EP2805031B1 - Power plant and method for operating a power plant facility - Google Patents

Power plant and method for operating a power plant facility Download PDF

Info

Publication number
EP2805031B1
EP2805031B1 EP13714254.3A EP13714254A EP2805031B1 EP 2805031 B1 EP2805031 B1 EP 2805031B1 EP 13714254 A EP13714254 A EP 13714254A EP 2805031 B1 EP2805031 B1 EP 2805031B1
Authority
EP
European Patent Office
Prior art keywords
pressure turbine
turbine section
temperature
power plant
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13714254.3A
Other languages
German (de)
French (fr)
Other versions
EP2805031A1 (en
Inventor
Günter Bauer
Norbert Pieper
Hans-Ulrich Thierbach
Michael Wechsung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP13714254.3A priority Critical patent/EP2805031B1/en
Priority to PL13714254T priority patent/PL2805031T3/en
Publication of EP2805031A1 publication Critical patent/EP2805031A1/en
Application granted granted Critical
Publication of EP2805031B1 publication Critical patent/EP2805031B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/26Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam
    • F01K3/262Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam by means of heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/025Consecutive expansion in a turbine or a positive displacement engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/24Control or safety means specially adapted therefor

Definitions

  • the invention relates to a method for operating a power plant comprising a steam turbine, which is subdivided into a high-pressure turbine section, medium-pressure turbine section and low-pressure turbine section, and a reheater unit is arranged between the high-pressure turbine section and the medium-pressure turbine section.
  • Power plants in which large-volume steam turbines are used, u.a. used in the municipal energy supply.
  • the steam turbines used in such power plants have relatively high masses and are usually designed for a given nominal power.
  • These power plants which can also be referred to as conventional power plants, can be classified as a first approximation in pure steam power plants and in gas and steam power plants. Both have in common that fossil fuels are needed to generate electrical energy.
  • Such power plants have hitherto been designed so that they were designed for a base load. Due to the increasing share of renewable energy sources, such as As the wind energy, which are not substantially controllable, the aforementioned conventional power plants must be operated more frequently in a partial load. This means that the power plants do not permanently deliver the nominal power, but deliver a percentage of the nominal power as a partial load. For example, the partial loads may in some cases be 25% of full load.
  • the reheater heating surfaces were oversized and the hot reheater superheat temperature in the upper load range, for example, between 70% and 100%, regulated at the expense of the resulting thermodynamic efficiency loss.
  • the term "hZÜ" refers to the hot reheater temperature that is present after the reheater unit.
  • Another approach is to limit the load gradients in the lower load range or to reduce the permissible load changes, whereby an increased wear is considered, so that the thick-walled components must be replaced early.
  • the DE 10 2008 037575 A1 discloses an apparatus and method for improving operation of steam turbines at reduced load.
  • EP 0 899 505 A1 discloses a combined power plant with a high pressure reheater.
  • the DE 10 2010 041 627 A1 discloses a steam turbine with a high pressure part, wherein between the high pressure part and the low pressure part, a control valve is arranged.
  • the US 4 132 076 A discloses a control method for starting a steam turbine.
  • the invention begins. It is an object of the invention to operate the power plant such that the life of the components is increased despite frequent load changes.
  • the invention is based on the idea that a frequent load change can still take place, but does not lead to a reduction in the service life of the components.
  • the invention is based on the idea that the number of permissible load changes is generally not proportional to the temperature jump at the same temperature gradient. For example, a temperature jump of 30 Kelvin leads to about 1,000,000 permissible load changes, whereas a temperature jump of 60 Kelvin does not lead to a halving of the permissible load changes, but to a much smaller number of load changes, namely about 10,000 permissible load changes. Thus, when the temperature jump is doubled, the number of permissible load changes changes by one or more orders of magnitude.
  • the above values are for illustrative purposes only.
  • the number of permissible load changes as a function of the temperature jump strongly depend on the geometries of the components, the material properties as well as temperature levels and many other parameters.
  • An essential feature of the invention is that the temperature of the reheater unit can be reduced by raising the inlet temperature to the reheater unit.
  • the inlet temperature upstream of the reheater unit is also referred to as cold reheat.
  • This increase in temperature is realized by the fact that control valves that before the second expansion section, d. H. be throttled before the medium-pressure turbine section.
  • the throttling reduces the expansion and thus the temperature reduction in the first expansion section, in this case in the high-pressure turbine section. The result is that there is an increase in load-dependent temperature fluctuations at the outlet of the high-pressure turbine section.
