EP2799762A2 - Light module for a motor vehicle headlamp - Google Patents

Light module for a motor vehicle headlamp Download PDF

Info

Publication number
EP2799762A2
EP2799762A2 EP14164995.4A EP14164995A EP2799762A2 EP 2799762 A2 EP2799762 A2 EP 2799762A2 EP 14164995 A EP14164995 A EP 14164995A EP 2799762 A2 EP2799762 A2 EP 2799762A2
Authority
EP
European Patent Office
Prior art keywords
light
optics
secondary optics
focal point
side focal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14164995.4A
Other languages
German (de)
French (fr)
Other versions
EP2799762A3 (en
EP2799762B1 (en
Inventor
Matthias Brendle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP2799762A2 publication Critical patent/EP2799762A2/en
Publication of EP2799762A3 publication Critical patent/EP2799762A3/en
Application granted granted Critical
Publication of EP2799762B1 publication Critical patent/EP2799762B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/155Surface emitters, e.g. organic light emitting diodes [OLED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24-F21S41/28
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/321Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • F21S41/334Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector consisting of patch like sectors
    • F21S41/336Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector consisting of patch like sectors with discontinuity at the junction between adjacent areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • F21S41/365Combinations of two or more separate reflectors successively reflecting the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/10Protection of lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings

Definitions

  • the present invention relates to a light module of a motor vehicle headlight according to the preamble of claim 1.
  • a light module of a motor vehicle headlight is an assembly that alone or in conjunction with other light modules of the same headlight or at least one other headlight when used as intended in a motor vehicle generates a rule-compliant light distribution in advance of the motor vehicle.
  • the assumed as known light module has a plurality of light sources, a primary optics and a secondary optics, wherein the primary optics is adapted to collect from the light sources outgoing light and to transfer to an intermediate light distribution, which the shape having a closed illuminated surface.
  • the secondary optics has an object-side focal length, and the primary optics and the secondary optics are arranged so that the intermediate light distribution is at a distance of this focal length in the light path before the secondary optics.
  • Intermediate light distributions of light modules which are to produce a light distribution with a light-dark boundary, are bounded on at least one side by a sharp edge.
  • the secondary optics is a lens or a reflector and has an object-side focal plane, which is characterized in that contours lying in it are sharply imaged in a front of the light module in the propagation direction of the light behind the secondary optics.
  • LED light-emitting diodes
  • Powerful LED dipped-beam modules are today usually designed as projection lamps.
  • a two-stage optical system initially generates a real intermediate image of the light exit surface of the light-emitting diodes used as light sources.
  • arrays of several Light emitting diodes used to generate sufficiently large light fluxes.
  • the light exit surface of a single LED used in such an array is, for example, square and has an edge length of about one millimeter.
  • the individual LEDs are arranged within the array in such a way that their light exit surfaces adjoin one another directly and virtually without spacing, so that a coherent total light exit surface of the array results.
  • a disadvantage of these light modules in particular the high price of the projection lens and the expensive LED arrays.
  • Reflecting systems in which a reflector in simple reflection (1-stage optics) generates a low-beam distribution are much simpler in design.
  • the light distribution is formed as a superposition of many elementary images of the light source.
  • the light source image is understood to mean the image of the light source through an infinitesimally small reflector zone.
  • the light source itself should also have a uniform luminance.
  • the light source requires a sharp boundary, with the imaging of the sharp cut-off of the low beam distribution is generated.
  • the simple, low-cost reflective optics require an expensive LED array as the light source.
  • a plurality of individual, spaced-apart LEDs for example: SMD LEDs, surface mounted design SMD
  • SMD LEDs surface mounted design SMD
  • the maximum illuminance is reduced at least in the ratio chip width to the sum of chip width and chip gap. This means that the average luminance of such a blurred light source is lower than an array in which the LED chips are arranged directly next to one another, at least in the said ratio.
  • reflection systems Since in reflection systems the light-dark boundary is not generated by projection of a diaphragm, as in projection systems, but is composed of differently oriented light source images, in conventional reflection systems the light center is significantly lower than the light-dark boundary than in projection systems. This will affect the range as the range decreases as the brightness of the bright area just below the cut-off line decreases. It is also disadvantageous that reflection systems do not achieve such high illuminance gradients at the light-dark boundary as are usual in projection systems.
  • the object of the invention in the specification of a compact as possible light module that can be operated with low-cost SMD LEDs and does not require expensive, voluminous projection lens. Furthermore
  • the aim is to match the performance of the light module with respect to illuminance at the edge of a cut-off line of a low-beam light distribution and with respect to the gradient of the gradient of the brightness curve across the cut-off line to the performance of projection modules.
  • the present invention differs in that the light exit surfaces of the light sources are separated by distances between them and that the primary optics is adapted to distribute outgoing light from the light sources so that the distances in the intermediate light distribution not are recognizable.
  • the aforementioned multiple light sources are preferably realized as an LED array.
  • the secondary optics preferably has a plurality of facets, resulting in multiple light source side foci or a focal line.
  • the secondary optics have a plurality of object-side focal points.
  • a faceted reflector is arranged as secondary optics.
  • the reflector is preferably configured to generate from the intermediate light distribution a complete low-beam distribution which has an asymmetrical rise.
  • the reflector can be replaced by a faceted lens with corresponding focus positions.
  • the secondary optics is realized as a faceted lens.
  • the intermediate light distribution in some way represents a substitute light source having the required property of a streak-free appearance and which, together with a low-cost reflection system, can be used to produce a rule-compliant light distribution.
  • a preferred embodiment is characterized in that the primary optics for each light source has its own optically effective portion, each having a light exit surface and wherein these light exit surfaces adjoin one another without spacing, and at least two adjacent light exit surfaces adjacent to each other so that at least one side edge of a first of two adjacent light exit surfaces in line with a side edge of the second of the two adjacent light exit surfaces, so that the two aligned edges form a common, straight edge.
  • the primary optics is preferably a one-piece optical array, wherein each LED is assigned an optically effective partial area as collecting primary optics and wherein all primary optics with their light exit surfaces largely contiguous. At least two of these optics form with their light exit surfaces a common straight edge.
  • each subregion is a condenser lens.
  • the optical array is preferably off Plankonvexlinsen constructed and is preferably made of organic or inorganic glass or silicone rubber (LSR).
  • Organic glasses are, for example, polymethyl methacrylate (PMMA), cycloolefin copolymer (COC), cycloolefin polymer (COP), polycarbonate (PC), polysulfone PSU or polymethacrylmethylimide (PMMI).
  • the lens array preferably has, at least in sections, a straight edge on one side.
  • the collecting lens array is bounded on one edge at least in sections by a flat side surface on which a part of the incident light is reflected. Alternatively, this edge can also be formed by a diaphragm which is brought into the beam path immediately in front of the light exit surface of the lens array.
  • each subregion is a reflector.
  • the primary optic is preferably formed as a reflector array, which is constructed of conically widening toward the light exit reflectors having in planes on which the main emission of the LED is perpendicular, preferably square or rectangular cross-sections.
  • the reflectors have the geometry of a truncated pyramid.
  • the reflector array consists of a metallized, high temperature resistant plastic, in particular of a thermoplastic material. High-temperature-resistant thermoplastics which are suitable are, for example, polyether ether ketone, polyether imide or polysulfone.
  • the metallization consists for example of aluminum, silver, platinum, gold, nickel, chromium, copper, tin or alloys containing these metals. The metallization is then preferably sealed by a transparent layer.
  • a multilayer coating can be applied to the plastic body.
  • Multilayer coating alternately combines several low- and high-index layers.
  • a further metal layer may be provided as a radiation barrier.
  • This metal layer is deposited, for example, as a thick copper or nickel layer on the plastic body of the reflector array and thus forms a protection against the thermal stress by the radiation of the LED. Also, this thick metal layer is able to dissipate heat to the reflector edge.
  • the reflector array preferably has at least one straight edge as the edge of a series of light exit surfaces of adjacent reflector subregions.
  • each subregion is a light guide.
  • the primary optic is preferably formed as a light guide array, which consists of conically widening towards the light exit optical fibers, which have in planes on which the main emission of the LED is perpendicular, preferably square or rectangular cross-sections.
  • the light entry surface of the individual optical waveguide subregions is preferably arranged flat and parallel to the chip surface of the associated LED. This will make a bigger part of the LED Outgoing luminous flux coupled into the optical fiber portion as in a convex curvature.
  • the refraction already causes some bunching.
  • a further bundling takes place by reflections on the side walls of the light guide, which is due to the shape that widens towards the exit of light.
  • the reflections on the sidewalls also distinguish light guides from lenses that are also transparent solids. In the case of lenses, direction changes of the light take place only by refraction, but not by reflection on side walls.
  • the light exit surface of the individual light guides is convex. As a result, a bundling effect is achieved when the light emerges.
  • the light guide array is preferably made of one of the materials previously referred to as lens material.
  • the light guide array has at least one straight edge, which is composed of adjoining edges of individual light exit surfaces of adjacent light guide subregions.
  • a further preferred embodiment is characterized in that the light module has a diaphragm which is arranged in the beam path of the light immediately behind the light exit surface so that it shadows a part of the intermediate light distribution.
  • the diaphragm facilitates the generation of a sharp light-dark boundary of the intermediate light distribution, which also has a favorable effect on the sharpness of the rule-compliant light distribution to be generated in the run-up to the light module.
  • the aperture is in a preferred embodiment as an insert or two-component injection molded part to the Primary optics with molded, resulting in the advantage of low tolerances between aperture and primary optics.
  • the secondary optics have at least one concave mirror reflector.
  • a concave reflector has the advantages of lower costs and lower weight compared to transparent solids such as lenses or internal total reflection secondary optics.
  • all reflectors are preferably arranged in the beam path so that the beam path is always folded at the respective reflectors in the sharpest possible angle ( ⁇ 90 °). Due to the acute folding angle of the beam path, the elementary images of the replacement light source hardly change their orientation, so that low-beam light distribution with good homogeneity (no longitudinal stripes in the light distribution), high light center (close to the low-beam light-dark boundary) and sharp light-dark Can produce limit.
  • an optical surface of the secondary optics is divided into a larger partial area and a smaller partial area, the larger partial area being defined by having a first object-side focal point and the two partial areas having a common image-side focal point at infinity.
  • this secondary optics generates an image of the replacement light source at infinity and thus a light distribution in advance of the light module, whose shape of the shape of the intermediate light distribution and thus depends on the shape of the replacement light source and in particular has a sharp cut-off, if such is also present in the intermediate light distribution.
  • the concave mirror reflector has a reflective surface, the greater part of which has a parabolic shape, wherein an object-side focal point of the parabolic shape lies on the light exit surface of the primary optics.
  • the object-side focal point of the reflector is preferably on the edge of the replacement light source. To produce a low-beam light distribution, this is the lower edge of the replacement light source. As described, this edge can also be shaded by a diaphragm to prevent scattered light from entering the dark field of the light distribution.
  • the secondary optics has a plurality of reflector facets, their focal points are preferably also located on the edge of the replacement light source. However, depending on the position of the facet, they are preferably positioned at different ends of the light source edge.
  • the secondary optics consist of two mirrors which are arranged one behind the other in the beam path such that they fold the beam path of the secondary optics twice at an acute angle and that the secondary optics has an object-side focal point which lies on the light exit surface of the primary optics and the latter Pixel lies at infinity.
  • the double folding also opens the possibility to shorten the space of the light module and provides a further degree of freedom for the arrangement of the elements of the light module.
  • particularly particularly compact light modules can be realized.
  • it offers constructive advantages when the light source radiates forward in the direction of travel and the heat dissipation of the light source via a heat sink to the rear:
  • Such a light source can be easily changed from the back of the headlight ago.
  • the heat sink on the back of the light module can be easily ventilated, which improves the cooling performance.
  • Due to the compact design there is the additional advantage that the center of gravity of the light module is located in the vicinity of the light exit surface, which facilitates the mechanical pivoting of the light module for a headlight range control and / or a cornering light function.
  • the folding of the beam path is also favorable, because the refractive power in the proposed optical system on primary and secondary optics, so that secondary optics with low refractive power, ie with long focal length receives (the focal lengths are 2-3 times greater than single-stage systems). This is advantageous because you get a very tolerancesunfure optics by the very long focal lengths in relation to the opening. All chip images also have approximately the same size and orientation.
  • the first mirror in the propagation direction of the light in the beam path has a hyperboloid and the second mirror has a paraboloid as the reflection surface, the object-side focal point of the hyperboloid forming the object-side focal point of secondary optics and the image-side focal point of the hyperboloid coinciding with the focal point of the paraboloid and marks the position of a virtual intermediate image of the intermediate light distribution.
  • the secondary optics have a plurality of object-side focal points and one or more common image-side foci or focal lines at infinity.
  • the first mirror of the two-stage secondary optics comprises a hyperboloid or a plane mirror as a special case of the hyperboloid, and that the second mirror has a faceted paraboloid, wherein the object-side focal point of the hyperboloid forms the object-side focal point of secondary optics and wherein the image-side Focusing the hyperboloid marked the location of a virtual intermediate image of the intermediate light distribution and wherein the downstream parabolic facets are adapted to focus on the edge of the virtual image of the intermediate light distribution.
  • the first mirror of the two-stage secondary optics has a faceted hyperboloid or as its special case a faceted plane mirror and that the second mirror has a paraboloid, wherein the object-side focal point of the hyperboloid on the object side Focal point of the secondary optics forms and wherein the image-side focal point of the hyperboloid marks the position of a virtual intermediate image of the intermediate light distribution and wherein the parabolic facets in the beam path focus on the edge of the virtual image of the intermediate light distribution.
  • a further preferred embodiment is characterized in that the two mirrors have a plurality of object-side focal points, which lie on the edge of the intermediate light distribution and whose pixel or image lines lie on the light-dark boundary of the light distribution at infinity, wherein the two mirror surfaces so are formed so that all the optical paths between the object-side focal point and its respective pixels or image lines are the same length.
  • the two mirrors of the two-stage secondary optics are not based on conic sections and provide no sharp, undistorted intermediate image of the replacement light source.
  • the optical system has several object-side foci, which lie on the edge of the light exit surface of the primary optics and their pixels or image lines lie on the light-dark boundary of the light distribution at infinity.
  • An optical system of deflecting optics 64 and secondary optics 12 does not necessarily have to provide a sharp virtual intermediate image 66, since aberrations (blurring, distortion, aperture aberrations) of the intermediate image can be compensated for again by the downstream secondary optics 12.
  • Fig. 1 a spatial arrangement of a light source assembly 10 and a secondary optics 12 as an embodiment of a light module according to the invention 14.
  • a spatial arrangement of a light source assembly 10 and a secondary optics 12 as an embodiment of a light module according to the invention 14.
  • the presentation of the Fig. 1 is so far concentrated on the optical elements of the light module. This also applies to the other figures.
  • the light source assembly 10 and the secondary optics 12 are arranged so that they produce a rule-compliant light distribution 16 on a standing in front of the light module screen 17.
  • the light distribution 16 has a section-wise horizontally running cut-off line 18.
  • the roadway nearer part 18.1 of the horizontal light-dark boundary runs approximately at the height of the horizon in front of the vehicle or quite easily (as a rule 0, 57 °) below.
  • the point at which the cut-off line bends upwards is roughly in the extension of the vehicle's longitudinal axis.
  • a sagittal plane 20 and a meridional plane 22 can be assigned to the optical system of the light module 14.
  • the sagittal plane 20 lies parallel to the roadway at the height of the horizon H.
  • the light source module 10 comprises a heat sink 24 and a printed circuit board 26 with SMD LEDs 28 arranged thereon and the associated primary optics.
  • the SMD LEDs with the associated primary optics 30 are shown enlarged as a detail Z.
  • the SMD LEDs 28 are arranged such that their light exit surfaces do not adjoin one another without spacing.
  • the light emitted by these SMD LEDs 28 is focused by the primary optics 30 so that adjusts to the seamless juxtaposed light exit surfaces of the primary optics 30 a coherently closed light distribution.
  • This intermediate light distribution serving as a substitute light source is subsequently reproduced by the secondary optics 12 as a low-beam light distribution 16 on a screen 17 which is remote from the light module 14.
  • the lower edge 32 of the primary optics 30 is depicted as a cut-off line of the low-beam light distribution.
  • the reflector surface of the secondary optics 12 consists of several reflector facets 12.1, 12.2. 12.3, which are realized, for example, at least in areas of their reflection surface as Rotationsparaboloide. In each case, these areas occupy the larger part of the reflection surface of a facet.
  • the paraboloids which are different for different facets, have different focal points 34, 36, all of which lie on the lower edge 32 of the light exit surface of the primary optics 30.
  • the focal points 34, 36 are preferably located at the corners of the primary optics 30.
  • the meridional plane 22 divides the space of the optical system into two half-spaces. If the light source radiates from below into the secondary mirror, the mirror facets and their focal points lie in the same half space.
  • the axes of the paraboloid of revolution on which the reflector facets are based point in the direction of the dipped beam light-dark boundary 18.
  • the light source edge is imaged as a light-dark boundary of the rule-compliant light distribution.
  • a main beam 38 from the beam path of the light module, which runs in the meridional plane 22, is considered below.
  • the main emission directions of the individual LEDs are preferably parallel to each other and therefore agree.
  • the considered light beam 38 extends in the main emission direction of the light sources 28 through the lower boundary of the light exit surface of the primary optics 30 and propagates in the direction of the reflector surface of the secondary optics 12.
  • the object of FIG. 2 is different from the subject of the FIG. 1 in that the light source 10 radiates from above into the secondary reflector 12.
  • the meridional plane 22 divides the space of the optical system into two half-spaces. If the light source radiates from above into the reflector, the focal points of the parabolic facets always lie on the other side of the meridional plane like the reflector facet itself, which is in comparison to the FIG. 1 is illustrated by the in detail Y from right to left reversed focal points 34, 36. By the other arrangement of the light source, therefore, the sides of the focus points 34, 36 of the respective reflector facets interchange.
  • FIG. 2 likewise an LED low-beam module 14 with asymmetrical cut-off line 18.
  • the task of primary optics 30 is within the here presented invention in particular to produce a well-defined, streak-free and thus suitable as a replacement light source intermediate light distribution in a plane that is sharply imaged by the secondary optics 12 in the rule-compliant light distribution 18.
  • the primary optics 30, in particular from the light gaps of the SMD LEDs 28 which are not adjacent to one another, must generate a coherently coherent surface.
  • the SMD LEDs 28 are arranged in one or more parallel rows.
  • An optical array 30 comprising collecting lenses, reflectors or conical light guides is now brought into the beam path in front of the LED array, so that the light exit surface is illuminated as evenly and homogeneously as possible and the emitted radiation beam has no gaps.
  • FIG. 3 shows a primary optics array 30 of reflectors.
  • the reflector portions 40 are here realized as a distance from each other adjacent recesses of a one-piece body 42.
  • FIG. 3b shows a perspective view of the assembly of the circuit board 26 and the reflector portions 40, which cover the associated LEDs.
  • FIG. 3a shows a section through this assembly, which runs in the direction of the series arrangement.
  • 3d figure shows a section through this assembly, which extends transversely to the array and
  • Figure 3c shows a plan view and a location of said sections.
  • the reflector subregions have rectangular, in particular square cross sections.
  • the light exit surfaces of the individual reflectors 40 are lined up without gaps and thus without spacing on each other and limit the resulting luminous surface with sharp, straight edges 44.
  • Each SMD LED 28 is associated with a respective reflector 40.
  • the centers of the reflectors 40 and the centers of the light exit surfaces of the light sources 28 have equal distances.
  • the series arrangement of the reflectors 40 therefore has the same pitch as the row arrangement of the LEDs 28.
  • a heat shield 46 is disposed between the reflector portions and the LED, which protects the back of the reflector portions 40 of the optical array 30 from radiation.
  • the heat shield 46 is interrupted over the light exit surfaces of the SMD LEDs 28 to allow light leakage.
  • FIGS. 3a, 3b and 3d clearly show an array of conically widening toward the light exit towards reflectors 40 with square or rectangular cross-sections, wherein such a cross-section perpendicular to the optical axis and thus perpendicular to the main emission of the LEDs 28 is arranged.
  • the reflector subregions 40 preferably have the illustrated geometry of truncated pyramids.
  • the reflector portions 40 and their respective one-uniquely associated light sources 28 are arranged in one or more rows.
  • the reflector portions 40 are equal to each other and their light exit surfaces adjoin one another without spacing, so that their light exit surfaces are limited by at least one straight line 44.
  • FIG. 3b in particular also shows a lower edge 44 to be imaged as a light-dark boundary of the light exit surface of the reflector row arrangement.
  • Fig. 4 shows in particular the focal plane 48 of the secondary optics 12, which lies in a plane with the intermediate light distribution, which results as a light exit surface of the reflectors 40.
  • Fig. 4 shows one of the Fig. 3 comparable subject.
  • the primary optic array 50 is composed of collecting lenses.
  • the collecting lens subareas 50 are realized here as partitions of an integral transparent base body 52 adjoining each other without any spacing.
  • the one-piece base body 52 is preferably made of one of the above-mentioned materials.
  • FIG. 3b shows a perspective view of the assembly of the circuit board 26 and the collecting lens portions 50 and the associated LEDs 28th
  • FIG. 3a shows a section through this assembly, which runs in the direction of the series arrangement.
  • 3d figure shows a section through this assembly, which extends transversely to the array and
  • Figure 3c shows a plan view and a location of said sections.
  • Each light source 28 is uniquely associated with a collection lens portion 50. comparisons Fig. 4c , The lens array is delimited at least on one edge at least in sections by a flat side surface 54 on which a part of the beam path is reflected. This is in the Fig. 4d clearly.
  • this edge 54 can also be formed by a diaphragm 56, which is brought into the beam path immediately before the light exit surface of the lens array. This is in the 4e and 4f shown.
  • Figure 4e shows a primary optic array of collecting lenses 50 with additional aperture 56.
  • This covers an edge of the primary optics in order to limit the light exit surface as sharply as possible.
  • This aperture causes a particularly sharp limitation of the light exit surface in that it shadows all light that is scattered past the light exit surface.
  • the secondary optics focuses as directly as possible on the diaphragm edge. If a low-beam light distribution is to be generated with at least partially horizontally extending cut-off line, the diaphragm edge extends along the lower edge of the light exit surface of the primary optics, with the aid of which the secondary optics then form the light-dark transition of the light distribution.
  • the intermediate light distribution is in the lens arrays in the region of the lens body.
  • the focus of secondary optics lies in Fig. 4f at the edge of the aperture 54.
  • the lens array design is preferred.
  • the bezel may also be used in conjunction with the other embodiments of primary optics presented in this application.
  • the collecting lens portions 50 as well as their respective one-uniquely associated light sources 28 arranged in one or more rows.
  • the collecting lens sub-areas 50 are equal to each other and their light exit surfaces adjoin one another without spacing, so that their light exit surfaces are limited by at least one straight line 44.
  • Figure 4g shows an arrangement of a pair of one of a plurality of semiconductor light sources 28 in the form of an LED chip and a collecting lens portion 50 of the main body 52 that collects light of this chip.
  • a pitch of the main body 52 is designated T.
  • the pitch T corresponds to the width of the individual collective lens subregions 50 and to the spacing of the centers of adjacent LED chips 28.
  • B LED is an edge length of the LED chip 28.
  • a virtual LED chip is labeled 28 '.
  • the edge length of the virtual LED chip 28 ' is labeled B' LED .
  • An object-side focal point of the collection lens portion 50 is F
  • a major point of the collection lens portion 50 is H.
  • the principal point H of a lens is defined as the intersection of a principal plane of the lens with the optical axis.
  • the secondary optic 4 of the light module 1 according to the invention is preferably focused on a main point H of one of the collective lens subregions 50, preferably on the main point H of the collective lens subregion 50 located in the vicinity of an optical axis of the light module.
  • Reference f denotes the focal length of the collective lens portion 50
  • S F is a sectional width of the collective lens portion 50.
  • a distance between the LED chip 28 and the light entrance surface of the collective lens portion 50 is S 1
  • a distance between the virtual chip image 28 'and the Light entrance surface of the collecting lens portion 50 is denoted by S 2 .
  • the LED chip 28 is located between the collecting lens portion 50 and the object-side focal point F.
  • the LED chip 28 is enlarged by the collecting lens portion 50 so that the (upright) virtual image 28 'of the chip (in the light exit direction in front of the object-side lens focal point F) is the same size as the collecting lens portion 50, ie B ' LED ⁇ T.
  • the collecting lens subregions 50 of the base body 52 do not serve to produce real intermediate images of the light sources 28, but merely form an illuminated surface on the light exit side 25 of the collecting lens subregions 50.
  • the light sources 28 are arranged between the light entry surfaces of the collecting lens subregions 50 and the object side focal points F of the collecting lens subregions 50 in that the edges of the light sources 28 lie on geometric connections from the focal points F to the lens edges.
  • the emitting surfaces of the light sources 28 are arranged perpendicular to the optical axes of the collecting lens portions 50. This results in a very uniform illumination of the collecting lens subregions 50, and on the light exit surfaces of the collecting lens subregions 50 results in a particularly homogeneous light distribution, the so-called. Intermediate light distribution.
  • These intermediate light distributions are imaged by the secondary optics for generating the resulting total light distribution of the light module on the roadway in front of the vehicle.
  • the optical axes of the individual collecting lens subregions 50 of the main body 52 all run in one plane, preferably they are parallel to one another.
  • the secondary optics axis is on the side facing the main body 52
  • the LEDs are in particular arranged between their respective collecting lens portion and its paraxial focal point so that a gapless intermediate light distribution is formed, which is composed of the virtual images of the light exit surfaces of the individual chips. It should be noted that the light exits from the LED first in air and only then incident on the associated collection lens portion. This is a difference from the prior art, in which LEDs are used with transparent potting compounds, wherein the potting possibly develops a lens effect.
  • Fig. 5 shows a further embodiment of the primary optic array.
  • Fig. 5 consists of the primary optics array of optical fibers 60 with conically widening toward the light exit cross sections, which are oriented perpendicular to the main propagation direction of the light in the optical fibers and thus perpendicular to the respective optical axis and which are rectangular, in particular square.
  • the light exit surfaces 62 of the individual light guides 60 line up seamlessly and limit the luminous surface with sharp, straight edges 44 which are lower edges 44 here.
  • Each LED 28 is assigned one light guide 60 one-uniquely.
  • the light entry surface is preferably flat and is parallel in front of the LED chip.
  • the light guides 60 are arranged like the associated light sources in one or more rows, so that the light exit surfaces are in turn bounded by at least one straight line 44.
  • the light exit surface is preferably convex.
  • the optical fiber array is preferably one of the above made of these materials.
  • the light guide array is preferably manufactured as a one-piece base body, which has the light guides as light-conducting subregions.
  • the primary optics array as an array of reflector subregions 40, condenser lens subregions 50 and light guide subregions 60, the sum of the light exit surfaces of the respective subregions forms the coherently connected intermediate light distribution and substitute light source.
  • the replacement light source has luminances similar to those of the individual LEDs. Thus even such a replacement light source has uniformly distributed luminances and similar emission angles over its entire light exit surface, such as individual LEDs.
  • the replacement light source can be treated like an LED array.
  • the light distribution thus formed now serves as a replacement light source for a downstream secondary optics, which is a converging lens or preferably a reflector with at least partially parabolic reflection surface and forms a low beam distribution using this replacement light source.
  • a downstream secondary optics which is a converging lens or preferably a reflector with at least partially parabolic reflection surface and forms a low beam distribution using this replacement light source.
  • the substitute light source should be oriented as similar as possible to the light-dark border of the low-beam light distribution (namely at least in sections horizontally) in order to achieve a good sharpness of the cut-off line (high illuminance gradient). For this reason, all reflectors in the beam path are arranged so that the beam path at the respective reflectors always in folded as possible at an acute angle ( ⁇ 90 °) and the orientation of the images of the replacement light source is largely maintained parallel to the cut-off line.
  • the secondary optics is a faceted parabolic reflector.
  • the reflector is arranged in the beam path so that the replacement light source radiates from the front into the reflector, so that the beam path is deflected at an acute angle.
  • the at least one focal point of the reflector lies on the edge of the replacement light source. To produce a low-beam light distribution, this is the lower edge of the replacement light source. As described, this edge can also be shaded by a diaphragm to prevent scattered light from entering the dark field of the light distribution.
  • the secondary optics does not focus on the chip level of the LEDs but on the lower edge of the light emission surface of the primary optics.
  • the light exit surface can be particularly sharply defined when along the edge of the light exit surface, a diaphragm is arranged, which shadows all light that is scattered past the light exit surface.
  • the secondary optics focuses as directly as possible on the diaphragm edge. If a low-beam light distribution is to be generated with at least partially horizontally extending cut-off line, the diaphragm edge extends along the lower edge of the light exit surface of the primary optics, with the aid of which the secondary optics then form the light-dark transition of the light distribution.
  • the reflector surface of the secondary optics preferably consists of a plurality of reflector facets, each of which has surfaces realized as paraboloid of revolution.
  • the various paraboloids have different focal points, all of which lie on the lower edge of the light exit surface of the primary optics, preferably at their edges (corners), the focal points lying in the same hemisphere as the associated facet surfaces.
  • the axes of the paraboloid of revolution on which the reflector facets are based point towards the low beam cut-off.
  • the light source edge is displayed as a light-dark boundary of the light distribution.
  • the reflector facets are executed as toroidal surfaces instead of as rotational paraboloids.
  • the curvature of the paraboloid of revolution is thus increased or reduced in sections parallel to the light-dark boundary (or to sections of the light-dark boundary) by the focal point of the paraboloid in that, instead of the focal point, a focal line results which runs parallel to the low-beam light-dark boundary or to portions of the low-beam light-dark boundary.
  • the scattering can also be achieved by scattering cylinder optics, which are applied to the facet surfaces and whose cylinder axis are perpendicular to main beam and low beam light-dark boundary.
  • FIG. 6 shows embodiments of inventive light modules 14, which have a deflection mirror, which additionally folds the beam path. This measure serves to shorten the installation space of the light module and to provide a further degree of freedom in order to arrange the elements of the light module as freely as possible.
  • the light source 10 in the direction of travel radiates forward and the cooling of the light source via a heat sink 24 to the rear:
  • a light source can be easily changed from the back of the headlight.
  • the Ventilate the heat sink on the back of the light module more easily, which improves the cooling performance.
  • a compact light module is obtained whose center of gravity lies in the vicinity of the light exit surface, which facilitates the mechanical pivoting of the light module 14.
  • the folding of the beam path is also favorable, because the refractive power in the proposed optical system is divided into primary and secondary optics, so that secondary optics with low refractive power, i. with long focal length (the focal lengths are 2-3 times greater than single-stage systems).
  • the deflecting mirror 64 is designed as a hyperboloid, wherein the hyperboloid should explicitly include the special case of the plane mirror.
  • the described properties of the secondary optics 12 in this case relate to the optical system 64, 12 of deflection mirror 64 and secondary optics 12, which now focuses with one or more focal points on the lower edge of the replacement light source.
  • the deflection mirror 64 generates at least one virtual intermediate image 66 of the replacement light source 68.
  • the replacement light source 68 lies in the object-side Petzval surface of the hyperbolic deflection mirror, while the focal point (s) of the secondary optics 12 lie in the image-side Petzval surface of the hyperboloid, i. the secondary optics 12 focus on their virtual image 66 instead of the real substitute light source 68.
  • FIG. 6a shows such a low beam module 14 with an additionally folded by a deflection mirror 64 beam path.
  • the deflection mirror 64 generates a virtual image 66 of the replacement light source 68.
  • the focal points of the Secondary optics 12 are as described in connection with the FIG. 1 has been explained, preferably on the corners of the primary optics. In the case of Fig. 6a However, the secondary optics does not focus on the real primary optics, but on the corners of the virtual image of the primary optics serving as a substitute light source 66.
  • Figure 6b also shows a low-beam module 14 with an additionally folded by a deflection mirror 64 beam path.
  • the deflection mirror 64 generates a virtual image 66 of the replacement light source 68.
  • the focal points of the secondary optics 12 are now on the lower edge 44 of the virtual image 66 of the replacement light source 68.
  • the deflection mirror 64 shortens the overall length and thus enables a particularly compact construction of the light module 14.
  • at least one of the two mirrors has one or more facets.
  • An optical system of deflection optics 64 and secondary optics 12, which is the condition ⁇ i n s i ⁇ n i constant does not necessarily have to deliver a sharp virtual intermediate image 66, since aberrations (blurring, distortion, aperture aberration) of the intermediate image can be compensated for again by the downstream secondary optics 12.
  • the deflection mirror 64 is a plane mirror. This is in the Fig. 6 shown.
  • Figure 7a shows a second embodiment with a deflection mirror 64 which is concave and therefore has a collecting effect.
  • the shape is preferably a hyperbolic shape.
  • the intermediate virtual image 66 is an enlarged image of the spare light source 68.
  • the first hyperbola focus point 70 lies on the lower edge of the real primary optics of the real substitute light source 68.
  • the second hyperbola focus point 72 lies on the lower edge of the virtual intermediate image 66 of the substitute light source.
  • Figure 7b shows a third embodiment with a deflection mirror 64 which is convex and therefore has a dissipative effect.
  • the shape is preferably a hyperbolic shape.
  • the intermediate virtual image 66 is a reduced image of the substitute light source 68.
  • the first hyperbola focus point 70 lies on the lower edge of the real primary optics of the real substitute light source 68.
  • the second hyperbola focus point 72 lies on the lower edge of the virtual intermediate image 66 of the substitute light source 68.
  • FIG. 7 shows insofar embodiments with a hyperboloid as a deflection mirror 64 having an object-side focal point 70 and a image-side focal point 72 and having a preferably faceted secondary optics, which has the deflection mirror and the further mirror 12, and the plurality of object-side focal points and a image-side focal point at infinity ,
  • the Focal points of this secondary optics 12 lie on the lower edge of the virtual image 66 of the replacement light source 68. This image is enlarged or reduced in contrast to the plane mirror, depending on whether the deflection mirror 64 is a concave or a convex hyperboloid.
  • the light module has a plurality of planar Umlenktikfacetten and a secondary optics with a single object-side focal point.
  • the faceted deflecting mirror splits the beam path of the secondary optics, creating an optical system with multiple focal points, similar to a faceted parabolic reflector.
  • the faceted deflection mirror generates several mutually shifted virtual images of the replacement light source.
  • the focal points of the two-part secondary optics focus on the edge of the replacement light source as described above.
  • the light module has a faceted hyperboloid as a deflection mirror with an object-side and a plurality of image-side focal points.
  • the secondary optics in this case should have an object-side and a image-side focal point (the latter at infinity).
  • the faceted hyperboloid generates mutually displaced, magnified (concave hyperboloidal mirrors) or reduced (convex hyperboloidal) virtual images of the light source, depending on whether the hyperboloidal mirror is concave (and thus enlarging) or convex (and thus downsizing).
  • FIG. 8 shows front views of embodiments of the Light module, as they offer a viewer who is located in the direction of the light module in front of the light module and looks into the light module.
  • the reflector serving as secondary optics has a parabolic shape with three facets, at least in a region of its reflector surface that is larger than half of its entire reflecting surface.
  • FIG. 8a shows, in particular, an embodiment in which the facet 12.1 generates the asymmetrical increase 18.2 of the light-dark boundary in the light distribution 16 on the right edge of the reflector in the viewing direction.
  • the facet 12.1 is arranged such that the light source images are tilted in the direction of the rise.
  • the facet 12.1 generates light source images with an orientation that produce the desired increase in the light-dark boundary in the sum of the light source images. That in the Fig. 8a example shown is suitable for legal transactions. Emits the light source as with the subject of the Fig. 8a from below into the reflector, the facet 12.1 does not lie on the same side of the meridional plane as the slope 18.2.
  • the facet edge runs in sections perpendicular to the rise.
  • FIG. 8b shows in particular an embodiment in which the facet 12.3 on the left edge of the reflector produces the asymmetrical rise of the light-dark boundary in the light distribution. Emits the light source as with the subject of the Fig. 8b from the top into the reflector, the facet 12.3 lies on the same side of the meridional plane as the slope 18.2 itself. The facet edge runs in sections perpendicular to the rise.
  • FIG. 9b shows a low beam distribution of an embodiment of a light module according to the invention, as it adjusts to a standing in front of the vehicle screen.
  • the horizontal line H is at the height of the horizon.
  • the vertical line V crosses the horizon in the extension of the main emission direction of the light module.
  • FIG. 9a illustrates how the in the Fig. 9b shown light distribution as a superposition of light source images 74 results.
  • Each light source image is generated by a small part of the reflective surface of the secondary optics.
  • the presentation of the Fig. 9a is purely schematic in this respect.
  • the light source images are predominantly oriented horizontally or parallel to the light-dark boundary.
  • the facet producing the slope is just designed to provide light source images whose edge is parallel to the desired slope of the slope.
  • the primary optics increase the light exit surface by a factor that corresponds approximately to the quotient of the division of the optical array and the side length of a single chip. This follows from the uniformly bright replacement light source.
  • the focal length of the secondary optics preferably corresponds to 50 times to 200 times the side length of a single chip, in particular 80 times to 100 times the said side length.

