.
- the sub-detonator is not ignited at all or the sub-detonator and detonator are ignited simultaneously (the time delay is set to zero). Then the power of the active part corresponds to the classic ignition with a high order detonation of the entire explosive charge including the charge L1, e.g. the detonating cord.
- FIG. 1 An embodiment is exemplary in the Fig, 1 the drawing shown.
- This shows a schematically simplified longitudinal section through an active system, each equipped with an ignition device for an I1 initiation of the charge L1 and for a detonative initiation I2 of the charge L2.
- Both igniters are located not only on the same side of the active system, but they are also arranged as close to each other as possible.
- the subdetonative reaction emanating from the centrally located detonating cord SP in this case a deflagration, which is similar to a Mach cone due to its typical reaction rates in the axial and in the radial direction.
- the Fig.2 shows an arrangement for measuring the course of a subdetonative reaction of an explosive, which was triggered by means disposed in the region of the longitudinal axis detonating cord.
- the structure of the measuring arrangement is shown in the upper left half of the diagram.
- Good to see is the coated explosive charge L1, which surrounds the centrally arranged detonating cord SP.
- two probes are provided parallel to the detonating cord SP.
- the first probe VOD 1 is located close to the detonating cord SP and senses the reaction in the immediate vicinity of the detonating cord, the other is located in the vicinity of the envelope HU and senses the delayed reaction process near the envelope.
- the signal of the outer probe VOD 3 also shows a steeper increase in speed at the beginning of the measurement than in the further course. This can be explained by the fact that at the edge of the charge, the reaction and an associated increase in pressure start later (geometric start-up effects). At the other charge end, i. At the end of the measurement, the reaction at the edge of the charge already subsides after approximately 200 mm of charge length. This is due to the lack of detonating cord in the lower charge segment, which leads to the reaction initially igniting and finally dying out altogether. Thus, sufficient pressure is not generated to cause a short circuit of the probe, which can then be measured indirectly by a measuring device.
- FIG. 3 is simplified, the intermediate mode for the reduced detonative implementation of the explosive charge L2 shown.
- the central bright part DFU is the representation of the subdetonatively converted part and the darker part DTU surrounding the lighter one is the representation of the detonatively converted part of the explosive charge.
- the section AA clarifies the concentric arrangement of the two parts DFU and DTU.
- the described principle of action is not limited to this bomb, but applicable to almost all active bodies with blast / splinter effect.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Air Bags (AREA)
Description
Die Erfindung betrifft eine Vorrichtung zur Leistungssteuerung eines Wirksystems umfassend wenigstens ein Zündsystem, eine erste Zündeinrichtung für die detonative Initiierung einer ersten Ladung, wobei die erste Ladung die Deflagration einer zweiten Ladung initiiert, sowie eine zweite Zündeinrichtung für die detonative Initiierung der zweiten Ladung,The invention relates to a device for power control of an active system comprising at least one ignition system, a first ignition device for the detonative initiation of a first charge, wherein the first charge initiates the deflagration of a second charge, and a second igniter for the detonative initiation of the second charge,
In der Vergangenheit stand die Maximierung der Wirkung von Gefechtsköpfen im Vordergrund der Entwicklungen, inzwischen erfordern Einsatzszenarien der Streitkräfte Gefechtskopfsysteme mit einer flexiblen Wirkung. Gegen weiche und halbharte Einzel- und Flächenziele, die meistens stationär sind, werden Blast-/Splittergefechtsköpfe eingesetzt, die z.T. auch über eine Penetrationsfähigkeit gegen Infrastrukturziele und / oder schwimmende Plattformen verfügen. Die maximale Wirkung eines klassischen Gefechtskopfes bekämpft dabei nicht nur das gewünschte Ziel, sondern ruft regelmäßig auch unbeabsichtigte Schäden hervor (Collateral Damage). Wirkungs- und Schadensflächen um den Treffpunkt / Detonationsort sind unter Umständen sehr groß und in ihrer Größe nicht direkt veränderbar.In the past, maximizing the impact of warheads has been at the forefront of developments, and military intervention scenarios now require warhead systems with a flexible impact. Against soft and semi-hard single and surface targets, which are mostly stationary, blast / fragmentation warheads are used, the z.T. also have a penetration capability against infrastructure targets and / or floating platforms. The maximum effect of a classic warhead not only fights the desired target, but also regularly causes unintentional damage (collateral damage). Impact and damage areas around the meeting point / detonation site may be very large and not directly changeable in size.