  • the partial reheat waste of the reheater superheat temperature is reduced by raising the cold reheater temperature at the high pressure turbine exit.
  • This temperature increase is achieved by targeted pressure increase in the reheater system at partial load by throttling the valves. If no throttling takes place, a partial load at one point would cause a temperature change of 60 Kelvin, for example on one component. Due to the throttling according to the invention, this temperature reduction of 60 Kelvin is counteracted and, for example, only a temperature reduction of 30 Kelvin is achieved, wherein this temperature reduction of 30 Kelvin is to be divided into two components. The permissible load changes thereby increase by more than an order of magnitude.
  • the throttling is chosen such that the amount of temperature reduction after the reheater unit in the unthrottled state is substantially halved.
  • the throttling is controlled such that the load changes to all components, the then smaller temperature changes in the first approximation are the same size.
  • a significant advantage of the invention is that now large load changes can be driven with significantly faster gradients and much more often in the life of the steam turbine. This leads to an overall increase in the lifetime.
  • Conventional conventional power plants include a steam turbine that can be divided into a high-pressure turbine section, medium-pressure turbine section and low-pressure section turbine and a reheater unit, wherein the reheater unit between the high-pressure turbine section and the intermediate-pressure turbine section is arranged.
  • a steam generator In front of the high-pressure turbine part, a steam generator generates a hot live steam, which flows through the high-pressure turbine section and then reheated in the reheater unit and then flows into the medium-pressure turbine section and then through the low-pressure turbine section. After the low-pressure turbine section, the steam condenses to water and is pumped back to the steam generator where it is converted back to steam.
  • Such a power plant is designed for a rated power that is to be operated as permanently as possible at this nominal power level.
  • a partial load operation this means that the power plant will not operate at 100% rated load, but at 25% of the rated power Rated load is operated, change the temperatures in the reheater unit.
  • a control valve In front of the medium-pressure turbine part, a control valve is arranged, which is throttled during operation of the partial load such that an increase in the temperature takes place at the entrance to the reheater unit.
  • a controller controls the medium-pressure valve in such a way that the steam flow is throttled in such a way that the expansion in the high-pressure turbine part is reduced. As a result of this reduction, the temperature at the outlet of the high pressure turbine section increases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betreiben einer Kraftwerksanlage umfassend eine Dampfturbine, die in eine Hochdruck-Teilturbine, Mitteldruck-Teilturbine und Nieder-druck-Teilturbine unterteilt ist und zwischen der Hochdruck-Teilturbine und der Mitteldruck-Teilturbine eine Zwischenüberhitzereinheit angeordnet wird.The invention relates to a method for operating a power plant comprising a steam turbine, which is subdivided into a high-pressure turbine section, medium-pressure turbine section and low-pressure turbine section, and a reheater unit is arranged between the high-pressure turbine section and the medium-pressure turbine section.

Kraftwerksanlagen, in denen großvolumige Dampfturbinen eingesetzt werden, werden u.a. in der kommunalen Energieversorgung eingesetzt. Die in solchen Kraftwerken eingesetzten Dampfturbinen weisen vergleichsweise hohe Massen auf und sind in der Regel für eine vorgegebene Nennleistung ausgelegt. Diese Kraftwerke, die auch als konventionelle Kraftwerke bezeichnet werden können, können in erster Näherung in reine Dampfkraftwerke und in Gas- und Dampfkraftwerke eingeteilt werden. Beiden ist gemeinsam, dass fossile Brennstoffe benötigt werden, um elektrische Energie zu erzeugen. Solche Kraftwerke wurden bislang derart konzipiert, dass diese für eine Grundlast ausgelegt wurden. Durch den zunehmenden Anteil an erneuerbaren Energiequellen, wie z. B. die Windenergie, die im Wesentlichen nicht regelbar sind, müssen die vorgenannten konventionellen Kraftwerke immer häufiger in einer Teillast betrieben werden. Das bedeutet, dass die Kraftwerke nicht dauerhaft die Nennleistung liefern, sondern einen Prozentsatz der Nennleistung als Teillast liefern. Die Teillasten können in manchen Fällen beispielsweise bei 25% der Volllast liegen.Power plants, in which large-volume steam turbines are used, u.a. used in the municipal energy supply. The steam turbines used in such power plants have relatively high masses and are usually designed for a given nominal power. These power plants, which can also be referred to as conventional power plants, can be classified as a first approximation in pure steam power plants and in gas and steam power plants. Both have in common that fossil fuels are needed to generate electrical energy. Such power plants have hitherto been designed so that they were designed for a base load. Due to the increasing share of renewable energy sources, such as As the wind energy, which are not substantially controllable, the aforementioned conventional power plants must be operated more frequently in a partial load. This means that the power plants do not permanently deliver the nominal power, but deliver a percentage of the nominal power as a partial load. For example, the partial loads may in some cases be 25% of full load.