Abstract

Vorgestellt wird ein Lichtmodul (14) eines Kraftfahrzeugscheinwerfers, mit mehreren Lichtquellen (28), einer Primäroptik (30) und einer Sekundäroptik (12), wobei die Primäroptik (30) dazu eingerichtet ist, von den Lichtquellen ausgehendes Licht zu sammeln und in eine Zwischenlichtverteilung (68) zu überführen, welche die Form einer geschlossen leuchtenden Fläche aufweist, und wobei die Sekundäroptik (12) eine objektseitige Brennweite aufweist, wobei die Primäroptik und die Sekundäroptik so angeordnet sind, dass die Zwischenlichtverteilung im Abstand dieser Brennweite im Lichtweg vor der Sekundäroptik liegt. Das Lichtmodul zeichnet sich dadurch aus, dass die Lichtaustrittsflächen der Lichtquellen (28) durch zwischen ihnen liegende Abstände voneinander getrennt sind und dass die Primäroptik (30) dazu eingerichtet ist, von den Lichtquellen ausgehendes Licht so zu verteilen, dass die Abstände in der Zwischenlichtverteilung (68) nicht erkennbar sind.Disclosed is a light module (14) of a motor vehicle headlight, with a plurality of light sources (28), a primary optics (30) and a secondary optics (12), wherein the primary optics (30) is adapted to collect outgoing light from the light sources and into an intermediate light distribution (68), which has the shape of a closed luminous surface, and wherein the secondary optics (12) has an object-side focal length, the primary optics and the secondary optics are arranged so that the intermediate light distribution at a distance of this focal length in the light path before the secondary optics , The light module is characterized in that the light exit surfaces of the light sources (28) are separated by distances between them and that the primary optics (30) is arranged to distribute outgoing light from the light sources so that the distances in the intermediate light distribution ( 68) are not recognizable.

Description

Die vorliegende Erfindung betrifft ein Lichtmodul eines Kraftfahrzeugscheinwerfers nach dem Oberbegriff des Anspruchs 1.The present invention relates to a light module of a motor vehicle headlight according to the preamble of claim 1.

Ein solches Lichtmodul wird hier als bekannt vorausgesetzt. Ein Lichtmodul eines Kraftfahrzeugscheinwerfers ist eine Baugruppe, die allein oder im Zusammenwirken mit anderen Lichtmodulen desselben Scheinwerfers oder auch wenigstens eines anderen Scheinwerfers bei einer bestimmungsgemäßen Verwendung in einem Kraftfahrzeug eine regelkonforme Lichtverteilung im Vorfeld des Kraftfahrzeugs erzeugt.Such a light module is assumed to be known here. A light module of a motor vehicle headlight is an assembly that alone or in conjunction with other light modules of the same headlight or at least one other headlight when used as intended in a motor vehicle generates a rule-compliant light distribution in advance of the motor vehicle.

Das als bekannt vorausgesetzte Lichtmodul weist mehrere Lichtquellen, eine Primäroptik und eine Sekundäroptik auf, wobei die Primäroptik dazu eingerichtet ist, von den Lichtquellen ausgehendes Licht zu sammeln und in eine Zwischenlichtverteilung zu überführen, welche die Form einer geschlossen leuchtenden Fläche aufweist. Die Sekundäroptik weist eine objektseitige Brennweite auf, und die Primäroptik und die Sekundäroptik sind so angeordnet, dass die Zwischenlichtverteilung im Abstand dieser Brennweite im Lichtweg vor der Sekundäroptik liegt.The assumed as known light module has a plurality of light sources, a primary optics and a secondary optics, wherein the primary optics is adapted to collect from the light sources outgoing light and to transfer to an intermediate light distribution, which the shape having a closed illuminated surface. The secondary optics has an object-side focal length, and the primary optics and the secondary optics are arranged so that the intermediate light distribution is at a distance of this focal length in the light path before the secondary optics.