Im Gegensatz dazu ist die Wirkung flexibler Gefechtskopfsysteme präziser und an das Ziel anpassbar, am Boden mit der Zündereinstellung oder nach Möglichkeit auch noch im Einsatzgebiet (z.B. cockpit selectable). Damit können unbeabsichtigte Schäden zumindest reduziert und im Idealfall vermieden werden.In contrast, the effect of flexible warhead systems is more precise and adaptable to the target, on the ground with the detonator setting or, if possible, in the field of use (e.g., cockpit selectable). This can at least reduce unintentional damage and, ideally, avoid it.
Aus der
- Bei sehr später Initiierung des Detonators wird ein großer Anteil der Sprengladung durch eine überlagerte Reaktion umgesetzt. Hierdurch können zwar die Splittergeschwindigkeiten im Vergleich zur Detonation reduziert werden, aber infolge der größeren Splittermassen ändern sich die Wirk- und Schadensbereiche am Boden nicht signifikant. Demzufolge besteht gerade im Zwischenwirkmodus erheblicher Verbesserungsbedarf.
- Die Aufrechterhaltung einer stabilen Deflagration in Längsachse der Ladung ist kritisch und bis heute nicht zuverlässig nachgewiesen.
- Die Installation des genannten Deflagrators an der gegenseitigen Stirnfläche des Wirkkörpers bedingt zusätzlichen Raumbedarf und Änderungen der Systemnahtstellen.
- At very late initiation of the detonator, a large proportion of the explosive charge is converted by a superimposed reaction. As a result, although the splitter speeds compared to the detonation can be reduced, but due to the larger splinter masses, the impact and damage areas on the ground do not change significantly. Consequently, there is a considerable need for improvement, especially in the intermediate mode.
- The maintenance of a stable deflagration in the longitudinal axis of the charge is critical and not reliably proven to date.
- The installation of said deflagrator on the mutual end face of the active body requires additional space and changes the system seams.
Die hier betrachteten Gefechtsköpfe oder Bomben mit Blastdruck- und Splitterwirkung werden in erster Linie gegen weiche und ggf. auch halbharte Ziele, wie ungepanzerte Fahrzeuge, am Boden stehende Flugzeuge, Radarstellungen und / oder einzelne Personen oder Personengruppen eingesetzt. Auch kann die Wirkung nach Eindringen im Inneren von Infrastrukturgebäuden begrenzt werden. Weitere Anwendungen existieren im küstennahen Umfeld, vor allem auch in Häfen, in denen z.B. kleine, schnelle Piratenboote zum Zielspektrum hinzutreten. Diese Aufgaben werden durch bisher bekannte Lösungsvorschläge nur unzureichend abgedeckt.The considered warheads or bombs with Blastdruck- and splinter effect are used primarily against soft and possibly also semi-hard targets, such as unarmoured vehicles, standing on the ground aircraft, radar positions and / or individuals or groups of people. Also, the effect on intrusion inside infrastructure buildings can be limited. Other applications exist in the coastal environment, especially in harbors where e.g. small, fast pirate boats to the target range to be added. These tasks are covered by previously known solutions only insufficient.
Die
Die
In der
Es ist deshalb Aufgabe der vorliegenden Erfindung, die bewährte Idee der Überlagerung einer subdetonativen Reaktion, z.B. einer Deflagration, und einer Detonation zum Zweck der Leistungssteuerung und Eingrenzung der Wirkflächen zu übernehmen, dabei aber die genannten Schwachpunkte zu vermeiden. Weiterhin soll das Prinzip auch auf Wirksysteme mit einem erheblich größeren Formfaktor anwendbar sein und deren Funktionssicherheit erhöhen.It is therefore an object of the present invention to provide the well-established idea of superimposing a subdetonative reaction, e.g. a deflagration, and a detonation for the purpose of power control and limitation of the effective areas to take over, while avoiding the mentioned weaknesses. Furthermore, the principle should also be applicable to effective systems with a significantly larger form factor and increase their reliability.
Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung nach einem der unabhängigen Ansprüche 1, 4 oder 6 gelöst. Der Vorteil der erfindungsgemäßen Lösung besteht darin, dass die Reaktionsfronten beider Ladungen mit fast der gleichen Geschwindigkeiten in gleicher Richtung der Ladungslängsachse laufen. Dabei entstehen über die gesamte Ladungslänge fast gleiche Überlagerungsverhältnisse, ein entscheidener Vorteil dieser Erfindung gegenüber den vorherigen Anmeldungen. Damit können die Wirkflächen und die Letalität der Wirkkörper wirklich skaliert werden.This object is achieved by a device according to one of the
Die beiden Initiierungsorte liegen räumlich unmittelbar nebeneinander, können sogar in einem Zünder mit zwei Zündstellen integriert sein.The two initiation locations are spatially next to each other, can even be integrated in a detonator with two ignition points.