Das bedeutet, dass diese Kraftwerke flexibel betrieben werden müssen, wobei der Wechsel von vergleichsweise niedriger Teillast auf Volllast möglichst schnell und ohne Begrenzung der Anzahl der Lastwechsel erfolgen soll. Problematisch hierbei ist, dass die Temperatur des Dampfes am Austritt der Zwischenüberhitzereinheit wegen des geringeren Wärmeangebots aus dem kälter werdenden Rauchgas sehr stark sinkt bei extremer Teillast, wie beispielsweise bei 25%. Diese Temperatursenkung kann bis zu 60 Kelvin betragen. Diese Temperaturschwankungen werden allerdings auch auf die Bauteile übertragen. Das bedeutet, dass die großvolumigen und großmassigen Bauteile im ungünstigen Fall ständig erwärmt und abgekühlt werden müssen. Insbesondere dickwandige Bauteile, wie eine Mitteldruck-Teilturbinenwelle, dürfen unter Beachtung von gewünschten Lastwechseln nur vergleichsweise langsam aufgewärmt werden. Dies steht allerdings im Widerspruch zu der Anforderung, das Kraftwerk in möglichst kurzer Zeit von extremer Teillast auf Volllast zu fahren.This means that these power plants must be operated flexibly, whereby the change from comparatively low partial load to full load as fast as possible and without limitation of the Number of load changes should be made. The problem here is that the temperature of the steam at the outlet of the reheater unit drops very much at extreme partial load, such as 25%, because of the lower heat supply from the flue gas becoming colder. This temperature reduction can be up to 60 Kelvin. However, these temperature fluctuations are also transferred to the components. This means that the large-volume and large-scale components must be constantly heated and cooled in the worst case. In particular, thick-walled components, such as a medium-pressure turbine sub-section, may only be warmed up comparatively slowly, taking into account desired load changes. However, this is in contradiction to the requirement to drive the power plant from full load to full load in as short a time as possible.

Bisher wurden daher die Zwischenüberhitzerheizflächen überdimensioniert und die heiße Zwischenüberhitzertemperatur im oberen Lastbereich, beispielsweise zwischen 70% und 100%, geregelt unter Inkaufnahme des dadurch resultierenden thermodynamischen Wirkungsgradverlüstes. Als "hZÜ" wird die heiße Zwischenüberhitzertemperatur bezeichnet, die nach der Zwischenüberhitzereinheit vorhanden ist. Ein weiterer Lösungsansatz ist, im unteren Lastbereich die Lastgradienten entsprechend zu begrenzen oder die zulässigen Lastwechsel zu reduzieren, wobei auch ein erhöhter Verschleiß in Betracht gezogen wird, so dass die dickwandigen Bauteile frühzeitig ausgetauscht werden müssen.So far, therefore, the reheater heating surfaces were oversized and the hot reheater superheat temperature in the upper load range, for example, between 70% and 100%, regulated at the expense of the resulting thermodynamic efficiency loss. The term "hZÜ" refers to the hot reheater temperature that is present after the reheater unit. Another approach is to limit the load gradients in the lower load range or to reduce the permissible load changes, whereby an increased wear is considered, so that the thick-walled components must be replaced early.

In der EP 236 959 wird ein Verfahren zum Anfahren einer Dampfturbine offenbart.In the EP 236 959 a method for starting a steam turbine is disclosed.