Zwischenlichtverteilungen von Lichtmodulen, die eine Lichtverteilung mit einer Hell-Dunkel-Grenze erzeugen sollen, sind an mindestens einer Seite durch eine scharfe Kante begrenzt.Intermediate light distributions of light modules, which are to produce a light distribution with a light-dark boundary, are bounded on at least one side by a sharp edge.

Die Sekundäroptik ist eine Linse oder ein Reflektor und besitzt eine objektseitige Schärfenebene, die sich dadurch auszeichnet, dass in ihr liegende Konturen scharf in ein in Propagationsrichtung des Lichtes hinter der Sekundäroptik liegendes Vorfeld des Lichtmoduls abgebildet werden.The secondary optics is a lens or a reflector and has an object-side focal plane, which is characterized in that contours lying in it are sharply imaged in a front of the light module in the propagation direction of the light behind the secondary optics.

In letzter Zeit werden zunehmend Halbleiterlichtquellen wie Leuchtdioden (LED) als Lichtquellen in Kraftfahrzeugscheinwerfern verwendet. Wurden zu Beginn dieser Entwicklung vor allem (Signal)-Leuchten für Premiumfahrzeuge mit Leuchtdioden betrieben, so sollen künftig auch das Abblendlicht und Fernlicht von Mittelklassewagen optional von LEDs erzeugt werden.Recently, semiconductor light sources such as light-emitting diodes (LED) are increasingly used as light sources in motor vehicle headlights. While (signal) lights for premium vehicles with LEDs were used at the beginning of this development, the low beam and high beam of mid-range cars will also be optionally produced by LEDs in the future.

Als Folge dieser Entwicklung entsteht ein Markt für kostengünstige Abblendlicht- und Fernlicht-Lichtmodule, die LEDs als Lichtquellen nutzen.As a result of this development, a market for low cost low and high beam light modules using LEDs as light sources is emerging.

Leistungsfähige LED-Abblendlichtmodule werden heute meist als Projektionsscheinwerfer ausgeführt. Dabei erzeugt eine zweistufige Optik zunächst ein reelles Zwischenbild der Lichtaustrittsfläche der als Lichtquellen benutzten Leuchtdioden. Dabei werden sogenannte Arrays aus mehreren Leuchtdioden verwendet, um ausreichend große Lichtströme zu erzeugen. Die Lichtaustrittsfläche einer einzelnen LED, die in einem solchen Array verwendet wird, ist zum Beispiel quadratisch und weist eine Kantenlänge von ca. einem Millimeter auf. Die einzelnen LEDs sind innerhalb des Arrays so angeordnet, dass ihre Lichtaustrittsflächen unmittelbar und quasi abstandslos aneinander angrenzen, so dass sich eine zusammenhängend erscheinende Gesamtlichtaustrittsfläche des Arrays ergibt. Nachteilig ist bei diesen Lichtmodulen insbesondere der hohe Preis für die Projektionslinse und die teuren LED-Arrays.Powerful LED dipped-beam modules are today usually designed as projection lamps. In this case, a two-stage optical system initially generates a real intermediate image of the light exit surface of the light-emitting diodes used as light sources. There are so-called arrays of several Light emitting diodes used to generate sufficiently large light fluxes. The light exit surface of a single LED used in such an array is, for example, square and has an edge length of about one millimeter. The individual LEDs are arranged within the array in such a way that their light exit surfaces adjoin one another directly and virtually without spacing, so that a coherent total light exit surface of the array results. A disadvantage of these light modules in particular the high price of the projection lens and the expensive LED arrays.

Im Aufbau wesentlich einfacher sind Reflexionssysteme, bei denen ein Reflektor in einfacher Reflexion (1-stufige Optik) eine Abblendlichtverteilung erzeugt. Die Lichtverteilung wird als Überlagerung vieler Elementarbilder der Lichtquelle gebildet. Als Lichtquellenbild wird dabei die Abbildung der Lichtquelle durch eine infinitesimal kleine Reflektorzone verstanden. Um die Lichtquellenbilder zu einer homogenen Lichtverteilung zu überlagern, sollte die Lichtquelle selbst ebenfalls eine gleichmäßige Leuchtdichte aufweisen. Darüber hinaus benötigt die Lichtquelle eine scharfe Berandung, mit deren Abbildung die scharfe Hell-Dunkel-Grenze der Abblendlichtverteilung erzeugt wird. Als Folge benötigt die einfache, kostengünstige Reflexionsoptik ein teures LED-Array als Lichtquelle.Reflecting systems in which a reflector in simple reflection (1-stage optics) generates a low-beam distribution are much simpler in design. The light distribution is formed as a superposition of many elementary images of the light source. The light source image is understood to mean the image of the light source through an infinitesimally small reflector zone. To superimpose the light source images to a homogeneous light distribution, the light source itself should also have a uniform luminance. In addition, the light source requires a sharp boundary, with the imaging of the sharp cut-off of the low beam distribution is generated. As a result, the simple, low-cost reflective optics require an expensive LED array as the light source.

Verwendet man anstelle eines LED-Arrays, das eine quasi geschlossene Licht emittierende Fläche aufweist, mehrere einzelne, mit einem Abstand voneinander angeordnete LEDs (zum Beispiel: SMD-LEDs, SMD: surface mounted design), so führen die Lücken zwischen den LED-Chips und damit insbesondere zwischen den Lichtaustrittsflächen zu dunklen Streifen in der Lichtverteilung. Versucht man, die entstehenden Streifen der Lichtverteilung durch Streuoptiken auf der Reflektorfläche zu einer homogenen Lichtverteilung zu verwischen, reduziert sich die maximale Beleuchtungsstärke mindestens im Verhältnis Chipbreite zur Summe aus Chipbreite und Chipabstand. Das bedeutet, dass die mittlere Leuchtdichte einer solchen verwischten Lichtquelle gegenüber einem Array, bei dem die LED-Chips direkt nebeneinander angeordnet sind, mindestens in dem genannten Verhältnis geringer ist.If, instead of an LED array, which has a quasi-closed light-emitting surface, a plurality of individual, spaced-apart LEDs (for example: SMD LEDs, surface mounted design SMD), so lead the gaps between the LED chips and thus in particular between the light exit surfaces to dark Strip in the light distribution. If one tries to blur the resulting stripes of light distribution by scattering optics on the reflector surface to a homogeneous light distribution, the maximum illuminance is reduced at least in the ratio chip width to the sum of chip width and chip gap. This means that the average luminance of such a blurred light source is lower than an array in which the LED chips are arranged directly next to one another, at least in the said ratio.

Durch Toleranzen der Einzelchips auch in Verbindung mit dem farbkonvertierenden Phosphor liegen die Seiten der LED Chips nie wirklich auf einer Linie, was bei der Abbildung des Arrays zu unsauberen Hell-Dunkel-Grenzen führt.Due to tolerances of the individual chips also in connection with the color-converting phosphor, the sides of the LED chips are never really in line, which leads to unclean cut-offs in the image of the array.

Da bei Reflexionssystemen die Hell-Dunkel-Grenze nicht wie bei Projektionssystemen durch Abbildung einer Blende erzeugt wird, sondern aus unterschiedlich orientierten Lichtquellenbildern zusammengesetzt wird, liegt bei herkömmlichen Reflexionssystemen der Lichtschwerpunkt deutlich tiefer unter der Hell-Dunkel-Grenze als bei Projektionssystemen. Dies beeinträchtigt die Reichweite, da die Reichweite mit abnehmender Helligkeit des knapp unter der Hell-Dunkel-Grenze liegenden hellen Bereichs abnimmt. Nachteilig ist auch, dass mit Reflexionssystemen keine so hohen Beleuchtungsstärkegradienten an der Hell-Dunkel-grenze erzielt werden, wie sie bei Projektionssystemen üblich sind.Since in reflection systems the light-dark boundary is not generated by projection of a diaphragm, as in projection systems, but is composed of differently oriented light source images, in conventional reflection systems the light center is significantly lower than the light-dark boundary than in projection systems. This will affect the range as the range decreases as the brightness of the bright area just below the cut-off line decreases. It is also disadvantageous that reflection systems do not achieve such high illuminance gradients at the light-dark boundary as are usual in projection systems.

Vor diesem Hintergrund besteht die Aufgabe der Erfindung in der Angabe eines möglichst kompakten Lichtmoduls, das mit kostengünstigen SMD-LEDs betrieben werden kann und das keine teure, voluminöse Projektionslinse benötigt. Außerdem soll die Leistungsfähigkeit des Lichtmoduls in Bezug auf die Beleuchtungsstärke am Rand einer Hell-Dunkel-Grenze einer Abblendlicht-Lichtverteilung und in Bezug auf die Steilheit des Gradienten des Helligkeitsverlaufs quer zur Hell-Dunkel-Grenze an die Leistungsfähigkeit von Projektionsmodulen heranreichen.Against this background, the object of the invention in the specification of a compact as possible light module that can be operated with low-cost SMD LEDs and does not require expensive, voluminous projection lens. Furthermore The aim is to match the performance of the light module with respect to illuminance at the edge of a cut-off line of a low-beam light distribution and with respect to the gradient of the gradient of the brightness curve across the cut-off line to the performance of projection modules.

Diese Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst. Von dem als bekannt vorausgesetzten Lichtmodul unterscheidet sich die vorliegende Erfindung dadurch, dass die Lichtaustrittsflächen der Lichtquellen durch zwischen ihnen liegende Abstände voneinander getrennt sind und dass die Primäroptik dazu eingerichtet ist, von den Lichtquellen ausgehendes Licht so zu verteilen, dass die Abstände in der Zwischenlichtverteilung nicht erkennbar sind.This object is achieved with the features of claim 1. From the light module assumed to be known, the present invention differs in that the light exit surfaces of the light sources are separated by distances between them and that the primary optics is adapted to distribute outgoing light from the light sources so that the distances in the intermediate light distribution not are recognizable.

Die eingangs genannten mehreren Lichtquellen sind bevorzugt als ein LED-array verwirklicht. Die Sekundäroptik weist bevorzugt mehrere Facetten auf, so dass sich mehrere Lichtquellen-seitige Brennpunkte oder eine Brennlinie ergeben. Bevorzugt ist also insbesondere, dass die Sekundäroptik mehrere objektseitige Brennpunkte aufweist.The aforementioned multiple light sources are preferably realized as an LED array. The secondary optics preferably has a plurality of facets, resulting in multiple light source side foci or a focal line. Thus, in particular, it is preferred that the secondary optics have a plurality of object-side focal points.

Im Lichtweg hinter der Zwischenlichtverteilung ist in einer Ausgestaltung noch ein facettierter Reflektor als Sekundäroptik angeordnet. Der Reflektor ist bevorzugt dazu eingerichtet, aus der Zwischenlichtverteilung eine vollständige Abblendlichtverteilung zu erzeugen, die einen asymmetrischen Anstieg aufweist.In the light path behind the intermediate light distribution, in one embodiment, a faceted reflector is arranged as secondary optics. The reflector is preferably configured to generate from the intermediate light distribution a complete low-beam distribution which has an asymmetrical rise.

Der Reflektor kann durch eine facettierte Linse mit entsprechenden Brennpunktlagen ersetzt werden. Bei einer alternativen Ausgestaltung ist die Sekundäroptik als facettierte Linse verwirklicht. Durch das bei Linsen im Vergleich zu Reflektoren günstigere Verhältnis von Brennweite zu Öffnung (Blendenzahl) ergibt sich bei der Linsen-Sekundäroptik eine geringere Farbaberration.The reflector can be replaced by a faceted lens with corresponding focus positions. In an alternative embodiment, the secondary optics is realized as a faceted lens. By the case of lenses in the Compared to reflectors more favorable ratio of focal length to aperture (f-number) results in the lens secondary optics a lower color aberration.

Auf diese Weise stellt die Zwischenlichtverteilung in gewisser Weise eine Ersatzlichtquelle dar, welche die geforderte Eigenschaft eines streifenlosen Erscheinungsbildes aufweist und die zusammen mit einem preiswerten Reflexionssystem zur Erzeugung einer regelkonformen Lichtverteilung verwendbar ist.In this way, the intermediate light distribution in some way represents a substitute light source having the required property of a streak-free appearance and which, together with a low-cost reflection system, can be used to produce a rule-compliant light distribution.

Eine bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass die Primäroptik für jede Lichtquelle einen eigenen optisch wirksamen Teilbereich aufweist, von denen jeder eine Lichtaustrittsfläche aufweist und wobei diese Lichtaustrittsflächen abstandslos aneinander angrenzen, und wobei mindestens zwei benachbarte Lichtaustrittsflächen so aneinander angrenzen, dass wenigstens eine Seitenkante einer ersten von zwei aneinander angrenzenden Lichtaustrittsflächen in einer Linie fluchtend mit einer Seitenkante der zweiten der zwei aneinander angrenzenden Lichtaustrittsflächen liegt, so dass die beiden fluchtenden Kanten eine gemeinsame, gerade Kante bilden.A preferred embodiment is characterized in that the primary optics for each light source has its own optically effective portion, each having a light exit surface and wherein these light exit surfaces adjoin one another without spacing, and at least two adjacent light exit surfaces adjacent to each other so that at least one side edge of a first of two adjacent light exit surfaces in line with a side edge of the second of the two adjacent light exit surfaces, so that the two aligned edges form a common, straight edge.

Die Primäroptik ist bevorzugt ein einstückiges Optikarray, wobei jeder LED ein optisch wirksamer Teilbereich als sammelnde Primäroptik zugeordnet ist und wobei alle Primäroptiken mit ihren Lichtaustrittsflächen weitgehend unmittelbar aneinandergrenzen. Mindestens zwei dieser Optiken bilden mit ihren Lichtaustrittsflächen eine gemeinsame gerade Kante.The primary optics is preferably a one-piece optical array, wherein each LED is assigned an optically effective partial area as collecting primary optics and wherein all primary optics with their light exit surfaces largely contiguous. At least two of these optics form with their light exit surfaces a common straight edge.

Bevorzugt ist auch, dass jeder Teilbereich eine Sammellinse ist. In diesem Fall ist das Optikarray vorzugsweise aus Plankonvexlinsen aufgebaut und besteht bevorzugt aus organischem oder anorganischem Glas oder aus Silikonkautschuk (LSR). Organische Gläser sind beispielsweise Polymethylmethacrylat (PMMA), Cycloolefines Copolymer (COC), Cycloolefines Polymer (COP), Polycarbonat (PC), Polysulfon PSU oder Polymethacrylmethylimid (PMMI). Das Linsenarray weist bevorzugt mindestens abschnittsweise auf einer Seite einen geraden Rand auf. Dazu ist das Sammellinsenarray an einer Kante wenigstens abschnittsweise durch eine ebene Seitenfläche begrenzt, an der ein Teil des auftreffenden Lichtes reflektiert wird. Alternativ kann diese Kante auch durch eine Blende gebildet werden, die unmittelbar vor der Lichtaustrittsfläche des Linsenarrays in den Strahlengang gebracht wird.It is also preferable that each subregion is a condenser lens. In this case, the optical array is preferably off Plankonvexlinsen constructed and is preferably made of organic or inorganic glass or silicone rubber (LSR). Organic glasses are, for example, polymethyl methacrylate (PMMA), cycloolefin copolymer (COC), cycloolefin polymer (COP), polycarbonate (PC), polysulfone PSU or polymethacrylmethylimide (PMMI). The lens array preferably has, at least in sections, a straight edge on one side. For this purpose, the collecting lens array is bounded on one edge at least in sections by a flat side surface on which a part of the incident light is reflected. Alternatively, this edge can also be formed by a diaphragm which is brought into the beam path immediately in front of the light exit surface of the lens array.

Alternativ ist bevorzugt, dass jeder Teilbereich ein Reflektor ist. In diesem Fall ist die Primäroptik bevorzugt als Reflektorarray ausgebildet, das aus konisch sich zum Lichtaustritt hin erweiternden Reflektoren aufgebaut ist, die in Ebenen, auf denen die Hauptabstrahlrichtung der LED senkrecht steht, vorzugsweise quadratische oder rechteckige Querschnitte aufweisen. Vorzugsweise haben die Reflektoren die Geometrie eines Pyramidenstumpfes. Bevorzugt ist auch, dass das Reflektorarray aus einem metallisierten, hochtemperaturfesten Kunststoff besteht, insbesondere aus einem thermoplastischen Kunststoff. Gut geeignete hochtemperaturfeste Thermoplaste sind beispielsweise Polyetheretherketon, Polyetherimid oder Polysulfon. Die Metallisierung besteht beispielsweise aus Aluminium, Silber, Platin, Gold, Nickel, Chrom, Kupfer, Zinn oder aus Legierungen, die diese Metalle beinhalten. Die Metallisierung wird anschließend vorzugsweise durch eine transparente Schicht versiegelt.Alternatively, it is preferred that each subregion is a reflector. In this case, the primary optic is preferably formed as a reflector array, which is constructed of conically widening toward the light exit reflectors having in planes on which the main emission of the LED is perpendicular, preferably square or rectangular cross-sections. Preferably, the reflectors have the geometry of a truncated pyramid. It is also preferred that the reflector array consists of a metallized, high temperature resistant plastic, in particular of a thermoplastic material. High-temperature-resistant thermoplastics which are suitable are, for example, polyether ether ketone, polyether imide or polysulfone. The metallization consists for example of aluminum, silver, platinum, gold, nickel, chromium, copper, tin or alloys containing these metals. The metallization is then preferably sealed by a transparent layer.

Anstelle der Metallisierung kann eine Multilagenbeschichtung auf den Kunststoffkörper aufgebracht werden. Bei der Multilagenbeschichtung werden abwechselnd mehrere niedrig- und hochbrechende Schichten kombiniert. Unter der spiegelnden Metall- oder Multilagenschicht kann eine weitere Metallschicht als Strahlungsbarriere vorgesehen sein. Diese Metallschicht wird beispielsweise als dicke Kupfer- oder Nickelschicht auf dem Kunststoffkörper des Reflektorarrays abgeschieden und bildet so einen Schutz gegen die thermische Belastung durch die Strahlung der LED. Auch ist diese dicke Metallschicht in der Lage, Wärme zum Reflektorrand hin abzuleiten.Instead of the metallization, a multilayer coating can be applied to the plastic body. Multilayer coating alternately combines several low- and high-index layers. Under the mirroring metal or multilayer layer, a further metal layer may be provided as a radiation barrier. This metal layer is deposited, for example, as a thick copper or nickel layer on the plastic body of the reflector array and thus forms a protection against the thermal stress by the radiation of the LED. Also, this thick metal layer is able to dissipate heat to the reflector edge.

Zwischen dem Reflektorarray und den LED kann ein Wärmeschutzblech vorgesehen sein, das Strahlung von der LED auf die Rückseite des Reflektorkörpers abschattet und so eine thermische Überlastung des Reflektormaterials verhindert. Das Reflektorarray weist bevorzugt mindestens einen geraden Rand als Rand einer Reihe von Lichtaustrittsflächen benachbarter Reflektor-Teilbereiche auf.Between the reflector array and the LED, a heat shield can be provided, which shadows radiation from the LED on the back of the reflector body and thus prevents thermal overload of the reflector material. The reflector array preferably has at least one straight edge as the edge of a series of light exit surfaces of adjacent reflector subregions.

Als weitere Alternative ist auch bevorzugt, dass jeder Teilbereich ein Lichtleiter ist.As a further alternative, it is also preferred that each subregion is a light guide.