Ladung zu einem zweiten Zeitpunkt, z.B. nach errechneten Vorgaben oder mittels einer Auswertung der Messung des Reaktionsfortschritts der ersten Ladung.Charge at a second time, e.g. according to calculated specifications or by means of an evaluation of the measurement of the reaction progress of the first charge.
Die Aufgabe wird weiterhin erfindungsgemäß durch eine Vorrichtung gelöst, die eine erste Zündeinrichtung für die Initiierung einer ersten Ladung, sowie eine zweite Zündeinrichtung für die detonative Initiierung einer zweiten Ladung aufweist, wobei die Anordnung der ersten und der zweiten Zündeinrichtung derart gewählt ist, dass diese Zündeinrichtungen unmittelbar benachbart liegen, und wobei die zweite Zündeinrichtung direkt am heckseitigen Ende der das Wirksystem umschließenden Hülle angeordnet ist.The object is further achieved according to the invention by a device having a first ignition device for the initiation of a first charge, and a second ignition device for the detonative initiation of a second charge, wherein the arrangement of the first and the second ignition device is selected such that these ignition devices lie directly adjacent, and wherein the second ignition device is arranged directly at the rear end of the system enclosing the active system.
In vorteilhafter Weise wird die erste Zündeinrichtung zu einem ersten Zeitpunkt und die zweite Zündeinrichtung zu einem zweiten Zeitpunkt gezündet, wobei gilt t1 ≤ t2 und wobei der zeitliche Abstand zwischen t1 und t2 maßgeblich für das quantitative Verhältnis des subdetonativ umgesetzten Sprengstoffanteils zum detonativ umgesetzten Sprengstoffanteil ist. Die Zündzeitpunkte werden dabei nach Vorgaben gesteuert oder sind spontan einstellbar sind. Es ist ebenso gut möglich, einen der Zündzeitpunkte in Abhängigkeit von dem anderen Zündzeitpunkt und den sich daraus ergebenden gemessenen Reaktionsfortschritt einzustellen.Advantageously, the first ignition device is ignited at a first time and the second ignition device at a second time, wherein t1 ≦ t2 and wherein the time interval between t1 and t2 is decisive for the quantitative ratio of the subdetonatively converted explosive component to the detonatively converted explosive component. The ignition times are controlled according to specifications or are spontaneously adjustable. It is equally possible to set one of the ignition times in dependence on the other ignition timing and the resulting measured reaction progress.
Eine Ausführungsmöglichkeit besteht darin, dass die erste Ladung als eine im Bereich der Längsachse des Wirksystems angeordnete Sprengschnur ausgeführt ist. Es ist auch möglich, die erste Ladung als eine Vielzahl parallel zur Längsachse des Wirksystems angeordneten Sprengschnüren auszuführen.One possible embodiment is that the first charge is designed as a detonating cord arranged in the region of the longitudinal axis of the active system. It is also possible to carry out the first charge as a plurality of detonating cords arranged parallel to the longitudinal axis of the active system.
Eine erfindungsgemäße Alternative besteht darin, dass die Funktion der ersten Ladung als Hohlladung oder als eine mehrere Projektile bildende Ladung ausgeführt ist. Gegebenenfalls kann die Hohlladung mit einer vorgeschalteten Platte versehen sein.An alternative according to the invention is that the function of the first charge is designed as a shaped charge or as a charge forming several projectiles. Optionally, the hollow charge may be provided with an upstream plate.
Eine weitere erfindungsgemäße Alternative besteht darin, dass die erste Ladung durch einen Sprengladungskern mit einer Sprengladung höherer Sensitivität als die zweite Ladung ausgeführt ist. Dieser Sprengladungskern kann auch ummantelt sein, z.B. mit einem Kunststoffmantel.A further alternative according to the invention is that the first charge is implemented by an explosive charge core with an explosive charge of higher sensitivity than the second charge. This explosive charge core can also be sheathed, e.g. with a plastic jacket.
Die Vorrichtung kann auch so ausgeführt sein, dass die erste Ladung L1 als eine Vielzahl von im Bereich der Längsachse LA angeordneten Sprengladungskernen mit Sprengladung höherer Sensitivität ausgeführt ist. Diese Sprengladungskerne können auch mit Kunststoff ummantelt sein.The device can also be designed so that the first charge L1 is designed as a multiplicity of explosive charge cores having a higher sensitivity arranged in the region of the longitudinal axis LA. These explosive charge cores can also be encased in plastic.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung schematisch vereinfacht dargestellt und wird im Folgenden näher beschrieben, ohne dass die Erfindung ausschließlich hierauf beschränkt wäre. Es zeigt
- Fig. 1:
- einen Längsschnitt durch ein Wirksystem mit zwei auf einer Seite des Wirksystems angeordneten Zündeinrichtungen;
- Fig. 2:
- ein Weg- Zeit- Diagramm einer typischen zylinderförmigen verdämmten Sprengladung gemessen mittels in der Ladung eingelegter VOD-Sonden;
- Fig. 3:
- Schnitte durch ein Wirksystem mit gemischt subdetonativer und detonativer Umsetzung des Sprengstoffes.