Die DE 10 2008 037575 A1 offenbart eine Vorrichtung und ein Verfahren zum Verbessern eines Betriebs von Dampfturbinen bei reduzierter Last.The DE 10 2008 037575 A1 discloses an apparatus and method for improving operation of steam turbines at reduced load.

In der EP 0 899 505 A1 wird ein kombiniertes Kraftwerk mit einem Hochdruck-Zwischenüberhitzer offenbart.In the EP 0 899 505 A1 discloses a combined power plant with a high pressure reheater.

Die DE 10 2010 041 627 A1 offenbart eine Dampfturbine mit einem Hochdruckteil, wobei zwischen dem Hochdruckteil und dem Niederdruckteil ein Regelventil angeordnet ist.The DE 10 2010 041 627 A1 discloses a steam turbine with a high pressure part, wherein between the high pressure part and the low pressure part, a control valve is arranged.

In der US 3 894 394 wird ein Regelsystem für ein Hochdruck-Kraftwerk offenbart.In the US 3,894,394 a control system for a high pressure power plant is disclosed.

Die US 4 132 076 A offenbart ein Regelverfahren zum Starten einer Dampfturbine.The US 4 132 076 A discloses a control method for starting a steam turbine.

In der US 4 253 308 A wird ein automaisches Regelverfahren zum Betreiben einer Dampfturbine offenbart.In the US 4 253 308 A An automatic control method for operating a steam turbine is disclosed.

An dieser Stelle setzt die Erfindung an. Es ist Aufgabe der Erfindung, das Kraftwerk derart zu betreiben, dass die Lebensdauer der Bauteile trotz häufiger Lastwechsel erhöht ist.At this point, the invention begins. It is an object of the invention to operate the power plant such that the life of the components is increased despite frequent load changes.

Gelöst wird diese Aufgabe durch ein Verfahren gemäß Anspruch 1.This object is achieved by a method according to claim 1.

Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.Advantageous developments are specified in the subclaims.

Die Erfindung geht von dem Gedanken aus, dass nach wie vor ein häufiger Lastwechsel stattfinden kann, der aber nicht zu einer Lebensdauerverkürzung der Bauteile führt. Der Erfindung liegt der Gedanke zugrunde, dass im Allgemeinen bei gleichen Temperaturgradienten die Anzahl der zulässigen Lastwechsel nicht zum Temperatursprung proportional ist. Beispielsweise führt ein Temperatursprung von 30 Kelvin zu ca. 1.000.000 zulässigen Lastwechseln, wohingegen ein Temperatursprung von 60 Kelvin nicht zu einer Halbierung der zulässigen Lastwechsel führt, sondern zu einer viel geringeren Anzahl an Lastwechseln, und zwar ca. 10.000 zulässigen Lastwechseln. Somit ändert sich bei Verdopplung des Temperatursprungs die Anzahl der zulässigen Lastwechsel um eine oder mehrere Größenordnungen. Die vorgenannten Werte dienen lediglich zur Veranschaulichung. Die Anzahl an zulässigen Lastwechseln in Abhängigkeit vom Temperatursprung hängen stark von den Geometrien der Bauteile, von den Werkstoffeigenschaften sowie Temperaturniveaus und vielen anderen weiteren Parametern ab.The invention is based on the idea that a frequent load change can still take place, but does not lead to a reduction in the service life of the components. The invention is based on the idea that the number of permissible load changes is generally not proportional to the temperature jump at the same temperature gradient. For example, a temperature jump of 30 Kelvin leads to about 1,000,000 permissible load changes, whereas a temperature jump of 60 Kelvin does not lead to a halving of the permissible load changes, but to a much smaller number of load changes, namely about 10,000 permissible load changes. Thus, when the temperature jump is doubled, the number of permissible load changes changes by one or more orders of magnitude. The above values are for illustrative purposes only. The number of permissible load changes as a function of the temperature jump strongly depend on the geometries of the components, the material properties as well as temperature levels and many other parameters.

