EP1368555B1 - Method for operating a steam power installation and corresponding steam power installation - Google Patents

Method for operating a steam power installation and corresponding steam power installation Download PDF

Info

Publication number
EP1368555B1
EP1368555B1 EP02719925A EP02719925A EP1368555B1 EP 1368555 B1 EP1368555 B1 EP 1368555B1 EP 02719925 A EP02719925 A EP 02719925A EP 02719925 A EP02719925 A EP 02719925A EP 1368555 B1 EP1368555 B1 EP 1368555B1
Authority
EP
European Patent Office
Prior art keywords
condensate
steam
preheating
turbine
partial flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02719925A
Other languages
German (de)
French (fr)
Other versions
EP1368555A1 (en
Inventor
Tilman Abel
Dieter Blanck
Georg Haberberger
Imke Riebeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP02719925A priority Critical patent/EP1368555B1/en
Publication of EP1368555A1 publication Critical patent/EP1368555A1/en
Application granted granted Critical
Publication of EP1368555B1 publication Critical patent/EP1368555B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series

Definitions

  • the invention relates to a steam power plant according to the preamble of claim 1.
  • a steam power plant is usually used for generating electrical energy or for driving a work machine.
  • a run in an evaporator circuit of the steam power plant working fluid usually a water-water / steam mixture, evaporated in an evaporator or steam generator (boiler).
  • the steam generated in the process relaxes in a steam turbine and is then fed to a condenser.
  • the condensed in the condenser working fluid is then fed via a pump again to the boiler for steam generation.
  • DE-A-1 811 008 discloses a steam turbine plant in which an already preheated amount of condensate or feedwater is divided and part of the feedwater is passed through a bypass when the feedwater quantity exceeds a level of exhaustion of a downstream preheater.
  • DE-A-2 164 631 further discloses a device for securing high pressure preheaters of a steam power plant, in which a bypass line is provided parallel to high pressure preheaters, which can be disconnected via a quick-closing valve, so that the water usually passed through the preheater completely via the re-direction management. See also FR-A-1 396 379.
  • the object of the invention is to provide a steam power plant, in which a preheating of the boiler feed water to be supplied to the boiler while increasing the power of the turbine and high reliability can be achieved.
  • bypass line which bypasses the preheating, it is ensured that the preheating device is acted upon only by the first partial flow of condensate, while a second partial flow flows through the bypass line without preheating.
  • bypass line is understood to mean that this is performed in parallel to the preheater, wherein the bypass line branches off upstream of the preheater from the condensate line and is connected downstream of the preheater back to the condensate line. Upstream of the preheater for this purpose a branch point is provided while downstream of the preheating a mixing point is arranged.
  • the condensate from the condenser can be split at the branch into the first partial flow and a second partial flow that is complementary to the total condensate flow.
  • the first condensate stream is guided relative to the flow direction of the condensate to the branch in the condensate line, in which the preheating device is connected to preheat the first condensate stream.
  • the second condensate stream and the preheated first condensate stream are miscible at the mixing point, ie at the downstream connection point of the bypass line to the condensate line, wherein a mixing temperature depending on the mass flow of the first and second partial flow of condensate and depending on the heat absorption of the first condensate stream in the Preheating adjustable.
  • bypass line Parallel to the preheating an activatable via a quick-closing fitting bypass line is connected.
  • This bypass line is provided in the event of a quick-closing, for example in an emergency situation in case of risk of flooding or overheating of the preheater, for the total deflection of the preheater with condensate.
  • the bypass line can be activated via the quick-closing fitting, ie can be unlocked, whereby at the same time the flow of condensate in the condensate line to the preheating device is interrupted.
  • the quick-closing fitting is designed, for example, as a three-way fitting, which leads at least the first part-stream of condensate after activation via the bypass line, so that no preheating of condensate in the preheating device takes place any longer.
  • the bypass line is not activated, so that the first partial flow is delivered to the preheating device via the condensate line.
  • the invention is based on the consideration that the power increase of a turbine connected in a steam turbine turbine, the steam mass flow through the turbine on the one hand and on the other hand, the preheating temperature of the boiler feed water supplied to the boiler is taken into account.
  • Both process variables are coupled to one another by the tapping of the turbine, which is usually carried out in steam power plants, wherein a partial steam mass flow for preheating the condensate obtained is taken from the steam turbine process.
  • This steam extraction is at the expense of the performance of the turbine, in particular the overall efficiency of the steam power plant.
  • the condensate obtained in the condenser is completely preheated in the known systems by means of bleed steam, and thereby preheated to the highest possible temperature near the boiling point before it is fed as boiler feed water to the boiler. This rigid coupling of the condensate preheating with the steam extraction, the performance of the turbine is set at a constant steam pressure.
  • a power increase of the turbine of a steam power plant is achieved by the preheating temperature is adjusted flexibly as needed by mixing partial streams of condensate.
  • the condensate stream is divided into a first partial stream and a second partial stream, wherein only the first partial stream is preheated, and the second partial stream is added to the preheated first partial stream again.
  • partial flow is to be understood here as a true partial flow of condensate deposited in the condenser.
  • a mixture temperature which is lower than the temperature of the preheated first partial stream of condensate before mixing with the second partial stream can be achieved compared with preheating the entire condensate.
  • the mixing temperature is advantageously flexibly adjustable.
  • the first partial flow and the second partial flow can be flexibly adjusted during the division, whereby correspondingly more or less process steam is available in the turbine for performing work.
  • Another advantage is the fact that with the solution presented, it is possible to achieve an increase in capacity by a partial flow through the preheating without the life of the components, in particular the preheating the steam turbine plant is limited. In particular, a much more efficient use of heat arises than with a total bypass of the preheating section, in which at least at times no condensate is preheated, i. the first partial flow is 0. This is important, for example, for high-pressure preheater or the like.
  • the first partial flow is preheated with tapping steam from the turbine.
  • tapping steam from the turbine By preheating only the first partial flow with tapping steam from the turbine ensures that only one compared to the conventional tap correspondingly lower amount of bleed steam is required for preheating. Consequently is more process steam in the steam turbine directly to increase the power of the turbine available.
  • the condensate mass flow of the first partial flow directly correlates with the tap steam mass flow, so that the larger the first partial flow, the greater the amount of tapping steam required in order to achieve a preheating of the first partial flow to a desired temperature.
  • the bypass line preferably has a control valve for controlling a second partial flow of the condensate bypassing the preheating device.
  • the control valve is used to control or to a default of the second partial flow, which does not flow through the preheater and therefore does not lead to a withdrawal of bleed steam.
  • the second partial flow is precisely adjustable and therefore also the amount of heat which is required for preheating the first partial flow complementary second partial flow in the preheater.
  • the mixing temperature which occurs during the mixing of the partial flows at the mixing point in the condensate line can be regulated with the control valve. As a result, depending on the demand by which the power of the steam turbine is to be increased, the amount of the second partial flow bypassing the preheating device in the bypass line can be adjusted, in particular in a corresponding control loop.
  • the bypass line opens downstream of the preheater in the condensate line.
  • the junction is at the same time the mixing point at which the first partial flow is mixed with the second partial flow, wherein after mixing set a desired preheat temperature of the boiler feed water to be supplied to the boiler by itself.
  • the preheating device preferably has at least one heat exchanger, in particular a high-pressure preheater. It can also be connected in series, a plurality of heat exchangers, thereby enabling a multi-stage heating of the first partial flow of condensate.
  • the heat exchanger as a high-pressure preheater of a steam power plant, the preheater is charged with condensate at a pressure of about 300 bar and assigned to a high-pressure stage of the turbine.
  • the turbine can also, as usually provided in steam power plants, have a high-pressure turbine section and / or a medium-pressure turbine section and / or a low-pressure turbine section.
  • the plant concept of the invention can therefore be applied very flexibly to different steam power plants comprising a combination of different turbine types (high-pressure, medium-pressure, low-pressure turbines) with corresponding preheating devices.
  • the first partial flow is preheated in at least two stages.
  • a desired temperature of the first partial flow after preheating is precisely adjustable.
  • all preheating stages or only a part of the preheating stages can be provided for preheating the first partial flow. In this way advantageously results in the ability to utilize individual stages of preheating and thereby have more process heat available for the turbine process.
  • the precise adjustment of a desired temperature of the first partial flow after preheating and before mixing with the second partial flow also allows accurate adjustment of the mixing temperature in the mixing of the partial flows, so that the preheating temperature of the boiler feed water is adjusted accordingly.
  • the Preheating of the first sub-string in only one stage, in particular possible in exactly one stage.
  • the pressure of the boiler feed water is typically about 300 bar.
  • the preheating temperature of the boiler feed water is lowered by about 30 ° C to 70 ° C by the mixture with the second, not preheated partial flow.
  • the first partial flow and the second partial flow are divided in the ratio 0.4 to 0.8, in particular in the ratio 0.6 to 0.7.
  • the condensate recovered in the condenser is divided such that the first partial flow of condensate is about 60% and the second partial flow of condensate is about 40%.
  • the first partial stream is preheated from a temperature of about 200 ° C to a temperature of about 280 ° C, while the second partial stream is not preheated and therefore remains at a temperature of 200 ° C until prior to mixing with the first partial stream.
  • the pressure of the condensate flows remains largely unchanged at about 300 bar.
  • the preheating temperature of the feedwater to be supplied to the boiler can be adjusted as required by the metered deflection of the second partial flow to the preheating and the mixture of the two partial flows after the preheating of the first partial flow.
  • the division of the partial flows is preferably controlled or regulated.
  • the mixture is fed as boiler feed water to a fossil-fired steam generator.
  • the method of the invention is in particular intended for use in steam power plants having a boiler fueled by a fossil fuel such as coal or oil.
  • the steam power plant 1 shown in the figure which is part of a power plant, has a steam turbine 5 and a boiler 3 for generating steam D.
  • the turbine 5 is downstream of a condenser 7 via an exhaust steam line 51.
  • the steam power plant 1 For the return of condensate K to the boiler 3, the steam power plant 1, a condensate line 13, which is connected to the output side of the capacitor 7.
  • a first pump 41, a feedwater tank 45 and a second pump 43 is connected in succession in the flow direction of the condensate sequentially.
  • a preheating device 15 for preheating condensate K is connected in the condensate line 13.
  • the preheater 15 is in this case upstream of the boiler 3 in the flow direction of the condensate.
  • the preheating device comprises a first preheating stage 9A and a second preheating stage 9B connected downstream of the first preheating stage.
  • the preheating stages 9A, 9B are designed here as respective heat exchangers 23A, 23B.
  • the boiler 3 has a fossil-fired steam generator 11, which comprises a fuel feed 53 for supplying a fossil fuel 29, for example coal or oil.
  • a bleed line 19A leads from a stage of the steam turbine 5 to the heat exchanger 23B.
  • a bleed line 19B leads from a further stage of the turbine 5 to the heat exchanger 23A.
  • a respective quantity of bleed steam A 1 , A 2 of the preheating device 15, or the heat exchangers 23 A, 23 B for preheating the condensate K can be supplied via the bleed lines 19 A, 19 B.
  • a bypass line 17 bypasses the preheating device 15, wherein the bypass line branches off from the condensate line 13 at a separation point 47, bypasses the preheating device 15 and rejoins the condensate line 13 at a mixing point 48 downstream of the preheating device 15.
  • a control valve 21 for controlling a pre-heating the partial stream 15 is umstructureden K 2, hereinafter referred to as a second partial flow K 2, are provided.
  • the control valve 21 has a servomotor 33, via which the desired valve position of the control valve 21 and thus the first partial flow K 1 is adjustable.
  • the condensate K conveyed via the second pump 43 from the feedwater tank 45 can hereby be divided into a first partial flow K 1 and a second partial flow K 2 , the first partial flow K 1 being delivered via the condensate line 13 to the preheating device 15 and second partial flow K 2, the preheating device 15 bypasses via the bypass line 17, so that the preheating device 15 is acted upon only with the first partial flow K 1 of the condensate K.
  • a controllable via a servo motor 33 shift valve 37 is connected after the separation point 47 in the condensate line 13, which is open in the normal operating condition.
  • Parallel to the slide valve 37 is connected from the bypass line 17 to the condensate line 13 branch line 55, which has a low load control valve 35 with an actuator 35A.
  • the control valve 35 is closed in normal operation, so that no condensate K passes through the branch line 55.
  • the low-load control valve 35 is provided only for the light load case, in which case the slide valve 37 is closed and passes through the actuator 35A of the control valve 35 according to the load requirement small amount of condensate K via the branch line 55 to the preheater 15.
  • the preheating device 15 is connected in parallel via a bypass line 27 which can be activated via a quick-closing fitting 25.
  • a respective quick-closing fitting 25 is in this case connected to the condensate line 13 upstream and downstream of the preheating device 15.
  • the quick-closing fitting 25 is switchable via an actuator 31 between two settings in a short time.
  • the fitting 25 is designed for this purpose as a three-way valve, wherein in the normal operating state, the bypass line 27 is closed, that is not activated.
  • Condensate K flows in a first partial flow K 1 through the preheater 15 and in a second partial flow K 2 via the bypass line 17.
  • the quick-closing valve 25 is activated via the actuator 31, wherein the bypass line 27 is released and the condensate flow through the condensate line 13 is interrupted by the preheating 15.
  • the preheating device 15 is accordingly completely bypassed, ie no condensate K is supplied to the preheating device 15 and thus preheated.
  • the activatable bypass line 27 serves to bypass and thus secure the preheating device 15, in particular the heating surfaces of the heat exchanger 23A, 23B.
  • the turbine 5 is here shown simplified, but may consist of several sub-turbines, not shown, for example, a high-pressure turbine section, a medium-pressure turbine section and a low-pressure turbine part.
  • the relaxed to low pressure steam D is supplied via the exhaust steam line 51 to the condenser 7 and condenses there to condensate K.
  • the condensate K is conveyed via the condensate line 13 by means of the first pump 41 in the feedwater tank 45 and collected there.
  • preheated condensate K is fed as boiler feed water S, so that a closed water-steam cycle is created.
  • the useful work gained in the turbine 5 is transmitted via the rotating shaft 57 to a coupled to the shaft 57 generator 39 and converted into electrical energy.
  • the condensate K is divided into a first partial flow K 1 and a second partial flow K 2 , wherein only the first partial flow K 1 is preheated, and the second partial flow K 2 is mixed again with the preheated first partial flow K 1 ,
  • the division of the condensate K into the first partial flow K 1 and the second partial flow K 2 takes place at the separation point 47, the second partial flow K 2 bypassing the preheating device 15 via the bypass line 17.
  • the first partial flow K 1 is preheated by means of bleed steam A 1 , A 2 from the turbine 5.
  • the preheating of the first partial flow K 1 takes place in two stages 9A, 9B, wherein the first partial flow K 1 is preheated to a temperature of about 280 ° C at a pressure of 300 bar.
  • the first partial flow K 1 is mixed with the second partial flow K 2 , wherein a mixing temperature of 210 ° C to 250 ° C, in particular from 220 ° C to 240 ° C sets.
  • the division of the partial flows K 1, K 2 are, for example, such that the first partial flow K 1 represents about 40% of the total condensate flow and the second part flow K 2 corresponding to about 60% of the total condensate stream prior to the point of separation 47th
  • the division of the partial streams K 1 , K 2 is controlled or regulated via the control or metering valve 21, which is precisely adjustable by means of the servomotor 33 in the valve position. In this way, a metered deflection of the preheating device 15 via the bypass line 17, wherein a correspondingly lower demand for Anzapfdampf A 1 , A 2 for preheating the first partial flow K 1 is recorded in the preheater 15.
  • the removal of bleed steam A 1 , A 2 from the turbine 5 is advantageously carried out self-regulating, by the coupling of the first partial flow K 1 with the bleed A 1 , A 2 via the heat exchanger 23A, 23B.
  • the temperature of the first partial flow K 1 after passing through the heat exchangers 23A, 23B is approximately equal to the temperature of the bleed steam A 1 , A 2 , ie for example about 280 ° C at a pressure of 300 bar.
  • the mixing temperature automatically. This mixture temperature is at the same time the preheating temperature T s of the boiler feedwater S.
  • the preheating temperature T s is reduced compared to the conventional steam power plants, although an increase in power of the turbine 5 is achieved by the lower heat consumption for preheating the condensate K. In this case, in particular, a significantly more efficient heat consumption occurs than with a total reversal of the preheating device 15, which is usually carried out to increase the power.
  • a significantly more efficient heat consumption occurs than with a total reversal of the preheating device 15, which is usually carried out to increase the power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The invention relates to a method for operating a steam power installation (1), whereby steam (D) produced in a boiler (3) is condensed in a condenser (7) after passing through at least one turbine (5), and the condensate (K) obtained is preheated and redirected back to the boiler (3) as boiler feed-water (S). In order to pre-heat the condensate, said condensate (K) is split into a first partial current (K1) and a second partial current (K2). Only the first partial current (K1) is pre-heated and the second partial current (K2) is then mixed with the pre-heated first partial current (K1). The power of the turbine (5) can thus be increased as required, up to the boiler reserve of the steam power plant (1).