- Fig. 1:
- a longitudinal section through an active system with two arranged on one side of the active system ignition devices;
- Fig. 2:
- a path-time diagram of a typical cylindrical atomized explosive charge as measured by charge-trapped VOD probes;
- 3:
- Cuts through an active system with mixed subdetonative and detonative implementation of the explosive.
Bei den angestrebten subdetonativen Reaktionsprozessen wird in erster Linie die Anfangsgeschwindigkeit der Splitter reduziert, was (unabhängig auch von Splittermassen und -zahlen) letztlich zu einer Verringerung von Wirkungs- und (Kollateral-) Schadensflächen führt. Zudem wird der Blastdruck, insbesondere der erste Spitzenüberdruck, deutlich verringert. Letzteres hängt auch auch von der Verdämmung durch eine Hülle ab.In the desired subdetonative reaction processes, the initial velocity of the splinters is reduced in the first place, which (regardless of fragmentation masses and numbers) ultimately leads to a reduction in the effects and effects (Collateral) damage surfaces leads. In addition, the blast pressure, in particular the first peak overpressure, is significantly reduced. The latter also depends on the damming by a shell.
Die hier beschriebene Vorrichtung zur Skalierbarkeit initiiert die beispielsweise mittig angeordnete Sprengschnur und die nachfolgende Detonation mittels eines Detonators von der gleichen Seite aus. Dies hat im Wesentlichen zwei Vorteile. Zum einem kommt es durch die angenähert gleiche Detonationsgeschwindigkeit von Sprengschnur und Sprengstoff über die gesamte Ladungslänge zu annähernd gleichen Überlagerungsverhältnissen der beiden Modi subdetonative Reaktion und Detonation. Zum anderen bietet der Einbau eines kompakten Zündsystems anstelle räumlich verteilter Zündstellen Vorteile in Bezug auf Einbau, Kosten und Zuverlässigkeit sowie Wirkungsflächen gegen militärische Ziele am Boden und Schadensflächen gegen nicht militärische Ziele oder Objekte am Boden . Es brauchen keine Kabelkanäle / Verbindungen, weder innen noch außen, vom Heckteil zur Stirnseite geführt werden. Dabei kann die Einleitung der subdetonativen Reaktion (hier beispielsweise die mittig angeordnete Sprengschnur) oder auch durch eine oder auch mehrere, auch gekrümmte, außermittig angeordnete Sprengschnüre oder eine Kombination mehrerer Subdetonationsauslöser bewirkt werden.The scalability device described here initiates the detonating cord arranged centrally, for example, and the subsequent detonation by means of a detonator from the same side. This has two main advantages. On the one hand, the detonation velocity of detonating cord and explosive is approximately the same over the entire charge length, resulting in approximately the same superposition ratios of the two subdetonative reaction and detonation modes. On the other hand, the installation of a compact ignition system instead of spatially distributed ignition points offers advantages in terms of installation, cost and reliability as well as impact surfaces against military targets on the ground and damage surfaces against non-military targets or objects on the ground. No cable ducts / connections, neither inside nor outside, need to be routed from the rear part to the front side. In this case, the initiation of the subdetonative reaction (here, for example, the centrally arranged detonating cord) or else by one or more, also curved, eccentrically arranged detonating cords or a combination of several subdetonation triggers can be effected.
Die Detonationsschnur kann grundsätzlich auch durch eine Hohlladung ersetzt werden, wobei die Wirkung durch das Design der Hohlladung und ggf. durch zusätzliche Vorschaltplatten so eingestellt wird, dass die Sprengladung L2 lediglich zu einer subdetonativen Umsetzung angeregt wird. Die Stachelspitzengeschwindigkeit (ggf. nach der Vorschaltplatte) ist dann so ausgelegt, dass sie in einer ähnlichen Größenordnung wie die Detonationsgeschwindigkeit der Sprengladung liegt.The detonation cord can basically also be replaced by a hollow charge, the effect being set by the design of the hollow charge and possibly by additional ballasts so that the explosive charge L2 is only excited to a subdetonative conversion. The spike tip speed (possibly after the ballast plate) is then designed to be on a similar order of magnitude as the detonation rate of the explosive charge.
