EP2647802A1 - Power plant and method for operating a power plant assembly - Google Patents

Power plant and method for operating a power plant assembly Download PDF

Info

Publication number
EP2647802A1
EP2647802A1 EP20120163194 EP12163194A EP2647802A1 EP 2647802 A1 EP2647802 A1 EP 2647802A1 EP 20120163194 EP20120163194 EP 20120163194 EP 12163194 A EP12163194 A EP 12163194A EP 2647802 A1 EP2647802 A1 EP 2647802A1
Authority
EP
European Patent Office
Prior art keywords
power plant
pressure turbine
turbine section
temperature
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20120163194
Other languages
German (de)
French (fr)
Inventor
Günter Bauer
Norbert Pieper
Hans-Ulrich Dr. Thierbach
Michael Wechsung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP20120163194 priority Critical patent/EP2647802A1/en
Priority to CN201380018922.9A priority patent/CN104204425B/en
Priority to JP2015503823A priority patent/JP5985737B2/en
Priority to US14/388,553 priority patent/US9574462B2/en
Priority to PCT/EP2013/056496 priority patent/WO2013149900A1/en
Priority to EP13714254.3A priority patent/EP2805031B1/en
Priority to PL13714254T priority patent/PL2805031T3/en
Priority to IN7231DEN2014 priority patent/IN2014DN07231A/en
Publication of EP2647802A1 publication Critical patent/EP2647802A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/26Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam
    • F01K3/262Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam by means of heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/025Consecutive expansion in a turbine or a positive displacement engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/24Control or safety means specially adapted therefor

Definitions

  • the invention relates to a method for operating a power plant comprising a steam turbine, which is subdivided into a high-pressure turbine section, medium-pressure turbine section and low-pressure turbine section, and a reheater unit is arranged between the high-pressure turbine section and the medium-pressure turbine section.
  • the invention relates to a power plant which is operated by the method according to the invention.
  • Power plants in which large-volume steam turbines are used, u.a. used in the municipal energy supply.
  • the steam turbines used in such power plants have relatively high masses and are usually designed for a given nominal power.
  • These power plants which can also be referred to as conventional power plants, can be classified as a first approximation in pure steam power plants and in gas and steam power plants. Both have in common that fossil fuels are needed to generate electrical energy.
  • Such power plants have hitherto been designed so that they were designed for a base load. Due to the increasing share of renewable energy sources, such as As the wind energy, which are not substantially controllable, the aforementioned conventional power plants must be operated more frequently in a partial load. This means that the power plants do not permanently deliver the nominal power, but deliver a percentage of the nominal power as a partial load. For example, the partial loads may in some cases be 25% of full load.
  • the reheater heating surfaces were oversized and the hot reheater superheat temperature in the upper load range, for example, between 70% and 100%, regulated at the expense of the resulting thermodynamic loss of efficiency.
  • the term "hZÜ" refers to the hot reheater temperature that is present after the reheater unit.
  • Another approach is to limit the load gradients in the lower load range or to reduce the permissible load changes, whereby an increased wear is considered, so that the thick-walled components must be replaced early.
  • the object is achieved by a power plant, which is operated by a method according to one of claims 1 to 5 and further by a power plant that is designed as a steam power plant or as a gas and steam power plant and operated by the method according to the invention.
  • the invention is based on the idea that a frequent load change can still take place, but does not lead to a reduction in the service life of the components.
  • the invention is based on the idea that the number of permissible load changes is generally not proportional to the temperature jump at the same temperature gradient. For example, a temperature jump of 30 Kelvin leads to about 1,000,000 permissible load changes, whereas a temperature jump of 60 Kelvin does not lead to a halving of the permissible load changes, but to a much smaller number of load changes, namely about 10,000 permissible load changes. Thus, when the temperature jump is doubled, the number of permissible load changes changes by one or more orders of magnitude.
  • the above values are for illustrative purposes only.
  • the number of permissible load changes as a function of the temperature jump strongly depend on the geometries of the components, the material properties as well as temperature levels and many other parameters.
  • An essential feature of the invention is that the temperature of the reheater unit can be reduced by raising the inlet temperature to the reheater unit.
  • the inlet temperature upstream of the reheater unit is also referred to as cold reheat.
  • This increase in temperature is realized in that control valves that are throttled before the second expansion section, ie before the medium-pressure turbine section.
  • the throttling reduces the expansion and thus the temperature reduction in the first expansion section, in this case in the high-pressure turbine section.
  • the result is that there is an increase in load-dependent temperature fluctuations at the outlet of the high-pressure turbine section.
  • the partial reheat waste of the reheater superheat temperature is reduced by raising the cold reheater temperature at the high pressure turbine exit.
  • This temperature increase is achieved by targeted pressure increase in the reheater system at partial load by throttling the valves. If no throttling takes place, a partial load at one point would cause a temperature change of 60 Kelvin, for example on one component. Due to the throttling according to the invention, this temperature reduction of 60 Kelvin is counteracted and, for example, only a temperature reduction of 30 Kelvin is achieved, wherein this temperature reduction of 30 Kelvin is to be divided into two components. The permissible load changes thereby increase by more than an order of magnitude.
  • the throttling is selected such that the amount of temperature reduction after the reheater unit is substantially halved in the unthrottled state.
  • the throttling is controlled so that the load changes on all components then smaller temperature changes in the first approximation are the same size.
  • a significant advantage of the invention is that now large load changes can be driven with significantly faster gradients and much more often in the life of the steam turbine. This leads to an overall increase in the lifetime.
  • Conventional conventional power plants include a steam turbine that can be divided into a high-pressure turbine section, medium-pressure turbine section and low-pressure section turbine and a reheater unit, wherein the reheater unit between the high-pressure turbine section and the intermediate-pressure turbine section is arranged.
  • a steam generator In front of the high-pressure turbine part, a steam generator generates a hot live steam, which flows through the high-pressure turbine section and then reheated in the reheater unit and then flows into the medium-pressure turbine section and then through the low-pressure turbine section. After the low-pressure turbine section, the steam condenses to water and is pumped back to the steam generator where it is converted back to steam.
  • Such a power plant is designed for a rated power that is to be operated as permanently as possible at this nominal power level.
  • a part-load operation which means that the power plant is operated at not 100% rated load, but at, for example, 25% of rated load, the temperatures in the reheater unit change.
  • a control valve is arranged, which is throttled during operation of the partial load such that an increase in the temperature takes place at the entrance to the reheater unit.
  • a controller controls the medium-pressure valve in such a way that the steam flow is throttled in such a way that the expansion in the high-pressure turbine part is reduced. In consequence of this reduction increases the temperature at the output of the high-pressure turbine section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