In diesem Fall ist die Primäroptik bevorzugt als Lichtleiterarray ausgebildet, das aus konisch sich zum Lichtaustritt hin erweiternden Lichtleitern besteht, die in Ebenen, auf denen die Hauptabstrahlrichtung der LED senkrecht steht, vorzugsweise quadratische oder rechteckige Querschnitte aufweisen. Die Lichteintrittsfläche der einzelnen Lichtleiter-Teilbereiche ist jeweils bevorzugt eben und parallel zur Chipfläche der zugeordneten LED angeordnet. Dadurch wird ein größerer Teil des von der LED ausgehenden Lichtstroms in den Lichtleiter-Teilbereich eingekoppelt als bei einer konvexen Wölbung. Außerdem erfolgt durch die Brechung bereits eine gewisse Bündelung. Eine weitere Bündelung findet durch Reflexionen an den Seitenwänden des Lichtleiters statt, was durch die sich zum Lichtaustritt hin erweiternde Form bedingt ist. Die an den Seitenwänden stattfindenden Reflexionen unterscheiden Lichtleiter auch von Linsen, die ebenfalls transparente Festkörper sind. Bei Linsen finden Richtungsänderungen des Lichtes nur durch Brechung, nicht aber durch Reflexion an Seitenwänden statt.In this case, the primary optic is preferably formed as a light guide array, which consists of conically widening towards the light exit optical fibers, which have in planes on which the main emission of the LED is perpendicular, preferably square or rectangular cross-sections. The light entry surface of the individual optical waveguide subregions is preferably arranged flat and parallel to the chip surface of the associated LED. This will make a bigger part of the LED Outgoing luminous flux coupled into the optical fiber portion as in a convex curvature. In addition, the refraction already causes some bunching. A further bundling takes place by reflections on the side walls of the light guide, which is due to the shape that widens towards the exit of light. The reflections on the sidewalls also distinguish light guides from lenses that are also transparent solids. In the case of lenses, direction changes of the light take place only by refraction, but not by reflection on side walls.

Bevorzugt ist auch, dass die Lichtaustrittsfläche der einzelnen Lichtleiter konvex gewölbt ist. Dadurch wird beim Lichtaustritt eine bündelnde Wirkung erzielt. Das Lichtleiterarray besteht bevorzugt aus einem der Materialien, das weiter oben als Linsenmaterial genannt wurde. Das Lichtleiterarray weist mindestens einen geraden Rand auf, der sich aus fluchtend aneinander anschließenden Rändern einzelner Lichtaustrittsflächen benachbarter Lichtleiter-Teilbereiche zusammensetzt.It is also preferred that the light exit surface of the individual light guides is convex. As a result, a bundling effect is achieved when the light emerges. The light guide array is preferably made of one of the materials previously referred to as lens material. The light guide array has at least one straight edge, which is composed of adjoining edges of individual light exit surfaces of adjacent light guide subregions.

Eine weitere bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass das Lichtmodul eine Blende aufweist, die im Strahlengang des Lichtes unmittelbar hinter der Lichtaustrittsfläche so angeordnet ist, dass sie einen Teil der Zwischenlichtverteilung abschattet.A further preferred embodiment is characterized in that the light module has a diaphragm which is arranged in the beam path of the light immediately behind the light exit surface so that it shadows a part of the intermediate light distribution.

Die Blende erleichtert die Erzeugung einer scharfen Hell-Dunkel-Grenze der Zwischenlichtverteilung, was sich auch günstig auf die Schärfe der letztlich im Vorfeld des Lichtmoduls zu erzeugenden regelkonformen Lichtverteilung auswirkt. Die Blende ist in einer bevorzugten Ausgestaltung als Einlegeteil oder Zweikomponenten Spritzgussteil an die Primäroptik mit angeformt, was zu dem Vorteil geringer Toleranzen zwischen Blende und Primäroptik führt.The diaphragm facilitates the generation of a sharp light-dark boundary of the intermediate light distribution, which also has a favorable effect on the sharpness of the rule-compliant light distribution to be generated in the run-up to the light module. The aperture is in a preferred embodiment as an insert or two-component injection molded part to the Primary optics with molded, resulting in the advantage of low tolerances between aperture and primary optics.

Bevorzugt ist auch, dass die Sekundäroptik wenigstens einen Hohlspiegelreflektor aufweist. Ein Hohlspiegelreflektor weist insbesondere im Vergleich zu transparenten Festkörpern wie Linsen oder mit interner Totalreflexion arbeitenden Sekundäroptiken die Vorteile geringerer Kosten und eines geringeren Gewichtes auf.It is also preferable that the secondary optics have at least one concave mirror reflector. In particular, a concave reflector has the advantages of lower costs and lower weight compared to transparent solids such as lenses or internal total reflection secondary optics.

Um eine gute Schärfe der Hell-Dunkel-Grenze und damit einen hohen Beleuchtungsstärkegradienten zu erzielen, werden alle Reflektoren bevorzugt im Strahlengang so angeordnet, dass der Strahlengang an den jeweiligen Reflektoren immer in möglichst spitzem Winkel (<90°) gefaltet wird. Durch den spitzen Faltungswinkel des Strahlenganges ändern die Elementarbilder der Ersatzlichtquelle ihre Orientierung kaum, so dass man Abblendlichtverteilungen mit guter Homogenität (keine Längsstreifen in der Lichtverteilung), hohem Lichtschwerpunkt (dicht unter der Abblendlicht-Hell-Dunkel-Grenze) und scharfer Hell-Dunkel-Grenze erzeugen kann.In order to achieve a good sharpness of the bright-dark boundary and thus a high illuminance gradient, all reflectors are preferably arranged in the beam path so that the beam path is always folded at the respective reflectors in the sharpest possible angle (<90 °). Due to the acute folding angle of the beam path, the elementary images of the replacement light source hardly change their orientation, so that low-beam light distribution with good homogeneity (no longitudinal stripes in the light distribution), high light center (close to the low-beam light-dark boundary) and sharp light-dark Can produce limit.

Ferner ist bevorzugt, dass eine optische Fläche der Sekundäroptik in einen größeren Teilbereich und einen kleineren Teilbereich aufgeteilt ist, wobei der größere Teilbereich dadurch definiert ist, dass er einen ersten objektseitigen Brennpunkt besitzt und dass die beiden Teilbereiche einen gemeinsamen bildseitigen Brennpunkt im Unendlichen besitzen.Further, it is preferable that an optical surface of the secondary optics is divided into a larger partial area and a smaller partial area, the larger partial area being defined by having a first object-side focal point and the two partial areas having a common image-side focal point at infinity.

Dadurch erzeugt diese Sekundäroptik eine Abbildung der Ersatzlichtquelle im Unendlichen und damit eine Lichtverteilung im Vorfeld des Lichtmoduls, deren Form von der Form der Zwischenlichtverteilung und damit von der Form der Ersatzlichtquelle abhängt und die insbesondere eine scharfe Hell-Dunkel-Grenze aufweist, wenn eine solche auch bei der Zwischenlichtverteilung vorhanden ist.As a result, this secondary optics generates an image of the replacement light source at infinity and thus a light distribution in advance of the light module, whose shape of the shape of the intermediate light distribution and thus depends on the shape of the replacement light source and in particular has a sharp cut-off, if such is also present in the intermediate light distribution.

Bevorzugt ist auch, dass der Hohlspiegelreflektor eine reflektierende Fläche aufweist, deren größerer Teil eine parabolische Form aufweist, wobei ein objektseitiger Brennpunkt der parabolischen Form auf der Lichtaustrittsfläche der Primäroptik liegt.It is also preferred that the concave mirror reflector has a reflective surface, the greater part of which has a parabolic shape, wherein an object-side focal point of the parabolic shape lies on the light exit surface of the primary optics.

Der objektseitige Brennpunkt des Reflektors liegt dabei bevorzugt auf dem Rand der Ersatzlichtquelle. Zur Erzeugung einer Abblendlichtverteilung ist dies der untere Rand der Ersatzlichtquelle. Wie beschrieben, kann dieser Rand zusätzlich durch eine Blende abgeschattet werden, um zu verhindern, dass Streulicht ins Dunkelfeld der Lichtverteilung gelangt.The object-side focal point of the reflector is preferably on the edge of the replacement light source. To produce a low-beam light distribution, this is the lower edge of the replacement light source. As described, this edge can also be shaded by a diaphragm to prevent scattered light from entering the dark field of the light distribution.

Besitzt die Sekundäroptik mehrere Reflektorfacetten, so liegen deren Brennpunkte bevorzugt ebenfalls auf der Kante der Ersatzlichtquelle. Sie werden aber je nach Lage der Facette vorzugsweise an verschiedenen Enden der Lichtquellenkante positioniert.If the secondary optics has a plurality of reflector facets, their focal points are preferably also located on the edge of the replacement light source. However, depending on the position of the facet, they are preferably positioned at different ends of the light source edge.

Ferner ist bevorzugt, dass die Sekundäroptik aus zwei Spiegeln besteht, die im Strahlengang so hintereinander angeordnet sind, dass sie den Strahlengang der Sekundäroptik zweimal in einem spitzen Winkel falten und dass die Sekundäroptik einen objektseitigen Brennpunkt aufweist, der auf der Lichtaustrittsfläche der Primäroptik liegt und dessen Bildpunkt im Unendlichen liegt.Furthermore, it is preferred that the secondary optics consist of two mirrors which are arranged one behind the other in the beam path such that they fold the beam path of the secondary optics twice at an acute angle and that the secondary optics has an object-side focal point which lies on the light exit surface of the primary optics and the latter Pixel lies at infinity.

Durch die Faltung in einem spitzen Winkel werden die bereits genannten Vorteile einer guten Schärfe der Hell-Dunkel-Grenze erzielt, weil der spitze Winkel dazu führt, dass die Orientierung der Bilder der Ersatzlichtquelle parallel zur Hell-Dunkel-Grenze weitgehend erhalten bleibt.By folding at an acute angle, the already mentioned advantages of a good sharpness of the cut-off line are achieved, because the acute angle leads to the fact that the orientation of the images of the replacement light source is largely maintained parallel to the cut-off line.

Die zweimalige Faltung eröffnet auch die Möglichkeit, den Bauraum des Lichtmoduls zu verkürzen und liefert einen weiteren Freiheitsgrad für die Anordnung der Elemente des Lichtmoduls. Dadurch können insbesondere besonders kompakte Lichtmodule verwirklicht werden. Außerdem bietet es konstruktive Vorteile, wenn die Lichtquelle in Fahrtrichtung nach vorne abstrahlt und die Entwärmung der Lichtquelle über einen Kühlkörper nach hinten erfolgt: Eine derartige Lichtquelle kann auf einfache Weise von der Rückseite des Scheinwerfers her gewechselt werden. Auch lässt sich der Kühlkörper auf der Rückseite des Lichtmoduls leichter belüften, was die Kühlleistung verbessert. Durch die kompakte Bauweise ergibt sich der zusätzliche Vorteil, dass der Schwerpunkt des Lichtmoduls in der Nähe der Lichtaustrittsfläche liegt, was das mechanische Schwenken des Lichtmoduls für eine Leuchtweitenregelung und/oder eine Kurvenlichtfunktion erleichtert.The double folding also opens the possibility to shorten the space of the light module and provides a further degree of freedom for the arrangement of the elements of the light module. As a result, particularly particularly compact light modules can be realized. In addition, it offers constructive advantages when the light source radiates forward in the direction of travel and the heat dissipation of the light source via a heat sink to the rear: Such a light source can be easily changed from the back of the headlight ago. Also, the heat sink on the back of the light module can be easily ventilated, which improves the cooling performance. Due to the compact design, there is the additional advantage that the center of gravity of the light module is located in the vicinity of the light exit surface, which facilitates the mechanical pivoting of the light module for a headlight range control and / or a cornering light function.

Das Falten des Strahlenganges ist auch deshalb günstig, weil sich die Brechkraft bei dem vorgeschlagenen optischen System auf Primär- und Sekundäroptik aufteilt, so dass man Sekundäroptiken mit geringer Brechkraft, d.h. mit langer Brennweite erhält (die Brennweiten sind 2-3 mal größer als bei einstufigen Systemen). Dies ist deshalb von Vorteil, weil man durch die in Bezug auf die Öffnung sehr langen Brennweiten eine sehr toleranzunempfindliche Optik erhält. Alle Chipbilder haben darüber hinaus annähernd gleiche Größe und Orientierung.The folding of the beam path is also favorable, because the refractive power in the proposed optical system on primary and secondary optics, so that secondary optics with low refractive power, ie with long focal length receives (the focal lengths are 2-3 times greater than single-stage systems). This is advantageous because you get a very tolerancesunempfindliche optics by the very long focal lengths in relation to the opening. All chip images also have approximately the same size and orientation.

Bevorzugt ist auch, dass der in Propagationsrichtung des Lichtes im Strahlengang erste Spiegel ein Hyperboloid und der zweite Spiegel ein Paraboloid als Reflexionsfläche aufweist, wobei der objektseitige Brennpunkt des Hyperboloids den objektseitigen Brennpunkt der Sekundäroptik bildet und der bildseitige Brennpunkt des Hyperboloids mit dem Brennpunkt des Paraboloids zusammenfällt und die Lage eines virtuellen Zwischenbildes der Zwischenlichtverteilung markiert.It is also preferred that the first mirror in the propagation direction of the light in the beam path has a hyperboloid and the second mirror has a paraboloid as the reflection surface, the object-side focal point of the hyperboloid forming the object-side focal point of secondary optics and the image-side focal point of the hyperboloid coinciding with the focal point of the paraboloid and marks the position of a virtual intermediate image of the intermediate light distribution.

Bevorzugt ist auch, dass die Sekundäroptik mehrere objektseitige Brennpunkte und einen oder mehrere gemeinsame bildseitige Brennpunkte oder Brennlinien im Unendlichen aufweist.It is also preferable that the secondary optics have a plurality of object-side focal points and one or more common image-side foci or focal lines at infinity.

Ferner ist bevorzugt, dass der erste Spiegel der zweistufigen Sekundäroptik ein Hyperboloid aufweist oder ein ebener Spiegel als Spezialfall des Hyperboloids ist, und dass der zweite Spiegel ein facettiertes Paraboloid aufweist, wobei der objektseitige Brennpunkt des Hyperboloids den objektseitigen Brennpunkt der Sekundäroptik bildet und wobei der bildseitige Brennpunkt des Hyperboloids die Lage eines virtuellen Zwischenbildes der Zwischenlichtverteilung markiert und wobei die nachgeordneten Parabelfacetten dazu eingerichtet sind, auf den Rand des virtuellen Bildes der Zwischenlichtverteilung zu fokussieren.Furthermore, it is preferred that the first mirror of the two-stage secondary optics comprises a hyperboloid or a plane mirror as a special case of the hyperboloid, and that the second mirror has a faceted paraboloid, wherein the object-side focal point of the hyperboloid forms the object-side focal point of secondary optics and wherein the image-side Focusing the hyperboloid marked the location of a virtual intermediate image of the intermediate light distribution and wherein the downstream parabolic facets are adapted to focus on the edge of the virtual image of the intermediate light distribution.

Bevorzugt ist auch, dass der erste Spiegel der zweistufigen Sekundäroptik ein facettiertes Hyperboloid oder als dessen Spezialfall einen facettierten Planspiegel aufweist und dass der zweite Spiegel ein Paraboloid aufweist, wobei der objektseitige Brennpunkt des Hyperboloids den objektseitigen Brennpunkt der Sekundäroptik bildet und wobei der bildseitige Brennpunkt des Hyperboloids die Lage eines virtuellen Zwischenbildes der Zwischenlichtverteilung markiert und wobei die im Strahlengang nachgeordneten Parabelfacetten auf den Rand des virtuellen Bildes der Zwischenlichtverteilung fokussieren.It is also preferred that the first mirror of the two-stage secondary optics has a faceted hyperboloid or as its special case a faceted plane mirror and that the second mirror has a paraboloid, wherein the object-side focal point of the hyperboloid on the object side Focal point of the secondary optics forms and wherein the image-side focal point of the hyperboloid marks the position of a virtual intermediate image of the intermediate light distribution and wherein the parabolic facets in the beam path focus on the edge of the virtual image of the intermediate light distribution.

Eine weitere bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass die beiden Spiegel mehrere objektseitige Brennpunkte aufweisen, die auf dem Rand der Zwischenlichtverteilung liegen und deren Bildpunkt bzw. deren Bildlinien auf der Hell-Dunkel-Grenze der Lichtverteilung im Unendlichen liegen, wobei die beiden Spiegelflächen so geformt sind, dass alle optischen Wege zwischen dem objektseitigen Brennpunkt und seinen jeweiligen Bildpunkten bzw. Bildlinien gleich lang sind.A further preferred embodiment is characterized in that the two mirrors have a plurality of object-side focal points, which lie on the edge of the intermediate light distribution and whose pixel or image lines lie on the light-dark boundary of the light distribution at infinity, wherein the two mirror surfaces so are formed so that all the optical paths between the object-side focal point and its respective pixels or image lines are the same length.

Bei dieser Ausgestaltung basieren die beiden Spiegel der zweistufigen Sekundäroptik nicht auf Kegelschnitten und liefern kein scharfes, unverzerrtes Zwischenbild der Ersatzlichtquelle. Das optische System weist aber mehrere objektseitige Brennpunkte auf, die auf dem Rand der Lichtaustrittsfläche der Primäroptik liegen und deren Bildpunkte bzw. Bildlinien auf der Hell-Dunkel-Grenze der Lichtverteilung im Unendlichen liegen.In this embodiment, the two mirrors of the two-stage secondary optics are not based on conic sections and provide no sharp, undistorted intermediate image of the replacement light source. However, the optical system has several object-side foci, which lie on the edge of the light exit surface of the primary optics and their pixels or image lines lie on the light-dark boundary of the light distribution at infinity.

Ein optisches System aus Umlenkoptik 64 und Sekundäroptik 12 muss nicht zwingend ein scharfes virtuelles Zwischenbild 66 liefern, da Aberrationen (Unschärfe, Verzeichnung, Öffnungsfehler) des Zwischenbildes durch die nachgeschaltete Sekundäroptik 12 wieder ausgeglichen werden können.An optical system of deflecting optics 64 and secondary optics 12 does not necessarily have to provide a sharp virtual intermediate image 66, since aberrations (blurring, distortion, aperture aberrations) of the intermediate image can be compensated for again by the downstream secondary optics 12.

Weitere Vorteile ergeben sich aus der Beschreibung und den beigefügten Figuren.Further advantages will be apparent from the description and the attached figures.

Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It is understood that the features mentioned above and those yet to be explained below can be used not only in the particular combination given, but also in other combinations or in isolation, without departing from the scope of the present invention.

Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen, jeweils in schematischer Form:

Fig. 1
ein Ausführungsbeispiel eines erfindungsgemäßen Lichtmoduls mit einer unterhalb der Sekundäroptik liegenden Ersatzlichtquelle;
Fig. 2
ein Ausführungsbeispiel eines erfindungsgemäßen Lichtmoduls mit einer oberhalb der Sekundäroptik liegenden Ersatzlichtquelle;
Fig. 3
verschiedene Ansichten einer Baugruppe aus Platine, LEDs und einer Primäroptik mit als Reflektoren verwirklichten Teilbereichen;
Fig. 4
verschiedene Ansichten einer Baugruppe aus Platine, LEDs und einer Primäroptik mit als Sammellinsen verwirklichten Teilbereichen;
Fig. 5
verschiedene Ansichten einer Baugruppe aus Platine, LEDs und einer Primäroptik mit als Lichtleitern verwirklichten Teilbereichen;
Fig. 6
eine perspektivische Darstellung eines Ausführungsbeispiels eines erfindungsgemäßen Lichtmoduls, das einen an einem zusätzlichen Umlenkspiegel gefalteten Strahlengang aufweist;
Fig. 7
den Gegenstand der Fig. 6 mit verschiedenen Ausgestaltungen des Umlenkspiegels, jeweils in einer Seitenansicht;
Fig. 8
Vorderansichten von zwei Ausgestaltungen erfindungsgemäßer Lichtmodule mit Anordnungen der Ersatzlichtquelle gemäß den Alternativen der Fig. 1 und der Fig. 2;
Fig. 9
eine von einem Ausführungsbeispiel eines erfindungsgemäßen Lichtmoduls im Vorfeld des Lichtmoduls erzeugte Abblendlichtverteilung und eine schematische Darstellung von Lichtquellenbildern, aus denen sich die Abblendlichtverteilung zusammensetzt.
Embodiments of the invention are illustrated in the drawings and are explained in more detail in the following description. In each case, in schematic form:
Fig. 1
an embodiment of a light module according to the invention with a lying below the secondary optics spare light source;
Fig. 2
an embodiment of a light module according to the invention with a lying above the secondary optics spare light source;
Fig. 3
various views of an assembly of board, LEDs and a primary optics realized as reflectors sections;
Fig. 4
different views of an assembly of board, LEDs and a primary optics realized as collecting lenses sections;
Fig. 5
different views of an assembly of board, LEDs and a primary optics realized as light guides sections;
Fig. 6
a perspective view of an embodiment of an inventive Light module having a folded at an additional deflection mirror beam path;
Fig. 7
the object of Fig. 6 with different embodiments of the deflecting mirror, each in a side view;
Fig. 8
Front views of two embodiments of light modules according to the invention with arrangements of the replacement light source according to the alternatives of Fig. 1 and the Fig. 2 ;
Fig. 9
a low-beam light distribution produced by an exemplary embodiment of a light module according to the invention in advance of the light module and a schematic representation of light source images, from which the low-beam light distribution is composed.