Grundsätzlich werden bei der Initiierung eines Wirksystems im Rahmen dieser Erfindung drei unterschiedliche Modi unterschieden, die in der Folge zu unterschiedlichen Wirkungen führen.In principle, three different modes are distinguished during the initiation of an active system in the context of this invention, which subsequently lead to different effects.
Im Modus für die geringste Wirkung wird mit dem Subdetonator (Deflagrator) eine subdetonative Reaktion ausgelöst, die als Deflagration oder Low Velocity Detonation (LVD) bezeichnet wird. Druck- und Flammenfront der mehrphasigen Reaktionszone sind im Gegensatz zur Detonation räumlich voneinander getrennt und können sich mit unterschiedlicher Geschwindigkeit fortpflanzen. Die Geschwindigkeiten hängen auch von der Verdämmung, d.h. Dicke und Festigkeit der Metallhülle, ab. Die Geschwindigkeit der Druckfront liegt im Bereich der Schallgeschwindigkeit des Sprengstoffs, d.h. bei einer Deflagration knapp unter der Schallgeschwindigkeit und bei einer LVD bis zur 1,4fachen Schallgeschwindigkeit. Diese Deflagration wird z.B. durch die Sprengschnur initiiert und pflanzt sich dann von der Gefechtskopfmitte radial nach außen hin fort. Da die Geschwindigkeit dieser Deflagrationsreaktion in der Größenordnung der Schallgeschwindigkeit des Sprengstoffs liegt und damit erheblich langsamer als eine Detonation ist (auch die Sprengschnur wird detonativ umgesetzt), gleicht die Reaktionsfront der Deflagration einem Mach'schen Kegel.In the least effective mode, the subdetonator (deflagrator) triggers a subdetonative reaction called deflagration or low velocity detonation (LVD). In contrast to detonation, the pressure and flame front of the multiphase reaction zone are spatially separated and can propagate at different rates. The speeds also depend on the damming, i. Thickness and strength of the metal shell, from. The speed of the pressure front is in the range of the speed of sound of the explosive, i. at a deflagration just below the speed of sound and at an LVD up to 1.4 times the speed of sound. This deflagration is e.g. initiated by the detonating cord and then propagates radially outward from the warhead center. Since the speed of this deflagration reaction is in the order of magnitude of the speed of the explosive and thus much slower than a detonation (the detonating cord is detonated), the reaction front of the deflagration is similar to a Mach cone.
Im Zwischenwirkmodus, der in
Der Zeitverzug des Detonators bestimmt den pyrotechnischen Skalierungsfaktor. Das Zündsystem ist darauf programmierbar. Die Zündverzögerungszeit Δt kann auf mehrere Weise ermittelt werden: einmal aus der kontinuierlichen Messung des Reaktionsfortschrittes (z.B. durch eine oder mehrere entsprechende Sonden in der Sprengladung) oder als Fixwert, bestimmt aus bekannten Größen wie Reaktionsgeschwindigkeiten von z.B. Sprengschnur und radialer Geschwindigkeit der subdetonativen Reaktionsfront.The time delay of the detonator determines the pyrotechnic scaling factor. The ignition system is programmable on it. The ignition delay time Δt can be determined in several ways: once from continuously measuring the progress of the reaction (e.g., through one or more corresponding probes in the explosive charge) or as a fixed value determined from known quantities such as reaction rates of e.g. Detonating cord and radial velocity of the subdetonative reaction front.
Weiterhin sind die Wirksystemdimensionen zu berücksichtigen. Für jeden Wirkladungstyp ergeben sich so parametrische Datensätze für die jeweils gewünschte Skalierung.Furthermore, the effective system dimensions have to be considered. For each active charge type, this results in parametric data sets for the respectively desired scaling.
Im Modus für die maximale Wirkung gilt, je kleiner die Zeitverzögerung zwischen der Initiierung der Sprengschnur und des Detonators gewählt wird, um so höher ist die Ausgangsleistung. Zur Erzielung der maximalen detonativen Umsetzung des Sprengstoffes wird der Subdetonator gar nicht gezündet oder es werden Subdetonator und Detonator gleichzeitig gezündet (die Zeitverzögerung wird auf Null gesetzt). Dann entspricht die Leistung des Wirkteiles der klassischen Zündung mit einer High Order-Detonation der gesamten Sprengladung inklusive der Ladung L1, z.B. der Sprengschnur.In the maximum effect mode, the smaller the time delay between initiating the detonating cord and the detonator, the higher the output power. To achieve the maximum detonation of the explosive, the sub-detonator is not ignited at all or the sub-detonator and detonator are ignited simultaneously (the time delay is set to zero). Then the power of the active part corresponds to the classic ignition with a high order detonation of the entire explosive charge including the charge L1, e.g. the detonating cord.