Ein erfindungswesentliches Merkmal ist, dass die Temperatur der Zwischenüberhitzereinheit reduziert werden kann, indem die Eintrittstemperatur in die Zwischenüberhitzereinheit angehoben wird. Die Eintrittstemperatur vor der Zwischenüberhitzereinheit wird auch als kalte Zwischenüberhitzung bezeichnet. Diese Anhebung der Temperatur wird dadurch realisiert, dass Regelventile, die vor dem zweiten Expansionsabschnitt, d. h. vor der Mitteldruck-Teilturbine, angedrosselt werden. Durch die Androsselung reduziert sich die Expansion und damit der Temperaturabbau im ersten Expansionsabschnitt, in diesem Fall in der Hochdruck-Teilturbine. Die Folge ist, dass es zu vergrößerten lastabhängigen Temperaturschwankungen am Austritt der Hochdruck-Teilturbine kommt.An essential feature of the invention is that the temperature of the reheater unit can be reduced by raising the inlet temperature to the reheater unit. The inlet temperature upstream of the reheater unit is also referred to as cold reheat. This increase in temperature is realized by the fact that control valves that before the second expansion section, d. H. be throttled before the medium-pressure turbine section. The throttling reduces the expansion and thus the temperature reduction in the first expansion section, in this case in the high-pressure turbine section. The result is that there is an increase in load-dependent temperature fluctuations at the outlet of the high-pressure turbine section.

Somit wird der bei Teillast eintretende Abfall der heißen Zwischenüberhitzertemperatur durch eine Anhebung der kalten Zwischenüberhitzertemperatur am Hochdruck-Teilturbinenaustritt reduziert. Erreicht wird diese Temperaturanhebung durch gezielte Druckanhebung im Zwischenüberhitzersystem bei Teillast mittels Drosselung der Ventile. Sofern keine Androsselung stattfindet, würde bei einer Teillast an einer Stelle ein Temperaturwechsel von 60 Kelvin beispielsweise an einem Bauteil auftreten. Durch die erfindungsgemäße Androsselung wird dieser Temperaturabsenkung von 60 Kelvin entgegengewirkt und beispielsweise nur eine Temperaturabsenkung von 30 Kelvin erreicht, wobei diese Temperaturabsenkung von 30 Kelvin auf zwei Bauteile aufzuteilen ist. Die zulässigen Lastwechsel vergrößern sich dadurch um mehr als eine Größenordnung.Thus, the partial reheat waste of the reheater superheat temperature is reduced by raising the cold reheater temperature at the high pressure turbine exit. This temperature increase is achieved by targeted pressure increase in the reheater system at partial load by throttling the valves. If no throttling takes place, a partial load at one point would cause a temperature change of 60 Kelvin, for example on one component. Due to the throttling according to the invention, this temperature reduction of 60 Kelvin is counteracted and, for example, only a temperature reduction of 30 Kelvin is achieved, wherein this temperature reduction of 30 Kelvin is to be divided into two components. The permissible load changes thereby increase by more than an order of magnitude.

Somit führt das Aufteilen von großen Temperaturwechseln an den Bauteilen im heißen Zwischenüberhitzersystem und der Mitteldruck-Dampfturbine auf kleine Temperaturwechsel an den Bauteilen im kalten Zwischenüberhitzer und heißen Zwischenüberhitzerbauteilen zu einem insgesamt kleineren Temperaturwechsel an allen Bauteilen im System.Thus, the splitting of large temperature changes on the components in the hot reheater system and the medium-pressure steam turbine to small temperature changes to the Components in the cold reheater and hot Zwischenüberhitzerbauteilen to a smaller overall temperature change on all components in the system.

Die Androsselung wird derart gewählt, dass der Betrag der Temperaturabsenkung nach der Zwischenüberhitzereinheit im ungedrosselten Zustand im Wesentlichen halbiert wird.The throttling is chosen such that the amount of temperature reduction after the reheater unit in the unthrottled state is substantially halved.

Somit wird die Androsselung derart gesteuert, dass bei Lastwechseln an allen Bauteilen die dann kleineren Temperaturwechsel in erster Näherung gleich groß sind. Ein wesentlicher Vorteil der Erfindung liegt darin, dass nunmehr große Laständerungen mit deutlich schnelleren Gradienten und deutlich häufiger in der Lebensdauer der Dampfturbine gefahren werden können. Dies führt insgesamt zu einer Erhöhung der Lebensdauer.Thus, the throttling is controlled such that the load changes to all components, the then smaller temperature changes in the first approximation are the same size. A significant advantage of the invention is that now large load changes can be driven with significantly faster gradients and much more often in the life of the steam turbine. This leads to an overall increase in the lifetime.