Gleiche Bezugszeichen verweisen in den Figuren auf gleiche oder zumindest ihrer Funktion nach vergleichbare Elemente.Like reference numerals refer to the same or at least functionally comparable elements in the figures.

Im Einzelnen zeigt die Fig. 1 eine räumliche Anordnung aus einer Lichtquellenbaugruppe 10 und einer Sekundäroptik 12 als Ausführungsbeispiel eines erfindungsgemäßen Lichtmoduls 14. Dabei sind Haltestrukturen, die diese Anordnung im Raum definieren und fixieren, aus Gründen der Übersichtlichkeit und weil sie weder für das Verständnis der Erfindung noch für die Ausführbarkeit der Erfindung von Bedeutung sind, nicht dargestellt. Die Darstellung der Fig. 1 ist insofern auf die optischen Elemente des Lichtmoduls konzentriert. Dies gilt auch für die weiteren Figuren.In detail, the shows Fig. 1 a spatial arrangement of a light source assembly 10 and a secondary optics 12 as an embodiment of a light module according to the invention 14. Here, holding structures that define this arrangement in space and fix, for reasons of clarity and because they are neither for the understanding of the invention nor for the feasibility of the invention are of importance, not shown. The presentation of the Fig. 1 is so far concentrated on the optical elements of the light module. This also applies to the other figures.

Die Lichtquellenbaugruppe 10 und die Sekundäroptik 12 sind dabei so angeordnet, dass sie eine regelkonforme Lichtverteilung 16 auf einem im Vorfeld des Lichtmoduls stehenden Schirm 17 erzeugen. Die Lichtverteilung 16 weist im dargestellten Fall eine abschnittsweise horizontal verlaufende Hell-Dunkel-Grenze 18 auf.The light source assembly 10 and the secondary optics 12 are arranged so that they produce a rule-compliant light distribution 16 on a standing in front of the light module screen 17. In the illustrated case, the light distribution 16 has a section-wise horizontally running cut-off line 18.

Bei einer bestimmungsgemäßen Verwendung des Lichtmoduls 14 in einem Kraftfahrzeugscheinwerfer eines Kraftfahrzeugs, das auf einem ebenen Untergrund steht, verläuft der fahrbahnnähere Teil 18.1 der horizontalen Hell-Dunkel-Grenze etwa auf der Höhe des Horizonts vor dem Fahrzeug oder ganz leicht (in der Regel 0,57°) darunter. Der Punkt, in dem die Hell-Dunkel-Grenze nach oben abknickt, liegt etwa in der Verlängerung der Fahrzeuglängsachse. Eine durch diesen Punkt verlaufende Vertikale V schneidet den Horizont H in einem Punkt des Schirms, der auch als HV = (0,0) bezeichnet wird. Für Einzelheiten einer solchen Lichtverteilung wird auf die Erläuterungen zu Figur 9 verwiesen.When the light module 14 is used as intended in a motor vehicle headlight of a motor vehicle which is standing on a level surface, the roadway nearer part 18.1 of the horizontal light-dark boundary runs approximately at the height of the horizon in front of the vehicle or quite easily (as a rule 0, 57 °) below. The point at which the cut-off line bends upwards is roughly in the extension of the vehicle's longitudinal axis. A vertical V passing through this point intersects the horizon H at a point on the screen, also referred to as HV = (0,0). For details of such a light distribution, refer to the explanations FIG. 9 directed.

Dem optischen System des Lichtmoduls 14 lässt sich eine Sagittalebene 20 und eine Meridionalebene 22 zuordnen. Die Sagittalebene 20 liegt parallel zur Fahrbahn in der Höhe des Horizonts H. Die Meridionalebene 22 wird von der Richtung der Vertikalen V und einer optischen Achse des Lichtmoduls 14 definiert, die durch den HV = (0,0) Punkt geht.A sagittal plane 20 and a meridional plane 22 can be assigned to the optical system of the light module 14. The sagittal plane 20 lies parallel to the roadway at the height of the horizon H. The meridional plane 22 is defined by the direction of the vertical V and an optical axis of the light module 14, which passes through the HV = (0,0) point.

Die Lichtquellenbaugruppe 10 umfasst einen Kühlkörper 24 und eine Leiterplatte 26 mit darauf angeordneten SMD-LEDs 28 und der zugehörigen Primäroptik. Die SMD-LEDs mit der zugehörigen Primäroptik 30 sind als Detail Z vergrößert dargestellt.The light source module 10 comprises a heat sink 24 and a printed circuit board 26 with SMD LEDs 28 arranged thereon and the associated primary optics. The SMD LEDs with the associated primary optics 30 are shown enlarged as a detail Z.

Die SMD-LEDs 28 sind bauartbedingt so angeordnet, dass ihre Lichtaustrittsflächen nicht abstandslos aneinander angrenzen. Das von diesen SMD-LEDs 28 emittierte Licht wird durch die Primäroptik 30 so gebündelt, dass sich an den nahtlos aneinandergereihten Lichtaustrittsflächen der Primäroptik 30 eine zusammenhängend geschlossene Zwischenlichtverteilung einstellt. Diese als Ersatzlichtquelle dienende Zwischenlichtverteilung wird anschließend von der Sekundäroptik 12 als Abblendlichtverteilung 16 auf einem entfernt vor dem Lichtmodul 14 stehenden Schirm 17 wiedergegeben. Dabei wird die Unterkante 32 der Primäroptik 30 als Hell-Dunkel-Grenze der Abblendlichtverteilung abgebildet.Due to their design, the SMD LEDs 28 are arranged such that their light exit surfaces do not adjoin one another without spacing. The light emitted by these SMD LEDs 28 is focused by the primary optics 30 so that adjusts to the seamless juxtaposed light exit surfaces of the primary optics 30 a coherently closed light distribution. This intermediate light distribution serving as a substitute light source is subsequently reproduced by the secondary optics 12 as a low-beam light distribution 16 on a screen 17 which is remote from the light module 14. In this case, the lower edge 32 of the primary optics 30 is depicted as a cut-off line of the low-beam light distribution.

Die Reflektorfläche der Sekundäroptik 12 besteht aus mehreren Reflektorfacetten 12.1, 12.2. 12.3, die zum Beispiel zumindest in Bereichen ihrer Reflexionsfläche als Rotationsparaboloide verwirklicht sind. Dabei nehmen diese Bereiche jeweils den größeren Teil der Reflexionsfläche einer Facette ein. Die für verschiedene Facetten verschiedenen Paraboloide weisen unterschiedliche Brennpunkte 34, 36 auf, die alle auf der Unterkante 32 der Lichtaustrittsfläche der Primäroptik 30 liegen. Die Brennpunkte 34, 36 liegen dabei vorzugsweise an den Ecken der Primäroptik 30. Die Meridionalebene 22 teilt den Raum des optischen Systems in zwei Halbräume. Strahlt die Lichtquelle von unten in den Sekundärspiegel, so liegen die Spiegelfacetten und ihre Brennpunkte im gleichen Halbraum. Die Achsen der Rotationsparaboloide, auf denen die Reflektorfacetten basieren, weisen in Richtung der Abblendlicht-Hell-Dunkel-Grenze 18. In diesem Ausführungsbeispiel wird die Lichtquellenkante als Hell-Dunkel-Grenze der regelkonformen Lichtverteilung abgebildet.The reflector surface of the secondary optics 12 consists of several reflector facets 12.1, 12.2. 12.3, which are realized, for example, at least in areas of their reflection surface as Rotationsparaboloide. In each case, these areas occupy the larger part of the reflection surface of a facet. The paraboloids, which are different for different facets, have different focal points 34, 36, all of which lie on the lower edge 32 of the light exit surface of the primary optics 30. The focal points 34, 36 are preferably located at the corners of the primary optics 30. The meridional plane 22 divides the space of the optical system into two half-spaces. If the light source radiates from below into the secondary mirror, the mirror facets and their focal points lie in the same half space. The axes of the paraboloid of revolution on which the reflector facets are based point in the direction of the dipped beam light-dark boundary 18. In this exemplary embodiment, the light source edge is imaged as a light-dark boundary of the rule-compliant light distribution.

Als repräsentativer Lichtstrahl des in der Fig. 1 dargestellten Lichtmoduls 14 wird im Folgenden ein Hauptstrahl 38 aus dem Strahlengang des Lichtmoduls betrachtet, der in der Meridionalebene 22 verläuft.As a representative ray of light in the Fig. 1 In the following, a main beam 38 from the beam path of the light module, which runs in the meridional plane 22, is considered below.

Die Hauptabstrahlrichtungen der einzelnen LEDs sind bevorzugt parallel zueinander und stimmen insofern überein. Der betrachtete Lichtstrahl 38 verläuft in Hauptabstrahlrichtung der Lichtquellen 28 durch die untere Berandung der Lichtaustrittsfläche der Primäroptik 30 und propagiert in Richtung der Reflektorfläche der Sekundäroptik 12. An der Reflektorfläche wird der Hauptstrahl 38 in spitzem Winkel (< 90°) reflektiert und an einen Punkt an der Hell-Dunkel-Grenze 18 der Lichtverteilung 16 im Bereich H = 0° gelenkt, dessen vertikale Komponente üblicherweise bei V = -0,57° liegt.The main emission directions of the individual LEDs are preferably parallel to each other and therefore agree. The considered light beam 38 extends in the main emission direction of the light sources 28 through the lower boundary of the light exit surface of the primary optics 30 and propagates in the direction of the reflector surface of the secondary optics 12. At the reflector surface of the main beam 38 at an acute angle (<90 °) is reflected and at a point the light-dark boundary 18 of the light distribution 16 in the range H = 0 ° steered, the vertical component is usually at V = -0.57 °.

Der Gegenstand der Figur 2 unterscheidet sich von dem Gegenstand der Figur 1 dadurch, dass die Lichtquelle 10 von oben in den Sekundärreflektor 12 einstrahlt. Die Meridionalebene 22 teilt den Raum des optischen Systems in zwei Halbräume. Strahlt die Lichtquelle von oben in den Reflektor, liegen die Brennpunkte der Parabelfacetten immer auf der anderen Seite der Meridionalebene wie die Reflektorfacette selbst, was im Vergleich zur Figur 1 durch die im Detail Y von rechts nach links vertauschten Brennpunkte 34, 36 verdeutlicht wird. Durch die andere Anordnung der Lichtquelle vertauschen sich also die Seiten der Fokuspunkte 34, 36 der jeweiligen Reflektorfacetten. Insgesamt zeigt Figur 2 ebenfalls ein LED-Abblendlichtmodul 14 mit asymmetrischer Hell-Dunkel-Grenze 18.The object of FIG. 2 is different from the subject of the FIG. 1 in that the light source 10 radiates from above into the secondary reflector 12. The meridional plane 22 divides the space of the optical system into two half-spaces. If the light source radiates from above into the reflector, the focal points of the parabolic facets always lie on the other side of the meridional plane like the reflector facet itself, which is in comparison to the FIG. 1 is illustrated by the in detail Y from right to left reversed focal points 34, 36. By the other arrangement of the light source, therefore, the sides of the focus points 34, 36 of the respective reflector facets interchange. Overall shows FIG. 2 likewise an LED low-beam module 14 with asymmetrical cut-off line 18.

Die Aufgabe der Primäroptik 30 besteht innerhalb der hier vorgestellten Erfindung insbesondere darin, eine scharf begrenzte, streifenfreie und insofern als Ersatzlichtquelle geeignete Zwischenlichtverteilung in einer Ebene zu erzeugen, die von der Sekundäroptik 12 in der regelkonformen Lichtverteilung 18 scharf abgebildet wird. Dazu muss die Primäroptik 30 insbesondere aus den nicht abstandlos benachbarten Lichtaustrittsflächen der SMD-LEDs 28 eine geschlossen zusammenhängend leuchtende Fläche erzeugen.The task of primary optics 30 is within the here presented invention in particular to produce a well-defined, streak-free and thus suitable as a replacement light source intermediate light distribution in a plane that is sharply imaged by the secondary optics 12 in the rule-compliant light distribution 18. For this purpose, the primary optics 30, in particular from the light gaps of the SMD LEDs 28 which are not adjacent to one another, must generate a coherently coherent surface.

Zu diesem Zweck werden die SMD-LEDs 28 in einer oder mehreren parallelen Reihen angeordnet. Vor das LED-Array wird nun ein Optikarray 30 aus sammelnden Linsen, Reflektoren oder konischen Lichtleitern in den Strahlengang gebracht, so dass die Lichtaustrittsfläche möglichst gleichmäßig und homogen ausgeleuchtet wird und das abgestrahlte Strahlenbündel keine Lücken aufweist.For this purpose, the SMD LEDs 28 are arranged in one or more parallel rows. An optical array 30 comprising collecting lenses, reflectors or conical light guides is now brought into the beam path in front of the LED array, so that the light exit surface is illuminated as evenly and homogeneously as possible and the emitted radiation beam has no gaps.

Figur 3 zeigt ein Primäroptikarray 30 aus Reflektoren. Die Reflektorteilbereiche 40 sind hier als abstandslos aneinander angrenzende Ausnehmungen aus einem einstückigen Grundkörper 42 verwirklicht. Figur 3b zeigt eine perspektivische Ansicht der Baugruppe aus der Leiterplatte 26 und den Reflektor-Teilbereichen 40, welche die zugeordneten LEDs verdecken. Figur 3a zeigt einen Schnitt durch diese Baugruppe, der in Richtung der Reihenanordnung verläuft. Figur 3d zeigt eine Schnitt durch diese Baugruppe, der quer zu der Reihenanordnung verläuft und Figur 3c zeigt eine Draufsicht und eine Lage der genannten Schnitte. FIG. 3 shows a primary optics array 30 of reflectors. The reflector portions 40 are here realized as a distance from each other adjacent recesses of a one-piece body 42. FIG. 3b shows a perspective view of the assembly of the circuit board 26 and the reflector portions 40, which cover the associated LEDs. FIG. 3a shows a section through this assembly, which runs in the direction of the series arrangement. 3d figure shows a section through this assembly, which extends transversely to the array and Figure 3c shows a plan view and a location of said sections.

Die Reflektor-Teilbereiche haben dabei rechteckige, insbesondere quadratische Querschnitte. Die Lichtaustrittsflächen der einzelnen Reflektoren 40 reihen sich lückenlos und damit abstandslos aneinander an und begrenzen die resultierende leuchtende Fläche mit scharfen, geraden Kanten 44. Jeder SMD-LED 28 ist je ein Reflektor 40 zugeordnet. Die Mittelpunkte der Reflektoren 40 und die Mittelpunkte der Lichtaustrittsflächen der Lichtquellen 28 haben gleiche Abstände. Die Reihenanordnung der Reflektoren 40 besitzt daher die gleiche Teilung wie die Reihenanordnung der LEDs 28.The reflector subregions have rectangular, in particular square cross sections. The light exit surfaces of the individual reflectors 40 are lined up without gaps and thus without spacing on each other and limit the resulting luminous surface with sharp, straight edges 44. Each SMD LED 28 is associated with a respective reflector 40. The centers of the reflectors 40 and the centers of the light exit surfaces of the light sources 28 have equal distances. The series arrangement of the reflectors 40 therefore has the same pitch as the row arrangement of the LEDs 28.

In einer Ausgestaltung ist zwischen den Reflektor-Teilbereichen und den LED ein Wärmeschutzblech 46 angeordnet, das die Rückseite der Reflektor-Teilbereiche 40 des Optikarrays 30 vor Strahlung schützt. Natürlich ist das Wärmeschutzblech 46 über den Lichtaustrittsflächen der SMD-LEDs 28 unterbrochen, um einen Lichtaustritt zu erlauben.In one embodiment, a heat shield 46 is disposed between the reflector portions and the LED, which protects the back of the reflector portions 40 of the optical array 30 from radiation. Of course, the heat shield 46 is interrupted over the light exit surfaces of the SMD LEDs 28 to allow light leakage.

Insbesondere die Figuren 3a, 3b und 3d zeigen deutlich ein Array aus sich konisch zum Lichtaustritt hin erweiternden Reflektoren 40 mit quadratischen oder rechteckigen Querschnitten, wobei ein solcher Querschnitt senkrecht zur optischen Achse und damit senkrecht zur Hauptabstrahlrichtung der LEDs 28 angeordnet ist. Die Reflektor-Teilbereiche 40 weisen bevorzugt die dargestellte Geometrie von Pyramidenstümpfen auf. Wie in der Figur 3 dargestellt ist, sind die Reflektor-Teilbereiche 40 und die ihnen jeweils ein-eindeutig zugeordneten Lichtquellen 28 in einer oder mehreren Reihen angeordnet. Außerdem sind die Reflektor-Teilbereiche 40 untereinander gleich und ihre Lichtaustrittsflächen grenzen abstandslos aneinander an, so dass ihre Lichtaustrittsflächen durch mindestens eine Gerade 44 begrenzt werden. Fig. 3b zeigt insbesondere auch eine als Hell-Dunkel-Grenze abzubildende Unterkante 44 der Lichtaustrittsfläche der Reflektorreihenanordnung. Fig. 4 zeigt insbesondere die Fokusebene 48 der Sekundäroptik 12, die in einer Ebene mit der Zwischenlichtverteilung liegt, die sich als Lichtaustrittsfläche der Reflektoren 40 ergibt.especially the FIGS. 3a, 3b and 3d clearly show an array of conically widening toward the light exit towards reflectors 40 with square or rectangular cross-sections, wherein such a cross-section perpendicular to the optical axis and thus perpendicular to the main emission of the LEDs 28 is arranged. The reflector subregions 40 preferably have the illustrated geometry of truncated pyramids. Like in the FIG. 3 is shown, the reflector portions 40 and their respective one-uniquely associated light sources 28 are arranged in one or more rows. In addition, the reflector portions 40 are equal to each other and their light exit surfaces adjoin one another without spacing, so that their light exit surfaces are limited by at least one straight line 44. Fig. 3b in particular also shows a lower edge 44 to be imaged as a light-dark boundary of the light exit surface of the reflector row arrangement. Fig. 4 shows in particular the focal plane 48 of the secondary optics 12, which lies in a plane with the intermediate light distribution, which results as a light exit surface of the reflectors 40.

Fig. 4 zeigt einen der Fig. 3 vergleichbaren Gegenstand. Im Unterschied zum Gegenstand der Figur 3 ist das Primäroptikarray 50 aus Sammellinsen aufgebaut. Die Sammellinsenteilbereiche 50 sind hier als abstandslos aneinander angrenzende Teilbereiche eines einstückigen transparenten Grundkörpers 52 verwirklicht. Der einstückige Grundkörper 52 besteht bevorzugt aus einem der oben genannten Materialien. Fig. 4 shows one of the Fig. 3 comparable subject. In contrast to the subject of FIG. 3 the primary optic array 50 is composed of collecting lenses. The collecting lens subareas 50 are realized here as partitions of an integral transparent base body 52 adjoining each other without any spacing. The one-piece base body 52 is preferably made of one of the above-mentioned materials.

Figur 3b zeigt eine perspektivische Ansicht der Baugruppe aus der Leiterplatte 26 und den Sammellinsen-Teilbereichen 50 sowie den zugeordneten LEDs 28. Figur 3a zeigt einen Schnitt durch diese Baugruppe, der in Richtung der Reihenanordnung verläuft. Figur 3d zeigt eine Schnitt durch diese Baugruppe, der quer zu der Reihenanordnung verläuft und Figur 3c zeigt eine Draufsicht und eine Lage der genannten Schnitte. FIG. 3b shows a perspective view of the assembly of the circuit board 26 and the collecting lens portions 50 and the associated LEDs 28th FIG. 3a shows a section through this assembly, which runs in the direction of the series arrangement. 3d figure shows a section through this assembly, which extends transversely to the array and Figure 3c shows a plan view and a location of said sections.

Jeder Lichtquelle 28 ist ein-eindeutig ein Sammellinsenteilbereich 50 zugeordnet. Vergleiche Fig. 4c. Das Linsenarray ist mindestens an einer Kante wenigstens abschnittsweise durch eine ebene Seitenfläche 54begrenzt, an der ein Teil des Strahlenganges reflektiert wird. Dies ist in der Fig. 4d deutlich erkennbar.Each light source 28 is uniquely associated with a collection lens portion 50. comparisons Fig. 4c , The lens array is delimited at least on one edge at least in sections by a flat side surface 54 on which a part of the beam path is reflected. This is in the Fig. 4d clearly.

