EP2810012A1 - Wärmetauscher - Google Patents

Wärmetauscher

Info

Publication number
EP2810012A1
EP2810012A1 EP12701897.6A EP12701897A EP2810012A1 EP 2810012 A1 EP2810012 A1 EP 2810012A1 EP 12701897 A EP12701897 A EP 12701897A EP 2810012 A1 EP2810012 A1 EP 2810012A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
plate
fluid
recess
plate element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12701897.6A
Other languages
English (en)
French (fr)
Inventor
Marek PYZA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A-Heat Allied Heat Exchange Technology AG Austria
Original Assignee
A-Heat Allied Heat Exchange Technology AG Austria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A-Heat Allied Heat Exchange Technology AG Austria filed Critical A-Heat Allied Heat Exchange Technology AG Austria
Publication of EP2810012A1 publication Critical patent/EP2810012A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/028Cores with empty spaces or with additional elements integrated into the cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/08Assemblies of conduits having different features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Definitions

  • the invention relates to a heat exchanger for the exchange of heat between a refrigerant and a gas, in which it is
  • Heat exchangers are used in refrigerators, e.g. in ordinary
  • a heat exchanger is known for example from US 4876778.
  • the heat exchanger is configured such that cooling water flows within tubes disposed within a plurality of plates and air flows around the plates. Cooling water and air flow into each other in cross flow.
  • the plates provided, which are arranged parallel to each other and are separated by spacers.
  • spacers may be formed, for example, as corrugated sheets.
  • the well-known for a very long time laminated heat exchangers are used, as all types of heat exchangers, for the transfer of heat between two media, eg from a cooling medium to air or vice versa.
  • the flowing inside the channels of the heat exchanger first fluid is referred to as a heat carrier in the sequence.
  • the second flowing around the channels Fluid is referred to below as Transportfluidum.
  • Heat transfer medium as well as the transport fluid can be in liquid or gaseous state. Water, oil, air or a refrigerant may be mentioned as examples for the heat carrier or the transport fluid. One of these media is cooled by the heat transfer accordingly, while the other medium is heated.
  • the transport fluid e.g. the air
  • the heat transfer medium e.g. the coolant or heating medium that circulates within the channels of the heat exchanger. This is compensated by very different heat transfer surfaces for the two media: the medium with the high
  • Outer surface of the channel has an enlarged compared with the inner surface of the channel heat transfer surface at which the
  • the ratio of outer surface to the inner surface of the channel depends on the lamella geometry, which in turn by the
  • Channel diameter the arrangement of the channels and the distance of the channels is determined from each other, as well as the lamellar distance d 'from.
  • Slat spacing d is chosen differently for different applications. However, purely thermodynamically, it should be as small as possible, but not so small that the pressure loss on the side of the transport fluid is too large. An economic optimum is about 2 mm, which is a typical value for condenser and recooler.
  • the efficiency is essentially determined by the fact that the heat that is transferred between the fin surface and the Transportfluidum must be transferred via heat conduction through the fins to the channel. This heat transfer is the more effective, the higher the conductivity or the thickness of the lamella, but also the smaller the distance between the channels.
  • Heat exchangers so-called mini-channel or also
  • Microchannel heat exchangers have been developed that are manufactured using a completely different process, almost laminating the ideal image
  • Heat exchanger correspond. They contain miniature channels or microchannels with a very small diameter, which is of the order of 1 mm. For the production of these mini-channels or micro-channels aluminum extruded profiles are preferably used.
  • a heat exchanger block is constructed from one or more laminated heat exchangers or from one or more microchannel heat exchangers, wherein in each case one inlet side of the
  • Heat exchanger block with a distributor element and an outlet side of the heat exchanger block is soldered pressure-tight with a collecting element.
  • a collecting element At the distributor element and at the collecting element of the one or more
  • connection connection is provided in each case for a heat exchanger block comprising heat exchangers, so that the heat exchanger block can be connected to an external system, e.g. with a chiller like that
  • Heat exchanger can be supplied to the collecting element.
  • the microchannels are arranged in plate elements.
  • the microchannels are substantially parallel to each other and are not connected to each other, so that the heat transfer medium, so the first fluid, the plate member supplied in a microchannel, flows through the plate member in this microchannel and leaves again in the same microchannel.
  • the transport fluid flows crosswise to the microchannels.
  • the transport fluid gives off heat to the heat transfer medium or absorbs heat from the heat transfer medium via the walls of the plate element. Due to the cross flow therefore inlet temperature of the transport fluid differs from its outlet temperature, since on the way through the heat exchanger either heat is absorbed or released. This requires an inhomogeneous
  • An object of the invention is therefore the temperature distribution in
  • Coolant in the flow direction of the gas to uniform.
  • the object of the invention is achieved by a heat exchanger which has the following features:
  • the heat exchanger has a housing which contains a plurality of plate element arrangements.
  • Plate element assemblies contain openings, for example in the form of tubes, which can be flowed through by a first fluid in the operating state. Microchannels may also be provided in the sense of the preceding embodiments. The openings extend within the plate element arrangement at least partially separated from each other. Adjacent plate member assemblies are each spaced apart so that a second fluid can flow in the gap between two adjacent panel member assemblies. The direction of flow of the second fluid is preferably substantially crosswise to the flow direction of the first fluid. This means that the first fluid and the second fluid preferably flow in cross-current to each other.
  • At least one of the plate element arrangements is interrupted by a recess, so that the plate element arrangement at least a first and comprises a second plate element.
  • the second plate member is arranged with respect to the first plate member, that the second
  • Plate member of the first fluid can be flowed through after the first plate member, wherein the recess contains a current-steering element. Within the recess, there is a mixing of the individual streams of the first fluid, which reach the recess via the openings.
  • the recess may be configured such that a plurality of openings opens into the recess at a second end of the first plate element and the first fluid from the recess can in turn be fed into a plurality of openings at a first end of the second plate element.
  • the recess may be configured such that a plurality of tubes, channels or microchannels opens into such a recess at a first end thereof and the first fluid from the recess in turn is fed into a plurality of tubes, channels or microchannels of the second plate member.
  • the recess may contain a static mixer.
  • the recess can be from a
  • Sheath element to be surrounded, which is fluid-tightly connected to the first and the second plate member.
  • Sheath element containing the current-steering element such as grooves and / or have ribs and / or projections.
  • Recess is formed by the second end of the first plate member, the first end of the second plate member and the jacket member, wherein the first plate member and the second plate member having a common center plane and the plate members are arranged with respect to the flow direction of the first fluid in a row.
  • the openings in the plate elements may be formed as channels.
  • the grooves may be arranged at least in sections at an angle to the channels.
  • the grooves may enclose with the channels an angle ranging from 10 ° to 75 ° inclusive, preferably in the range of 10 ° to 60 ° inclusive, more preferably in the range of 10 ° to 45 ° inclusive.
  • the jacket member may include projections which protrude into the recess and
  • the recess extends over between 5 and 40% of the length of the heat exchanger, the length of the
  • Plate elements flowing first fluid is measured.
  • the recess extends substantially over the entire width of the heat exchanger.
  • a mounting element may be provided according to an embodiment for maintaining the distance between two adjacent plate elements.
  • the mounting element may be formed in particular as a wave-shaped, thin-walled spacer element.
  • the invention also relates to a method for operating a heat exchanger according to one of the preceding embodiments, comprising a step in which the first fluid is arranged on its flow path within the plate element arrangement between its entry into the plate
  • the second fluid flows between adjacent plate element arrangements in cross flow to the first fluid.
  • the second fluid thus flows transversely to the first fluid.
  • the first fluid may in particular be a refrigerant.
  • the second fluid may in particular be a gas, advantageously air.
  • the plate members may be formed as profiles in which the refrigerant moves in a plurality of separate parallel channels. Seen in Direction of the first fluid, these channels are for the first fluid
  • the heat transfer differs from one channel to the next channel for several reasons. For one, the driving changes
  • Plate element arrangement may be provided. If a plurality of
  • each of the recesses can be configured
  • the current-steering element included may come to mixing of the second fluid, so that there is a temperature compensation in the second fluid and a uniformization of the temperature profile over the length and the width of the heat exchanger.
  • a heat exchanger can be increased considerably, in particular, if the plate element arrangements have a large width and / or length and / or the flow velocity of the first fluid is small.