Im Folgenden wird nun ein Ausführungsbeispiel der Erfindung näher beschrieben (ohne Figur).In the following, an embodiment of the invention will now be described in detail (without figure).

Herkömmliche konventionelle Kraftwerke umfassen eine Dampfturbine, die sich in eine Hochdruck-Teilturbine, Mitteldruck-Teilturbine und Niederdruck-Teilturbine sowie eine Zwischenüberhitzereinheit einteilen lässt, wobei die Zwischenüberhitzereinheit zwischen der Hochdruck-Teilturbine und der Mitteldruck-Teilturbine angeordnet wird. Vor der Hochdruck-Teilturbine erzeugt ein Dampferzeuger einen heißen Frischdampf, der durch die Hochdruck-Teilturbine strömt und anschließend in der Zwischenüberhitzereinheit wieder erhitzt wird und anschließend in die Mitteldruck-Teilturbine strömt sowie anschließend durch die Niederdruck-Teilturbine. Nach der Niederdruck-Teilturbine kondensiert der Dampf zu Wasser und wird über Pumpen wieder zum Dampferzeuger geführt und dort wieder zu Dampf umgewandelt. Solch eine Kraftwerksanlage wird für eine Nennleistung konzipiert, die möglichst permanent auf dieser Nennleistungsebene betrieben werden soll. In einem Teillastbetrieb, das bedeutet, dass die Kraftwerksanlage nicht bei 100% Nennlast, sondern bei beispielsweise 25% der Nennlast betrieben wird, ändern sich die Temperaturen in der Zwischenüberhitzereinheit. Die Temperatur sinkt. Vor der Mitteldruck-Teilturbine wird ein Regelventil angeordnet, das beim Betrieb der Teillast derart angedrosselt wird, dass eine Erhöhung der Temperatur am Eintritt zur Zwischenüberhitzereinheit erfolgt. Das bedeutet, dass ein Regler das Mitteldruck-Ventil derart ansteuert, dass die Dampfströmung angedrosselt wird und zwar derart, dass die Expansion in der Hochdruck-Teilturbine reduziert wird. In Folge dieser Reduzierung erhöht sich die Temperatur am Ausgang der Hochdruck-Teilturbine. Conventional conventional power plants include a steam turbine that can be divided into a high-pressure turbine section, medium-pressure turbine section and low-pressure section turbine and a reheater unit, wherein the reheater unit between the high-pressure turbine section and the intermediate-pressure turbine section is arranged. In front of the high-pressure turbine part, a steam generator generates a hot live steam, which flows through the high-pressure turbine section and then reheated in the reheater unit and then flows into the medium-pressure turbine section and then through the low-pressure turbine section. After the low-pressure turbine section, the steam condenses to water and is pumped back to the steam generator where it is converted back to steam. Such a power plant is designed for a rated power that is to be operated as permanently as possible at this nominal power level. In a partial load operation, this means that the power plant will not operate at 100% rated load, but at 25% of the rated power Rated load is operated, change the temperatures in the reheater unit. The temperature sinks. In front of the medium-pressure turbine part, a control valve is arranged, which is throttled during operation of the partial load such that an increase in the temperature takes place at the entrance to the reheater unit. This means that a controller controls the medium-pressure valve in such a way that the steam flow is throttled in such a way that the expansion in the high-pressure turbine part is reduced. As a result of this reduction, the temperature at the outlet of the high pressure turbine section increases.