Description

Die Erfindung bezieht sich auf eine Dampfkraftanlage gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a steam power plant according to the preamble of claim 1.

Eine Dampfkraftanlage wird üblicherweise zur Erzeugung elektrischer Energie oder auch zum Antrieb einer Arbeitsmaschine eingesetzt. Dabei wird ein in einem Verdampferkreislauf der Dampfkraftanlage geführtes Arbeitsmedium, üblicherweise ein Wasser-Wasser/Dampfgemisch, in einem Verdampfer oder Dampferzeuger (Kessel) verdampft. Der dabei erzeugte Dampf entspannt sich arbeitsleistend in einer Dampfturbine und wird anschließend einem Kondensator zugeführt. Das im Kondensator kondensierte Arbeitsmedium wird dann über eine Pumpe erneut dem Kessel zur Dampferzeugung zugeführt.A steam power plant is usually used for generating electrical energy or for driving a work machine. In this case, a run in an evaporator circuit of the steam power plant working fluid, usually a water-water / steam mixture, evaporated in an evaporator or steam generator (boiler). The steam generated in the process relaxes in a steam turbine and is then fed to a condenser. The condensed in the condenser working fluid is then fed via a pump again to the boiler for steam generation.

Bei einem derartigen allgemein bekannten Dampfkraftwerk wird mittels Teildampf-Massenströmen aus der Turbinendampfmenge das als Speisewasser eingesetzte Kondensat sukzessive bis nahe der Siedetemperatur vorgewärmt, wodurch der thermodynamische Wirkungsgrad des gesamten Prozesses steigt. Durch die Dampfentnahme aus der Turbinendampfmenge können die nachfolgenden Dampfturbinenstufen allerdings dem Dampffluid weniger Leistung entnehmen.In such a well-known steam power plant, the condensate used as feed water is successively preheated to near boiling temperature by means of partial steam mass flows from the turbine steam amount, whereby the thermodynamic efficiency of the entire process increases. Due to the steam extraction from the turbine steam quantity, however, the downstream steam turbine stages can draw less power from the steam fluid.