  • a heat exchanger according to the invention can be built in a greater length and the number of plate assemblies can be reduced by up to two-thirds over the prior art.
  • FIG. 1 shows a view of a plate element arrangement according to a first exemplary embodiment of the invention
  • FIG. 2 is a view of a stack of plate element assemblies
  • FIG. 3 is a side view of an arrangement of plate elements
  • Fig. 4 is a plan view of the arrangement of plate elements
  • FIG. 6 shows a side view of an arrangement of plate elements according to a second exemplary embodiment
  • Fig. 7 is a plan view of the arrangement of plate elements
  • Fig. 8 is a detail of the side view according to Fig. 6.
  • Fig. 9 is a view of a stack of plate elements
  • FIG. 10 is a view of a plate element arrangement according to the second embodiment of the invention.
  • Fig. 1 illustrates a view of a plate element assembly 2 according to a first embodiment of the invention for a
  • the plate element assembly comprises first
  • Plate element 3 a second plate member 4 and a recess 5, which between the first plate member 3 and the second
  • Plate element 4 is arranged.
  • a first fluid 7 enters into the first plate element 3, flows through the openings 6 in the direction of the recess 5, into the recess 5 and then leaves the recess 5 through the openings 6 of the second plate element 4.
  • the first fluid 7 is a heat carrier and may be either a heating medium or a coolant.
  • the first fluid 7 is preferably in liquid
  • the openings 6 are spaced apart in the first and second plate members 3, 4 so that each of the openings 6 is one of the others Openings separate, shell side closed channel 9 is formed.
  • the channel 9 may in particular have the shape of a tube and / or as a microchannel with the dimensions described in the introduction
  • the first fluid 7 flows through these microchannels, which may have wave-shaped internals, which are not shown in the drawing.
  • the channels 9 may be formed as circular tubes or as oval or quadrangular, in particular rectangular channels, which have been produced from an extruded profile by means of an extrusion process. This allows a variety of microchannels in the
  • Plate element arrangement can be arranged.
  • a material for the channels 9 in particular aluminum or an aluminum alloy has been proven.
  • the first plate member 3 has a first end 16, which is the
  • Openings 6 are arranged at a second end 17 of the first plate element 3.
  • the second plate element 4 has a first end 18, which contains the inlet openings of the openings 6, through which the first fluid 7 is conducted into the second plate element 4.
  • Openings 6 are arranged at a second end 19 of the second plate element 4.
  • the recess 5 is designed such that a plurality of openings 6 at the second end 17 of the first
  • Plate member 3 opens into the recess 5 and the first fluid 7 of the Recess 5 in turn can be fed into a plurality of openings, which are arranged at the first end 18 of the second plate member 4.
  • the recess is one between the first and second
  • Sheath element is surrounded.
  • the recess 5 is from the second end 17 of the first plate member 3, the first end 18 of the second
  • Plate member 19 and the jacket member is formed, wherein the first plate member 3 and the second plate member 4 is a common
  • Flow direction of the first fluid 7 are arranged one behind the other.
  • the jacket element consists of an upper shell part 10 and a lower shell part 11.
  • the upper shell part 10 is shown in the manner of an exploded view in the unassembled state, so that the structure of the lower shell part 1 1 is visible.
  • the jacket element can also be formed in one piece.
  • the first and second plate elements can be subsequently connected to the jacket element, that is, for example, inserted into openings of the jacket element for the first and second plate elements.
  • a fluid-tight connection between the plate element is made possible by a sealing element, by a slight oversize of the plate element relative to the jacket element, or by subsequent welding of jacket element and plate element.
  • the upper shell part 10 and the lower shell part 1 1 have current-steering elements 20.
  • These current-steering elements 20 are formed as ribs 21.
  • only one of the upper or lower shell parts may have ribs 21 and the other of the upper or lower shell parts may have a smooth surface or grooves 23.
  • a plurality of current-steering elements 20 is provided, in particular if the heat exchanger has a large width.
  • a single current-steering element would fulfill the function of a deflection of the flow of the first fluid 7.
  • the current-directing element 20 can at least
  • the current-directing element 20 encloses an angle with the channels 9 ranging from 10 ° to 75 ° inclusive,
  • the current-directing elements 20 of the upper shell portion 10 may include a different angle 27 with the channels 9, as the current-steering elements 20 of the lower shell portion 1 first
  • the angle 27 is shown in Fig. 5.
  • the recess 5 advantageously extends over between 5% and 40% of the length 26 of the heat exchanger, the length 26 of the
  • the recess 5 may extend substantially over the entire width 28 of the heat exchanger 1.
  • the width 28 of the heat exchanger 1 substantially corresponds to the width of
  • FIG. 2 shows a stack of plate element arrangements 2, 12, 22, which form a heat exchanger 1. These plate element assemblies 2, 12, 22 are located in a housing, which is omitted in the illustration in order to better illustrate the operation of the heat exchanger can.
  • Each of the plate element assemblies 2, 12, 22 can be made of the in Fig. 1 and the first and second plate elements 3, 4 and one shown
  • a second fluid 8, also referred to as transport fluid, may flow above and / or below each plate element assembly 2, 12, 22.
  • the second fluid 8, which is usually gaseous, can be heated by means of the heating means or cooled by means of the coolant, depending on the desired mode of operation of the heat exchanger 1.
  • the gap 15, which is traversed by the second fluid 8 may include mounting elements 13, which are shown in Fig. 2 as a corrugated structure.
  • the mounting elements 13 are connected to the respective adjacent
  • Built-in elements may also be formed as ribs or as above lattice structures, net-like structures or contain porous structures. Furthermore, the mounting elements can also be designed as serrated profiles in V or W shape.
  • Fig. 3 shows a side view of a plate element assembly according to the first embodiment.
  • the thickness of the shell element, consisting of upper and lower shell part 10, 1 1 exceeds the thickness of the first and second plate elements 3, 4. This has the consequence that the distance between adjacent plate element assemblies is lower at the point at which the shell element located.
  • installation elements 29 are therefore provided between the jacket elements of adjacent plate element arrangements, which elements have a smaller height than the installation elements 13.
  • FIG. 4 shows a top view of the arrangement of plate elements according to FIG. 3. This view corresponds to the arrangement of FIG. 1 when the upper casing part 10 is removed.
  • the length of the plate element arrangement 2 is defined here as the length of the first and second plate elements 3, 4 and the length of the recess 5, which is not visible here.
  • FIG. 5 is a detail of the plan view according to FIG. 4 and shows a part of the lower jacket element 11 and the ribs 21 which form the current-directing element 20.
  • the width 28 of the plate element assembly is also shown.
  • Fig. 6 shows a side view of a plate element arrangement according to a second embodiment of the invention. This plate element arrangement differs in the construction of the first and second plate elements 3, 4, which instead of channels have a porous structure through which the first fluid 7 can flow.
  • the recess contains as current-directing elements a plurality of projections 25, which
  • These projections may be local elevations, or may be ribs or grooves extending over a portion of the length and / or width of the recess.
  • FIG. 7 is a plan view of the arrangement of plate elements according to FIG. 6 and is constructed analogously to FIG. 3, therefore, see the description of FIG. 3.
  • FIG. 8 shows a detail of the side view according to FIG. 6.
  • the current-directing elements 20 are designed as ribs.
  • the ribs of the upper shell part and the lower shell part come to rest in the installed state.
  • the first fluid can thus flow past only these ribs and is deflected by the ribs and by the deflection and / or
  • Fig. 9 shows a view of a stack of plate elements, similar to Fig. 2. In contrast to Fig. 2, the mounting elements 29 between the
  • Sheath elements of the recesses 5 are shown, which differ in their height from the mounting elements 13, which between the
  • FIG. 10 shows a view of a plate element arrangement according to the second embodiment of the invention.
  • the upper and lower shell parts 10, 11 are shown as a transparent element, so that the projections, which extend across a part of the inner surface of at least one of the shell parts in the form of pairs of ribs, are visible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Ein Wärmetauscher (1) weist ein Gehäuse auf, welches eine Mehrzahl von Plattenelementanordnungen (2, 12, 22) enthält, wobei die Plattenelementanordnungen eine Mehrzahl von Öffnungen (6) enthalten, wobei benachbarte Öffnungen voneinander getrennt sind, wobei die Öffnungen im Betriebszustand von einem ersten Fluid (7) durchströmt werden. Die Öffnungen verlaufen innerhalb der Plattenelementanordnung zumindest abschnittsweise voneinander getrennt, wobei benachbarte Plattenelementanordnungen jeweils in einem Abstand zueinander angeordnet sind, sodass ein zweites Fluid (8) in dem Zwischenraum (15) zwischen zwei benachbarten Plattenelementanordnungen (2, 12, 22) strömen kann. Zumindest eine der Plattenelementanordnungen (2, 12, 22) ist durch eine Ausnehmung (5) unterbrochen, sodass die Plattenelementanordnung zumindest ein erstes Plattenelement (3) und ein zweites Plattenelement (4) aufweist, wobei das zweite Plattenelement (4) derart in Bezug auf das erste Plattenelement (3) angeordnet ist, dass das zweite Plattenelement (4) vom ersten Fluid (7) im Anschluss an das erste Plattenelement (3) durchströmbar ist, wobei die Ausnehmung (5) ein stromlenkendes Element (20) enthält.