The method involves operating a power plant in a partial load operation, where a steam turbine of the power plant is divided into a high pressure partial turbine, a medium pressure partial turbine and a low pressure partial turbine. Temperature at an inlet to a reheater unit is increased through a throttling valve that is positioned before the medium pressure partial turbine such that expansion is reduced in the high pressure partial turbine, where the reheater unit is arranged between the high- and medium pressure partial turbines. An independent claim is also included for a power plant.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben einer Kraftwerksanlage umfassend eine Dampfturbine, die in eine Hochdruck-Teilturbine, Mitteldruck-Teilturbine und Niederdruck-Teilturbine unterteilt ist und zwischen der Hochdruck-Teilturbine und der Mitteldruck-Teilturbine eine Zwischenüberhitzereinheit angeordnet wird.The invention relates to a method for operating a power plant comprising a steam turbine, which is subdivided into a high-pressure turbine section, medium-pressure turbine section and low-pressure turbine section, and a reheater unit is arranged between the high-pressure turbine section and the medium-pressure turbine section.

Des Weiteren betrifft die Erfindung ein Kraftwerk, das nach dem erfindungsgemäßen Verfahren betrieben wird.Furthermore, the invention relates to a power plant which is operated by the method according to the invention.

Kraftwerksanlagen, in denen großvolumige Dampfturbinen eingesetzt werden, werden u.a. in der kommunalen Energieversorgung eingesetzt. Die in solchen Kraftwerken eingesetzten Dampfturbinen weisen vergleichsweise hohe Massen auf und sind in der Regel für eine vorgegebene Nennleistung ausgelegt. Diese Kraftwerke, die auch als konventionelle Kraftwerke bezeichnet werden können, können in erster Näherung in reine Dampfkraftwerke und in Gas- und Dampfkraftwerke eingeteilt werden. Beiden ist gemeinsam, dass fossile Brennstoffe benötigt werden, um elektrische Energie zu erzeugen. Solche Kraftwerke wurden bislang derart konzipiert, dass diese für eine Grundlast ausgelegt wurden. Durch den zunehmenden Anteil an erneuerbaren Energiequellen, wie z. B. die Windenergie, die im Wesentlichen nicht regelbar sind, müssen die vorgenannten konventionellen Kraftwerke immer häufiger in einer Teillast betrieben werden. Das bedeutet, dass die Kraftwerke nicht dauerhaft die Nennleistung liefern, sondern einen Prozentsatz der Nennleistung als Teillast liefern. Die Teillasten können in manchen Fällen beispielsweise bei 25% der Volllast liegen.Power plants, in which large-volume steam turbines are used, u.a. used in the municipal energy supply. The steam turbines used in such power plants have relatively high masses and are usually designed for a given nominal power. These power plants, which can also be referred to as conventional power plants, can be classified as a first approximation in pure steam power plants and in gas and steam power plants. Both have in common that fossil fuels are needed to generate electrical energy. Such power plants have hitherto been designed so that they were designed for a base load. Due to the increasing share of renewable energy sources, such as As the wind energy, which are not substantially controllable, the aforementioned conventional power plants must be operated more frequently in a partial load. This means that the power plants do not permanently deliver the nominal power, but deliver a percentage of the nominal power as a partial load. For example, the partial loads may in some cases be 25% of full load.