Aus der EP-A2-1 055 801 ist ein Verfahren zum Betrieb eines Dampfkraftwerkes bekannt, bei dem mittels Teildampf-Massenströmen aus der Turbinendampfmenge das als Speisewasser eingesetzte Kondensat bis nahe der Siedetemperatur vorgewärmt wird. Zur Vermeidung des Absinkens der Leistungsentnahme bei den nachfolgenden Dampfturbinenstufen ist vorgesehen, dass zur Vorwärmung des Kondensats die Abwärme aus Brennstoffzellen verwendet wird. Durch die Vorwärmung des Speisewassers aus der Abwärme der Brennstoffzellen und der damit verbundenen Erhöhung der an der Expansion teilnehmenden Menge, wird eine Steigerung des Dampfprozesswirkungsgrades erreicht.From EP-A2-1 055 801 a method for operating a steam power plant is known in which by means of partial steam mass flows from the turbine steam amount, the condensate used as feed water is preheated to near boiling temperature. To avoid sinking the power extraction in the subsequent steam turbine stages is provided that the waste heat from fuel cells is used to preheat the condensate. By preheating the feed water from the waste heat of the fuel cells and the associated increase in the amount participating in the expansion, an increase in the steam process efficiency is achieved.

Durch die in die Vorwärmstrecke der EP-A2-1 055 801 eingebundene Brennstoffzellenanordnung ist eine konstruktiv und kostenmäßig relativ aufwendige Vorwärmung durch die externe Wärmezufuhr über die Brennstoffzellen erzielt.By integrated into the preheating section of EP-A2-1 055 801 fuel cell assembly is a structurally and cost moderately complex preheating achieved by the external heat supply via the fuel cell.

Aus der DE-A-1 811 008 ist eine Dampfturbinenanlage bekannt, bei der eine bereits vorgewärmte Kondensat- oder Speisewassermenge aufgeteilt und ein Teil des Speisewassers über einen Bypass geführt wird, wenn die Speisewassesrmenge eine Auslegemenge eines nachgeschalteten Vorwärmers überschreitet.DE-A-1 811 008 discloses a steam turbine plant in which an already preheated amount of condensate or feedwater is divided and part of the feedwater is passed through a bypass when the feedwater quantity exceeds a level of exhaustion of a downstream preheater.

Aus der DE-A-2 164 631 ist weiterhin eine Einrichtung zum Absichern von Hochdruckvorwärmern einer Dampfkraftanlage zu entnehmen, bei der eine Umführungsleitung parallel zu Hochdruckvorwärmern vorgesehen ist, die über eine Schnellschlussarmatur freigeschaltet werden kann, so dass das üblicherweise über die Vorwärmer geführte Wasser vollständig über die Umführungsleitung geführt wird. Siehe auch FR-A-1 396 379.DE-A-2 164 631 further discloses a device for securing high pressure preheaters of a steam power plant, in which a bypass line is provided parallel to high pressure preheaters, which can be disconnected via a quick-closing valve, so that the water usually passed through the preheater completely via the re-direction management. See also FR-A-1 396 379.

Aufgabe der Erfindung ist es eine Dampfkraftanlage anzugeben, bei der eine Vorwärmung des dem Kessel zuzuführenden Kesselspeisewassers bei gleichzeitiger Leistungserhöhung der Turbine und hoher Betriebssicherheit erzielbar ist.The object of the invention is to provide a steam power plant, in which a preheating of the boiler feed water to be supplied to the boiler while increasing the power of the turbine and high reliability can be achieved.

Diese Aufgabe wird erfindungsgemäß durch eine Dampfkraftanlage gemäß Anspruch 1 gelöst.This object is achieved by a steam power plant according to claim 1.

Durch das Vorsehen einer Bypassleitung, die die Vorwärmeinrichtung umführt, ist sichergestellt, dass die Vorwärmeinrichtung lediglich mit dem ersten Teilstrom von Kondensat beaufschlagt ist, während ein zweiter Teilstrom die Bypassleitung ohne Vorwärmung durchströmt. Unter Bypassleitung wird hierbei verstanden, dass diese parallel zu der Vorwärmeinrichtung geführt ist, wobei die Bypassleitung stromaufwärts von der Vorwärmeinrichtung von der Kondensatleitung abzweigt und stromab von der Vorwärmeinrichtung wieder an die Kondensatleitung angeschlossen ist. Stromaufwärts der Vorwärmeinrichtung ist hierzu eine Abzweigstelle vorgesehen, während stromabwärts der Vorwärmeinrichtung eine Mischstelle angeordnet ist. Das Kondensat aus dem Kondensator ist an der Zweigstelle in den ersten Teilstrom und einen dazu bezogen auf den Gesamt-Kondensatstrom komplementären zweiten Teilstrom aufteilbar. Der erste Kondensatstrom ist bezogen auf die Strömungsrichtung des Kondensats nach der Zweigstelle in der Kondensatleitung geführt, in welche die Vorwärmeinrichtung zur Vorwärmung des ersten Kondensatstroms geschaltet ist. Der zweite Kondensatstrom und der vorgewärmte erste Kondensatstrom sind an der Mischstelle, d.h. an der stromabwärtig angeordneten Anschlussstelle der Bypassleitung an die Kondensatleitung, mischbar, wobei eine Mischungstemperatur je nach Massenstrom des ersten und des zweiten Teilstroms von Kondensat sowie je nach Wärmeaufnahme des ersten Kondensatstroms in der Vorwärmeinrichtung einstellbar.By providing a bypass line, which bypasses the preheating, it is ensured that the preheating device is acted upon only by the first partial flow of condensate, while a second partial flow flows through the bypass line without preheating. Under bypass line is understood to mean that this is performed in parallel to the preheater, wherein the bypass line branches off upstream of the preheater from the condensate line and is connected downstream of the preheater back to the condensate line. Upstream of the preheater for this purpose a branch point is provided while downstream of the preheating a mixing point is arranged. The condensate from the condenser can be split at the branch into the first partial flow and a second partial flow that is complementary to the total condensate flow. The first condensate stream is guided relative to the flow direction of the condensate to the branch in the condensate line, in which the preheating device is connected to preheat the first condensate stream. The second condensate stream and the preheated first condensate stream are miscible at the mixing point, ie at the downstream connection point of the bypass line to the condensate line, wherein a mixing temperature depending on the mass flow of the first and second partial flow of condensate and depending on the heat absorption of the first condensate stream in the Preheating adjustable.

Parallel zu der Vorwärmeinrichtung ist eine über eine Schnellschlussarmatur aktivierbare Umführungsleitung geschaltet. Diese Umführungsleitung ist im Schnellschlussfall, beispielsweise in einer Notsituation bei Gefahr der Überflutung oder Überhitzung der Vorwärmeinrichtung, zur totalen Umführung der Vorwärmeinrichtung mit Kondensat vorgesehen. Im Schnellschlussfall ist über die Schnellschlussarmatur die Umführungsleitung aktivierbar, d.h. freischaltbar, wobei zugleich der Strom an Kondensat in der Kondensatleitung zu der Vorwärmeinrichtung unterbrochen wird. Die Schnellschlussarmatur ist hierzu beispielsweise als Dreiwege-Armatur ausgestaltet, die zumindest den ersten Teilstrom an Kondensat nach der Aktivierung über die Umführungsleitung führt, so dass keine Vorwärmung von Kondensat in der Vorwärmeinrichtung mehr stattfindet. Im Normalfall ist die Umführungsleitung nicht aktiviert, so dass der erste Teilstrom über die Kondensatleitung der Vorwärmeinrichtung zugestellt wird. Vorteilhafterweise ist mit der über die Schnellschlussarmatur aktivierbaren Umführungsleitung eine erhöhte Betriebssicherheit der Dampfkraftanlage, insbesondere in Kombination mit der Bypassleitung gemäß der Erfindung gegeben.Parallel to the preheating an activatable via a quick-closing fitting bypass line is connected. This bypass line is provided in the event of a quick-closing, for example in an emergency situation in case of risk of flooding or overheating of the preheater, for the total deflection of the preheater with condensate. In the event of a quick reaction, the bypass line can be activated via the quick-closing fitting, ie can be unlocked, whereby at the same time the flow of condensate in the condensate line to the preheating device is interrupted. For this purpose, the quick-closing fitting is designed, for example, as a three-way fitting, which leads at least the first part-stream of condensate after activation via the bypass line, so that no preheating of condensate in the preheating device takes place any longer. In the normal case, the bypass line is not activated, so that the first partial flow is delivered to the preheating device via the condensate line. Advantageously, with the bypass line which can be activated via the quick-closing fitting, increased operational safety of the steam power plant, in particular in combination with the bypass line according to the invention, is provided.

Die Erfindung geht dabei von der Überlegung aus, dass zur Leistungserhöhung einer in eine Dampfkraftanlage geschalteten Turbine der Dampfmassenstrom durch die Turbine einerseits und andererseits die Vorwärmtemperatur des dem Kessel zugeführten Kesselspeisewassers zu berücksichtigen ist. Beide Prozessgrößen sind miteinander gekoppelt durch die üblicherweise in Dampfkraftanlagen durchgeführte Anzapfung der Turbine, wobei ein Teildampf-Massenstrom zur Vorwärmung des gewonnenen Kondensats dem Dampfturbinenprozess entnommen wird. Diese Dampfentnahme geht auf Kosten der Leistung der Turbine, insbesondere auf den Gesamtwirkungsgrad der Dampfkraftanlage. Das im Kondensator gewonnene Kondensat wird in den bekannten Anlagen vollständig mittels Anzapfdampf vorgewärmt, und dabei auf eine möglichst hohe Temperatur nahe der Siedetemperatur vorgewärmt, bevor es als Kesselspeisewasser dem Kessel zugeführt wird. Durch diese starre Kopplung der Kondensatvorwärmung mit der Dampfentnahme ist die Leistung der Turbine bei konstantem Frischdampfdruck festgelegt.The invention is based on the consideration that the power increase of a turbine connected in a steam turbine turbine, the steam mass flow through the turbine on the one hand and on the other hand, the preheating temperature of the boiler feed water supplied to the boiler is taken into account. Both process variables are coupled to one another by the tapping of the turbine, which is usually carried out in steam power plants, wherein a partial steam mass flow for preheating the condensate obtained is taken from the steam turbine process. This steam extraction is at the expense of the performance of the turbine, in particular the overall efficiency of the steam power plant. The condensate obtained in the condenser is completely preheated in the known systems by means of bleed steam, and thereby preheated to the highest possible temperature near the boiling point before it is fed as boiler feed water to the boiler. This rigid coupling of the condensate preheating with the steam extraction, the performance of the turbine is set at a constant steam pressure.