Ein Ausführungsbeispiel ist beispielhaft in der
Weiterhin ist außerdem die von der in der Mitte angeordneten Sprengschnur SP ausgehende subdetonative Reaktion, hier einer Deflagration, die aufgrund der für sie typischen Reaktionsgeschwindigkeiten in axialer und in radialer Richtung einem Mach'schen Kegel gleicht.In addition, the subdetonative reaction emanating from the centrally located detonating cord SP, in this case a deflagration, which is similar to a Mach cone due to its typical reaction rates in the axial and in the radial direction.
Zum Verständnis sind nachfolgend jeweils für unterschiedliche Ladungen beispielhaft typische Fortpflanzungsgeschwindigkeiten der Detonationen und Deflagration angegeben:
- Detonationsgeschwindigkeit einer Sprengschnur SP: ca. 7000 m/s (fertigungsbedingte Streuungen liegen in der Größenordnung von bis zu 10%);
- Detonationsgeschwindigkeit der Sprengladung L2: ca. 7400 m/s;
- Schallgeschwindigkeit der Sprengladung L2: ca. 2000 m/s;
- Deflagrationsgeschwindigkeit in der Sprengladung L1 < 2200 m/s;
- Winkel des Mach'schen Kegels ca. 16° (bei den o.a. Geschwindigkeiten).
- Detonation velocity of a detonating cord SP: approx. 7000 m / s (production-related dispersions are of the order of magnitude of up to 10%);
- Detonation velocity of the explosive charge L2: approx. 7400 m / s;
- Sound velocity of the explosive charge L2: approx. 2000 m / s;
- Deflagration velocity in the explosive charge L1 <2200 m / s;
- Angle of the Mach cone about 16 ° (at the above speeds).
Die
Mit der in der Sprengladung SP einsetzenden Reaktion steigen beide Kurven relativ stetig an und weisen eine geringfügig andere Steigung auf. Die im Diagramm angegebenen Geschwindigkeiten in longitudinaler Richtung wurden mittels linearer Regression ermittelt. Die Geschwindigkeit der inneren Sonde VOD 1 liegt mit ca. 7200 m/s etwas oberhalb der ebenfalls gemessenen Detonationsgeschwindigkeit der Sprengschnur mit 6900 m/s, aber unterhalb der Detonationsgeschwindigkeit der Sprengladung von 7400 m/s. Am Ladungsrand setzt sich die Sprengladung etwas langsamer um, ist allerdings nach wie vor deutlich durch die Sprengschnur gesteuert. Mit Hilfe des bekannten Abstands der beiden Sonden lassen sich Reaktionsgeschwindigkeiten in radialer Richtung bestimmen, die dann im Bereich der Schallgeschwindigkeit der Sprengladung liegen.With the reaction starting in the explosive charge SP, both curves increase relatively steadily and have a slightly different slope. The speeds given in the diagram were in the longitudinal direction determined by linear regression. The speed of the
Das Signal der äußeren Sonde VOD 3 zeigt außerdem zu Beginn der Messung einen steileren Anstieg der Geschwindigkeit als im weiteren Verlauf. Erklären lässt sich dies dadurch, dass am Ladungsrand die Reaktion und ein damit verbundener Druckanstieg erst später einsetzen (geometrische bedingte Anlaufeffekte). Am anderen Ladungsende, d.h. zum Ende der Messung, klingt die Reaktion am Ladungsrand bereits nach ca. 200 mm Ladungslänge ab. Dies ist auf die fehlende Sprengschnur im unteren Ladungssegment zurückzuführen, die dazu führt, dass die Reaktion zunächst in einen Abbrand übergeht und schließlich gänzlich ausstirbt. Somit wird kein ausreichender Druck erzeugt, um einen Kurzschluss der Sonde hervorzurufen, der dann indirekt durch eine Messeinrichtung gemessen werden kann.The signal of the
In der
Betrachtet man als konkretes Anwendungsbeispiel eine MK84 Dumb Bomb als Skalierungsbeispiel, so ergeben sich etwa folgende Parameter:
- Radius der Sprengladung von 15 cm - 20 cm , daraus folgt:
- Zeit der vollständigen deflagrativen Umsetzung radial im Mittel ∼ 90 µs,
- Zeitverschiebung der beiden Detonationsfronten über 3 m Lauflänge aufgrund unterschiedlicher Geschwindigkeiten ∼ 30 µs.
- Radius of the explosive charge of 15 cm - 20 cm, it follows:
- Time of complete deflagrative conversion radially on average ~ 90 μs,
- Time shift of the two detonation fronts over 3 m run length due to different velocities ~ 30 μs.