Das bedeutet, dass diese Kraftwerke flexibel betrieben werden müssen, wobei der Wechsel von vergleichsweise niedriger Teillast auf Volllast möglichst schnell und ohne Begrenzung der Anzahl der Lastwechsel erfolgen soll. Problematisch hierbei ist, dass die Temperatur des Dampfes am Austritt der Zwischenüberhitzereinheit wegen des geringeren Wärmeangebots aus dem kälter werdenden Rauchgas sehr stark sinkt bei extremer Teillast, wie beispielsweise bei 25%. Diese Temperatursenkung kann bis zu 60 Kelvin betragen. Diese Temperaturschwankungen werden allerdings auch auf die Bauteile übertragen. Das bedeutet, dass die großvolumigen und großmassigen Bauteile im ungünstigen Fall ständig erwärmt und abgekühlt werden müssen. Insbesondere dickwandige Bauteile, wie eine Mitteldruck-Teilturbinenwelle, dürfen unter Beachtung von gewünschten Lastwechseln nur vergleichsweise langsam aufgewärmt werden. Dies steht allerdings im Widerspruch zu der Anforderung, das Kraftwerk in möglichst kurzer Zeit von extremer Teillast auf Volllast zu fahren.This means that these power plants must be operated flexibly, whereby the change from comparatively low partial load to full load as fast as possible and without limitation of the Number of load changes should be made. The problem here is that the temperature of the steam at the outlet of the reheater unit drops very much at extreme partial load, such as 25%, because of the lower heat supply from the flue gas becoming colder. This temperature reduction can be up to 60 Kelvin. However, these temperature fluctuations are also transferred to the components. This means that the large-volume and large-scale components must be constantly heated and cooled in the worst case. In particular, thick-walled components, such as a medium-pressure turbine sub-section, may only be warmed up comparatively slowly, taking into account desired load changes. However, this is in contradiction to the requirement to drive the power plant from full load to full load in as short a time as possible.

Bisher wurden daher die Zwischenüberhitzerheizflächen überdimensioniert und die heiße Zwischenüberhitzertemperatur im oberen Lastbereich, beispielsweise zwischen 70% und 100%, geregelt unter Inkaufnahme des dadurch resultierenden thermodynamischen Wirkungsgradverlustes. Als "hZÜ" wird die heiße Zwischenüberhitzertemperatur bezeichnet, die nach der Zwischenüberhitzereinheit vorhanden ist. Ein weiterer Lösungsansatz ist, im unteren Lastbereich die Lastgradienten entsprechend zu begrenzen oder die zulässigen Lastwechsel zu reduzieren, wobei auch ein erhöhter Verschleiß in Betracht gezogen wird, so dass die dickwandigen Bauteile frühzeitig ausgetauscht werden müssen.So far, therefore, the reheater heating surfaces were oversized and the hot reheater superheat temperature in the upper load range, for example, between 70% and 100%, regulated at the expense of the resulting thermodynamic loss of efficiency. The term "hZÜ" refers to the hot reheater temperature that is present after the reheater unit. Another approach is to limit the load gradients in the lower load range or to reduce the permissible load changes, whereby an increased wear is considered, so that the thick-walled components must be replaced early.

An dieser Stelle setzt die Erfindung an. Es ist Aufgabe der Erfindung, das Kraftwerk derart zu betreiben, dass die Lebensdauer der Bauteile trotz häufiger Lastwechsel erhöht ist. Gelöst wird diese Aufgabe durch ein Verfahren zum Betreiben einer Kraftwerksanlage umfassend eine Dampfturbine, die in eine Hochdruck-Teilturbine, Mitteldruck-Teilturbine und Niederdruck-Teilturbine unterteilt ist und zwischen der Hochdruck-Teilturbine und der Mitteldruck-Teilturbine eine Zwischenüberhitzereinheit angeordnet wird, mit den Schritten:

  • Betrieb der Kraftwerksanlage in Teillast,
  • Erhöhung der Temperatur am Eintritt zur Zwischenüberhitzereinheit durch Androsselung eines Ventils, das vor der Mitteldruck-Teilturbine angeordnet wird.
At this point, the invention begins. It is an object of the invention to operate the power plant such that the life of the components is increased despite frequent load changes. This object is achieved by a method for operating a power plant comprising a steam turbine, which is subdivided into a high-pressure turbine section, medium-pressure turbine section and low-pressure turbine section and a reheater unit is arranged between the high-pressure turbine section and the medium-pressure turbine section, with the steps :
  • Operation of the power plant in part load,
  • Increasing the temperature at the inlet to the reheater unit by throttling a valve placed in front of the medium pressure turbine section.