Description

A-HEAT Allied Heat Exchange Technology AG, Euro Plaza Gebäude G, Am Europlatz 2 / Stiege 2 / 6. OG, A-1 120 Wien, Austria
Wärmetauscher Die Erfindung betrifft einen Wärmetauscher für den Austausch von Wärme zwischen einem Kältemittel und einem Gas, bei welchem es sich
insbesondere um Luft handeln kann.
Die Verwendung von Wärmetauschsystemen ist in einer kaum zu
überblickenden Zahl von Anwendungen aus dem Stand der Technik bekannt. Wärmetauscher werden in Kühlanlagen, wie z.B. in gewöhnlichen
Haushaltskühlschränken verwendet, in Klimaanlagen für Gebäude oder in Fahrzeugen aller Art, vor allem in Kraftfahrzeugen, Flugzeugen und Schiffen, als Wasser- oder Ölkühler in Verbrennungsmotoren im mobilen oder stationären Betrieb, als Kondensatoren oder Verdampfer in Kühlmittelkreisen. Ein derartiger Wärmetauscher ist beispielsweise aus der US 4876778 bekannt. Der Wärmetauscher ist derart aufgebaut, dass Kühlwasser innerhalb von Röhrchen strömt, die innerhalb einer Mehrzahl von Platten angeordnet sind, und Luft um die Platten herumströmt. Kühlwasser und Luft strömen zueinander im Kreuzstrom. Die Platten vorgesehen, die parallel zueinander angeordnet sind und sind durch Abstandselemente voneinander getrennt. Derartige Abstandselemente können beispielsweise als Wellbleche ausgebildet sein.
In der Folge soll zwischen„lamellierten Wärmetauschern" einerseits, und „Minikanal-" oder„Mikrokanalwärmetauschern" andererseits unterschieden werden.
Die seit sehr langer Zeit wohlbekannten lamellierten Wärmetauscher dienen, wie alle Typen von Wärmetauschern, zur Übertragung von Wärme zwischen zwei Medien, z.B. von einem Kühlmedium auf Luft oder umgekehrt. Das im Inneren der Kanäle des Wärmetauschers strömende erste Fluid wird in der Folge auch als Wärmeträger bezeichnet. Das die Kanäle umströmende zweite Fluid wird in der Folge als Transportfluidum bezeichnet. Sowohl der
Wärmeträger als auch das Transportfluidum können in flüssigem oder gasförmigen Zustand vorliegen. Wasser, Öl, Luft oder ein Kältemittel seien beispielhaft für den Wärmeträger oder das Transportfluidum genannt. Eines dieser Medien wird durch den Wärmeübergang entsprechend abgekühlt, während das andere Medium erwärmt wird.
Im Allgemeinen hat das Transportfluidum, also z.B. die Luft, einen wesentlich niedrigeren Wärmeübergangskoeffizienten als der Wärmeträger, also z.B. das Kühlmittel oder Heizmittel, das innerhalb der Kanäle des Wärmetauschers zirkuliert. Dies wird durch stark unterschiedliche Wärmeübertragungsflächen für die beiden Medien ausgeglichen: Das Medium mit dem hohen
Wärmeübergangskoeffizienten strömt im Kanal. Auf dessen Außenseite sind dünne Bleche, z. B. Rippen oder Lamellen angebracht, sodass die
Aussenoberfläche des Kanals eine im Vergleich mit der Innenoberfläche des Kanals vergrößerte Wärmeübertragungsfläche aufweist, an der der
Wärmeübergang mit dem Transportfluidum stattfindet.
Das Verhältnis von Außenoberfläche zur Innenoberfläche des Kanals hängt dabei von der Lamellengeometrie, die wiederum durch den
Kanaldurchmesser, die Anordnung der Kanäle und den Abstand der Kanäle voneinander bestimmt ist, sowie vom Lamellenabstand d' ab. Der
Lamellenabstand d' wird für unterschiedliche Anwendungen unterschiedlich gewählt. Rein thermodynamisch sollte er jedoch möglichst klein sein, jedoch nicht so klein, dass der Druckverlust auf der Seite des Transportfluidums zu groß ist. Ein wirtschaftliches Optimum liegt bei etwa 2 mm, was ein für Verflüssiger und Rückkühler typischer Wert ist.
Der Wirkungsgrad ist dabei wesentlich durch die Tatsache bestimmt, dass die Wärme, die zwischen der Lamellenoberfläche und dem Transportfluidum übertragen wird, über Wärmeleitung durch die Lamellen zum Kanal übertragen werden muss. Diese Wärmeübertragung ist umso effektiver, je höher die Leitfähigkeit bzw. die Dicke der Lamelle ist, aber auch je kleiner der Abstand zwischen den Kanälen ist. Man spricht hier vom
Lamellenwirkungsgrad. Als Lamellenmaterial kommt deshalb heutzutage überwiegend Aluminium zum Einsatz, welches eine hohe Wärmeleitfähigkeit (ca. 220 W/mK) zu wirtschaftlichen Bedingungen aufweist. Der Abstand der Kanäle sollte dabei möglichst klein sein. Thermodynamisch wäre eine
Lösung, welche viele Kanäle in engem Abstand zueinander mit kleinen Durchmessern aufweist, optimal. Ein wesentlicher Kostenfaktor ist jedoch auch die Arbeitszeit zum Aufweiten und Verlöten der Kanäle. Dieser würde bei einer solchen Geometrie unverhältnismässig stark ansteigen.
Daher sind bereits vor einigen Jahren eine neue Klasse von
Wärmetauschern, sogenannte Minikanal- oder auch
Mikrokanalwärmetauscher entwickelt worden, die nach einem völlig anderen Verfahren hergestellt werden und fast dem Idealbild eines lamellierten
Wärmetauschers entsprechen. Sie enthalten Minikanäle oder Mikrokanäle mit einem sehr kleinen Durchmesser, der in der Grössenordnung von 1 mm liegt. Zur Herstellung dieser Minikanäle oder Mikrokanäle werden bevorzugt Aluminiumstrangpressprofile verwendet. Im wesentlichen ist ein Wärmetauscherblock aus einem oder mehreren lamellierten Wärmetauschern bzw. aus ein oder mehreren Mikrokanal- Wärmetauschern aufgebaut, wobei jeweils eine Einlassseite des
Wärmetauscherblocks mit einem Verteilerelement und eine Auslassseite des Wärmetauscherblocks mit einem Sammelelement druckfest verlötet ist. Am Verteilerelement und am Sammelelement des ein oder mehrere
Wärmetauscher umfassenden Wärmetauscherblocks ist dabei jeweils ein Verbindungsanschluss vorgesehen, so dass der Wärmetauscherblock mit einem externen System, z.B. mit einer Kältemaschine derart
strömungsverbunden werden kann, dass der Wärmeträger im
Betriebszustand zum Austausch von Wärme mit dem Transportfluidum unter einem vorgebbaren Betriebsdruck vom Verteilerelement durch den
Wärmetauscher dem Sammelelement zugeführt werden kann.
Die Mikrokanäle sind in Plattenelementen angeordnet. Die Mikrokanäle verlaufen im wesentlichen parallel zueinander und sind untereinander nicht verbunden, sodass der Wärmeträger, also das erste Fluid das Plattenelement in einem Mikrokanal zugeführt, das Plattenelement in diesem Mikrokanal durchströmt und im selben Mikrokanal wieder verlässt. Das Transportfluidum strömt kreuzweise zu den Mikrokanälen. Das Transportfluidum gibt Wärme an den Wärmeträger ab oder nimmt Wärme vom Wärmeträger über die Wände des Plattenelements auf. Aufgrund des Kreuzstroms unterscheidet sich daher Eintrittstemperatur des Transportfluidums von dessen Austrittstemperatur, da auf dem Weg durch den Wärmetauscher entweder Wärme aufgenommen wird oder abgegeben wird. Dies bedingt eine inhomogene