Im Bedarfsfall wird eine Leistungserhöhung der Turbine einer Dampfkraftanlage erreicht, indem die Vorwärmtemperatur je nach Bedarf durch Mischung von Teilströmen von Kondensat flexibel eingestellt wird. Dazu wird der Kondensatstrom in einen ersten Teilstrom und einen zweiten Teilstrom aufgeteilt, wobei lediglich der erste Teilstrom vorgewärmt, und der zweite Teilstrom dem vorgewärmten ersten Teilstrom wieder zugemischt wird. Der Begriff Teilstrom ist hier als echter Teilstrom des in dem Kondensator niedergeschlagenen Kondensats aufzufassen. Durch die Mischung des ersten, vorgewärmten Kondensatstroms mit dem zweiten, nicht vorgewärmten Kondensatstrom ist gegenüber einer Vorwärmung des gesamten Kondensats eine Mischungstemperatur erzielbar, die kleiner ist als die Temperatur des vorgewärmten ersten Teilstroms von Kondensats vor der Mischung mit dem zweiten Teilstrom. Durch Einstellung der Teilströme ist die Mischungstemperatur vorteilhafterweise flexibel einstellbar.If necessary, a power increase of the turbine of a steam power plant is achieved by the preheating temperature is adjusted flexibly as needed by mixing partial streams of condensate. For this purpose, the condensate stream is divided into a first partial stream and a second partial stream, wherein only the first partial stream is preheated, and the second partial stream is added to the preheated first partial stream again. The term partial flow is to be understood here as a true partial flow of condensate deposited in the condenser. By mixing the first, preheated condensate stream with the second, non-preheated condensate stream, a mixture temperature which is lower than the temperature of the preheated first partial stream of condensate before mixing with the second partial stream can be achieved compared with preheating the entire condensate. By adjusting the partial flows, the mixing temperature is advantageously flexibly adjustable.

Von besonderem Vorteil ist die Tatsache, dass durch Vorwärmung lediglich eines Teilstroms eine geringere Wärmemenge zur Vorwärmung des ersten Teilstroms gegenüber der Vorwärmung des gesamten Kondensats in den bekannten Anlagen benötigt wird. Somit steht zur Leistungserhöhung der Turbine Prozesswärme in Form eines höheren Dampf-Massenstromes durch die Turbine zur Verfügung. Mit dem Verfahren besteht die Möglichkeit der bedarfsweisen, erforderlichenfalls häufigen Leistungserhöhung der Turbine bis zur Kesselreserve (nicht Sekundenreserve) einer Dampfkraftanlage durch teilweise und gezielte Umführung des zweiten Teilstroms von Kondensat von der Vorwärmung, ohne den Frischdampfdruck über den Auslegungswert anheben zu müssen.Of particular advantage is the fact that by preheating only a partial flow, a smaller amount of heat for preheating the first partial flow over the preheating of the entire condensate is required in the known systems. Thus, to increase the power of the turbine process heat in the form of a higher steam mass flow through the turbine is available. With the method, there is the possibility of demand-related, if necessary frequent increase in power turbine up to the boiler reserve (not seconds reserve) of a steam power plant by partial and targeted bypassing the second partial flow of condensate from the preheating, without having to raise the live steam pressure above the design value.

Vorteilhafterweise ist je nach Leistungsbedarf der erste Teilstrom und der zweite Teilstrom bei der Aufteilung flexibel einstellbar, wodurch entsprechend mehr oder weniger Prozessdampf in der Turbine zur Verrichtung von Arbeit verfügbar ist.Advantageously, depending on the power requirement, the first partial flow and the second partial flow can be flexibly adjusted during the division, whereby correspondingly more or less process steam is available in the turbine for performing work.

Von weiterem Vorteil ist die Tatsache, dass mit der vorgestellten Lösung es möglich ist, durch eine Teildurchströmung der Vorwärmstrecke eine Leistungserhöhung zu erreichen, ohne dass die Lebensdauer der Komponenten, insbesondere der Vorwärmeinrichtungen der Dampfturbinenanlage, eingeschränkt wird. Dabei stellt sich insbesondere ein deutlich effizienterer Wärmeverbrauch ein als bei einer Totalumführung der Vorwärmstrecke, bei der zumindest zeitweise überhaupt kein Kondensat vorgewärmt wird, d.h. der erste Teilstrom 0 beträgt. Dies ist beispielsweise für Hochdruckvorwärmer oder ähnliches von Bedeutung.Another advantage is the fact that with the solution presented, it is possible to achieve an increase in capacity by a partial flow through the preheating without the life of the components, in particular the preheating the steam turbine plant is limited. In particular, a much more efficient use of heat arises than with a total bypass of the preheating section, in which at least at times no condensate is preheated, i. the first partial flow is 0. This is important, for example, for high-pressure preheater or the like.

In einer besonders bevorzugten Ausgestaltung wird der erste Teilstrom mit Anzapfdampf aus der Turbine vorgewärmt. Durch die Vorwärmung lediglich des ersten Teilstroms mit Anzapfdampf aus der Turbine ist sichergestellt, dass nur eine gegenüber der herkömmlichen Anzapfung entsprechend geringere Menge an Anzapfdampf zur Vorwärmung benötigt wird. Somit steht mehr Prozessdampf in der Dampfturbine unmittelbar zur Leistungserhöhung der Turbine zur Verfügung. Vorteilhafterweise korreliert dabei der Kondensat-Massenstrom des ersten Teilstroms mit dem Anzapfdampf-Massenstrom direkt, sodass je größer der erste Teilstrom ist desto größer die Menge an benötigtem Anzapfdampf, um eine Vorwärmung des ersten Teilstroms auf eine gewünschte Temperatur zu erzielen. Durch geeignete Kopplung des Anzapf-Dampfstroms mit dem ersten Teilstrom stellt sich der Bedarf an Anzapfdampf von selbst ein. Je größer der erste Teilstrom desto größer der Wärmebedarf in der Vorwärmeinrichtung und damit auch die Menge von Anzapfdampf, welcher der Turbine entnommen wird. Durch diesen Selbstregelungseffekt ist das Verfahren besonders kostengünstig und flexibel zum Betrieb der Dampfkraftanlage, insbesondere zur Leistungserhöhung der Turbine, angepasst.In a particularly preferred embodiment, the first partial flow is preheated with tapping steam from the turbine. By preheating only the first partial flow with tapping steam from the turbine ensures that only one compared to the conventional tap correspondingly lower amount of bleed steam is required for preheating. Consequently is more process steam in the steam turbine directly to increase the power of the turbine available. Advantageously, the condensate mass flow of the first partial flow directly correlates with the tap steam mass flow, so that the larger the first partial flow, the greater the amount of tapping steam required in order to achieve a preheating of the first partial flow to a desired temperature. By suitable coupling of the tapping steam flow with the first partial flow, the need for tapping steam arises automatically. The larger the first partial flow, the greater the heat requirement in the preheating device and thus also the amount of bleed steam taken from the turbine. Due to this self-regulation effect, the method is particularly cost-effective and flexible for the operation of the steam power plant, in particular for increasing the power of the turbine adapted.

Vorzugsweise weist die Bypassleitung ein Regelventil zur Regelung eines die Vorwärmeinrichtung umführenden zweiten Teilstroms des Kondensats auf. Das Regelventil dient zur Regelung oder auch zu einer Voreinstellung des zweiten Teilstroms, welche nicht die Vorwärmeinrichtung durchströmt und daher nicht zu einer Entnahme von Anzapfdampf führt. Über das Regelventil in der Bypassleitung ist der zweite Teilstrom präzise einstellbar und daher auch die Wärmemenge die zur Vorwärmung des zum ersten Teilstroms komplementären zweiten Teilstroms in der Vorwärmeinrichtung benötigt wird. Weiterhin ist vorteilhafterweise die Mischungstemperatur die sich bei der Mischung der Teilströme an der Mischstelle in der Kondensatleitung einstellt mit dem Regelventil regelbar. Dadurch ist je nach dem Bedarf um den die Leistung der Dampfturbine zu erhöhen ist, die Menge des zweiten, die Vorwärmeinrichtung umführenden Teilstroms in der Bypassleitung einstellbar, insbesondere in einem entsprechenden Regelkreis regelbar.The bypass line preferably has a control valve for controlling a second partial flow of the condensate bypassing the preheating device. The control valve is used to control or to a default of the second partial flow, which does not flow through the preheater and therefore does not lead to a withdrawal of bleed steam. About the control valve in the bypass line, the second partial flow is precisely adjustable and therefore also the amount of heat which is required for preheating the first partial flow complementary second partial flow in the preheater. Furthermore, advantageously, the mixing temperature which occurs during the mixing of the partial flows at the mixing point in the condensate line can be regulated with the control valve. As a result, depending on the demand by which the power of the steam turbine is to be increased, the amount of the second partial flow bypassing the preheating device in the bypass line can be adjusted, in particular in a corresponding control loop.

Bevorzugt mündet die Bypassleitung stromab der Vorwärmeinrichtung in die Kondensatleitung. Die Einmündung ist dabei zugleich die Mischstelle, an der der erste Teilstrom mit dem zweiten Teilstrom gemischt wird, wobei nach der Mischung sich eine gewünschte Vorwärmtemperatur des dem Kessel zuzuführenden Kesselspeisewassers von selbst einstellt.Preferably, the bypass line opens downstream of the preheater in the condensate line. The junction is at the same time the mixing point at which the first partial flow is mixed with the second partial flow, wherein after mixing set a desired preheat temperature of the boiler feed water to be supplied to the boiler by itself.