Des Weiteren wird die Aufgabe gelöst durch ein Kraftwerk, das nach einem Verfahren gemäß einem der Ansprüche 1 bis 5 betrieben wird und des Weiteren durch ein Kraftwerk, das als Dampfkraftwerk oder als Gas- und Dampfkraftwerk ausgelegt und nach dem erfindungsgemäßen Verfahren betrieben wird.Furthermore, the object is achieved by a power plant, which is operated by a method according to one of claims 1 to 5 and further by a power plant that is designed as a steam power plant or as a gas and steam power plant and operated by the method according to the invention.

Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.Advantageous developments are specified in the subclaims.

Die Erfindung geht von dem Gedanken aus, dass nach wie vor ein häufiger Lastwechsel stattfinden kann, der aber nicht zu einer Lebensdauerverkürzung der Bauteile führt. Der Erfindung liegt der Gedanke zugrunde, dass im Allgemeinen bei gleichen Temperaturgradienten die Anzahl der zulässigen Lastwechsel nicht zum Temperatursprung proportional ist. Beispielsweise führt ein Temperatursprung von 30 Kelvin zu ca. 1.000.000 zulässigen Lastwechseln, wohingegen ein Temperatursprung von 60 Kelvin nicht zu einer Halbierung der zulässigen Lastwechsel führt, sondern zu einer viel geringeren Anzahl an Lastwechseln, und zwar ca. 10.000 zulässigen Lastwechseln. Somit ändert sich bei Verdopplung des Temperatursprungs die Anzahl der zulässigen Lastwechsel um eine oder mehrere Größenordnungen. Die vorgenannten Werte dienen lediglich zur Veranschaulichung. Die Anzahl an zulässigen Lastwechseln in Abhängigkeit vom Temperatursprung hängen stark von den Geometrien der Bauteile, von den Werkstoffeigenschaften sowie Temperaturniveaus und vielen anderen weiteren Parametern ab.The invention is based on the idea that a frequent load change can still take place, but does not lead to a reduction in the service life of the components. The invention is based on the idea that the number of permissible load changes is generally not proportional to the temperature jump at the same temperature gradient. For example, a temperature jump of 30 Kelvin leads to about 1,000,000 permissible load changes, whereas a temperature jump of 60 Kelvin does not lead to a halving of the permissible load changes, but to a much smaller number of load changes, namely about 10,000 permissible load changes. Thus, when the temperature jump is doubled, the number of permissible load changes changes by one or more orders of magnitude. The above values are for illustrative purposes only. The number of permissible load changes as a function of the temperature jump strongly depend on the geometries of the components, the material properties as well as temperature levels and many other parameters.

Ein erfindungswesentliches Merkmal ist, dass die Temperatur der Zwischenüberhitzereinheit reduziert werden kann, indem die Eintrittstemperatur in die Zwischenüberhitzereinheit angehoben wird. Die Eintrittstemperatur vor der Zwischenüberhitzereinheit wird auch als kalte Zwischenüberhitzung bezeichnet. Diese Anhebung der Temperatur wird dadurch realisiert, dass Regelventile, die vor dem zweiten Expansionsabschnitt, d. h. vor der Mitteldruck-Teilturbine, angedrosselt werden. Durch die Androsselung reduziert sich die Expansion und damit der Temperaturabbau im ersten Expansionsabschnitt, in diesem Fall in der Hochdruck-Teilturbine. Die Folge ist, dass es zu vergrößerten lastabhängigen Temperaturschwankungen am Austritt der Hochdruck-Teilturbine kommt.An essential feature of the invention is that the temperature of the reheater unit can be reduced by raising the inlet temperature to the reheater unit. The inlet temperature upstream of the reheater unit is also referred to as cold reheat. This increase in temperature is realized in that control valves that are throttled before the second expansion section, ie before the medium-pressure turbine section. The throttling reduces the expansion and thus the temperature reduction in the first expansion section, in this case in the high-pressure turbine section. The result is that there is an increase in load-dependent temperature fluctuations at the outlet of the high-pressure turbine section.