Temperaturverteilung in den Mikrokanälen. Bei grossflächigen Wärmetauschern mit einer Wärmeaustauschfläche von mehreren Quadratmetern können diese Temperaturdifferenzen zu
Wärmespannungen und somit zu mechanischen Belastungen der
Mikrokanäle führen, die zu Schäden am Wärmetauscher führen kann.
Eine Aufgabe der Erfindung ist es daher, die Temperaturverteilung im
Kühlmittel in Strömungsrichtung des Gases zu vergleichmässigen.
Die Aufgabe der Erfindung wird durch einen Wärmetauscher gelöst, welcher nachfolgende Merkmale aufweist: Der Wärmetauscher weist ein Gehäuse auf, welches eine Mehrzahl von Plattenelementanordnungen enthält. Die
Plattenelementanordnungen enthalten Öffnungen, beispielsweise in der Form von Röhrchen, die im Betriebszustand von einem ersten Fluid durchströmt werden können. Es können auch Mikrokanäle im Sinn der vorhergehenden Ausführungen vorgesehen sein. Die Öffnungen verlaufen innerhalb der Plattenelementanordnung zumindest abschnittsweise voneinander getrennt. Benachbarte Plattenelementanordnungen sind jeweils in einem Abstand zueinander angeordnet, sodass ein zweites Fluid in dem Zwischenraum zwischen zwei benachbarten Plattenelementanordnungen strömen kann. Die Strömungsrichtung des zweiten Fluids erfolgt vorzugsweise im wesentlichen kreuzweise zur Strömungsrichtung des ersten Fluids. Das heisst, dass das erste Fluid und das zweite Fluid vorzugsweise im Kreuzstrom zueinander strömen.
Zumindest eine der Plattenelementanordnungen ist durch eine Ausnehmung unterbrochen, sodass die Plattenelementanordnung zumindest ein erstes und ein zweites Plattenelement aufweist. Das zweite Plattenelement ist derart in Bezug auf das erste Plattenelement angeordnet, dass das zweite
Plattenelement vom ersten Fluid im Anschluss an das erste Plattenelement durchströmbar ist, wobei die Ausnehmung ein stromlenkendes Element enthält. Innerhalb der Ausnehmung kommt es zu einer Vermischung der Einzelströme des ersten Fluids, welche die Ausnehmung über die Öffnungen erreichen.
Nach einem Ausführungsbeispiel kann die Ausnehmung derart ausgestaltet ist, dass eine Mehrzahl von Öffnungen an einem zweiten Ende des ersten Plattenelements in die Ausnehmung mündet und das erste Fluid von der Ausnehmung wiederum in eine Mehrzahl von Öffnungen an einem ersten Ende des zweiten Plattenelements einspeisbar ist. Insbesondere kann die Ausnehmung derart ausgestaltet sein, dass eine Mehrzahl von Röhrchen, Kanälen oder Mikrokanälen in eine derartige Ausnehmung an einem ersten Ende derselben mündet sowie das erste Fluid von der Ausnehmung wiederum in eine Mehrzahl von Röhrchen, Kanäle oder Mikrokanäle des zweiten Plattenelements eingespeist wird.
Nach einem Ausführungsbeispiel weist enthält Ausnehmung ein
Stromstörelement, sodass eine Wirbelbildung und/oder Umlenkung der Strömung erfolgt. Alternativ oder in Ergänzung hierzu kann die Ausnehmung einen statischen Mischer enthalten. Die Ausnehmung kann von einem
Mantelelement umgeben sein, welches fluiddicht mit dem ersten und dem zweiten Plattenelement verbunden ist. Insbesondere kann das
Mantelelement das stromlenkende Element enthalten, wie beispielsweise Rillen enthalten und/oder Rippen und/oder Vorsprünge aufweisen. Die
Ausnehmung ist von dem zweiten Ende des ersten Plattenelements, dem ersten Ende des zweiten Plattenelements sowie dem Mantelelement gebildet, wobei das erste Plattenelement und das zweite Plattenelement eine gemeinsame Mittenebene aufweisen und die Plattenelemente in Bezug auf die Strömungsrichtung des ersten Fluids hintereinander angeordnet sind. Insbesondere können die Öffnungen in den Plattenelementen als Kanäle ausgebildet sein. Die Rillen können zumindest abschnittsweise in einem Winkel zu den Kanälen angeordnet sein. Die Rillen können mit den Kanälen einen Winkel einschliessen der im Bereich von 10° bis einschliesslich 75°, vorzugsweise im Bereich von 10° bis einschliesslich 60°, besonders bevorzugt im Bereich von 10° bis einschliesslich 45° ist.
Nach einem alternativen Ausführungsbeispiel kann das Mantelelement Vorsprünge enthalten, welche in die Ausnehmung hineinragen und
Stromstörelemente ausbilden. Vorteilhafterweise erstreckt sich die Ausnehmung über zwischen 5 und 40% der Länge des Wärmetauschers erstreckt, wobei die Länge des
Wärmetauschers in der Hauptströmungsrichtung des innerhalb der
Plattenelemente strömenden ersten Fluids gemessen wird. Um einen Temperaturausgleich über die gesamte Breite des Wärmetauschers zu gewährleisten, ist es vorteilhaft, wenn die Ausnehmung sich im wesentlichen über die gesamte Breite des Wärmetauschers erstreckt.
Ein Einbauelement kann nach einem Ausführungsbeispiel zum Einhalten des Abstandes zwischen zwei benachbarten Plattenelementen vorgesehen sein. Das Einbauelement kann insbesondere als wellenförmiges, dünnwandiges Abstandselement ausgebildet sein.
Die Erfindung betrifft auch ein Verfahren zum Betrieb eines Wärmetauschers nach einem der vorhergehenden Ausführungsbeispiele, umfassend einen Schritt, in welchem das erste Fluid auf dessen Strömungsweg innerhalb der Plattenelementanordnung zwischen dessen Eintritt in die
Plattenelementanordnung und dessen Austritt aus der
Plattenelementanordnung vermischt wird. Nach einer vorteilhaften Variante strömt das zweite Fluid zwischen benachbarten Plattenelementanordnungen im Kreuzstrom zu dem ersten Fluid. Das zweite Fluid strömt somit quer zum ersten Fluid. Das erste Fluid kann insbesondere ein Kältemittel sein. Das zweite Fluid kann insbesondere ein Gas sein, vorteilhafterweise Luft. Die Plattenelemente können als Profile ausgebildet sein, in welchen sich das Kältemittel in mehreren getrennten parallelen Kanälen bewegt. Gesehen in Richtung des ersten Fluids, liegen diese Kanäle für das erste Fluid
hintereinander.
Die Wärmeübertragung unterscheidet sich aus mehreren Gründen von einem Kanal zum nächsten Kanal. Zum einen ändert sich die treibende
Temperaturdifferenz aufgrund von unterschiedlichen örtlichen Temperaturen des ersten Fluids, zum andern kann sich das Verhältnis von flüssiger Phase zu gasförmiger Phase, wenn das zweite Fluid in flüssiger und gasförmiger Phase vorliegt, was die Gesamtleistung des Wärmetauschers beeinflusst.
Insbesondere kann mehr als eine Ausnehmung in einer
Plattenelementanordnung vorgesehen sein. Wenn eine Mehrzahl von