Daraus ergeben sich grob folgende Zündverzögerungszeiten Δt:
- Minimale Wirkleistung : > 1ms >> keine Detonatorzündung
- 30 % der Vollleistung : 70 µs
- 60 % der Vollleistung : 40 µs
- Maximale Wirkleistung : 0s >> bzw. nur Detonatorzündung
- Minimum active power:> 1ms >> no detonator ignition
- 30% of full power: 70 μs
- 60% of full power: 40 μs
- Maximum active power: 0s >> or only detonator ignition
Das beschriebene Wirkprinzip ist jedoch nicht auf diese Bombe beschränkt, sondern auf nahezu alle Wirkkörper auch mit Blast-/Splitterwirkung anwendbar.However, the described principle of action is not limited to this bomb, but applicable to almost all active bodies with blast / splinter effect.
Claims (7)
- Device for controlling the performance of an active system, comprising:- at least one ignition system,- a first igniting device (Z1) for the detonative initiation (I1) of a first charge (L1), the first charge (L1) being configured as at least one detonating cord (SP) arranged in the region of the longitudinal axis and initiating the deflagration of a second charge (L2),- a second igniting device (Z2) for the detonative initiation (12) of the second charge (L2),characterized by
an arrangement of the first and second igniting devices (Z1, Z2) in such a way that these igniting devices (Z1, Z2) lie directly adjacent, the second igniting device (Z2) being arranged directly at the tail end (EH) of a casing (HU) enclosing the active system. - Device according to Claim 1, characterized in that the first igniting device (Z1) can be ignited at a first point in time (t1) and the second igniting device (Z2) can be ignited at a second point in time (t2), where (t1) ≤ (t2) and where the time interval between (t1) and (t2) can be set to correspond to the quantitative ratio of the sub-detonatively converted component of the explosive to the detonatively converted component of the explosive, depending on the target to be engaged.
- Device according to Claim 1 or 2, characterized in that, after triggering the initiation (I1) of the first charge (L1) at a first point in time (t1), the detonative initiation (I2) of a second charge (L2) can then be triggered at a second point in time (t2), which can be calculated on the basis of specifications or can be determined by means of an evaluation of the measurement of the progress in the redaction of the first charge (L1).
- Device for controlling the performance of an active system, comprising:- at least one ignition system,- a first igniting device (Z1) for the detonative initiation (I1) of a first charge (L1), the first charge (L1) being configured as a hollow charge (HL) or as a multiple-projectile charge (PL) and initiating the Deflagration of a second charge (L2),- a second igniting device (Z2) for the detonative initiation (12) of the second charge (L2),characterized by
an arrangement of the first and second igniting devices (Z1, Z2) in such a way that these igniting devices (Z1, Z2) lie directly adjacent, the second igniting device (Z2) being arranged directly at the tail end (EH) of a casing (HU) enclosing the active system. - Device according to Claim 4, characterized in that the hollow charge (HL) is provided with an in-front plate (PV).
- Device for controlling the performance of an active system, comprising:- at least one ignition system,- a first igniting device (Z1) for the detonative initiation (I1) of a first charge (L1), the first charge (L1) initiating the deflagration of a second charge (L2),- a second igniting device (Z2) for the detonative initiation (12) of the second charge (L2),characterized by- an arrangement of the first and second igniting devices (Z1, Z2) in such a way that these igniting devices (Z1, Z2) lie directly adjacent, the second igniting device (Z2) being arranged directly at the tail end (EH) of casing (HU) enclosing the active system,- the first charge (L1), which is configured as a core of an explosive charge arranged in the region of the longitudinal axis (LA) or as a multiplicity of cores of explosive charges arranged in the region of the longitudinal axis (LA), the explosive charge respectively having a higher sensitivity.