Claims (3)

  1. Method for operating a power plant installation comprising a steam turbine which is divided into a high-pressure turbine section, an intermediate-pressure turbine section and a low-pressure turbine section and between the high-pressure turbine section and the intermediate-pressure turbine section there is arranged an intermediate superheater unit, having the steps:
    - operating the power plant installation at partial load,
    - throttling a valve arranged upstream of the intermediate-pressure turbine section in order to increase the temperature at the inlet to the intermediate superheater unit,
    wherein the valve is arranged between the high-pressure turbine section and the intermediate-pressure turbine section,
    wherein the valve is throttled such that the magnitude of the temperature drop downstream of the intermediate superheater unit in the under-throttled state is essentially halved,
    characterized in that
    the valve is throttled such that, in the event of a change in load, the temperature change upstream and downstream of the intermediate superheater unit is essentially identical as a consequence of the throttling.
  2. Method according to Claim 1,
    wherein the valve is throttled such that the expansion in the high-pressure turbine section is reduced.
  3. Method according to either of the preceding claims,
    wherein the partial load operation is essentially between 20% and 40%, in particular at 25% of the rated load.
EP13714254.3A 2012-04-04 2013-03-27 Power plant and method for operating a power plant facility Not-in-force EP2805031B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13714254.3A EP2805031B1 (en) 2012-04-04 2013-03-27 Power plant and method for operating a power plant facility
PL13714254T PL2805031T3 (en) 2012-04-04 2013-03-27 Power plant and method for operating a power plant facility

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP20120163194 EP2647802A1 (en) 2012-04-04 2012-04-04 Power plant and method for operating a power plant assembly
EP13714254.3A EP2805031B1 (en) 2012-04-04 2013-03-27 Power plant and method for operating a power plant facility
PCT/EP2013/056496 WO2013149900A1 (en) 2012-04-04 2013-03-27 Power plant and method for operating a power plant facility

Publications (2)

Publication Number Publication Date
EP2805031A1 EP2805031A1 (en) 2014-11-26
EP2805031B1 true EP2805031B1 (en) 2015-12-23

Family

ID=48048014

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20120163194 Withdrawn EP2647802A1 (en) 2012-04-04 2012-04-04 Power plant and method for operating a power plant assembly
EP13714254.3A Not-in-force EP2805031B1 (en) 2012-04-04 2013-03-27 Power plant and method for operating a power plant facility

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20120163194 Withdrawn EP2647802A1 (en) 2012-04-04 2012-04-04 Power plant and method for operating a power plant assembly

Country Status (7)

Country Link
US (1) US9574462B2 (en)
EP (2) EP2647802A1 (en)
JP (1) JP5985737B2 (en)
CN (1) CN104204425B (en)
IN (1) IN2014DN07231A (en)
PL (1) PL2805031T3 (en)
WO (1) WO2013149900A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026230A1 (en) * 2014-11-26 2016-06-01 Siemens Aktiengesellschaft Method for operating a turbine unit, steam power station or combined cycle power plant and use of a throttle device
DE102015200250A1 (en) * 2015-01-12 2016-07-14 Siemens Aktiengesellschaft Method for operating an osmotic power plant and osmotic power plant

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894394A (en) * 1974-04-22 1975-07-15 Westinghouse Electric Corp HTGR power plant hot reheat steam pressure control system
JPS5225240A (en) 1975-08-19 1977-02-25 Matsushita Electric Ind Co Ltd Secondary nickel zinc alkaline battery
CH617494A5 (en) * 1975-08-22 1980-05-30 Bbc Brown Boveri & Cie
JPS53120606U (en) * 1977-03-04 1978-09-26
US4166221A (en) 1978-02-09 1979-08-28 Westinghouse Electric Corp. Overspeed protection controller employing interceptor valve speed control
US4253308A (en) * 1979-06-08 1981-03-03 General Electric Company Turbine control system for sliding or constant pressure boilers
JPS6226303A (en) * 1985-07-25 1987-02-04 Ishikawajima Harima Heavy Ind Co Ltd Controlling method for exhaust temperature of reheating turbine
JPS62206203A (en) 1986-03-07 1987-09-10 Hitachi Ltd Operation control method for steam turbine
JPS63248903A (en) * 1987-04-03 1988-10-17 Hitachi Ltd Protecting method for steam turbine
SE502492C2 (en) * 1991-12-23 1995-10-30 Abb Carbon Ab Boiler system with common steam system
US5361585A (en) * 1993-06-25 1994-11-08 General Electric Company Steam turbine split forward flow
JP3794796B2 (en) * 1997-08-29 2006-07-12 三菱重工業株式会社 Combined power plant
EP1191192A1 (en) * 2000-09-26 2002-03-27 Siemens Aktiengesellschaft Method and apparatus for preheating and dewatering of turbine stage steam conduits
EP1775431A1 (en) 2005-10-12 2007-04-18 Siemens Aktiengesellschaft Method for warming-up a steam turbine
EP1998014A3 (en) 2007-02-26 2008-12-31 Siemens Aktiengesellschaft Method for operating a multi-stage steam turbine
US20090136337A1 (en) * 2007-11-26 2009-05-28 General Electric Company Method and Apparatus for Improved Reduced Load Operation of Steam Turbines
US8276382B2 (en) * 2009-03-17 2012-10-02 General Electric Company Systems and methods for pre-warming a heat recovery steam generator and associated steam lines
DE102010041627A1 (en) 2010-09-29 2012-03-29 Siemens Aktiengesellschaft Steam turbine with reheat