Somit wird der bei Teillast eintretende Abfall der heißen Zwischenüberhitzertemperatur durch eine Anhebung der kalten Zwischenüberhitzertemperatur am Hochdruck-Teilturbinenaustritt reduziert. Erreicht wird diese Temperaturanhebung durch gezielte Druckanhebung im Zwischenüberhitzersystem bei Teillast mittels Drosselung der Ventile. Sofern keine Androsselung stattfindet, würde bei einer Teillast an einer Stelle ein Temperaturwechsel von 60 Kelvin beispielsweise an einem Bauteil auftreten. Durch die erfindungsgemäße Androsselung wird dieser Temperaturabsenkung von 60 Kelvin entgegengewirkt und beispielsweise nur eine Temperaturabsenkung von 30 Kelvin erreicht, wobei diese Temperaturabsenkung von 30 Kelvin auf zwei Bauteile aufzuteilen ist. Die zulässigen Lastwechsel vergrößern sich dadurch um mehr als eine Größenordnung.Thus, the partial reheat waste of the reheater superheat temperature is reduced by raising the cold reheater temperature at the high pressure turbine exit. This temperature increase is achieved by targeted pressure increase in the reheater system at partial load by throttling the valves. If no throttling takes place, a partial load at one point would cause a temperature change of 60 Kelvin, for example on one component. Due to the throttling according to the invention, this temperature reduction of 60 Kelvin is counteracted and, for example, only a temperature reduction of 30 Kelvin is achieved, wherein this temperature reduction of 30 Kelvin is to be divided into two components. The permissible load changes thereby increase by more than an order of magnitude.

Somit führt das Aufteilen von großen Temperaturwechseln an den Bauteilen im heißen Zwischenüberhitzersystem und der Mitteldruck-Dampfturbine auf kleine Temperaturwechsel an den Bauteilen im kalten Zwischenüberhitzer und heißen Zwischenüberhitzerbauteilen zu einem insgesamt kleineren Temperaturwechsel an allen Bauteilen im System.Thus, the splitting of large temperature changes on the components in the hot reheater system and the medium-pressure steam turbine to small temperature changes on the components in the cold reheater and hot reheater components to an overall smaller temperature changes on all components in the system.

In einer vorteilhaften Weiterbildung wird die Androsselung derart gewählt, dass der Betrag der Temperaturabsenkung nach der Zwischenüberhitzereinheit im ungedrosselten Zustand im Wesentlichen halbiert wird.In an advantageous development, the throttling is selected such that the amount of temperature reduction after the reheater unit is substantially halved in the unthrottled state.

Somit wird die Androsselung derart gesteuert, dass bei Lastwechseln an allen Bauteilen die dann kleineren Temperaturwechsel in erster Näherung gleich groß sind. Ein wesentlicher Vorteil der Erfindung liegt darin, dass nunmehr große Laständerungen mit deutlich schnelleren Gradienten und deutlich häufiger in der Lebensdauer der Dampfturbine gefahren werden können. Dies führt insgesamt zu einer Erhöhung der Lebensdauer.Thus, the throttling is controlled so that the load changes on all components then smaller temperature changes in the first approximation are the same size. A significant advantage of the invention is that now large load changes can be driven with significantly faster gradients and much more often in the life of the steam turbine. This leads to an overall increase in the lifetime.

Im Folgenden wird nun ein Ausführungsbeispiel der Erfindung näher beschrieben (ohne Figur).In the following, an embodiment of the invention will now be described in detail (without figure).