Bevorzugt weist die Vorwärmeinrichtung mindestens einen Wärmetauscher, insbesondere einen Hochdruck-Vorwärmer auf. Es können auch mehrere Wärmetauscher hintereinander geschaltet sein und dadurch eine mehrstufige Erwärmung des ersten Teilstroms von Kondensat ermöglichen. Bei Ausgestaltung des Wärmetauschers als ein Hochdruck-Vorwärmer einer Dampfkraftanlage ist der Vorwärmer mit Kondensat mit einem Druck von etwa 300 bar beaufschlagt und einer Hochdruck-Stufe der Turbine zugeordnet. Die Turbine kann aber auch, wie üblicherweise in Dampfkraftanlagen vorgesehen, eine Hochdruck-Teilturbine und/oder eine Mitteldruck-Teilturbine und/oder eine Niederdruck-Teilturbine aufweisen.The preheating device preferably has at least one heat exchanger, in particular a high-pressure preheater. It can also be connected in series, a plurality of heat exchangers, thereby enabling a multi-stage heating of the first partial flow of condensate. In the embodiment of the heat exchanger as a high-pressure preheater of a steam power plant, the preheater is charged with condensate at a pressure of about 300 bar and assigned to a high-pressure stage of the turbine. However, the turbine can also, as usually provided in steam power plants, have a high-pressure turbine section and / or a medium-pressure turbine section and / or a low-pressure turbine section.

Das Anlagenkonzept der Erfindung kann demzufolge sehr flexibel auf unterschiedliche Dampfkraftanlagen angewendet werden, die eine Kombination unterschiedlicher Turbinentypen (Hochdruck-, Mitteldruck-, Niederdruckturbinen) mit entsprechenden Vorwärmeinrichtungen umfassen.The plant concept of the invention can therefore be applied very flexibly to different steam power plants comprising a combination of different turbine types (high-pressure, medium-pressure, low-pressure turbines) with corresponding preheating devices.

In einer bevorzugten Ausgestaltung wird der erste Teilstrom in mindestens zwei Stufen vorgewärmt. Durch die Vorwärmung des ersten Teilstroms von Kondensat in mehreren Stufen ist eine gewünschte Temperatur des ersten Teilstroms nach der Vorwärmung genau einstellbar. Je nach Bedarf können alle Vorwärmstufen oder nur ein Teil der Vorwärmstufen zur Vorwärmung des ersten Teilstroms vorgesehen sein. Auf diese Weise ergibt sich vorteilhafterweise die Möglichkeit einzelne Stufen der Vorwärmung auszulasten und dadurch weitere Prozesswärme für den Turbinenprozess verfügbar zu haben. Die präzise Einstellung einer gewünschten Temperatur des ersten Teilstroms nach der Vorwärmung und vor der Mischung mit dem zweiten Teilstrom ermöglicht zudem eine genaue Einstellung der Mischungstemperatur bei der Mischung der Teilströme, so dass die Vorwärmtemperatur des Kesselspeisewassers entsprechend genau einstellbar ist. In einer alternativen Ausgestaltung ist die Vorwärmung des ersten Teilstrangs auch in nur einer Stufe, insbesondere in genau einer Stufe möglich.In a preferred embodiment, the first partial flow is preheated in at least two stages. By preheating the first partial flow of condensate in several stages, a desired temperature of the first partial flow after preheating is precisely adjustable. Depending on requirements, all preheating stages or only a part of the preheating stages can be provided for preheating the first partial flow. In this way advantageously results in the ability to utilize individual stages of preheating and thereby have more process heat available for the turbine process. The precise adjustment of a desired temperature of the first partial flow after preheating and before mixing with the second partial flow also allows accurate adjustment of the mixing temperature in the mixing of the partial flows, so that the preheating temperature of the boiler feed water is adjusted accordingly. In an alternative embodiment, the Preheating of the first sub-string in only one stage, in particular possible in exactly one stage.

Bevorzugt wird bei der Mischung der Teilströme eine Vorwärmtemperatur des Kesselspeisewassers von 210 °C bis 250 °C, insbesondere von 220 °C bis 240 °C, eingestellt. Der Druck des Kesselspeisewassers beträgt dabei typischerweise etwa 300 bar. Gegenüber der Temperatur des vorgewärmten ersten Teilstroms ist durch die Mischung mit dem zweiten, nicht vorgewärmten Teilstrom die Vorwärmtemperatur des Kesselspeisewassers etwa um 30 °C bis 70 °C abgesenkt.Preference is given to a preheating temperature of the boiler feed water of 210 ° C to 250 ° C, in particular from 220 ° C to 240 ° C, is set in the mixture of the partial streams. The pressure of the boiler feed water is typically about 300 bar. Compared to the temperature of the preheated first partial flow, the preheating temperature of the boiler feed water is lowered by about 30 ° C to 70 ° C by the mixture with the second, not preheated partial flow.

In einer bevorzugten Ausgestaltung werden der erste Teilstrom und der zweite Teilstrom im Verhältnis 0,4 bis 0,8, insbesondere im Verhältnis 0,6 bis 0,7 aufgeteilt. Beispielsweise wird in einem typischen Betriebsmodus der Dampfkraftanlage gemäß dem Verfahren der Erfindung das in dem Kondensator gewonnene Kondensat derart aufgeteilt, dass der erste Teilstrom von Kondensat etwa 60 % und der zweite Teilstrom von Kondensat etwa 40 % beträgt. Der erste Teilstrom wird dabei von einer Temperatur von ca. 200 °C auf eine Temperatur von etwa 280 °C vorgewärmt, während der zweite Teilstrom nicht vorgewärmt und mithin auf einer Temperatur von 200 °C bis vor der Mischung mit dem ersten Teilstrom verbleibt. Der Druck der Kondensatströme bleibt dabei weitgehend unverändert bei etwa 300 bar.In a preferred embodiment, the first partial flow and the second partial flow are divided in the ratio 0.4 to 0.8, in particular in the ratio 0.6 to 0.7. For example, in a typical operating mode of the steam power plant according to the method of the invention, the condensate recovered in the condenser is divided such that the first partial flow of condensate is about 60% and the second partial flow of condensate is about 40%. The first partial stream is preheated from a temperature of about 200 ° C to a temperature of about 280 ° C, while the second partial stream is not preheated and therefore remains at a temperature of 200 ° C until prior to mixing with the first partial stream. The pressure of the condensate flows remains largely unchanged at about 300 bar.

Vorteilhafterweise ist durch die dosierte Umführung des zweiten Teilstroms um die Vorwärmstrecke und die Mischung der beiden Teilströme nach der Vorwärmung des ersten Teilstroms die Vorwärmtemperatur des dem Kessel zuzuführenden Speisewassers bedarfsweise einstellbar. Hierbei wird bevorzugt die Aufteilung der Teilströme gesteuert oder geregelt durchgeführt.Advantageously, the preheating temperature of the feedwater to be supplied to the boiler can be adjusted as required by the metered deflection of the second partial flow to the preheating and the mixture of the two partial flows after the preheating of the first partial flow. In this case, the division of the partial flows is preferably controlled or regulated.

Weiter bevorzugt wird nach der Mischung der Teilströme das Gemisch als Kesselspeisewasser einem fossil befeuerten Dampferzeuger zugeführt. Das Verfahren der Erfindung ist insbesondere für die Anwendung in Dampfkraftanlagen vorgesehen, die einen Kessel aufweisen, der mit einem fossilen Brennstoff, beispielsweise Kohle oder Öl, befeuert ist.More preferably, after the mixture of the partial streams, the mixture is fed as boiler feed water to a fossil-fired steam generator. The method of the invention is in particular intended for use in steam power plants having a boiler fueled by a fossil fuel such as coal or oil.

Anhand eines Ausführungsbeispiels und einer schematischen Zeichnung wird die erfindungsgemäße Dampfkraftanlage beschrieben. Darin zeigt die einzige Figur in vereinfachter Darstellung eine Dampfkraftanlage. Die in der Figur dargestellte Dampfkraftanlage 1, die Teil einer Kraftwerksanlage ist, weist eine Dampfturbine 5 sowie einen Kessel 3 zur Erzeugung von Dampf D auf. Der Turbine 5 ist abdampfseitig ein Kondensator 7 über eine Abdampfleitung 51 nachgeschaltet. Zur Rückführung von Kondensat K zum Kessel 3 weist die Dampfkraftanlage 1 eine Kondensatleitung 13 auf, die mit dem Kondensator 7 ausgangsseitig verbunden ist. In die Kondensatleitung 13 ist in Strömungsrichtung des Kondensats aufeinanderfolgend eine erste Pumpe 41, ein Speisewasserbehälter 45 und eine zweite Pumpe 43 geschaltet. Weiterhin ist in die Kondensatleitung 13 eine Vorwärmeinrichtung 15 zum Vorwärmen von Kondensat K geschaltet. Die Vorwärmeinrichtung 15 ist hierbei in Strömungsrichtung des Kondensats K dem Kessel 3 vorgeordnet. Die Vorwärmeinrichtung umfasst eine erste Vorwärmstufe 9A sowie eine der ersten Vorwärmstufe nachgeschaltete zweite Vorwärmstufe 9B. Die Vorwärmstufen 9A, 9B sind hierbei als jeweilige Wärmetauscher 23A, 23B ausgestaltet. Der Kessel 3 weist einen fossil befeuerten Dampferzeuger 11 auf, welcher eine Brennstoffzufuhr 53 zur Zufuhr eines fossilen Brennstoffs 29, beispielsweise Kohle oder Öl, umfasst. Eine Anzapfleitung 19A führt von einer Stufe der Dampfturbine 5 zu dem Wärmetauscher 23B. Eine Anzapfleitung 19B führt von einer weiteren Stufe der Turbine 5 zu dem Wärmetauscher 23A. Über die Anzapfleitungen 19A, 19B ist eine jeweilige Menge von Anzapfdampf A1, A2 der Vorwärmeinrichtung 15, respektive den Wärmetauschern 23A, 23B zur Vorwärmung von Kondensat K zuführbar.Reference to an embodiment and a schematic drawing of the steam power plant according to the invention will be described. In it shows the single figure in a simplified representation of a steam power plant. The steam power plant 1 shown in the figure, which is part of a power plant, has a steam turbine 5 and a boiler 3 for generating steam D. The turbine 5 is downstream of a condenser 7 via an exhaust steam line 51. For the return of condensate K to the boiler 3, the steam power plant 1, a condensate line 13, which is connected to the output side of the capacitor 7. In the condensate line 13, a first pump 41, a feedwater tank 45 and a second pump 43 is connected in succession in the flow direction of the condensate sequentially. Furthermore, a preheating device 15 for preheating condensate K is connected in the condensate line 13. The preheater 15 is in this case upstream of the boiler 3 in the flow direction of the condensate. The preheating device comprises a first preheating stage 9A and a second preheating stage 9B connected downstream of the first preheating stage. The preheating stages 9A, 9B are designed here as respective heat exchangers 23A, 23B. The boiler 3 has a fossil-fired steam generator 11, which comprises a fuel feed 53 for supplying a fossil fuel 29, for example coal or oil. A bleed line 19A leads from a stage of the steam turbine 5 to the heat exchanger 23B. A bleed line 19B leads from a further stage of the turbine 5 to the heat exchanger 23A. A respective quantity of bleed steam A 1 , A 2 of the preheating device 15, or the heat exchangers 23 A, 23 B for preheating the condensate K can be supplied via the bleed lines 19 A, 19 B.