Ausnehmungen vorgesehen ist, kann jede der Ausnehmungen ein
stromlenkendes Element enthalten. Insbesondere kann es zur Vermischung des zweiten Fluids kommen, sodass es zu einem Temperaturausgleich im zweiten Fluid kommt und einer Vergleichmässigung des Temperaturprofils über der Länge sowie der Breite des Wärmetauschers.
Die Leistung eines Wärmetauschers kann insbesondere dann erheblich gesteigert werden, wenn die Plattenelementanordnungen eine grosse Breite und/oder Länge aufweisen und/oder die Strömungsgeschwindigkeit des ersten Fluides klein ist. Insbesondere kann ein Wärmetauscher gemäss der Erfindung in grösserer Länge gebaut werden und die Anzahl der Plattenanordnungen kann um bis zu zwei Drittel gegenüber dem Stand der Technik reduziert werden.
Nachfolgend wird die Erfindung anhand der Zeichnungen erläutert. Es zeigen: eine Ansicht auf eine Plattenelementanordnung gemäss eines ersten Ausführungsbeispiels der Erfindung,
Fig. 2 eine Ansicht eines Stapels von Plattenelementanordnungen, Fig. 3 eine Seitenansicht einer Anordnung von Plattenelementen,
Fig. 4 eine Draufsicht auf die Anordnung von Plattenelementen
gemäss Fig. 3,
Fig. 5 einen Ausschnitt der Draufsicht gemäss Fig. 4 Fig. 6 eine Seitenansicht einer Anordnung von Plattenelementen nach einem zweiten Ausführungsbeispiel,
Fig. 7 eine Draufsicht auf die Anordnung von Plattenelementen
gemäss Fig. 6,
Fig. 8 ein Detail der Seitenansicht gemäss Fig. 6. Fig. 9 eine Ansicht eines Stapels von Plattenelementen
Fig. 10 eine Ansicht auf eine Plattenelementanordnung gemäss des zweiten Ausführungsbeispiels der Erfindung.
Fig. 1 veranschaulicht eine Ansicht auf eine Plattenelementanordnung 2 gemäss eines ersten Ausführungsbeispiels der Erfindung für einen
Wärmetauscher 1 . Die Plattenelementanordnung umfasst erstes
Plattenelement 3, ein zweites Plattenelement 4 und eine Ausnehmung 5, welche zwischen dem ersten Plattenelement 3 und dem zweiten
Plattenelement 4 angeordnet ist. In das erste Plattenelement 3 tritt ein erstes Fluid 7 ein, strömt durch die Öffnungen 6 in Richtung der Ausnehmung 5, in die Ausnehmung 5 hinein und verlässt die Ausnehmung 5 anschliessend durch die Öffnungen 6 des zweiten Plattenelements 4.
Das erste Fluid 7 ist ein Wärmeträger und kann entweder ein Heizmittel oder ein Kühlmittel sein. Das erste Fluid 7 liegt vorzugsweise in flüssigem
Aggregatzustand vor, da dessen Wärmeleitung wesentlich höher ist als die eines gasförmigen Fluids und die für das erste Fluid zur Verfügung stehende Wärmeaustauschfläche kleiner als für das zweite Fluid ist. Die Öffnungen 6 weisen in den ersten und zweiten Plattenelementen 3,4 einen Abstand voneinander auf, sodass jede der Öffnungen 6 einen von den anderen Öffnungen getrennten, mantelseitig geschlossenen Kanal 9 ausbildet. Der Kanal 9 kann insbesondere die Form eines Röhrchens haben und/oder als Mikrokanal mit den in der Einleitung beschriebenen Abmessungen
ausgebildet sein. Das erste Fluid 7 durchströmt diese Mikrokanale, die wellenförmige Einbauten aufweisen können, die zeichnerisch nicht dargestellt sind. Diese
wellenförmigen Einbauten dienen der Vergrösserung der für den
Wärmeübergang zur Verfügung stehenden Wärmeaustauschfläche.
Selbstverständlich können anstelle der wellenförmigen Einbauten auch Gitterstrukturen, netzartige Strukturen oder poröse Strukturen vorgesehen werden. Die Kanäle 9 können als kreisförmige Rohre ausgebildet sein oder auch als ovale oder viereckige, insbesondere rechteckige Kanäle, die aus einem Strangpressprofil mittels eines Extrusionsverfahrens hergestellt worden sind. Hierdurch kann eine Vielzahl von Mikrokanälen in der
Plattenelementanordnung angeordnet werden. Als Material für die Kanäle 9 hat sich insbesondere Aluminium oder eine Aluminiumlegierung bewährt.
Das erste Plattenelement 3 weist ein erstes Ende 16 auf, welches die
Eintrittsöffnungen der Öffnungen 6 enthält, durch welche das erste Fluid 7 in das erste Plattenelement 3 geleitet wird. Die Austrittsöffnungen der
Öffnungen 6 sind an einem zweiten Ende 17 des ersten Plattenelements 3 angeordnet.
Das zweite Plattenelement 4 weist ein erstes Ende 18 auf, welches die Eintrittsöffnungen der Öffnungen 6 enthält, durch welche das erste Fluid 7 in das zweite Plattenelement 4 geleitet wird. Die Austrittsöffnungen der
Öffnungen 6 sind an einem zweiten Ende 19 des zweiten Plattenelements 4 angeordnet.
Insbesondere ist gemäss Fig. 1 die Ausnehmung 5 derart ausgestaltet, dass eine Mehrzahl von Öffnungen 6 an dem zweiten Ende 17 des ersten
Plattenelements 3 in die Ausnehmung 5 mündet und das erste Fluid 7 von der Ausnehmung 5 wiederum in eine Mehrzahl von Öffnungen einspeisbar ist, die an dem ersten Ende 18 des zweiten Plattenelements 4 angeordnet sind.
Die Ausnehmung ist ein sich zwischen dem ersten und zweiten
Plattenelement 3,4 erstreckender Hohlraum, welcher von einem
Mantelelement umgeben ist. Die Ausnehmung 5 ist von dem zweiten Ende 17 des ersten Plattenelements 3, dem ersten Ende 18 des zweiten
Plattenelements 19 sowie dem Mantelelement gebildet ist, wobei das erste Plattenelement 3 und das zweite Plattenelement 4 eine gemeinsame
Mittenebene aufweisen und die Plattenelemente 3, 4 in Bezug auf die
Strömungsrichtung des ersten Fluids 7 hintereinander angeordnet sind.
In der vorliegenden Darstellung besteht das Mantelelement aus einem oberen Mantelteil 10 und einem unteren Mantelteil 1 1 . Der obere Mantelteil 10 ist nach Art einer Explosionszeichnung im nicht zusammengebauten Zustand gezeigt, damit die Struktur des unteren Mantelteils 1 1 sichtbar ist. Anstatt eines oberen und unteren Mantelteils kann das Mantelelement auch einstückig ausgebildet sein. Die ersten und zweiten Plattenelemente können nachträglich mit dem Mantelelement verbunden werden, das heisst beispielsweise in Öffnungen des Mantelelements für die ersten und zweiten Plattenelemente eingesteckt werden. Eine fluiddichte Verbindung zwischen Plattenelement ist durch ein Dichtungselement, durch ein geringfügiges Übermass des Plattenelements relativ zum Mantelelement, oder durch nachträgliches Verschweissen von Mantelelement und Plattenelement ermöglicht.
Das obere Mantelteil 10 und das untere Mantelteil 1 1 weisen stromlenkende Elemente 20 auf. Diese stromlenkenden Elemente 20 sind als Rippen 21 ausgebildet. Selbstverständlich kann alternativ dazu nur einer der oberen oder unteren Mantelteile Rippen 21 aufweisen und der jeweils andere der oberen oder unteren Mantelteile eine glatte Oberfläche oder Rillen 23 aufweisen. Zumeist ist eine Mehrzahl an stromlenkenden Elemente 20 vorgesehen, insbesondere wenn der Wärmetauscher eine grosse Breite hat. Allerdings würde ein einziges stromlenkendes Element die Funktion einer Umlenkung der Strömung des ersten Fluids 7 erfüllen. Insbesondere kann das stromlenkende Element 20 zumindest