Alternativ kann diese Kante 54 auch durch eine Blende 56 gebildet werden, die unmittelbar vor der Lichtaustrittsfläche des Linsenarrays in den Strahlengang gebracht wird. Dies ist in der Fig. 4e und 4f dargestellt.Alternatively, this edge 54 can also be formed by a diaphragm 56, which is brought into the beam path immediately before the light exit surface of the lens array. This is in the 4e and 4f shown.

Figur 4e zeigt ein Primäroptikarray aus Sammellinsen 50 mit zusätzlicher Blende 56. Diese deckt eine Kante der Primäroptik ab, um die Lichtaustrittsfläche möglichst scharf zu begrenzen. Diese Blende bewirkt eine besonders scharfe Begrenzung der Lichtaustrittsfläche dadurch, dass sie alles Licht abschattet, das an der Lichtaustrittsfläche vorbeigestreut wird. Die Sekundäroptik fokussiert in diesem Fall möglichst direkt auf die Blendenkante. Soll eine Abblendlichtverteilung mit zumindest abschnittsweise horizontal verlaufender Hell-Dunkel-Grenze erzeugt werden, so verläuft die Blendenkante entlang des unteren Randes der Lichtaustrittsfläche der Primäroptik, mit deren Hilfe dann durch die Sekundäroptik der Hell-Dunkel-Übergang der Lichtverteilung gebildet wird. Figure 4e shows a primary optic array of collecting lenses 50 with additional aperture 56. This covers an edge of the primary optics in order to limit the light exit surface as sharply as possible. This aperture causes a particularly sharp limitation of the light exit surface in that it shadows all light that is scattered past the light exit surface. In this case, the secondary optics focuses as directly as possible on the diaphragm edge. If a low-beam light distribution is to be generated with at least partially horizontally extending cut-off line, the diaphragm edge extends along the lower edge of the light exit surface of the primary optics, with the aid of which the secondary optics then form the light-dark transition of the light distribution.

Die Zwischenlichtverteilung liegt bei den Linsenarrays im Bereich der Linsenkörper. Der Fokus der Sekundäroptik liegt in Fig. 4f an der Kante der Blende 54. Die Ausführung mit dem Linsenarray ist bevorzugt.The intermediate light distribution is in the lens arrays in the region of the lens body. The focus of secondary optics lies in Fig. 4f at the edge of the aperture 54. The lens array design is preferred.

Die Blende kann auch in Verbindung mit den übrigen Ausgestaltungen von Primäroptiken, die in dieser Anmeldung vorgestellt werden, verwendet werden.The bezel may also be used in conjunction with the other embodiments of primary optics presented in this application.

Wie in der Figur 4 dargestellt ist, sind die SammellinsenTeilbereiche 50 wie auch die ihnen jeweils ein-eindeutig zugeordneten Lichtquellen 28 in einer oder mehreren Reihen angeordnet. Außerdem sind die Sammellinsen -Teilbereiche 50 untereinander gleich und ihre Lichtaustrittsflächen grenzen abstandslos aneinander an, so dass ihre Lichtaustrittsflächen durch mindestens eine Gerade 44 begrenzt werden.Like in the FIG. 4 is shown, the collecting lens portions 50 as well as their respective one-uniquely associated light sources 28 arranged in one or more rows. In addition, the collecting lens sub-areas 50 are equal to each other and their light exit surfaces adjoin one another without spacing, so that their light exit surfaces are limited by at least one straight line 44.

Figur 4g zeigt eine Anordnung eines Paars aus einer von mehreren Halbleiterlichtquellen 28 in Form eines LED-Chips und eines Licht dieses Chips sammelnden Sammellinsenteilbereichs 50 des Grundkörpers 52. Eine Teilung des Grundkörpers 52 ist mit T bezeichnet. Die Teilung T entspricht der Breite der einzelnen Sammellinsenteilbereiche 50 sowie dem Abstand der Mittelpunkte benachbarter LED-Chips 28. Mit BLED ist eine Kantenlänge des LED-Chips 28 bezeichnet. Ein virtueller LED-Chip ist mit 28' bezeichnet. Die Kantenlänge des virtuellen LED-Chips 28' ist mit B'LED bezeichnet. Ein objektseitiger Brennpunkt des Sammellinsenteilbereichs 50 ist mit F und ein Hauptpunkt des Sammellinsenteilbereichs 50 ist mit H bezeichnet. Der Hauptpunkt H einer Linse ist als Schnittpunkt einer Hauptebene der Linse mit der optischen Achse definiert. Die Sekundäroptik 4 des erfindungsgemäßen Lichtmoduls 1 ist vorzugsweise auf einen Hauptpunkt H eines der Sammellinsenteilbereiche 50, vorzugsweise auf den Hauptpunkt H des in der Nähe einer optischen Achse des Lichtmoduls befindlichen Sammellinsenteilbereichs 50, fokussiert. Das Bezugszeichen f bezeichnet die Brennweite des Sammellinsenteilbereichs 50 und SF eine Schnittweite des Sammellinsenteilbereichs 50. Ein Abstand zwischen dem LED-Chip 28 und der Lichteintrittsfläche des Sammellinsenteilbereichs 50 ist mit S1, und ein Abstand zwischen dem virtuellen Chip-Bild 28' und der Lichteintrittsfläche des Sammellinsenteilbereichs 50 ist mit S2 bezeichnet. Figure 4g shows an arrangement of a pair of one of a plurality of semiconductor light sources 28 in the form of an LED chip and a collecting lens portion 50 of the main body 52 that collects light of this chip. A pitch of the main body 52 is designated T. The pitch T corresponds to the width of the individual collective lens subregions 50 and to the spacing of the centers of adjacent LED chips 28. B LED is an edge length of the LED chip 28. A virtual LED chip is labeled 28 '. The edge length of the virtual LED chip 28 'is labeled B' LED . An object-side focal point of the collection lens portion 50 is F, and a major point of the collection lens portion 50 is H. The principal point H of a lens is defined as the intersection of a principal plane of the lens with the optical axis. The secondary optic 4 of the light module 1 according to the invention is preferably focused on a main point H of one of the collective lens subregions 50, preferably on the main point H of the collective lens subregion 50 located in the vicinity of an optical axis of the light module. Reference f denotes the focal length of the collective lens portion 50, and S F is a sectional width of the collective lens portion 50. A distance between the LED chip 28 and the light entrance surface of the collective lens portion 50 is S 1 , and a distance between the virtual chip image 28 'and the Light entrance surface of the collecting lens portion 50 is denoted by S 2 .

Der LED-Chip 28 liegt zwischen dem Sammellinsenteilbereich 50 und dessen objektseitigem Brennpunkt F. Der LED-Chip 28 wird durch den Sammellinsenteilbereich 50 so vergrößert, dass das (aufrechte) virtuelle Bild 28' des Chips (in Lichtaustrittsrichtung vor dem objektseitigen Linsenbrennpunkt F) etwa gleich groß ist wie der Sammellinsenteilbereich 50, d.h. B'LED ≈ T. Für die angegebenen Größen gelten näherungsweise folgende Zusammenhänge: S F - S 1 S F B LED T B LED LED

Figure imgb0001
0 , 1 mm S 1 2 mm
Figure imgb0002
1 x B LED T 4 x B LED
Figure imgb0003
The LED chip 28 is located between the collecting lens portion 50 and the object-side focal point F. The LED chip 28 is enlarged by the collecting lens portion 50 so that the (upright) virtual image 28 'of the chip (in the light exit direction in front of the object-side lens focal point F) is the same size as the collecting lens portion 50, ie B ' LED ≈ T. For the given sizes approximate the following relationships: S F - S 1 S F B LED T B LED B ' LED
Figure imgb0001
0 . 1 mm S 1 2 mm
Figure imgb0002
1 x B LED T 4 x B LED
Figure imgb0003

Die Sammellinsenteilbereiche 50 des Grundkörpers 52 dienen nicht zur Erzeugung reeller Zwischenbilder der Lichtquellen 28, sondern bilden lediglich eine ausgeleuchtete Fläche auf der Lichtaustrittsseite 25 der Sammellinsenteilbereiche 50. Die Lichtquellen 28 sind derart zwischen den Lichteintrittsflächen der Sammellinsenteilbereiche 50 und den objektseitigen Brennpunkten F der Sammellinsenteilbereiche 50 angeordnet, dass die Ränder der Lichtquellen 28 auf geometrischen Verbindungen von den Brennpunkten F zu den Linsenrändern liegen. Die Abstrahlflächen der Lichtquellen 28 sind senkrecht zu den optischen Achsen der Sammellinsenteilbereiche 50 angeordnet. Dadurch ergibt sich eine sehr gleichmäßige Ausleuchtung der Sammellinsenteilbereiche 50, und auf den Lichtaustrittsflächen der Sammellinsenteilbereiche 50 ergibt sich eine besonders homogene Lichtverteilung, die sog. Zwischenlichtverteilung. Diese Zwischenlichtverteilungen werden durch die Sekundäroptik zur Erzeugung der resultierenden Gesamtlichtverteilung des Lichtmoduls auf der Fahrbahn vor dem Fahrzeug abgebildet. Die optischen Achsen der einzelnen Sammellinsenteilbereiche 50 des Grundkörpers 52 verlaufen alle in einer Ebene, bevorzugt sind sie parallel zueinander. Die Achse der Sekundäroptik ist auf der Seite, die dem Grundkörper 52 zugewandt ist, parallel zu der Achse mindestens einer der Sammellinsenteilbereiche 50. Die LEDs sind ist insbesondere zwischen ihrem jeweiligen Sammellinsenteilbereich und dessen paraxialem Brennpunkt so angeordnet, dass eine lückenlose Zwischenlichtverteilung entsteht, die sich aus den virtuellen Bildern der Lichtaustrittsflächen der einzelnen Chips zusammensetzt. Es wird darauf hingewiesen, dass das Licht hier aus der LED zunächst in Luft austritt und erst dann auf den zugehörigen Sammellinsenteilbereich einfällt. Dies ist ein Unterschied zu Stand der Technik, bei dem LEDs mit transparenten Vergussmassen verwendet werden, wobei der Verguß möglicherweise eine Linsenwirkung entfaltet.The collecting lens subregions 50 of the base body 52 do not serve to produce real intermediate images of the light sources 28, but merely form an illuminated surface on the light exit side 25 of the collecting lens subregions 50. The light sources 28 are arranged between the light entry surfaces of the collecting lens subregions 50 and the object side focal points F of the collecting lens subregions 50 in that the edges of the light sources 28 lie on geometric connections from the focal points F to the lens edges. The emitting surfaces of the light sources 28 are arranged perpendicular to the optical axes of the collecting lens portions 50. This results in a very uniform illumination of the collecting lens subregions 50, and on the light exit surfaces of the collecting lens subregions 50 results in a particularly homogeneous light distribution, the so-called. Intermediate light distribution. These intermediate light distributions are imaged by the secondary optics for generating the resulting total light distribution of the light module on the roadway in front of the vehicle. The optical axes of the individual collecting lens subregions 50 of the main body 52 all run in one plane, preferably they are parallel to one another. The secondary optics axis is on the side facing the main body 52 The LEDs are in particular arranged between their respective collecting lens portion and its paraxial focal point so that a gapless intermediate light distribution is formed, which is composed of the virtual images of the light exit surfaces of the individual chips. It should be noted that the light exits from the LED first in air and only then incident on the associated collection lens portion. This is a difference from the prior art, in which LEDs are used with transparent potting compounds, wherein the potting possibly develops a lens effect.

Fig. 5 zeigt eine weitere Ausgestaltung des Primäroptikarrays. Im Fall der Fig. 5 besteht das Primäroptikarray aus Lichtleitern 60 mit konisch sich zum Lichtaustritt hin erweiternden Querschnitten, die senkrecht zur Hauptausbreitungsrichtung des Lichtes in den Lichtleitern und damit senkrecht zur jeweiligen optischen Achse orientiert sind und die rechteckig, insbesondere quadratisch sind. Die Lichtaustrittsflächen 62 der einzelnen Lichtleiter 60 reihen sich lückenlos aneinander und begrenzen die leuchtende Fläche mit scharfen, geraden Kanten 44 die hier Unterkanten 44 sind. Jeder LED 28 ist je ein Lichtleiter 60 ein-eindeutig zugeordnet. Fig. 5 shows a further embodiment of the primary optic array. In the case of Fig. 5 consists of the primary optics array of optical fibers 60 with conically widening toward the light exit cross sections, which are oriented perpendicular to the main propagation direction of the light in the optical fibers and thus perpendicular to the respective optical axis and which are rectangular, in particular square. The light exit surfaces 62 of the individual light guides 60 line up seamlessly and limit the luminous surface with sharp, straight edges 44 which are lower edges 44 here. Each LED 28 is assigned one light guide 60 one-uniquely.

Die Lichteintrittsfläche ist vorzugsweise eben und steht parallel vor dem LED-Chip. Die Lichtleiter 60 werden wie die zugeordneten Lichtquellen in einer oder mehreren Reihen angeordnet, so dass die Lichtaustrittsflächen wiederum durch mindestens eine Gerade 44 begrenzt werden. Die Lichtaustrittsfläche ist vorzugsweise konvex gewölbt. Das Lichtleiterarray wird bevorzugt aus einem der oben genannten Materialien gefertigt. Das Lichtleiterarray wird bevorzugt als einstückiger Grundkörper gefertigt, der die Lichtleiter als Licht leitende Teilbereiche aufweist.The light entry surface is preferably flat and is parallel in front of the LED chip. The light guides 60 are arranged like the associated light sources in one or more rows, so that the light exit surfaces are in turn bounded by at least one straight line 44. The light exit surface is preferably convex. The optical fiber array is preferably one of the above made of these materials. The light guide array is preferably manufactured as a one-piece base body, which has the light guides as light-conducting subregions.

Für alle drei Ausgestaltungen des Primäroptikarray als Array von Reflektor-Teilbereichen 40, Sammellinsen-Teilbereichen 50 und Lichtleiter-Teilbereichen 60 gilt, dass die Summe der Lichtaustrittsflächen der jeweiligen Teilbereiche die geschlossen zusammenhängende Zwischenlichtverteilung und Ersatzlichtquelle bildet.For all three embodiments of the primary optics array as an array of reflector subregions 40, condenser lens subregions 50 and light guide subregions 60, the sum of the light exit surfaces of the respective subregions forms the coherently connected intermediate light distribution and substitute light source.

Vernachlässigt man Verluste durch Absorbtion und Fresnel-Reflexion, dann weist die Ersatzlichtquelle ähnliche Leuchtdichten auf wie die Chips der einzelnen LEDs. Damit weist auch eine solche Ersatzlichtquelle über ihre ganze Lichtaustrittsfläche gleichmäßig verteilte Leuchtdichten und ähnliche Abstrahlwinkel wie einzelne LEDs auf. Damit lässt sich die Ersatzlichtquelle im Folgenden wie ein LED-Array behandeln.Neglecting losses due to absorption and Fresnel reflection, the replacement light source has luminances similar to those of the individual LEDs. Thus even such a replacement light source has uniformly distributed luminances and similar emission angles over its entire light exit surface, such as individual LEDs. In the following, the replacement light source can be treated like an LED array.

Die so gebildete Lichtverteilung dient nun als Ersatzlichtquelle für eine nachgeschaltete Sekundäroptik, die eine Sammellinse oder bevorzugt ein Reflektor mit zumindest bereichsweise parabolischer Reflexionsfläche ist und die mithilfe dieser Ersatzlichtquelle eine Abblendlichtverteilung formt.The light distribution thus formed now serves as a replacement light source for a downstream secondary optics, which is a converging lens or preferably a reflector with at least partially parabolic reflection surface and forms a low beam distribution using this replacement light source.

Die Ersatzlichtquelle sollte möglichst ähnlich orientiert sein wie die Hell-Dunkel Grenze der Abblendlichtverteilung (nämlich zumindest abschnittsweise horizontal), um eine gute Schärfe der Hell-Dunkel-Grenze zu erzielen (hoher Beleuchtungsstärkegradient). Aus diesem Grund werden auch alle Reflektoren im Strahlengang so angeordnet, dass der Strahlengang an den jeweiligen Reflektoren immer in möglichst spitzem Winkel (<90°) gefaltet wird und die Orientierung der Bilder der Ersatzlichtquelle parallel zur Hell-Dunkel-Grenze weitgehend erhalten bleibt.The substitute light source should be oriented as similar as possible to the light-dark border of the low-beam light distribution (namely at least in sections horizontally) in order to achieve a good sharpness of the cut-off line (high illuminance gradient). For this reason, all reflectors in the beam path are arranged so that the beam path at the respective reflectors always in folded as possible at an acute angle (<90 °) and the orientation of the images of the replacement light source is largely maintained parallel to the cut-off line.

Vorzugsweise ist die Sekundäroptik ein facettierter Parabolreflektor. Der Reflektor ist so im Strahlengang angeordnet, dass die Ersatzlichtquelle von vorne in den Reflektor hineinstrahlt, so dass der Strahlengang in spitzem Winkel umgelenkt wird. Der mindestens eine Brennpunkt des Reflektors liegt dabei auf dem Rand der Ersatzlichtquelle. Zur Erzeugung einer Abblendlichtverteilung ist dies der untere Rand der Ersatzlichtquelle. Wie beschrieben, kann dieser Rand zusätzlich durch eine Blende abgeschattet werden, um zu verhindern, dass Streulicht ins Dunkelfeld der Lichtverteilung gelangt.Preferably, the secondary optics is a faceted parabolic reflector. The reflector is arranged in the beam path so that the replacement light source radiates from the front into the reflector, so that the beam path is deflected at an acute angle. The at least one focal point of the reflector lies on the edge of the replacement light source. To produce a low-beam light distribution, this is the lower edge of the replacement light source. As described, this edge can also be shaded by a diaphragm to prevent scattered light from entering the dark field of the light distribution.

Besitzt die Sekundäroptik mehrere Reflektorfacetten, so liegen deren Brennpunkte wiederum auf der Kante der Ersatzlichtquelle, werden aber je nach Lage der Facette vorzugsweise an verschiedenen Enden der Lichtquellenkante positioniert:

  • Strahlt die Lichtquelle von unten in den Reflektor, so haben die jeweiligen Parabelfacetten ihren Brennpunkt immer im selben von der Meridionalebene begrenzten Halbraum.
  • Strahlt die Lichtquelle von oben in den Reflektor, liegen die Brennpunkte der Parabelfacetten immer auf der anderen Seite der Meridionalebene wie die Reflektorfacette selbst.
If the secondary optics has a plurality of reflector facets, their focal points are again on the edge of the replacement light source, but depending on the position of the facet are preferably positioned at different ends of the light source edge:
  • If the light source radiates from below into the reflector, the respective parabolic facets always have their focal point in the same half space bounded by the meridional plane.
  • If the light source radiates from above into the reflector, the focal points of the parabolic facets always lie on the other side of the meridional plane, just like the reflector facet itself.

Dadurch wird gewährleistet, dass die Bilder der Ersatzlichtquelle immer mit der am nächsten liegenden Ecke an die Abblendlicht-Hell-Dunkel-Grenze anschließen und kein Teil der Lichtquellenbilder in das Dunkelfeld der Lichtverteilung hineinragt.This ensures that the images from the replacement light source always connect to the nearest corner at the low beam cut-off line and no part of the light source images into the dark field of the Light distribution protrudes.

Die Sekundäroptik fokussiert nicht auf die Chipebene der LEDs sondern auf die Unterkante der Lichtaustrittsfläche der Primäroptik. Die Lichtaustrittsfläche kann besonders scharf begrenzt werden, wenn entlang des Randes der Lichtaustrittsfläche, eine Blende angeordnet wird, die alles Licht abschattet, das an der Lichtaustrittsfläche vorbeigestreut wird.The secondary optics does not focus on the chip level of the LEDs but on the lower edge of the light emission surface of the primary optics. The light exit surface can be particularly sharply defined when along the edge of the light exit surface, a diaphragm is arranged, which shadows all light that is scattered past the light exit surface.