Eine Bypassleitung 17 umführt die Vorwärmeinrichtung 15, wobei die Bypassleitung an einer Trennstelle 47 von der Kondensatleitung 13 abzweigt, die Vorwärmeinrichtung 15 umführt und stromabwärts der Vorwärmeinrichtung 15 an einer Mischstelle 48 wieder in die Kondensatleitung 13 einmündet. In die Bypassleitung 17 ist ein Regelventil 21 zur Regelung eines die Vorwärmeinrichtung 15 umführenden Teilstroms K2, im Folgenden als zweiter Teilstrom K2 bezeichnet, vorgesehen. Das Regelventil 21 weist einen Stellmotor 33 auf, über den die gewünschte Ventilstellung des Regelventils 21 und damit der erste Teilstrom K1 einstellbar ist. An der Trennstelle 47 ist hierdurch das über die zweite Pumpe 43 aus dem Speisewasserbehälter 45 geförderte Kondensat K in einen ersten Teilstrom K1 und einen zweiten Teilstrom K2 aufteilbar, wobei der erste Teilstrom K1 über die Kondensatleitung 13 der Vorwärmeinrichtung 15 zugestellt wird und der zweite Teilstrom K2 die Vorwärmeinrichtung 15 über die Bypassleitung 17 umführt, so dass die Vorwärmeinrichtung 15 lediglich mit dem ersten Teilstrom K1 des Kondensats K beaufschlagt ist.A bypass line 17 bypasses the preheating device 15, wherein the bypass line branches off from the condensate line 13 at a separation point 47, bypasses the preheating device 15 and rejoins the condensate line 13 at a mixing point 48 downstream of the preheating device 15. In the bypass conduit 17 a control valve 21 for controlling a pre-heating the partial stream 15 is umführenden K 2, hereinafter referred to as a second partial flow K 2, are provided. The control valve 21 has a servomotor 33, via which the desired valve position of the control valve 21 and thus the first partial flow K 1 is adjustable. At the separation point 47, the condensate K conveyed via the second pump 43 from the feedwater tank 45 can hereby be divided into a first partial flow K 1 and a second partial flow K 2 , the first partial flow K 1 being delivered via the condensate line 13 to the preheating device 15 and second partial flow K 2, the preheating device 15 bypasses via the bypass line 17, so that the preheating device 15 is acted upon only with the first partial flow K 1 of the condensate K.

In Strömungsrichtung des Kondensats K ist nach der Trennstelle 47 in der Kondensatleitung 13 ein über einen Stellmotor 33 einstellbares Schiebeventil 37 geschaltet, welches im normalen Betriebszustand offen ist. Parallel zu dem Schiebeventil 37 ist eine von der Bypassleitung 17 zu der Kondensatleitung 13 geschaltete Zweigleitung 55 geschaltet, die ein Schwachlast-Regelventil 35 mit einem Stellelement 35A aufweist. Das Regelventil 35 ist im Normalbetrieb geschlossen, so dass kein Kondensat K über die Zweigleitung 55 gelangt. Das Schwachlast-Regelventil 35 ist lediglich für den Schwachlastfall vorgesehen, wobei dann das Schiebeventil 37 geschlossen ist und über das Stellelement 35A des Regelventils 35 eine entsprechend der Lastanforderung geringe Menge an Kondensat K über die Zweigleitung 55 zu der Vorwärmeinrichtung 15 gelangt.In the flow direction of the condensate K, a controllable via a servo motor 33 shift valve 37 is connected after the separation point 47 in the condensate line 13, which is open in the normal operating condition. Parallel to the slide valve 37 is connected from the bypass line 17 to the condensate line 13 branch line 55, which has a low load control valve 35 with an actuator 35A. The control valve 35 is closed in normal operation, so that no condensate K passes through the branch line 55. The low-load control valve 35 is provided only for the light load case, in which case the slide valve 37 is closed and passes through the actuator 35A of the control valve 35 according to the load requirement small amount of condensate K via the branch line 55 to the preheater 15.

Weiter ist der Vorwärmeinrichtung 15 eine über eine Schnellschlussarmatur 25 aktivierbare Umführungsleitung 27 parallel geschaltet. Eine jeweilige Schnellschlussarmatur 25 ist hierbei stromaufwärts und stromabwärts der Vorwärmeinrichtung 15 an die Kondensatleitung 13 angeschlossen. Die Schnellschlussarmatur 25 ist über einen Aktuator 31 zwischen zwei Einstellungen in kurzer Zeit schaltbar. Die Armatur 25 ist hierzu als Dreiwege-Armatur ausgestaltet, wobei im normalen Betriebszustand die Umführungsleitung 27 geschlossen, d.h. nicht aktiviert ist. Kondensat K strömt dabei in einem ersten Teilstrom K1 durch die Vorwärmeinrichtung 15 und in einem zweiten Teilstrom K2 über die Bypassleitung 17. In einem Schnellschlussfall wird die Schnellschlussarmatur 25 über den Aktuator 31 aktiviert, wobei die Umführungsleitung 27 freigeschaltet und der Kondensatstrom über die Kondensatleitung 13 durch die Vorwärmeinrichtung 15 unterbrochen wird. Im Schnellschlussfall wird demnach die Vorwärmeinrichtung 15 total umführt, d.h. kein Kondensat K der Vorwärmeinrichtung 15 zugestellt und damit vorgewärmt. Die aktivierbare Umführungsleitung 27 dient zur Umführung und damit Absicherung der Vorwärmeinrichtung 15, insbesondere der Heizflächen der Wärmetauscher 23A, 23B.Furthermore, the preheating device 15 is connected in parallel via a bypass line 27 which can be activated via a quick-closing fitting 25. A respective quick-closing fitting 25 is in this case connected to the condensate line 13 upstream and downstream of the preheating device 15. The quick-closing fitting 25 is switchable via an actuator 31 between two settings in a short time. The fitting 25 is designed for this purpose as a three-way valve, wherein in the normal operating state, the bypass line 27 is closed, that is not activated. Condensate K flows in a first partial flow K 1 through the preheater 15 and in a second partial flow K 2 via the bypass line 17. In a case of rapid closure, the quick-closing valve 25 is activated via the actuator 31, wherein the bypass line 27 is released and the condensate flow through the condensate line 13 is interrupted by the preheating 15. In the event of a quick reaction, the preheating device 15 is accordingly completely bypassed, ie no condensate K is supplied to the preheating device 15 and thus preheated. The activatable bypass line 27 serves to bypass and thus secure the preheating device 15, in particular the heating surfaces of the heat exchanger 23A, 23B.

Beim Betrieb der Dampfkraftanlage 1 wird im Kessel 3 erzeugter Nutzdampf D über die Dampfleitung 49 der Turbine 5 zugeführt, wo er sich arbeitsleistend entspannt. Die Turbine 5 ist hierbei vereinfacht dargestellt, kann aber aus mehreren nicht näher dargestellten Teilturbinen, beispielsweise einer Hochdruck-Teilturbine, einer Mitteldruck-Teilturbine und einer Niederdruck-Teilturbine bestehen. Der auf niedrigen Druck entspannte Dampf D wird über die Abdampfleitung 51 dem Kondensator 7 zugeführt und kondensiert dort zu Kondensat K. Das Kondensat K wird über die Kondensatleitung 13 mittels der ersten Pumpe 41 in den Speisewasserbehälter 45 befördert und dort gesammelt. Aus dem Speisewasserbehälter 45 wird dem Kessel 3 mittels der zweiten Pumpe 43 über die Vorwärmeinrichtung 15 vorgewärmtes Kondensat K als Kesselspeisewasser S zugeführt, so dass ein geschlossener Wasser-Dampf-Kreislauf entsteht. Die in der Turbine 5 gewonnene Nutzarbeit wird über die rotierende Welle 57 an einen an die Welle 57 angekoppelten Generator 39 übertragen und in elektrische Energie umgewandelt.During operation of the steam power plant 1 generated useful steam D is supplied via the steam line 49 of the turbine 5 in the boiler 3, where it relaxes to perform work. The turbine 5 is here shown simplified, but may consist of several sub-turbines, not shown, for example, a high-pressure turbine section, a medium-pressure turbine section and a low-pressure turbine part. The relaxed to low pressure steam D is supplied via the exhaust steam line 51 to the condenser 7 and condenses there to condensate K. The condensate K is conveyed via the condensate line 13 by means of the first pump 41 in the feedwater tank 45 and collected there. From the feedwater tank 45 to the boiler 3 by means of the second pump 43 via the preheater 15 preheated condensate K is fed as boiler feed water S, so that a closed water-steam cycle is created. The useful work gained in the turbine 5 is transmitted via the rotating shaft 57 to a coupled to the shaft 57 generator 39 and converted into electrical energy.