abschnittsweise in einem Winkel zu den Kanälen 9 angeordnet sein.
Vorzugsweise schliesst das stromlenkende Element 20 mit den Kanälen 9 einen Winkel ein, der im Bereich von 10° bis einschliesslich 75°,
vorzugsweise im Bereich von 10° bis einschliesslich 60°, besonders bevorzugt im Bereich von 10° bis einschliesslich 45° liegt.
Um eine verbesserte Vermischung zu erreichen, können die stromlenkenden Elemente 20 des oberen Mantelteils 10 einen anderen Winkel 27 mit den Kanälen 9 einschliessen, als die stromlenkenden Elemente 20 des unteren Mantelteils 1 1 . Der Winkel 27 ist in Fig. 5 dargestellt.
Nach einem alternativen Ausführungsbeispiel enthält das Mantelelement, oder zumindest einer der oberen oder unteren Mantelteile 10, 1 1 Vorsprünge 25, welche in die Ausnehmung 5 hineinragen und Stromstörelemente ausbilden. Die Ausnehmung 5 erstreckt sich vorteilhafterweise über zwischen 5% und 40% der Länge 26 des Wärmetauschers, wobei die Länge 26 des
Wärmetauschers in der Hauptströmungsrichtung des innerhalb der
Plattenelemente 3, 4 strömenden ersten Fluids 7 gemessen wird. In Fig. 3 ist die Länge 26 des Wärmetauschers als die Summe der Längen der
Plattenelemente und der Ausnehmung 5 dargestellt.
Insbesondere kann sich die Ausnehmung 5 im wesentlichen über die gesamte Breite 28 des Wärmetauschers 1 erstrecken. Die Breite 28 des Wärmetauschers 1 entspricht im wesentlichen der Breite der
Plattenelementanordnung und ist in Fig. 5 gezeigt. Fig. 2 zeigt einen Stapel von Plattenelementanordnungen 2, 12, 22, welche einen Wärmetauscher 1 ausbilden. Diese Plattenelementanordnungen 2, 12, 22 befinden sich in einem Gehäuse, welches in der Darstellung weggelassen ist, um die Funktionsweise des Wärmetauschers besser verdeutlichen zu können. Jede der Plattenelementanordnungen 2, 12, 22 kann aus den in Fig. 1 gezeigten ersten und zweiten Plattenelementen 3, 4 sowie einer
Ausnehmung 5 aufgebaut sein.
Ein zweites Fluid 8, auch als Transportfluidum bezeichnet, kann oberhalb und/oder unterhalb jeder Plattenelementanordnung 2, 12, 22 strömen. Das zweite Fluid 8, welches zumeist gasförmig ist, kann mittels des Heizmittels beheizt oder mittels des Kühlmittels abgekühlt werden, je nach gewünschter Funktionsweise des Wärmetauschers 1 .
Der Zwischenraum 15, der vom zweiten Fluid 8 durchströmt wird, kann Einbauelemente 13 enthalten, die in Fig. 2 als gewellte Struktur dargestellt sind. Die Einbauelemente 13 stehen mit den jeweils benachbarten
Plattenelementanordnungen in wärmeleitendem Kontakt, sodass Wärme über die Einbauelemente 13 übertragen werden kann. Somit dienen auch die Einbauelemente 13 der Erhöhung der Wärmeaustauschfläche. Die
Einbauelemente können auch als Rippen ausgebildet sein oder wie oben Gitterstrukturen, netzartige Strukturen oder poröse Strukturen enthalten. Des weiteren können die Einbauelemente auch als gezackte Profile in V oder W- Form ausgebildet sein.
Fig. 3 zeigt eine Seitenansicht einer Plattenelementanordnung nach dem ersten Ausführungsbeispiel. Die Dicke des Mantelelements, bestehend aus oberem und unterem Mantelteil 10, 1 1 überschreitet hierbei die Dicke der ersten und zweiten Plattenelemente 3, 4. Dies hat zur Folge, dass der Abstand zwischen benachbarten Plattenelementanordnungen an der Stelle geringer ist, an welcher sich das Mantelelement befindet. Gemäss der in Fig. 10 dargestellten Variante werden daher zwischen den Mantelelementen benachbarter Plattenelementanordnungen Einbauelemente 29 vorgesehen, welche eine geringere Höhe aufweisen als die Einbauelemente 13.
Fig. 4zeigt eine Draufsicht auf die Anordnung von Plattenelementen gemäss Fig. 3. Diese Ansicht entspricht der Anordnung von Fig. 1 , wenn man den oberen Mantelteil 10 entfernt. Die Länge der Plattenelementanordnung 2 wird hier definiert als die Länge des ersten und zweiten Plattenelements 3, 4 sowie die Länge der Ausnehmung 5, welche hier nicht sichtbar ist. , Fig. 5 ist ein Ausschnitt der Draufsicht gemäss Fig. 4 und zeigt einen Teil des unteren Mantelelements 1 1 sowie die Rippen 21 , welche das stromlenkende Element 20 bilden. Die Breite 28 der Plattenelementanordnung ist ebenfalls gezeigt. Fig. 6 zeigt eine Seitenansicht einer Plattenelementanordnung nach einem zweiten Ausführungsbeispiel der Erfindung. Diese Plattenelementanordnung unterscheidet sich durch den Aufbau der ersten und zweiten Plattenelemente 3, 4, welche anstelle von Kanälen eine poröse Struktur aufweisen, durch welche das erste Fluid 7 hindurch strömen kann. Die Ausnehmung enthält als stromlenkende Elemente eine Mehrzahl von Vorsprüngen 25, welche
Störelemente 24 für die Strömung ausbilden können. Diese Vorsprünge können lokale Erhebungen sein, oder auch sich über einen Teil der Länge und/oder Breite der Ausnehmung erstreckende Rippen oder Rillen sein.
Fig. 7 eine Draufsicht auf die Anordnung von Plattenelementen gemäss Fig. 6 und ist analog Fig. 3 aufgebaut, siehe daher die Beschreibung zu Fig. 3.
Fig. 8 zeigt ein Detail der Seitenansicht gemäss Fig. 6. Die stromlenkenden Elemente 20 sind als Rippen ausgebildet. Die Rippen des oberen Mantelteils und des unteren Mantelteils kommen im eingebauten Zustand aufeinander zu liegen. Das erste Fluid kann somit nur an diesen Rippen vorbei strömen und wird durch die Rippen umgelenkt und durch die Umlenkung und/oder
Verwirbelung vermischt. Hierdurch wird das Temperaturgefälle, welches das erste Fluid in Richtung der Breite des Wärmetauschers aufweist,
ausgeglichen.
Fig. 9 zeigt eine Ansicht eines Stapels von Plattenelementen, ähnlich Fig. 2. Im Unterschied zu Fig. 2 sind auch die Einbauelemente 29 zwischen den
Mantelelementen der Ausnehmungen 5 dargestellt, die sich in ihrer Höhe von den Einbauelementen 13 unterscheiden, welche zwischen den
Plattenelementen 3, 4 angeordnet sind. Fig. 10 zeigt eine Ansicht auf eine Plattenelementanordnung gemäss des zweiten Ausführungsbeispiels der Erfindung. Der obere und untere Mantelteil 10, 1 1 sind als transparentes Element dargestellt, sodass die Vorsprünge, welche sich kreuzweise über einen Teil der inneren Oberfläche zumindest eines der Mantelteile in der Form von Rippenpaaren erstrecken, sichtbar sind.