Die Sekundäroptik fokussiert in diesem Fall möglichst direkt auf die Blendenkante. Soll eine Abblendlichtverteilung mit zumindest abschnittsweise horizontal verlaufender Hell-Dunkel-Grenze erzeugt werden, so verläuft die Blendenkante entlang des unteren Randes der Lichtaustrittsfläche der Primäroptik, mit deren Hilfe dann durch die Sekundäroptik der Hell-Dunkel-Übergang der Lichtverteilung gebildet wird.In this case, the secondary optics focuses as directly as possible on the diaphragm edge. If a low-beam light distribution is to be generated with at least partially horizontally extending cut-off line, the diaphragm edge extends along the lower edge of the light exit surface of the primary optics, with the aid of which the secondary optics then form the light-dark transition of the light distribution.

Die Reflektorfläche der Sekundäroptik besteht bevorzugt aus mehreren Reflektorfacetten, die jeweils als Rotationsparaboloide verwirklichte Flächen aufweisen. Die verschiedenen Paraboloide weisen unterschiedliche Brennpunkte auf, die alle auf der Unterkante der Lichtaustrittsfläche der Primäroptik liegen und zwar vorzugsweise an deren Rändern (Ecken), wobei die Brennpunkte in der gleichen Hemisphäre liegen wie die dazugehörenden Facettenflächen.The reflector surface of the secondary optics preferably consists of a plurality of reflector facets, each of which has surfaces realized as paraboloid of revolution. The various paraboloids have different focal points, all of which lie on the lower edge of the light exit surface of the primary optics, preferably at their edges (corners), the focal points lying in the same hemisphere as the associated facet surfaces.

Die Achsen der Rotationsparaboloide, auf denen die Reflektorfacetten basieren, weisen in Richtung der Abblendlicht-Hell-Dunkel-Grenze. Damit wird die Lichtquellenkante als Hell-Dunkel-Grenze der Lichtverteilung abgebildet.The axes of the paraboloid of revolution on which the reflector facets are based point towards the low beam cut-off. Thus, the light source edge is displayed as a light-dark boundary of the light distribution.

In einer Ausgestaltung werden die Reflektorfacetten statt als Rotationsparaboloide als torische Flächen ausgeführt: Hierzu wird die Krümmung des Rotationsparaboloids in Schnitten parallel zur Hell-Dunkel-Grenze (bzw. zu Abschnitten der Hell-Dunkel-Grenze) durch den Brennpunkt des Paraboloids so erhöht oder verringert, dass sich anstelle des Brennpunktes eine Brennlinie ergibt, die parallel zur Abblendlicht-Hell-Dunkel-Grenze bzw. zu Abschnitten der Abblendlicht-Hell-Dunkel-Grenze verläuft. Die Streuung kann auch durch streuende Zylinderoptiken erreicht werden, die auf die Facettenflächen aufgebracht werden und deren Zylinderachse senkrecht auf Hauptstrahl und Abblendlicht-Hell-Dunkel-Grenze stehen.In one embodiment, the reflector facets are executed as toroidal surfaces instead of as rotational paraboloids. For this purpose, the curvature of the paraboloid of revolution is thus increased or reduced in sections parallel to the light-dark boundary (or to sections of the light-dark boundary) by the focal point of the paraboloid in that, instead of the focal point, a focal line results which runs parallel to the low-beam light-dark boundary or to portions of the low-beam light-dark boundary. The scattering can also be achieved by scattering cylinder optics, which are applied to the facet surfaces and whose cylinder axis are perpendicular to main beam and low beam light-dark boundary.

Soll eine asymmetrische Abblendlicht-Hell-Dunkel-Grenze mit Anstieg erzeugt werden, so wird dieser Anstieg über eine Reflektorfacette erzeugt, die möglichst nahe am Rand der Reflektorfläche liegt. Einzelheiten dazu werden weiter unten unter Bezug auf die Fig. 8 erläutert.If an asymmetrical low-beam light-dark boundary with an increase is to be generated, then this increase is produced via a reflector facet which is as close as possible to the edge of the reflector surface. Details will be provided below with reference to Fig. 8 explained.

Figur 6 zeigt Ausgestaltungen erfindungsgemäßer Lichtmodule 14, die einen Umlenkspiegel aufweisen, der den Strahlengang zusätzlich faltet. Diese Maßnahme dient dazu, den Bauraum des Lichtmoduls zu verkürzen und einen weiteren Freiheitsgrad zu schaffen, um die Elemente des Lichtmoduls möglichst frei anordnen zu können. FIG. 6 shows embodiments of inventive light modules 14, which have a deflection mirror, which additionally folds the beam path. This measure serves to shorten the installation space of the light module and to provide a further degree of freedom in order to arrange the elements of the light module as freely as possible.

So bietet es konstruktive Vorteile, wenn die Lichtquelle 10 in Fahrtrichtung (Lichtabstrahlrichtung) nach vorne abstrahlt und die Entwärmung der Lichtquelle über einen Kühlkörper 24 nach hinten erfolgt: Eine derartige Lichtquelle kann auf einfache Weise von der Rückseite des Scheinwerfers gewechselt werden. Auch lässt sich der Kühlkörper auf der Rückseite des Lichtmoduls leichter belüften, was die Kühlleistung verbessert. Darüber erhält man ein kompaktes Lichtmodul, dessen Schwerpunkt in der Nähe der Lichtaustrittsfläche liegt, was das mechanische Schwenken des Lichtmoduls 14 erleichtert.Thus, it offers constructive advantages when the light source 10 in the direction of travel (light emission direction) radiates forward and the cooling of the light source via a heat sink 24 to the rear: Such a light source can be easily changed from the back of the headlight. Also can be the Ventilate the heat sink on the back of the light module more easily, which improves the cooling performance. In addition, a compact light module is obtained whose center of gravity lies in the vicinity of the light exit surface, which facilitates the mechanical pivoting of the light module 14.

Das Falten des Strahlenganges ist auch deshalb günstig, weil sich die Brechkraft bei dem vorgeschlagenen optischen System auf Primär- und Sekundäroptik aufteilt, so dass man Sekundäroptiken mit geringer Brechkraft, d.h. mit langer Brennweite erhält (die Brennweiten sind 2-3 mal größer als bei einstufigen Systemen).The folding of the beam path is also favorable, because the refractive power in the proposed optical system is divided into primary and secondary optics, so that secondary optics with low refractive power, i. with long focal length (the focal lengths are 2-3 times greater than single-stage systems).

Der Umlenkspiegel 64 wird als Hyperboloid ausgeführt, wobei das Hyperboloid ausdrücklich auch den Spezial-Fall des ebenen Spiegels beinhalten soll. Die beschriebenen Eigenschaften der Sekundäroptik 12 beziehen sich in diesem Fall auf das optische System 64, 12 aus Umlenkspiegel 64 und Sekundäroptik 12, das nun mit einem oder mehreren Brennpunkten auf die untere Kante der Ersatzlichtquelle fokussiert. Der Umlenkspiegel 64 erzeugt dabei mindestens ein virtuelles Zwischenbild 66 der Ersatzlichtquelle 68.The deflecting mirror 64 is designed as a hyperboloid, wherein the hyperboloid should explicitly include the special case of the plane mirror. The described properties of the secondary optics 12 in this case relate to the optical system 64, 12 of deflection mirror 64 and secondary optics 12, which now focuses with one or more focal points on the lower edge of the replacement light source. The deflection mirror 64 generates at least one virtual intermediate image 66 of the replacement light source 68.

Die Ersatzlichtquelle 68 liegt dabei in der objektseitigen Petzvalfläche des hyperbolischen Umlenkspiegels, während der oder die Brennpunkte der Sekundäroptik 12 in der bildseitigen Petzvalfläche des Hyperboloids liegen, d.h. die Sekundäroptik 12 fokussiert statt auf die reelle Ersatzlichtquelle 68 auf deren virtuelles Bild 66.In this case, the replacement light source 68 lies in the object-side Petzval surface of the hyperbolic deflection mirror, while the focal point (s) of the secondary optics 12 lie in the image-side Petzval surface of the hyperboloid, i. the secondary optics 12 focus on their virtual image 66 instead of the real substitute light source 68.

Fig.6a zeigt ein solches Abblendlichtmodul 14 mit einem durch einen Umlenkspiegel 64 zusätzlich gefalteten Strahlengang. Der Umlenkspiegel 64 erzeugt ein virtuelles Bild 66 der Ersatzlichtquelle 68. Die Fokuspunkte der Sekundäroptik 12 liegen so, wie es in Verbindung mit der Figur 1 erläutert wurde, bevorzugt auf den Ecken der Primäroptik. Im Fall der Fig. 6a fokussiert die Sekundäroptik aber nicht auf die reale Primäroptik, sondern auf die Ecken des virtuellen Bildes der als Ersatzlichtquelle 66 dienenden Primäroptik. 6a shows such a low beam module 14 with an additionally folded by a deflection mirror 64 beam path. The deflection mirror 64 generates a virtual image 66 of the replacement light source 68. The focal points of the Secondary optics 12 are as described in connection with the FIG. 1 has been explained, preferably on the corners of the primary optics. In the case of Fig. 6a However, the secondary optics does not focus on the real primary optics, but on the corners of the virtual image of the primary optics serving as a substitute light source 66.

Fig.6b zeigt ebenfalls ein Abblendlichtmodul 14 mit einem durch einen Umlenkspiegel 64 zusätzlich gefalteten Strahlengang. Der Umlenkspiegel 64 erzeugt ein virtuelles Bild 66 der Ersatzlichtquelle 68. Die Brennpunkte der Sekundäroptik 12 liegen nun auf der Unterkante 44 des virtuellen Bildes 66 der Ersatzlichtquelle 68. Der Umlenkspiegel 64 verkürzt die Baulänge und ermöglicht so eine besonders kompakte Bauweise des Lichtmoduls 14. Figure 6b also shows a low-beam module 14 with an additionally folded by a deflection mirror 64 beam path. The deflection mirror 64 generates a virtual image 66 of the replacement light source 68. The focal points of the secondary optics 12 are now on the lower edge 44 of the virtual image 66 of the replacement light source 68. The deflection mirror 64 shortens the overall length and thus enables a particularly compact construction of the light module 14.

Das optische System aus Umlenkoptik 64 und Sekundäroptik 12 ist bevorzugt so ausgestaltet, dass die Bedingung i n s i n i = konstant

Figure imgb0004
für alle optischen Wege si gilt, welche die objektseitigen Brennpunkte 34, 36 der durch den zusätzlichen Umlenkspiegel 64 zweiteiligen Sekundäroptik mit dem gemeinsamen, im Unendlichen liegenden objektseitigen Brennpunkt verbinden. In einer Ausgestaltung weist wenigstens einer der beiden Spiegel eine oder mehrere Facetten auf.The optical system of deflecting optics 64 and secondary optics 12 is preferably designed such that the condition Σ i n s i n i = constant
Figure imgb0004
for all optical paths s i applies, which connect the object-side focal points 34, 36 of the secondary optics, which are divided by the additional deflecting mirror 64, with the common object-side focal point located at infinity. In one embodiment, at least one of the two mirrors has one or more facets.

Ein optisches System aus Umlenkoptik 64 und Sekundäroptik 12, das die Bedingung i n s i n i = konstant

Figure imgb0005
erfüllt, muss nicht zwingend ein scharfes virtuelles Zwischenbild 66 liefern, da Aberrationen (Unschärfe, Verzeichnung, Öffnungsfehler) des Zwischenbildes durch die nachgeschaltete Sekundäroptik 12 wieder ausgeglichen werden können.An optical system of deflection optics 64 and secondary optics 12, which is the condition Σ i n s i n i = constant
Figure imgb0005
does not necessarily have to deliver a sharp virtual intermediate image 66, since aberrations (blurring, distortion, aperture aberration) of the intermediate image can be compensated for again by the downstream secondary optics 12.

In Bezug auf den Umlenkspiegel 64 werden fünf Ausgestaltungen unterschieden. In einer ersten Ausgestaltung ist der Umlenkspiegel 64 ein ebener Spiegel. Dies ist in der Fig. 6 dargestellt.With respect to the deflection mirror 64, five embodiments are distinguished. In a first embodiment, the deflection mirror 64 is a plane mirror. This is in the Fig. 6 shown.

Figur 7a zeigt eine zweite Ausgestaltung mit einem Umlenkspiegel 64, der konkav ist und daher eine sammelnde Wirkung besitzt. Die Form ist bevorzugt eine Hyperbel-Form. Aufgrund der sammelnden Charakteristik ist das virtuelle Zwischenbild 66 hier ein vergrößertes Bild der Ersatzlichtquelle 68. Der erste Hyperbelbrennpunkt 70 liegt auf der Unterkante der realen Primäroptik der realen Ersatzlichtquelle 68. Der zweite Hyperbelbrennpunkt 72 liegt auf der Unterkante des virtuellen Zwischenbildes 66 der Ersatzlichtquelle. Figure 7a shows a second embodiment with a deflection mirror 64 which is concave and therefore has a collecting effect. The shape is preferably a hyperbolic shape. Here, due to the collecting characteristic, the intermediate virtual image 66 is an enlarged image of the spare light source 68. The first hyperbola focus point 70 lies on the lower edge of the real primary optics of the real substitute light source 68. The second hyperbola focus point 72 lies on the lower edge of the virtual intermediate image 66 of the substitute light source.

Fig.7b zeigt eine dritte Ausgestaltung mit einem Umlenkspiegel 64, der konvex ist und daher eine zerstreuende Wirkung besitzt. Die Form ist bevorzugt eine Hyperbel-Form. Aufgrund der zerstreuenden Charakteristik ist das virtuelle Zwischenbild 66 hier ein verkleinertes Bild der Ersatzlichtquelle 68. Der erste Hyperbelbrennpunkt 70 liegt auf der Unterkante der realen Primäroptik der realen Ersatzlichtquelle 68. Der zweite Hyperbelbrennpunkt 72 liegt auf der Unterkante des virtuellen Zwischenbildes 66 der Ersatzlichtquelle 68. Figure 7b shows a third embodiment with a deflection mirror 64 which is convex and therefore has a dissipative effect. The shape is preferably a hyperbolic shape. Because of the dissipating characteristic, the intermediate virtual image 66 here is a reduced image of the substitute light source 68. The first hyperbola focus point 70 lies on the lower edge of the real primary optics of the real substitute light source 68. The second hyperbola focus point 72 lies on the lower edge of the virtual intermediate image 66 of the substitute light source 68.

Die Figur 7 zeigt insofern Ausgestaltungen mit einem Hyperboloid als Umlenkspiegel 64, der einen objektseitigen Brennpunkt 70 und einen bildseitigen Brennpunkt 72 aufweist und mit einer vorzugsweise facettierten Sekundäroptik, welche den Umlenkspiegel und den weiteren Spiegel 12 aufweist, und die mehrere objektseitige Brennpunkte und einen bildseitigen Brennpunkt im Unendlichen aufweist. Die Brennpunkte dieser Sekundäroptik 12 liegen auf der Unterkante des virtuellen Bildes 66 der Ersatzlichtquelle 68. Dieses Bild ist im Unterschied zum ebenen Spiegel vergrößert oder verkleinert, je nachdem, ob der Umlenkspiegel 64 ein konkaves oder ein konvexes Hyperboloid ist.The FIG. 7 shows insofar embodiments with a hyperboloid as a deflection mirror 64 having an object-side focal point 70 and a image-side focal point 72 and having a preferably faceted secondary optics, which has the deflection mirror and the further mirror 12, and the plurality of object-side focal points and a image-side focal point at infinity , The Focal points of this secondary optics 12 lie on the lower edge of the virtual image 66 of the replacement light source 68. This image is enlarged or reduced in contrast to the plane mirror, depending on whether the deflection mirror 64 is a concave or a convex hyperboloid.

In einer nicht dargestellten vierten Ausgestaltung besitzt das Lichtmodul mehrere ebene Umlenkspiegelfacetten und eine Sekundäroptik mit einem einzelnen objektseitigen Brennpunkt. Der facettierte Umlenkspiegel teilt den Strahlengang der Sekundäroptik auf und erzeugt so ein optisches System mit mehreren Brennpunkten, ähnlich wie es bei einem facettierten Parabelreflektor der Fall ist. Der facettierte Umlenkspiegel erzeugt mehrere gegeneinander verschobene virtuelle Bilder der Ersatzlichtquelle. Die Brennpunkte der zweiteiligen Sekundäroptik fokussieren wie oben beschrieben auf den Rand der Ersatzlichtquelle.In a fourth embodiment, not shown, the light module has a plurality of planar Umlenkspiegelfacetten and a secondary optics with a single object-side focal point. The faceted deflecting mirror splits the beam path of the secondary optics, creating an optical system with multiple focal points, similar to a faceted parabolic reflector. The faceted deflection mirror generates several mutually shifted virtual images of the replacement light source. The focal points of the two-part secondary optics focus on the edge of the replacement light source as described above.

In einer ebenfalls nicht dargestellten fünften Ausgestaltung weist das Lichtmodul als Umlenkspiegel ein facettiertes Hyperboloid mit einem objektseitigen und mehreren bildseitigen Brennpunkten auf. Die Sekundäroptik soll in diesem Fall einen objektseitigen und einen bildseitigen Brennpunkt (letzteren im Unendlichen) aufweisen. Das facettierte Hyperboloid erzeugt gegeneinander verschobene, vergrößerte (konkaver Hyperbolspiegel) oder verkleinerte (konvexer Hyperbolspiegel) virtuelle Bilder der Lichtquelle, je nachdem, ob der Hyperbolspiegel konkav (und damit vergrößernd) oder konvex (und damit verkleinernd) geformt ist.In a fifth embodiment, also not shown, the light module has a faceted hyperboloid as a deflection mirror with an object-side and a plurality of image-side focal points. The secondary optics in this case should have an object-side and a image-side focal point (the latter at infinity). The faceted hyperboloid generates mutually displaced, magnified (concave hyperboloidal mirrors) or reduced (convex hyperboloidal) virtual images of the light source, depending on whether the hyperboloidal mirror is concave (and thus enlarging) or convex (and thus downsizing).

Figur 8 zeigt Vorderansichten von Ausgestaltungen des Lichtmoduls, wie sie sich einem Betrachter bieten, der sich in der Abstrahlrichtung des Lichtmoduls vor dem Lichtmodul befindet und der in das Lichtmodul hineinblickt. Sowohl im Fall der Figur 8a als auch im Fall der Fig. 8b besitzt der als Sekundäroptik dienende Reflektor zumindest in einem Bereich seiner Reflektorfläche, der größer als die Hälfte seiner gesamten reflektierenden Fläche ist, eine parabolische Form mit drei Facetten. FIG. 8 shows front views of embodiments of the Light module, as they offer a viewer who is located in the direction of the light module in front of the light module and looks into the light module. Both in the case of FIG. 8a as well as in the case of Fig. 8b For example, the reflector serving as secondary optics has a parabolic shape with three facets, at least in a region of its reflector surface that is larger than half of its entire reflecting surface.

Figur 8a zeigt insbesondere eine Ausgestaltung, bei der die Facette 12.1 am in Blickrichtung rechten Reflektorrand den asymmetrischen Anstieg 18.2 der Hell-Dunkel-Grenze in der Lichtverteilung 16 erzeugt. Die Facette 12.1 ist insbesondere so angeordnet, dass die Lichtquellenbilder in Richtung des Anstiegs gekippt sind. Dadurch erzeugt die Facette 12.1 Lichtquellenbilder mit einer Orientierung, die in der Summe der Lichtquellenbilder den gewünschten Anstieg der Hell-Dunkel-Grenze erzeugen. Das in der Fig. 8a dargestellte Beispiel eignet sich für Rechtsverkehr. Strahlt die Lichtquelle so wie beim Gegenstand der Fig. 8a von unten in den Reflektor, so liegt die Facette 12.1 nicht auf derselben Seite der Meridionalebene wie der Anstieg 18.2. Die Facettenkante verläuft abschnittsweise senkrecht zum Anstieg. FIG. 8a FIG. 2 shows, in particular, an embodiment in which the facet 12.1 generates the asymmetrical increase 18.2 of the light-dark boundary in the light distribution 16 on the right edge of the reflector in the viewing direction. In particular, the facet 12.1 is arranged such that the light source images are tilted in the direction of the rise. As a result, the facet 12.1 generates light source images with an orientation that produce the desired increase in the light-dark boundary in the sum of the light source images. That in the Fig. 8a example shown is suitable for legal transactions. Emits the light source as with the subject of the Fig. 8a from below into the reflector, the facet 12.1 does not lie on the same side of the meridional plane as the slope 18.2. The facet edge runs in sections perpendicular to the rise.