Zur bedarfsweisen Leistungserhöhung der Turbine 5 wird zur Kondensatvorwärmung das Kondensat K in einen ersten Teilstrom K1 und einen zweiten Teilstrom K2 aufgeteilt, wobei lediglich der erste Teilstrom K1 vorgewärmt, und der zweite Teilstrom K2 dem vorgewärmten ersten Teilstrom K1 wieder zugemischt wird. Die Aufteilung des Kondensats K in den ersten Teilstrom K1 und den zweiten Teilstrom K2 erfolgt dabei an der Trennstelle 47, wobei der zweite Teilstrom K2 die Vorwärmeinrichtung 15 über die Bypassleitung 17 umführt. Der erste Teilstrom K1 wird mittels Anzapfdampf A1, A2 aus der Turbine 5 vorgewärmt. Die Vorwärmung des ersten Teilstroms K1 erfolgt in zwei Stufen 9A, 9B, wobei der erste Teilstrom K1 auf eine Temperatur von etwa 280 °C bei einem Druck von 300 bar vorgewärmt wird. An der Mischstelle 48 wird der erste Teilstrom K1 mit dem zweiten Teilstrom K2 vermischt, wobei sich eine Mischungstemperatur von 210 °C bis 250 °C, insbesondere von 220 °C bis 240 °C einstellt. Die Aufteilung der Teilströme K1, K2 erfolgt beispielsweise derart, dass der erste Teilstrom K1 etwa 40 % des gesamten Kondensatstroms und der zweite Teilstrom K2 entsprechend etwa 60 % des gesamten Kondensatstroms vor der Trennstelle 47 ausmacht. Die Aufteilung der Teilströme K1, K2 erfolgt dabei gesteuert oder geregelt über das Regel- oder Dosierventil 21, welches mittels des Stellmotors 33 in der Ventilposition genau einstellbar ist. Auf diese Weise erfolgt eine dosierte Umführung der Vorwärmeinrichtung 15 über die Bypassleitung 17, wobei ein entsprechend geringerer Bedarf an Anzapfdampf A1, A2 zur Vorwärmung des ersten Teilstroms K1 in der Vorwärmeinrichtung 15 zu verzeichnen ist. Durch die gegenüber herkömmlichen Anlagenkonzepten geringere Entnahme von Anzapfdampf A1, A2 durch die gezielte und dosierte Umführung der Vorwärmeinrichtung 15 steht ein entsprechend größerer Massenstrom an Dampf D zur Arbeitsleitung in der Turbine 5 zur Verfügung. Durch die Aufteilung in zwei Teilströme K1, K2 wird somit die Möglichkeit einer bedarfsweisen Leistungserhöhung bis zur Kesselreserve (nicht Sekundenreserve) der Dampfkraftanlage 1 erreicht, ohne den Frischdampfdruck über den Auslegungswert anheben zu müssen. Überdies ist die Temperatur Ts des dem Kessel 3 zugeführten Kesselspeisewassers S über die Mischung des ersten Teilstroms K1 und des zweiten Teilstroms K2 an der Mischstelle 48 genau einstellbar und erforderlichenfalls variierbar, wobei beispielsweise eine Kesselspeisewassertemperatur Ts von 210 °C bis 250 °C bei einem Druck von 300 bar im Bedarfsfall vorgesehen wird. Die Entnahme von Anzapfdampf A1, A2 aus der Turbine 5 erfolgt dabei vorteilhafterweise selbstregulierend, durch die Kopplung des ersten Teilstroms K1 mit dem Anzapfdampf A1, A2 über die Wärmetauscher 23A, 23B. Je größer der erste Teilstrom K1 eingestellt wird, desto größer ist die Entnahme von Anzapfdampf A1, A2 zur Vorwärmung, um eine gewünschte Temperatur des ersten Teilstroms K1 nach durchströmen der Vorwärmeinrichtung 15 zu erreichen. Üblicherweise ist im thermischen Gleichgewicht die Temperatur des ersten Teilstroms K1 nach Durchlaufen der Wärmetauscher 23A, 23B etwa gleich der Temperatur des Anzapfdampfs A1, A2, also beispielsweise etwa 280 °C bei einem Druck von 300 bar. Nach der Zumischung des nicht vorgewärmten zweiten Teilstroms K2 zu dem ersten Teilstrom K1 an der Mischstelle 48 stellt sich entsprechend der Teilungsverhältnisse der Teilströme K1, K2 und der Temperaturniveaus die Mischungstemperatur automatisch ein. Diese Mischungstemperatur ist zugleich die Vorwärmtemperatur Ts des Kesselspeisewassers S. Die Vorwärmtemperatur Ts ist gegenüber den herkömmlichen Dampfkraftanlagen entsprechend verringert, wobei allerdings eine Leistungserhöhung der Turbine 5 durch den geringeren Wärmeverbrauch zur Vorwärmung des Kondensats K erreicht ist. Dabei stellt sich insbesondere ein deutlich effizienterer Wärmeverbrauch ein als bei einer üblicherweise zur Leistungserhöhung durchgeführten Totalumführung der Vorwärmeinrichtung 15. Mit dem Konzept der Erfindung wird es möglich, durch eine Teildurchströmung der Vorwärmeinrichtung 15 eine Leistungserhöhung der Turbine herbeizuführen, ohne dass die Lebensdauer der Komponenten der Vorwärmeinrichtung 15, beispielsweise die Heizflächen der Wärmetauscher 23A, 23B, eingeschränkt wird.In order to increase the capacity of the turbine 5 on demand, the condensate K is divided into a first partial flow K 1 and a second partial flow K 2 , wherein only the first partial flow K 1 is preheated, and the second partial flow K 2 is mixed again with the preheated first partial flow K 1 , The division of the condensate K into the first partial flow K 1 and the second partial flow K 2 takes place at the separation point 47, the second partial flow K 2 bypassing the preheating device 15 via the bypass line 17. The first partial flow K 1 is preheated by means of bleed steam A 1 , A 2 from the turbine 5. The preheating of the first partial flow K 1 takes place in two stages 9A, 9B, wherein the first partial flow K 1 is preheated to a temperature of about 280 ° C at a pressure of 300 bar. At the mixing point 48, the first partial flow K 1 is mixed with the second partial flow K 2 , wherein a mixing temperature of 210 ° C to 250 ° C, in particular from 220 ° C to 240 ° C sets. The division of the partial flows K 1, K 2 are, for example, such that the first partial flow K 1 represents about 40% of the total condensate flow and the second part flow K 2 corresponding to about 60% of the total condensate stream prior to the point of separation 47th The division of the partial streams K 1 , K 2 is controlled or regulated via the control or metering valve 21, which is precisely adjustable by means of the servomotor 33 in the valve position. In this way, a metered deflection of the preheating device 15 via the bypass line 17, wherein a correspondingly lower demand for Anzapfdampf A 1 , A 2 for preheating the first partial flow K 1 is recorded in the preheater 15. Due to the comparison with conventional plant concepts less removal of bleed steam A 1 , A 2 by the targeted and metered detour of the preheater 15 is a corresponding greater mass flow of steam D to the working line in the turbine 5 available. Due to the division into two partial streams K 1 , K 2 thus the possibility of an increase in demand to the boiler reserve (not seconds reserve) of the steam power plant 1 is achieved without having to raise the live steam pressure above the design value. Moreover, the temperature T s of the boiler feed water S supplied to the boiler 3 can be precisely adjusted and, if necessary, varied via the mixture of the first partial flow K 1 and the second partial flow K 2 at the mixing point 48, for example a boiler feed water temperature T s of 210 ° C. to 250 ° C is provided at a pressure of 300 bar, if necessary. The removal of bleed steam A 1 , A 2 from the turbine 5 is advantageously carried out self-regulating, by the coupling of the first partial flow K 1 with the bleed A 1 , A 2 via the heat exchanger 23A, 23B. The larger the first partial flow K 1 is set, the greater the removal of tapping steam A 1 , A 2 for preheating in order to achieve a desired temperature of the first partial flow K 1 after flowing through the preheating device 15. Usually, in the thermal equilibrium, the temperature of the first partial flow K 1 after passing through the heat exchangers 23A, 23B is approximately equal to the temperature of the bleed steam A 1 , A 2 , ie for example about 280 ° C at a pressure of 300 bar. After the admixture of the non-preheated second part-stream K 2 to the first partial flow K 1 at the mixing point 48 is set according to the division ratios of the partial flows K 1, K 2 and temperature levels, the mixing temperature automatically. This mixture temperature is at the same time the preheating temperature T s of the boiler feedwater S. The preheating temperature T s is reduced compared to the conventional steam power plants, although an increase in power of the turbine 5 is achieved by the lower heat consumption for preheating the condensate K. In this case, in particular, a significantly more efficient heat consumption occurs than with a total reversal of the preheating device 15, which is usually carried out to increase the power. With the concept of the invention makes it possible to bring about a partial flow of the preheater 15, a power increase of the turbine, without the life of the components of the preheater 15, for example, the heating surfaces of the heat exchanger 23A, 23B, is limited.