Claims

Patentansprüche
1 . Wärmetauscher (1 ), der ein Gehäuse aufweist, welches eine Mehrzahl von Plattenelementanordnungen (2, 12, 22) enthält, wobei die
Plattenelementanordnungen eine Mehrzahl von Öffnungen (6) enthalten, wobei benachbarte Öffnungen voneinander getrennt sind, wobei die
Öffnungen im Betriebszustand von einem ersten Fluid (7) durchströmt werden, wobei die Öffnungen innerhalb der Plattenelementanordnung zumindest abschnittsweise voneinander getrennt verlaufen, wobei
benachbarte Plattenelementanordnungen jeweils in einem Abstand
zueinander angeordnet sind, sodass ein zweites Fluid (8) in dem
Zwischenraum (15) zwischen zwei benachbarten Plattenelementanordnungen (2, 12, 22) strömen kann, dadurch gekennzeichnet, dass zumindest eine der Plattenelementanordnungen (2, 12, 22) durch eine Ausnehmung (5) unterbrochen ist, sodass die Plattenelementanordnung zumindest ein erstes Plattenelement (3) und ein zweites Plattenelement (4) aufweist, wobei das zweite Plattenelement (4) derart in Bezug auf das erste Plattenelement (3) angeordnet ist, dass das zweite Plattenelement (4) vom ersten Fluid (7) im Anschluss an das erste Plattenelement (3) durchströmbar ist, wobei die Ausnehmung (5) ein stromlenkendes Element (20) enthält.
2. Wärmetauscher nach Anspruch 1 , wobei die Ausnehmung (5) derart ausgestaltet ist, dass eine Mehrzahl von Öffnungen (6) an einem zweiten Ende (17) des ersten Plattenelements (3) in die Ausnehmung (5) mündet und das erste Fluid (7) von der Ausnehmung (5) wiederum in eine Mehrzahl von Öffnungen (6) an einem ersten Ende (18) des zweiten Plattenelements (4) einspeisbar ist.
3. Wärmetauscher nach Anspruch 1 oder Anspruch 2, wobei die Ausnehmung ein Stromstörelement und/oder einen statischen Mischer enthält.
4. Wärmetauscher nach einem der vorhergehenden Ansprüche, wobei die Ausnehmung von einem Mantelelement umgeben ist, welches fluiddicht mit dem ersten und dem zweiten Plattenelement verbunden ist.
5. Wärmetauscher nach Anspruch 4, wobei das Mantelelement das
stromlenkende Element (20) enthält, welches als Rippe (21 ) und/oder Rille (23) und/oder Vorsprung (25) ausgestaltet sein kann.
6. Wärmetauscher nach einem der vorhergehenden Ansprüche, wobei die Ausnehmung (5) von dem zweiten Ende (17) des ersten Plattenelements (3), dem ersten Ende (18) des zweiten Plattenelements (4) sowie dem
Mantelelement (10, 1 1 ) gebildet ist, wobei das erste Plattenelement (3) und das zweite Plattenelement (4) eine gemeinsame Mittenebene aufweisen und die Plattenelemente in Bezug auf die Strömungsrichtung des ersten Fluids (7) hintereinander angeordnet sind.
7. Wärmetauscher nach einem der vorhergehenden Ansprüche, wobei die Öffnungen (6) in den Plattenelementen (3, 4) als Kanäle (9) ausgebildet sind.
8. Wärmetauscher nach Anspruch 7, wobei das stromlenkende Element (20) zumindest abschnittsweise in einem Winkel (27) zu den Kanälen (9) angeordnet ist.
9. Wärmetauscher nach Anspruch 7 oder 8, wobei das stromlenkende
Element (20) mit den Kanälen (9) einen Winkel (27) einschliesst, der im
Bereich von 10° bis einschliesslich 75°, vorzugsweise im Bereich von 10° bis einschliesslich 60°, besonders bevorzugt im Bereich von 10° bis
einschliesslich 45° liegt.
10. Wärmetauscher nach Anspruch 4, wobei das Mantelelement Vorsprünge enthält, welche in die Ausnehmung hineinragen und Stromstörelemente ausbilden.
1 1 . Wärmetauscher nach einem der vorhergehenden Ansprüche, wobei sich die Ausnehmung über zwischen 5% und 40% der Länge (26) des
Wärmetauschers erstreckt, wobei die Länge (26) des Wärmetauschers in der Hauptströmungsrichtung des innerhalb der Plattenelemente strömenden ersten Fluids (7) gemessen wird.
12. Wärmetauscher nach einem der vorhergehenden Ansprüche, wobei sich die Ausnehmung (5) im wesentlichen über die gesamte Breite (28) des Wärmetauschers erstreckt.
13. Wärmetauscher nach einem der vorhergehenden Ansprüche, wobei ein Einbauelement (13) zum Einhalten des Abstandes zwischen zwei benachbarten Plattenelementanordnungen (2, 12, 22) vorgesehen ist.
14. Verfahren zum Betrieb eines Wärmetauschers (1 ) nach einem der vorhergehenden Ansprüche, umfassend einen Schritt, in welchem das erste Fluid (7) auf dessen Strömungsweg innerhalb der Plattenelementanordnung (2, 12, 22) zwischen dessen Eintritt in die Plattenelementanordnung und dessen Austritt aus der Plattenelementanordnung vermischt wird.
15. Verfahren nach Anspruch 14, wobei das zwischen benachbarten Plattenelementanordnungen strömende zweite Fluid (8) im Kreuzstrom zu dem ersten Fluid (7) strömt.
EP12701897.6A 2012-01-30 2012-01-30 Wärmetauscher Withdrawn EP2810012A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/051454 WO2013113362A1 (de) 2012-01-30 2012-01-30 Wärmetauscher