Herkömmliche konventionelle Kraftwerke umfassen eine Dampfturbine, die sich in eine Hochdruck-Teilturbine, Mitteldruck-Teilturbine und Niederdruck-Teilturbine sowie eine Zwischenüberhitzereinheit einteilen lässt, wobei die Zwischenüberhitzereinheit zwischen der Hochdruck-Teilturbine und der Mitteldruck-Teilturbine angeordnet wird. Vor der Hochdruck-Teilturbine erzeugt ein Dampferzeuger einen heißen Frischdampf, der durch die Hochdruck-Teilturbine strömt und anschließend in der Zwischenüberhitzereinheit wieder erhitzt wird und anschließend in die Mitteldruck-Teilturbine strömt sowie anschließend durch die Niederdruck-Teilturbine. Nach der Niederdruck-Teilturbine kondensiert der Dampf zu Wasser und wird über Pumpen wieder zum Dampferzeuger geführt und dort wieder zu Dampf umgewandelt. Solch eine Kraftwerksanlage wird für eine Nennleistung konzipiert, die möglichst permanent auf dieser Nennleistungsebene betrieben werden soll. In einem Teillastbetrieb, das bedeutet, dass die Kraftwerksanlage nicht bei 100% Nennlast, sondern bei beispielsweise 25% der Nennlast betrieben wird, ändern sich die Temperaturen in der Zwischenüberhitzereinheit. Die Temperatur sinkt. Vor der Mitteldruck-Teilturbine wird ein Regelventil angeordnet, das beim Betrieb der Teillast derart angedrosselt wird, dass eine Erhöhung der Temperatur am Eintritt zur Zwischenüberhitzereinheit erfolgt. Das bedeutet, dass ein Regler das Mitteldruck-Ventil derart ansteuert, dass die Dampfströmung angedrosselt wird und zwar derart, dass die Expansion in der Hochdruck-Teilturbine reduziert wird. In Folge dieser Reduzierung erhöht sich die Temperatur am Ausgang der Hochdruck-Teilturbine.Conventional conventional power plants include a steam turbine that can be divided into a high-pressure turbine section, medium-pressure turbine section and low-pressure section turbine and a reheater unit, wherein the reheater unit between the high-pressure turbine section and the intermediate-pressure turbine section is arranged. In front of the high-pressure turbine part, a steam generator generates a hot live steam, which flows through the high-pressure turbine section and then reheated in the reheater unit and then flows into the medium-pressure turbine section and then through the low-pressure turbine section. After the low-pressure turbine section, the steam condenses to water and is pumped back to the steam generator where it is converted back to steam. Such a power plant is designed for a rated power that is to be operated as permanently as possible at this nominal power level. In a part-load operation, which means that the power plant is operated at not 100% rated load, but at, for example, 25% of rated load, the temperatures in the reheater unit change. The temperature sinks. In front of the medium-pressure turbine part, a control valve is arranged, which is throttled during operation of the partial load such that an increase in the temperature takes place at the entrance to the reheater unit. This means that a controller controls the medium-pressure valve in such a way that the steam flow is throttled in such a way that the expansion in the high-pressure turbine part is reduced. In consequence of this reduction increases the temperature at the output of the high-pressure turbine section.

Claims (8)

Verfahren zum Betreiben einer Kraftwerksanlage umfassend eine Dampfturbine, die in eine Hochdruck-Teilturbine, Mitteldruck-Teilturbine und Niederdruck-Teilturbine unterteilt ist und zwischen der Hochdruck-Teilturbine und der Mitteldruck-Teilturbine eine Zwischenüberhitzereinheit angeordnet ist, mit den Schritten: - Betrieb der Kraftwerksanlage in Teillast, - Erhöhung der Temperatur am Eintritt zur Zwischenüberhitzereinheit durch Androsselung eines Ventils, das vor der Mitteldruck-Teilturbine angeordnet wird. Method for operating a power plant comprising a steam turbine, which is subdivided into a high-pressure turbine section, medium-pressure turbine section and low-pressure turbine section, and a reheater unit is arranged between the high-pressure turbine section and the medium-pressure turbine section, comprising the steps of: - Operation of the power plant in part load, - Increasing the temperature at the inlet to the reheater unit by throttling a valve, which is placed in front of the medium-pressure turbine section. Verfahren nach Anspruch 1,
wobei die Androsselung derart erfolgt, dass die Expansion in der Hochdruck-Teilturbine reduziert wird.
Method according to claim 1,
wherein the throttling takes place in such a way that the expansion in the high-pressure turbine part is reduced.
Verfahren nach Anspruch 1 oder 2,
wobei die Androsselung derart gewählt wird, dass der Betrag der Temperaturabsenkung nach der Zwischenüberhitzereinheit im ungedrosselten Zustand im Wesentlichen halbiert wird.
Method according to claim 1 or 2,
wherein the throttling is selected such that the amount of temperature decrease after the reheater unit in the unthrottled state is substantially halved.
Verfahren nach einem der vorhergehenden Ansprüche, wobei die Androsselung derart erfolgt, dass bei einem Lastwechsel die Temperaturänderung vor und nach der Zwischenüberhitzereinheit in Folge der Androsselung im Wesentlichen gleich groß ist.Method according to one of the preceding claims, wherein the throttling takes place in such a way that during a load change, the temperature change before and after the reheater unit due to the throttling is substantially equal. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Betrieb bei Teillast im Wesentlichen zwischen 20% und 40%, insbesondere bei 25% der Nennlast erfolgt.Method according to one of the preceding claims, wherein the operation at partial load substantially between 20% and 40%, in particular at 25% of the rated load takes place. Kraftwerk, das nach einem Verfahren gemäß den Ansprüchen 1 bis 5 betrieben wird.Power plant, which is operated by a method according to claims 1 to 5. Kraftwerk nach Anspruch 6,
wobei das Kraftwerk als Dampfkraftwerk ausgebildet ist.
Power plant according to claim 6,
wherein the power plant is designed as a steam power plant.
Kraftwerk nach Anspruch 6,
wobei das Kraftwerk als Gas- und Dampfkraftwerk ausgebildet ist.
Power plant according to claim 6,
wherein the power plant is designed as a gas and steam power plant.
EP20120163194 2012-04-04 2012-04-04 Power plant and method for operating a power plant assembly Withdrawn EP2647802A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP20120163194 EP2647802A1 (en) 2012-04-04 2012-04-04 Power plant and method for operating a power plant assembly
CN201380018922.9A CN104204425B (en) 2012-04-04 2013-03-27 Power station and the method for running power station
JP2015503823A JP5985737B2 (en) 2012-04-04 2013-03-27 Method for operating a power plant and power plant equipment
US14/388,553 US9574462B2 (en) 2012-04-04 2013-03-27 Method for operating a power plant installation
PCT/EP2013/056496 WO2013149900A1 (en) 2012-04-04 2013-03-27 Power plant and method for operating a power plant facility
EP13714254.3A EP2805031B1 (en) 2012-04-04 2013-03-27 Power plant and method for operating a power plant facility
PL13714254T PL2805031T3 (en) 2012-04-04 2013-03-27 Power plant and method for operating a power plant facility
IN7231DEN2014 IN2014DN07231A (en) 2012-04-04 2013-03-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20120163194 EP2647802A1 (en) 2012-04-04 2012-04-04 Power plant and method for operating a power plant assembly