Claims (5)

  1. A steam power installation (1), comprising a boiler (3) for generating steam (D), at least one turbine (5), a condenser (7) connected on the steam outlet side of the turbine (5), a condensate line (13) for feeding the condensate (K) back to the boiler (3), and a preheating device (15) connected in the condensate line (13) for preheating condensate (K), said preheating device having a number of heat exchangers (23A,B), whereby a bypass line (17) bypassing the preheating device (15) is provided so that the preheating device (15) only receives a first partial flow (K1) of the condensate (K),
    characterised in that a diversion line (27) that can be activated by a quick-shutoff fitting (25) is connected in parallel with the preheating device (15) and that the quick-shut-off fitting (25) is arranged after the branch of the bypass line (17) in the flow direction of the condensate (K).
  2. Steam power installation as claimed in claim 1,
    characterised in that the preheating device (15) is connected to the turbine (5) via a bleeder line (19A,19B).
  3. Steam power installation as claimed in claim 1 or 2,
    characterised in that the bypass line (17) has a control valve (21) for regulating a second partial flow (K2) of the condensate (K) that bypasses the preheating device (15).
  4. Steam power installation as claimed in one of claims 1 to 3,
    characterised in that the bypass line (17) flows into the condensate line (13) downstream of the preheating device (15).
  5. Steam power installation (1) as claimed in one of claims 1 to 4,
    characterised in that the preheating device (15) has at least one heat exchanger (23A, 23B), in particular a high-pressure preheater.
EP02719925A 2001-03-15 2002-02-25 Method for operating a steam power installation and corresponding steam power installation Expired - Lifetime EP1368555B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02719925A EP1368555B1 (en) 2001-03-15 2002-02-25 Method for operating a steam power installation and corresponding steam power installation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01106600A EP1241323A1 (en) 2001-03-15 2001-03-15 Method for operating a steam power plant and steam power plant
EP01106600 2001-03-15
EP02719925A EP1368555B1 (en) 2001-03-15 2002-02-25 Method for operating a steam power installation and corresponding steam power installation
PCT/EP2002/002023 WO2002075119A1 (en) 2001-03-15 2002-02-25 Method for operating a steam power installation and corresponding steam power installation

Publications (2)

Publication Number Publication Date
EP1368555A1 EP1368555A1 (en) 2003-12-10
EP1368555B1 true EP1368555B1 (en) 2007-02-14

Family

ID=8176810

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01106600A Withdrawn EP1241323A1 (en) 2001-03-15 2001-03-15 Method for operating a steam power plant and steam power plant
EP02719925A Expired - Lifetime EP1368555B1 (en) 2001-03-15 2002-02-25 Method for operating a steam power installation and corresponding steam power installation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP01106600A Withdrawn EP1241323A1 (en) 2001-03-15 2001-03-15 Method for operating a steam power plant and steam power plant

Country Status (9)

Country Link
US (1) US6964167B2 (en)
EP (2) EP1241323A1 (en)
AR (1) AR032996A1 (en)
AT (1) ATE354016T1 (en)
DE (1) DE50209484D1 (en)
DK (1) DK1368555T3 (en)
ES (1) ES2280526T3 (en)
TW (1) TW538193B (en)
WO (1) WO2002075119A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190927A (en) * 2002-12-10 2004-07-08 Toshiba Corp Water feed system for steam turbine plant and its method
US7626951B2 (en) * 2005-10-06 2009-12-01 Telecommunication Systems, Inc. Voice Over Internet Protocol (VoIP) location based conferencing
US9984777B2 (en) 2007-11-15 2018-05-29 Nuscale Power, Llc Passive emergency feedwater system
EP2224164A1 (en) * 2008-11-13 2010-09-01 Siemens Aktiengesellschaft Method of operating a waste heat steam generator
US20110094228A1 (en) * 2009-10-22 2011-04-28 Foster Wheeler Energy Corporation Method of Increasing the Performance of a Carbonaceous Fuel Combusting Boiler System
US8337139B2 (en) 2009-11-10 2012-12-25 General Electric Company Method and system for reducing the impact on the performance of a turbomachine operating an extraction system
ES2605253T3 (en) 2009-11-13 2017-03-13 Siemens Aktiengesellschaft Steam thermal power plant and procedure to operate a steam thermal power plant
EP2351914B1 (en) 2010-01-11 2016-03-30 Alstom Technology Ltd Power plant and method of operating a power plant
US9091182B2 (en) * 2010-12-20 2015-07-28 Invensys Systems, Inc. Feedwater heater control system for improved rankine cycle power plant efficiency
US9316122B2 (en) 2010-12-20 2016-04-19 Invensys Systems, Inc. Feedwater heater control system for improved Rankine cycle power plant efficiency
US8867689B2 (en) * 2011-02-15 2014-10-21 Nuscale Power, Llc Heat removal system and method for use with a nuclear reactor
EP2729669A1 (en) 2011-07-07 2014-05-14 Alstom Technology Ltd Power plant and method of operating a power plant
EP2546476A1 (en) * 2011-07-14 2013-01-16 Siemens Aktiengesellschaft Steam turbine installation and method for operating the steam turbine installation
EP2589760B1 (en) * 2011-11-03 2020-07-29 General Electric Technology GmbH Steam power plant with high-temperature heat reservoir
US9617874B2 (en) * 2013-06-17 2017-04-11 General Electric Technology Gmbh Steam power plant turbine and control method for operating at low load
US9874346B2 (en) * 2013-10-03 2018-01-23 The Babcock & Wilcox Company Advanced ultra supercritical steam generator
JP6550659B2 (en) * 2015-07-24 2019-07-31 三菱日立パワーシステムズ株式会社 Water supply method, water supply system for carrying out this method, steam generating equipment provided with water supply system
EP3244030A1 (en) 2016-05-09 2017-11-15 General Electric Technology GmbH A steam power plant with power boost through the use of top heater drain reheating

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE482635C (en) * 1928-05-22 1929-09-17 Bbc Brown Boveri & Cie In bypass lines built-in shut-off valve for facilities arranged in feed water systems of a steam power plant, such as feed water preheaters and the like. like
FR1396379A (en) * 1964-02-07 1965-04-23 Alsthom Cgee Feed water heating station in steam turbine installations
CH488099A (en) * 1968-09-11 1970-03-31 Bbc Brown Boveri & Cie Working method to improve the thermal efficiency of a steam turbine plant at part load and device for carrying out this method
DE2164631A1 (en) * 1971-12-24 1973-07-05 Babcock & Wilcox Ag DEVICE FOR SECURING HIGH PRESSURE PREHEATERS
CH558470A (en) * 1974-01-10 1975-01-31 Sulzer Ag COMBINED GAS TURBINE-STEAM POWER PLANT.
DE2930184A1 (en) * 1979-07-25 1981-02-19 Kraftwerk Union Ag OVERLOAD DEVICE OF A MULTI-HOUSED TURBINE
CH655548B (en) * 1982-03-31 1986-04-30
US4841722A (en) * 1983-08-26 1989-06-27 General Electric Company Dual fuel, pressure combined cycle
US5045272A (en) * 1990-02-16 1991-09-03 Westinghouse Electric Corp. Fluid temperature balancing system
DE19924593A1 (en) 1999-05-28 2000-11-30 Abb Patent Gmbh Process for operating a steam power plant

Also Published As

Publication number Publication date
TW538193B (en) 2003-06-21
US20040105518A1 (en) 2004-06-03
AR032996A1 (en) 2003-12-03
ES2280526T3 (en) 2007-09-16
ATE354016T1 (en) 2007-03-15
DE50209484D1 (en) 2007-03-29
US6964167B2 (en) 2005-11-15
WO2002075119A1 (en) 2002-09-26
EP1241323A1 (en) 2002-09-18
DK1368555T3 (en) 2007-06-11
EP1368555A1 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
EP1368555B1 (en) Method for operating a steam power installation and corresponding steam power installation
DE102009036064B4 (en) in order to operate a forced-circulation steam generator operating at a steam temperature of more than 650 ° C, as well as forced circulation steam generators
EP2603672B1 (en) Waste heat steam generator
EP2480762B1 (en) Power plant comprising overload control valve
EP2359058A2 (en) Method for operating a waste heat steam generator
EP2889479B1 (en) Geothermal power plant system, method for operating a geothermal power plant system and method for increasing the efficiency of a geothermal power plant system
WO2008067855A2 (en) Method and apparatus for increasing the performance and efficiency of an orc power plant process
EP2199547A1 (en) Heat steam producer and method for improved operation of same
EP2129879A2 (en) Method for operating a multi-step steam turbine
DE102018123663A1 (en) Fuel preheating system for a combustion gas turbine
EP2224104B1 (en) Method for operating a power plant
EP0633978B1 (en) Process and device for operating the water-steam circuit of a thermoelectric power station
EP2322768B1 (en) Steam power assembly and method for operating same
EP0826096B2 (en) Process and device for degassing a condensate
EP1055801B1 (en) Method for operating a steam power plant
DE10155508C5 (en) Method and device for generating electrical energy
DE102016112601A1 (en) Device for power generation according to the ORC principle, geothermal system with such a device and operating method
EP0840837B1 (en) Process for running a gas and steam turbine plant and plant run by this process
EP2362073A1 (en) Steam power station comprising a tuning turbine
EP2556218B1 (en) Method for quickly connecting a steam generator
WO2011045047A2 (en) (o) rc-method for utilizing waste heat from biomass combustion for generating electricity and corresponding system
DE19507167C1 (en) Double steam-turbine plant with condensers in common coolant circuit
DE19944920B4 (en) Combined cycle power plant with injection device for injecting water into the live steam
DE2654192B1 (en) System for the use of waste heat from a gas stream
EP2805031B1 (en) Power plant and method for operating a power plant facility

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HABERBERGER, GEORG

Inventor name: ABEL, TILMAN

Inventor name: RIEBECK, IMKE

Inventor name: BLANCK, DIETER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070214

REF Corresponds to:

Ref document number: 50209484

Country of ref document: DE

Date of ref document: 20070329

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070716

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2280526

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

26N No opposition filed

Effective date: 20071115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070515

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20160217

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160114

Year of fee payment: 15

Ref country code: NL

Payment date: 20160217

Year of fee payment: 15

Ref country code: SE

Payment date: 20160204

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160502

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20170228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 354016

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170226

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180212

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180221

Year of fee payment: 17

Ref country code: IT

Payment date: 20180226

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180525

Year of fee payment: 17

Ref country code: DE

Payment date: 20180419

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50209484

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190225

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190226