Publications (1)

Publication Number Publication Date
EP2810012A1 true EP2810012A1 (de) 2014-12-10

Family

ID=45558728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12701897.6A Withdrawn EP2810012A1 (de) 2012-01-30 2012-01-30 Wärmetauscher

Country Status (6)

Country Link
US (1) US20150253086A1 (de)
EP (1) EP2810012A1 (de)
JP (1) JP2015508881A (de)
CN (1) CN104169670A (de)
MX (1) MX2014008724A (de)
WO (1) WO2013113362A1 (de)

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2869835A (en) * 1957-03-11 1959-01-20 Trane Co Heat exchanger
US3291206A (en) * 1965-09-13 1966-12-13 Nicholson Terence Peter Heat exchanger plate
US4006776A (en) * 1975-03-31 1977-02-08 United Aircraft Products, Inc. Plate type heat exchanger
US4296805A (en) * 1979-12-17 1981-10-27 Ex-Cell-O Corporation Accessory clearance hole
DE3508382A1 (de) * 1985-03-08 1986-09-11 Akzo Gmbh, 5600 Wuppertal Vorrichtung zur waerme- und/oder stoffuebertragung mit hilfe von hohlfaeden
JPS63154981U (de) 1987-03-30 1988-10-12
US5479985A (en) * 1992-03-24 1996-01-02 Nippondenso Co., Ltd. Heat exchanger
JPH07180984A (ja) * 1993-12-21 1995-07-18 Sanden Corp 熱交換器及びその製造方法
JPH11201683A (ja) * 1998-01-13 1999-07-30 Daikin Ind Ltd 熱交換エレメント
JPH11223421A (ja) * 1998-02-10 1999-08-17 Denso Corp 冷媒蒸発器
DE19858974B4 (de) * 1998-12-19 2006-02-23 Daimlerchrysler Ag Verfahren zur katalytischen Umsetzung eines Ausgangsstoffes, insbesondere eines Gasgemisches
JP3870865B2 (ja) * 2001-08-08 2007-01-24 株式会社デンソー 熱交換器
US6516486B1 (en) * 2002-01-25 2003-02-11 Delphi Technologies, Inc. Multi-tank evaporator for improved performance and reduced airside temperature spreads
DE10249724B4 (de) * 2002-10-25 2005-03-17 Bayer Industry Services Gmbh & Co. Ohg Hochleistungs-Temperierkanäle
DE10312788A1 (de) * 2003-03-21 2004-09-30 Behr Gmbh & Co. Kg Abgaswärmetauscher und Dichteinrichtung für Abgaswärmetauscher
KR100913141B1 (ko) * 2004-09-15 2009-08-19 삼성전자주식회사 마이크로채널튜브를 이용한 증발기
JP2007278558A (ja) * 2006-04-04 2007-10-25 Denso Corp 冷媒放熱器
JP2007292403A (ja) * 2006-04-26 2007-11-08 Denso Corp チューブ及びチューブの製造方法
US7975479B2 (en) * 2007-04-30 2011-07-12 Caterpillar Inc. Bi-material corrosive resistant heat exchanger
DE102008007608A1 (de) * 2008-02-04 2009-08-06 Behr Gmbh & Co. Kg Wärmeübertrager mit Rohren
DE102008020038B4 (de) * 2008-04-21 2016-01-07 Rwg Ruhr-Wasserwirtschafts-Gesellschaft Mbh Wärmetauscher
FR2933177B1 (fr) * 2008-06-26 2018-05-25 Valeo Systemes Thermiques Branche Thermique Moteur Echangeur de chaleur et carter pour l'echangeur
JP2010159866A (ja) * 2009-01-07 2010-07-22 Akira Furusawa 箱状に浅絞りし隅に板厚と同じ幅で箱の深さと同じ切欠きを持つ矩形形体を利用して出来る箱状チューブと該チューブを利用した熱交換器
US8397797B2 (en) * 2010-03-31 2013-03-19 Denso International America, Inc. Low thermal strain multi-cooler
JP5559088B2 (ja) * 2010-05-18 2014-07-23 株式会社ワイ・ジェー・エス. 熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013113362A1 *

Also Published As

Publication number Publication date
US20150253086A1 (en) 2015-09-10
WO2013113362A1 (de) 2013-08-08
MX2014008724A (es) 2014-08-29
JP2015508881A (ja) 2015-03-23
CN104169670A (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
DE1911889C2 (de) Plattenwärmetauscher
DE102012109346B4 (de) Interner Wärmetauscher mit externen Sammelrohren
EP1642076A1 (de) Vorrichtung zum mehrstufigen wärmeaustausch und verfahren zur herstellung einer derartigen vorrichtung
DE102011054578A1 (de) Wärmetauscher mit einem integrierten Temperatureinstellelement
EP2377596B9 (de) Kältetrockner, insbesondere druckluftkältetrockner, sowie wärmetauscher für einen kältetrockner, insbesondere druckluftkältetrockner
EP2710318A1 (de) Lamellenwärmeübertrager
WO2013098277A1 (de) Baukasten für wärmeübertrager, einen wärmeübertragerkern und einen wärmeübertrager
DE202017104743U1 (de) Wärmetauscher mit Mikrokanal-Struktur oder Flügelrohr-Struktur
WO2011134786A1 (de) Wärmeaustauscheranordnung
WO2005100895A1 (de) Wärmeübertrager für kraftfahrzeuge
EP2926073B1 (de) Wärmeübertrager
DE102014113863A1 (de) Vorrichtung zur Wärmeübertragung und Verfahren zur Herstellung der Vorrichtung
EP3009780B2 (de) Wärmeübertrager
WO2014095594A1 (de) Wärmeübertrager
WO2013113362A1 (de) Wärmetauscher
EP3025111B1 (de) Sammelrohr für eine wärmeaustauschervorrichtung, eine wärmeaustauschervorrichtung und ein verfahren zur entleerung einer wärmeaustauschervorrichtung
EP2994712B1 (de) Wärmeübertrager
EP3161402B1 (de) Wärmeübertrager
DE102020213172A1 (de) Stapelscheibe für einen Stapelscheibenwärmeübertrager und zugehöriger Stapelscheibenwärmeübertrager
DE10110828A1 (de) Wärmeübertrager für eine CO2-Fahrzeugklimaanlage
AT514841B1 (de) Vorrichtung für den Wärmeaustausch
EP1568960A2 (de) Wärmeübertrager mit Seitenteilen
DE112013005694T5 (de) Wärmetauscher und Verfahren zum Herstellen eines Wärmetauschers
EP1754945A2 (de) Rippe für einen Wärmeübertrager
WO2004076951A1 (de) Wärmeaustauscheinrichtung und verfahren zum konditionieren eines arbeitsmediums

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140901

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20170320