Publications (1)

Publication Number Publication Date
EP2647802A1 true EP2647802A1 (en) 2013-10-09

Family

ID=48048014

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20120163194 Withdrawn EP2647802A1 (en) 2012-04-04 2012-04-04 Power plant and method for operating a power plant assembly
EP13714254.3A Not-in-force EP2805031B1 (en) 2012-04-04 2013-03-27 Power plant and method for operating a power plant facility

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13714254.3A Not-in-force EP2805031B1 (en) 2012-04-04 2013-03-27 Power plant and method for operating a power plant facility

Country Status (7)

Country Link
US (1) US9574462B2 (en)
EP (2) EP2647802A1 (en)
JP (1) JP5985737B2 (en)
CN (1) CN104204425B (en)
IN (1) IN2014DN07231A (en)
PL (1) PL2805031T3 (en)
WO (1) WO2013149900A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026230A1 (en) * 2014-11-26 2016-06-01 Siemens Aktiengesellschaft Method for operating a turbine unit, steam power station or combined cycle power plant and use of a throttle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015200250A1 (en) * 2015-01-12 2016-07-14 Siemens Aktiengesellschaft Method for operating an osmotic power plant and osmotic power plant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894394A (en) * 1974-04-22 1975-07-15 Westinghouse Electric Corp HTGR power plant hot reheat steam pressure control system
US4132076A (en) * 1975-08-22 1979-01-02 Bbc Brown, Boveri & Company Limited Feedback control method for controlling the starting of a steam turbine plant
US4253308A (en) * 1979-06-08 1981-03-03 General Electric Company Turbine control system for sliding or constant pressure boilers
EP0236959A2 (en) * 1986-03-07 1987-09-16 Hitachi, Ltd. Method for starting thermal power plant
EP0899505A2 (en) * 1997-08-29 1999-03-03 Mitsubishi Heavy Industries, Ltd. Combined power generation plant
DE102008037579A1 (en) * 2007-11-26 2009-05-28 General Electric Co. Method and apparatus for improved operation of steam turbines at reduced load
DE102010041627A1 (en) * 2010-09-29 2012-03-29 Siemens Aktiengesellschaft Steam turbine with reheat

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225240A (en) 1975-08-19 1977-02-25 Matsushita Electric Ind Co Ltd Secondary nickel zinc alkaline battery
JPS53120606U (en) * 1977-03-04 1978-09-26
US4166221A (en) * 1978-02-09 1979-08-28 Westinghouse Electric Corp. Overspeed protection controller employing interceptor valve speed control
JPS6226303A (en) * 1985-07-25 1987-02-04 Ishikawajima Harima Heavy Ind Co Ltd Controlling method for exhaust temperature of reheating turbine
JPS63248903A (en) * 1987-04-03 1988-10-17 Hitachi Ltd Protecting method for steam turbine
SE502492C2 (en) * 1991-12-23 1995-10-30 Abb Carbon Ab Boiler system with common steam system
US5361585A (en) * 1993-06-25 1994-11-08 General Electric Company Steam turbine split forward flow
EP1191192A1 (en) * 2000-09-26 2002-03-27 Siemens Aktiengesellschaft Method and apparatus for preheating and dewatering of turbine stage steam conduits
EP1775431A1 (en) * 2005-10-12 2007-04-18 Siemens Aktiengesellschaft Method for warming-up a steam turbine
EP1998014A3 (en) * 2007-02-26 2008-12-31 Siemens Aktiengesellschaft Method for operating a multi-stage steam turbine
US8276382B2 (en) * 2009-03-17 2012-10-02 General Electric Company Systems and methods for pre-warming a heat recovery steam generator and associated steam lines