- Device according to Claim 6, characterized in that the core of an explosive charge or the cores of explosive charges is/are sheathed in plastic.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201310011404 DE102013011404B4 (en) | 2013-07-09 | 2013-07-09 | Method and device for power control of an active system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2824414A1 EP2824414A1 (en) | 2015-01-14 |
EP2824414B1 true EP2824414B1 (en) | 2017-11-22 |
Family
ID=51225232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14002293.0A Active EP2824414B1 (en) | 2013-07-09 | 2014-07-04 | Method and device for controlling the performance of an active system |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2824414B1 (en) |
DE (1) | DE102013011404B4 (en) |
ES (1) | ES2654804T3 (en) |
NO (1) | NO2951235T3 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014004003B3 (en) | 2014-03-20 | 2014-10-30 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Ignition system for a scalable active system |
DE102014014332B3 (en) * | 2014-10-01 | 2016-03-17 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Apparatus and method for the controlled fragmentation by means of temperature-activated Kerbladungen |
DE102014018218B4 (en) | 2014-12-06 | 2023-05-17 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Device for the controlled initiation of the deflagration of an explosive charge |
DE102015010855A1 (en) | 2015-08-18 | 2017-02-23 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Device for monitoring an ignition device |
DE102021002470B4 (en) | 2021-05-10 | 2023-09-21 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mit beschränkter Haftung | Scalable active system and warhead |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19961204C2 (en) * | 1999-12-18 | 2003-06-26 | Daimler Chrysler Ag | ignition device |
DE10008914C2 (en) * | 2000-02-25 | 2003-06-26 | Tdw Verteidigungstech Wirksys | Explosive charge for a warhead |
DE10222184B4 (en) * | 2002-05-18 | 2005-06-09 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | warhead |
DE102009017160B3 (en) * | 2009-04-09 | 2010-08-19 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Disassembling device for the explosive charge of a warhead |
DE102012006044B3 (en) * | 2012-03-27 | 2013-03-21 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Method and device for measuring the course of a deflagration front in a cylindrical warhead with at least two ignition devices |
-
2013
- 2013-07-09 DE DE201310011404 patent/DE102013011404B4/en active Active
-
2014
- 2014-01-30 NO NO14746107A patent/NO2951235T3/no unknown
- 2014-07-04 ES ES14002293.0T patent/ES2654804T3/en active Active
- 2014-07-04 EP EP14002293.0A patent/EP2824414B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
ES2654804T3 (en) | 2018-02-15 |
DE102013011404B4 (en) | 2015-03-19 |
DE102013011404A1 (en) | 2015-01-15 |
EP2824414A1 (en) | 2015-01-14 |
NO2951235T3 (en) | 2018-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2824414B1 (en) | Method and device for controlling the performance of an active system | |
EP2239536B1 (en) | Selectable initiation system for a warhead | |
EP1912037B1 (en) | Cylindrical explosive charge | |
EP3601938B1 (en) | Projectile, in particular in the medium caliber range | |
DE2107102A1 (en) | Warhead with detonation-dependent control of the direction of the explosive effect | |
DE2900802C1 (en) | Warhead against fortified or armored targets, especially for damaging runways, pavement ceilings, bunker walls or the like | |
DE1910779C3 (en) | Shaped charge | |
EP2154470B1 (en) | Switchable cylindrical explosive charge | |
EP0324371B1 (en) | Initiator having a long delay | |
EP1108973B1 (en) | Ignition device | |
EP2789964B1 (en) | Explosive charge for performing either the detonation, deflagration or detonation and deflagration of an explosive material | |
EP3002542B1 (en) | Device for controlled spall forming by means of temperature-activated notch loads | |
EP0435083A2 (en) | Adjustable stand-off member on a warhead with a hollow charge switchable between penetration and side operation | |
DE977946C (en) | Process for generating a secondary effect in connection with the known effect of a shaped charge | |
EP4028715B1 (en) | Underwater vehicle comprising two shaped charges arranged behind one another | |
EP2789965B1 (en) | Scalable explosive charge | |
DE102011010351A1 (en) | Switchable operating load for warhead, has cover that forms splinter, in which tubular holder is arranged with multiple pellets that are arranged in distributing manner | |
EP3036501B1 (en) | Pyrotechnic delay device for an ammunition fuse, and mortar grenade with such a delay device | |
DE102010048570B4 (en) | Switchable Wirkladung | |
DE2816528C1 (en) | Double hollow charge in coaxial tandem arrangement, especially for armor-piercing projectiles | |
EP2053341A2 (en) | Hollow charge | |
EP2442065B1 (en) | Switchable explosive charge | |
DE4331236C1 (en) | Active armour-piercing warhead | |
DE102021002470B4 (en) | Scalable active system and warhead | |
DE4108633C2 (en) | Use of the active part of a search fuse submunition as a practice ammunition with reduced range |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
17P | Request for examination filed |
Effective date: 20140704 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
R17P | Request for examination filed (corrected) |
Effective date: 20150211 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170623 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 948819 Country of ref document: AT Kind code of ref document: T Effective date: 20171215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014006288 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2654804 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180215 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20171122 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20171122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180222 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180223 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014006288 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180704 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180731 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180704 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20190730 Year of fee payment: 6 Ref country code: ES Payment date: 20190823 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171122 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180322 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 948819 Country of ref document: AT Kind code of ref document: T Effective date: 20190704 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200727 Year of fee payment: 7 Ref country code: FR Payment date: 20200723 Year of fee payment: 7 Ref country code: NO Payment date: 20200723 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190704 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20200727 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200704 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20211228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200705 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210705 Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240731 Year of fee payment: 11 |