Also Published As

Publication number Publication date
JP2015515573A (en) 2015-05-28
JP5985737B2 (en) 2016-09-06
PL2805031T3 (en) 2016-06-30
EP2647802A1 (en) 2013-10-09
CN104204425A (en) 2014-12-10
US20150113989A1 (en) 2015-04-30
IN2014DN07231A (en) 2015-04-24
EP2805031A1 (en) 2014-11-26
CN104204425B (en) 2015-09-16
WO2013149900A1 (en) 2013-10-10
US9574462B2 (en) 2017-02-21

Similar Documents

Publication Publication Date Title
EP1934434B1 (en) Method for warming-up a steam turbine
DE102008029941B4 (en) Steam power plant and method for controlling the power of a steam power plant
EP2603672B1 (en) Waste heat steam generator
EP1368555B1 (en) Method for operating a steam power installation and corresponding steam power installation
EP2326800B1 (en) Steam power assembly for creating electrical energy
EP1998014A2 (en) Method for operating a multi-stage steam turbine
CH702677B1 (en) Combined cycle power plant with Kombikraftwerksanfahrsystem.
EP3269948B1 (en) Method for the adaptation of the performance of a steam turbine power plant installation and steam turbine power plant installation
EP2918793A1 (en) Control concept for district heating decoupling in a steam power plant
EP2805031B1 (en) Power plant and method for operating a power plant facility
EP3379040A1 (en) Power plant for generating electric power and a method for operating a power plant
EP2611995B1 (en) Steam turbine plant with variable steam supply
EP2362073A1 (en) Steam power station comprising a tuning turbine
DE102016112601A1 (en) Device for power generation according to the ORC principle, geothermal system with such a device and operating method
EP2511485A1 (en) Turbomachine, Steam Turbine plant, and Method for heating a steam turbine shaft
EP3280884B1 (en) Method for cooling a steam turbine
EP2859195B1 (en) Method for supporting a network frequency
WO2015024886A1 (en) Steam power plant and method for operating a steam power plant
EP2642090B1 (en) Method for operating a steam turbine and control unit therefore
DE10124492B4 (en) Method for operating a combined cycle power plant with different network requirements
WO2014146845A2 (en) Method for starting up a solar thermal power plant
DE102012218542B4 (en) Method for the flexible operation of a power plant
DE102013205053B4 (en) Method for operating a power plant having a water-steam cycle
EP2918796A1 (en) Steam power plant with steam generator comprising a drum pressure vessel regulator
EP2781701A1 (en) Method for operating a solar thermal power plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013001658

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01K0007220000

Ipc: F01K0003260000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 7/22 20060101ALI20150609BHEP

Ipc: F01K 7/24 20060101ALI20150609BHEP

Ipc: F01K 7/02 20060101ALI20150609BHEP

Ipc: F01K 3/26 20060101AFI20150609BHEP

Ipc: F01K 13/02 20060101ALI20150609BHEP

INTG Intention to grant announced

Effective date: 20150703

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 766667

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160115

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013001658

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160324

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160423

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013001658

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160327

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

26N No opposition filed

Effective date: 20160926

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170316

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170313

Year of fee payment: 5

Ref country code: CZ

Payment date: 20170324

Year of fee payment: 5

Ref country code: PL

Payment date: 20170322

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170329

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170519

Year of fee payment: 5

Ref country code: CH

Payment date: 20170602

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013001658

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180327

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180327

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 766667

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180327