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894394A (en) * 1974-04-22 1975-07-15 Westinghouse Electric Corp HTGR power plant hot reheat steam pressure control system
US4132076A (en) * 1975-08-22 1979-01-02 Bbc Brown, Boveri & Company Limited Feedback control method for controlling the starting of a steam turbine plant
US4253308A (en) * 1979-06-08 1981-03-03 General Electric Company Turbine control system for sliding or constant pressure boilers
EP0236959A2 (en) * 1986-03-07 1987-09-16 Hitachi, Ltd. Method for starting thermal power plant
EP0899505A2 (en) * 1997-08-29 1999-03-03 Mitsubishi Heavy Industries, Ltd. Combined power generation plant
DE102008037579A1 (en) * 2007-11-26 2009-05-28 General Electric Co. Method and apparatus for improved operation of steam turbines at reduced load
DE102010041627A1 (en) * 2010-09-29 2012-03-29 Siemens Aktiengesellschaft Steam turbine with reheat

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026230A1 (en) * 2014-11-26 2016-06-01 Siemens Aktiengesellschaft Method for operating a turbine unit, steam power station or combined cycle power plant and use of a throttle device
WO2016083131A1 (en) * 2014-11-26 2016-06-02 Siemens Aktiengesellschaft Method for operating a turbine unit, steam power plant or combined-cycle power plant, and use of a throttling device
CN107002513A (en) * 2014-11-26 2017-08-01 西门子公司 Method for running turbine unit, the application of steam power station or gas combustion-gas vapor combined cycle station and throttling arrangement
US20170314421A1 (en) * 2014-11-26 2017-11-02 Siemens Aktiengesellschaft Method for operating a turbine unit, steam power plant or combined-cycle power plant, and use of a throttling device

Also Published As

Publication number Publication date
CN104204425A (en) 2014-12-10
JP2015515573A (en) 2015-05-28
EP2805031A1 (en) 2014-11-26
CN104204425B (en) 2015-09-16
US20150113989A1 (en) 2015-04-30
WO2013149900A1 (en) 2013-10-10
JP5985737B2 (en) 2016-09-06
US9574462B2 (en) 2017-02-21
EP2805031B1 (en) 2015-12-23
PL2805031T3 (en) 2016-06-30
IN2014DN07231A (en) 2015-04-24

Similar Documents

Publication Publication Date Title
EP1934434B1 (en) Method for warming-up a steam turbine
DE102008029941B4 (en) Steam power plant and method for controlling the power of a steam power plant
DE102010060064A1 (en) Method for increasing the power output of a gas and steam combined cycle power plant during selected operating periods
EP1368555B1 (en) Method for operating a steam power installation and corresponding steam power installation
DE102011000644A1 (en) Systems and methods for preheating the pipe system of a heat recovery steam generator
EP2326800B1 (en) Steam power assembly for creating electrical energy
EP1854964A1 (en) Use of the steam turbine for primary frequency control in power generating plants
WO2011020776A2 (en) Solar thermal power plant having a heat exchanger in the feedwater preheating section and method for operating the power plant
DE102017104091A1 (en) System and method for heating components of a heat recovery steam generator
EP1998014A2 (en) Method for operating a multi-stage steam turbine
EP2918793A1 (en) Control concept for district heating decoupling in a steam power plant
WO2018172107A1 (en) Power plant for generating electrical energy and method for operating a power plant
EP2805031B1 (en) Power plant and method for operating a power plant facility
EP2362073A1 (en) Steam power station comprising a tuning turbine
DE10155508C5 (en) Method and device for generating electrical energy
EP2511485A1 (en) Turbomachine, Steam Turbine plant, and Method for heating a steam turbine shaft
EP3280884B1 (en) Method for cooling a steam turbine
EP2859195B1 (en) Method for supporting a network frequency
EP2642090B1 (en) Method for operating a steam turbine and control unit therefore
DE102016212634A1 (en) Method for secondary frequency control of a fossil-fired power plant
EP2781832A1 (en) Method for starting a solar thermal power plant
DE102023201421A1 (en) Method for operating an electrolysis plant, electrolysis plant
DE1247074B (en) Steam power generation plant with a nuclear reactor as a heat source and a gas turbine process for peak loads
DE102012218542B4 (en) Method for the flexible operation of a power plant
EP3444449A1 (en) Installation with bypass station

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140410