Figur 8b zeigt insbesondere eine Ausgestaltung, bei der die Facette 12.3 am linken Reflektorrand den asymmetrischen Anstieg der Hell-Dunkel-Grenze in der Lichtverteilung erzeugt. Strahlt die Lichtquelle so wie beim Gegenstand der Fig. 8b von oben in den Reflektor, so liegt die Facette 12.3 auf derselben Seite der Meridionalebene wie der Anstieg 18.2 selbst. Die Facettenkante verläuft abschnittsweise senkrecht zum Anstieg. FIG. 8b shows in particular an embodiment in which the facet 12.3 on the left edge of the reflector produces the asymmetrical rise of the light-dark boundary in the light distribution. Emits the light source as with the subject of the Fig. 8b from the top into the reflector, the facet 12.3 lies on the same side of the meridional plane as the slope 18.2 itself. The facet edge runs in sections perpendicular to the rise.

Figur 9b zeigt eine Abblendlichtverteilung einer Ausgestaltung eines erfindungsgemäßen Lichtmoduls, wie sie sich auf einem vor dem Fahrzeug stehenden Schirm einstellt. Die horizontale Linie H liegt auf der Höhe des Horizonts. Die vertikale Linie V kreuzt den Horizont in der Verlängerung der Hauptabstrahlrichtung des Lichtmoduls. Die Abweichungen vom Punkt HV = (0, 0) sind jeweils in Winkelgraden angegeben. Geschlossene Kurven sind jeweils Linien konstanter Helligkeit, wobei die Helligkeit von Linie zu Linie von außen nach innen zunimmt. Der rechts vom HV = (0, 0) Punkt erfolgende Anstieg zeigt, dass es sich um ein Lichtmodul für Rechtsverkehr handelt. FIG. 9b shows a low beam distribution of an embodiment of a light module according to the invention, as it adjusts to a standing in front of the vehicle screen. The horizontal line H is at the height of the horizon. The vertical line V crosses the horizon in the extension of the main emission direction of the light module. The deviations from the point HV = (0, 0) are given in degrees. Closed curves are each lines of constant brightness, with the brightness increasing from line to line from outside to inside. The increase to the right of the HV = (0, 0) point shows that it is a light module for right-hand traffic.

Figur 9a veranschaulicht, wie sich die in der Fig. 9b gezeigte Lichtverteilung als Überlagerung von Lichtquellenbildern 74 ergibt. Jedes Lichtquellenbild wird von einem kleinen Teil der reflektierenden Fläche der Sekundäroptik erzeugt. Die Darstellung der Fig. 9a ist insofern rein schematisch. Die Lichtquellenbilder sind überwiegend horizontal bzw. parallel zur Hell-Dunkel-Grenze orientiert. Die Facette, welche den Anstieg erzeugt, ist dagegen gerade so ausgestaltet, dass sie Lichtquellenbilder liefert, deren Rand parallel zu dem gewünschten Verlauf des Anstiegs liegt. FIG. 9a illustrates how the in the Fig. 9b shown light distribution as a superposition of light source images 74 results. Each light source image is generated by a small part of the reflective surface of the secondary optics. The presentation of the Fig. 9a is purely schematic in this respect. The light source images are predominantly oriented horizontally or parallel to the light-dark boundary. On the other hand, the facet producing the slope is just designed to provide light source images whose edge is parallel to the desired slope of the slope.

Die Primäroptik vergrößert die Lichtaustrittsfläche um einen Faktor, der etwa dem Quotienten aus der Teilung des Optikarrays und der Seitenlänge eines einzelnen Chips entspricht. Das folgt aus der gleichmäßig hellen Ersatzlichtquelle. Die Brennweite der Sekundäroptik entspricht bevorzugt dem 50 - fachen bis 200 - fachen der Seitenlänge eines einzelnen Chips, insbesondere dem 80 - fachen bis 100- fachen der genannten Seitenlänge.The primary optics increase the light exit surface by a factor that corresponds approximately to the quotient of the division of the optical array and the side length of a single chip. This follows from the uniformly bright replacement light source. The focal length of the secondary optics preferably corresponds to 50 times to 200 times the side length of a single chip, in particular 80 times to 100 times the said side length.

Claims (15)

Lichtmodul (14) eines Kraftfahrzeugscheinwerfers, mit mehreren Leuchtdioden als Lichtquellen (28), einer Primäroptik (30) und einer Sekundäroptik (12), wobei die Primäroptik dazu eingerichtet ist, von den Lichtquellen ausgehendes Licht zu sammeln und in eine Zwischenlichtverteilung (68) zu überführen, welche die Form einer geschlossen leuchtenden Fläche aufweist, und wobei die Sekundäroptik eine objektseitige Brennweite aufweist, wobei die Primäroptik und die Sekundäroptik so angeordnet sind, dass die Zwischenlichtverteilung im Abstand dieser Brennweite im Lichtweg vor der Sekundäroptik liegt, dadurch gekennzeichnet, dass die Primäroptik ein einteiliger, aus Sammellinsenteilbereichen aufgebauter Grundkörper ist, und dass der Chip einer Leuchtdiode zwischen einem Licht dieser Leuchtdiode sammelnden Sammellinsenteilbereich und dessen objektseitigen Brennpunkt liegt, wobei Lichtaustrittsflächen der Lichtquellen (28) durch zwischen ihnen liegende Abstände voneinander getrennt sind und dass die Primäroptik dazu eingerichtet ist, von den Lichtquellen ausgehendes Licht so zu verteilen, dass die Abstände in der Zwischenlichtverteilung(68) nicht erkennbar sind.Light module (14) of a motor vehicle headlight, with a plurality of LEDs as light sources (28), a primary optic (30) and a secondary optics (12), wherein the primary optics is adapted to collect from the light sources outgoing light and in an intermediate light distribution (68) which has the shape of a closed luminous surface, and wherein the secondary optics has an object-side focal length, the primary optics and the secondary optics are arranged so that the intermediate light distribution at a distance of this focal length in the light path before the secondary optics, characterized in that the primary optics is a one-piece, composed of collective lens sub-areas basic body, and that the chip of a light emitting diode between a light of this light-collecting collection lens portion and the object-side focal point is located, wherein light exit surfaces of the light sources (28) separated by spaces between them and that the primary optics is arranged to distribute light emanating from the light sources so that the distances in the intermediate light distribution (68) are not recognizable. Lichtmodul (14) nach Anspruch 1, dadurch gekennzeichnet, dass die Primäroptik (30) für jede Lichtquelle einen eigenen optisch wirksamen Teilbereich aufweist, von denen jeder eine Lichtaustrittsfläche aufweist und wobei diese Lichtaustrittsflächen abstandslos aneinander angrenzen, und wobei mindestens zwei benachbarte Lichtaustrittsflächen so aneinander angrenzen, dass wenigstens eine Seitenkante einer ersten von zwei aneinander angrenzenden Lichtaustrittsflächen in einer Linie fluchtend mit einer Seitenkante der zweiten der zwei aneinander angrenzenden Lichtaustrittsflächen liegt, so dass die beiden fluchtenden Kanten eine gemeinsame, gerade Kante (44) bilden.Light module (14) according to claim 1, characterized in that the primary optics (30) for each Light source has its own optically effective portion, each of which has a light exit surface and wherein these light exit surfaces adjoin one another without spacing, and wherein at least two adjacent light exit surfaces adjacent to each other so that at least one side edge of a first of two adjacent light exit surfaces in line with a side edge the second of the two adjacent light exit surfaces, so that the two aligned edges form a common, straight edge (44). Lichtmodul (14) nach Anspruch 2, dadurch gekennzeichnet, dass jeder Teilbereich eine Sammellinse (50) ist.Light module (14) according to claim 2, characterized in that each subregion is a converging lens (50). Lichtmodul (14) nach Anspruch 2, dadurch gekennzeichnet, dass jeder Teilbereich ein Reflektor (40) ist.Light module (14) according to claim 2, characterized in that each subregion is a reflector (40). Lichtmodul (14) nach Anspruch 2, dadurch gekennzeichnet, dass jeder Teilbereich ein Lichtleiter (60) ist.Light module (14) according to claim 2, characterized in that each subregion is a light guide (60). Lichtmodul (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, das Lichtmodul eine Blende (56) aufweist, die im Strahlengang des Lichtes unmittelbar hinter der Lichtaustrittsfläche so angeordnet ist, dass sie einen Teil der Zwischenlichtverteilung abschattet.Light module (14) according to any one of the preceding claims, characterized in that the light module has a diaphragm (56) which is arranged in the beam path of the light immediately behind the light exit surface so that it shadows a portion of the intermediate light distribution. Lichtmodul (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sekundäroptik wenigstens einen Hohlspiegelreflektor (12) aufweist.Light module (14) according to one of the preceding claims, characterized in that the secondary optics has at least one concave mirror reflector (12). Lichtmodul (14) nach Anspruch 7, dadurch gekennzeichnet, dass eine optische Fläche der Sekundäroptik in einen größeren Teilbereich und einen kleineren Teilbereich aufgeteilt ist, wobei der größere Teilbereich dadurch definiert ist, dass er einen ersten objektseitigen Brennpunkt besitzt und dass die beiden Teilbereiche einen gemeinsamen bildseitigen Brennpunkt im Unendlichen besitzen.Light module (14) according to claim 7, characterized in that an optical surface of the secondary optics is divided into a larger partial area and a smaller partial area, wherein the larger partial area is defined by having a first object-side focal point and that the two partial areas have a common have pictorial focal point at infinity. Lichtmodul (14) nach Anspruch 7, dadurch gekennzeichnet, dass der Hohlspiegelreflektor eine reflektierende Fläche aufweist, deren größerer Teil eine parabolische Form aufweist, wobei ein objektseitiger Brennpunkt der parabolischen Form auf der Lichtaustrittsfläche der Primäroptik liegt.Light module (14) according to claim 7, characterized in that the concave reflector has a reflecting surface, the greater part of which has a parabolic shape, wherein an object-side focal point of the parabolic shape lies on the light exit surface of the primary optics. Lichtmodul (14) nach Anspruch 7, dadurch gekennzeichnet, dass die Sekundäroptik aus zwei Spiegeln besteht, die im Strahlengang so hintereinander angeordnet sind, dass sie den Strahlengang der Sekundäroptik zweimal in einem spitzen Winkel falten und dass die Sekundäroptik einen objektseitigen Brennpunkt aufweist, der auf der Lichtaustrittsfläche der Primäroptik liegt und dessen Bildpunkt im Unendlichen liegt.Light module (14) according to claim 7, characterized in that the secondary optics consists of two mirrors, which are arranged one behind the other in the beam path, that they fold the beam path of the secondary optics twice at an acute angle and that the secondary optics has an object-side focal point on the light exit surface of the primary optics is located and whose pixel lies at infinity. Lichtmodul (14) nach Anspruch 10, dadurch gekennzeichnet, dass der in Propagationsrichtung des Lichtes im Strahlengang erste Spiegel (64) ein Hyperboloid und der zweite Spiegel ein Paraboloid (12) ist, wobei der objektseitige Brennpunkt des Hyperboloids den objektseitigen Brennpunkt der Sekundäroptik bildet und der bildseitige Brennpunkt des Hyperboloids mit dem Brennpunkt des Paraboloids zusammenfällt und die Lage eines virtuellen Zwischenbildes der Zwischenlichtverteilung markiert.Light module (14) according to claim 10, characterized in that in the propagation direction of the light in the beam path first mirror (64) is a hyperboloid and the second mirror is a paraboloid (12), wherein the object-side focal point of the hyperboloid forms the object-side focal point of the secondary optics, and the image-side focal point of the hyperboloid coincides with the focal point of the paraboloid and marks the position of a virtual intermediate image of the intermediate light distribution. Lichtmodul (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sekundäroptik mehrere objektseitige Brennpunkte und einen oder mehrere gemeinsame bildseitige Brennpunkte oder Brennlinien im Unendlichen aufweist.Light module (14) according to one of the preceding claims, characterized in that the secondary optics has a plurality of object-side focal points and one or more common image-side foci or focal lines at infinity. Lichtmodul (14) nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass der erste Spiegel (64) der zweistufigen Sekundäroptik ein Hyperboloid oder ein ebener Spiegel als Spezialfall des Hyperboloids ist, und dass der zweite Spiegel (12) ein facettiertes Paraboloid ist, wobei der objektseitige Brennpunkt des Hyperboloids den objektseitigen Brennpunkt der Sekundäroptik bildet und wobei der bildseitige Brennpunkt des Hyperboloids die Lage eines virtuellen Zwischenbildes der Zwischenlichtverteilung markiert und wobei die nachgeordneten Parabelfacetten dazu eingerichtet sind, auf den Rand des virtuellen Bildes der Zwischenlichtverteilung zu fokussieren.Light module (14) according to claim 10 or 11, characterized in that the first mirror (64) of the two-stage secondary optics is a hyperboloid or a plane mirror as a special case of hyperboloid, and that the second mirror (12) is a faceted paraboloid, wherein the the object-side focal point of the hyperboloid forms the object-side focal point of secondary optics and wherein the image-side focal point of the hyperboloid marks the position of a virtual intermediate image of the intermediate light distribution and wherein the downstream parabolic facets are adapted to focus on the edge of the virtual image of the intermediate light distribution. Lichtmodul (14) nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass der erste Spiegel (64) der zweistufigen Sekundäroptik ein facettiertes Hyperboloid oder als dessen Spezialfall ein facettierter Planspiegel ist und dass der zweite Spiegel (12) ein Paraboloid ist, wobei der objektseitige Brennpunkt des Hyperboloids den objektseitigen Brennpunkt der Sekundäroptik bildet und wobei der bildseitige Brennpunkt des Hyperboloids die Lage eines virtuellen Zwischenbildes der Zwischenlichtverteilung markiert und wobei die im Strahlengang nachgeordneten Parabelfacetten auf den Rand des virtuellen Bildes der Zwischenlichtverteilung fokussieren.Light module (14) according to claim 10 or 11, characterized in that the first mirror (64) of the two-stage secondary optics is a faceted hyperboloid or as its special case a faceted plane mirror and that the second mirror (12) is a paraboloid, wherein the object-side focal point of the hyperboloid forms the object-side focal point of the secondary optics and wherein the image-side focal point of the hyperboloid marks the position of a virtual intermediate image of the intermediate light distribution and wherein the parabolic facets in the beam path focus on the edge of the virtual image of the intermediate light distribution. Lichtmodul (14) nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die beiden Spiegel (64, 12) mehrere objektseitige Brennpunkte aufweisen, die auf dem Rand der Zwischenlichtverteilung liegen und deren Bildpunkt bzw. Bildlinien auf der Hell-Dunkel-Grenze der Lichtverteilung im Unendlichen liegen, wobei die beiden Spiegelflächen so geformt sind, dass alle optischen Wege zwischen dem objektseitigen Brennpunkt und seinen jeweiligen Bildpunkten bzw. Bildlinien gleich lang sind.Light module (14) according to claim 10 or 11, characterized in that the two mirrors (64, 12) have a plurality of object-side focal points which lie on the edge of the intermediate light distribution and whose image points or image lines lie at the light-dark boundary of the light distribution at infinity, the two mirror surfaces being shaped that all optical paths between the object-side focal point and its respective pixels or image lines are the same length.
EP14164995.4A 2013-04-29 2014-04-16 Light module for a motor vehicle headlamp Active EP2799762B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013207845.5A DE102013207845A1 (en) 2013-04-29 2013-04-29 Light module for a motor vehicle headlight

Publications (3)

Publication Number Publication Date
EP2799762A2 true EP2799762A2 (en) 2014-11-05
EP2799762A3 EP2799762A3 (en) 2016-09-14
EP2799762B1 EP2799762B1 (en) 2020-12-02

Family

ID=50513056

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14164995.4A Active EP2799762B1 (en) 2013-04-29 2014-04-16 Light module for a motor vehicle headlamp

Country Status (4)

Country Link
US (1) US9546766B2 (en)
EP (1) EP2799762B1 (en)
CN (1) CN104121533A (en)
DE (1) DE102013207845A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3540295A1 (en) * 2018-03-14 2019-09-18 T.Y.C. Brother Industrial Co., Ltd. Vehicle headlamp assembly
EP3282181B1 (en) * 2016-07-29 2021-08-25 ZKW Group GmbH Microoptic lenses on glass with printed diaphragm - concept and production method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101529166B1 (en) * 2013-08-06 2015-06-16 현대모비스 주식회사 Lamp for vehicle
DE102014225075A1 (en) 2014-12-05 2016-06-09 Osram Gmbh lighting device
DE102014226646A1 (en) 2014-12-19 2016-06-23 Osram Gmbh lighting device
KR101795229B1 (en) * 2016-03-31 2017-11-08 현대자동차주식회사 Lamp apparatus for a vehicle
CN106197657B (en) * 2016-06-29 2017-12-12 北京经纬恒润科技有限公司 The detection method of vehicle environment illuminance, device and system
TWI642568B (en) * 2016-09-07 2018-12-01 世正光電股份有限公司 Illumination structure and light distribution method thereof
FR3056691B1 (en) * 2016-09-29 2019-06-28 Valeo Vision OPTICAL MODULE FOR A MOTOR VEHICLE PROJECTOR WITH ADAPTIVE LIGHTING FUNCTION, COMPRISING AN OPTICAL LIGHT BEAM REFLECTING SYSTEM
DE102016125676A1 (en) * 2016-12-23 2018-06-28 Automotive Lighting Reutlingen Gmbh LED module and lighting device for a motor vehicle with a plurality of such LED modules
US10240737B2 (en) * 2017-03-06 2019-03-26 Ford Global Technologies, Llc Vehicle light assembly
DE102017117560A1 (en) * 2017-08-02 2019-02-07 Automotive Lighting Reutlingen Gmbh Light module and method for operating the light module
DE102018102156A1 (en) 2018-01-31 2019-08-01 Automotive Lighting Reutlingen Gmbh Light generation arrangement and motor vehicle light
JP7127492B2 (en) * 2018-11-05 2022-08-30 トヨタ自動車株式会社 Vehicle headlight device
CN111322587B (en) * 2018-12-13 2022-09-02 深圳市中光工业技术研究院 Light source device
FR3093788B1 (en) * 2019-03-14 2022-05-27 Valeo Vision LIGHT DEVICE IMAGES A VIRTUAL ILLUMINATED SURFACE OF A COLLECTOR
EP3757451B1 (en) * 2019-06-24 2023-08-09 ZKW Group GmbH Lighting device for a motor vehicle

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050030759A1 (en) * 2003-08-04 2005-02-10 Guide Corporation Bifocal hyperbolic catadioptric collection system for an automotive lamp
US8104939B2 (en) * 2005-08-31 2012-01-31 Osram Sylvania Inc. LED headlamp system
AT504668B1 (en) * 2007-01-11 2008-07-15 Zizala Lichtsysteme Gmbh TOTAL REFLECTION SYSTEM FOR A HEADLIGHT OR A LIGHT UNIT OF A MOTOR VEHICLE
DE102008013603B4 (en) * 2008-03-11 2017-06-22 Automotive Lighting Reutlingen Gmbh Light module for a lighting device
JP4582190B2 (en) * 2008-05-14 2010-11-17 市光工業株式会社 Vehicle lighting
FR2932245B1 (en) * 2008-06-06 2010-09-10 Valeo Vision Sas LIGHTING MODULE FOR MOTOR VEHICLE PROJECTOR
DE102009035544B4 (en) * 2009-07-31 2019-10-24 Volkswagen Ag Headlamp in a motor vehicle with multiple semiconductor light sources
DE102009053581B3 (en) * 2009-10-05 2011-03-03 Automotive Lighting Reutlingen Gmbh Light module for a lighting device of a motor vehicle
WO2011121488A1 (en) * 2010-03-31 2011-10-06 Koninklijke Philips Electronics N.V. Lighting system and light source unit for such a system
JP5666882B2 (en) * 2010-11-18 2015-02-12 株式会社小糸製作所 High beam lamp unit
EP2500628B1 (en) * 2011-03-14 2020-05-06 Stanley Electric Co., Ltd. Vehicle headlamp
CN202274394U (en) * 2011-05-11 2012-06-13 鹤壁市恒通电气有限公司 Direct-lighting type lens front fog lamp
CN103765086B (en) * 2011-09-01 2016-08-17 株式会社小糸制作所 Vehicle headlamp apparatus
DE102011054229B4 (en) * 2011-10-06 2022-07-28 HELLA GmbH & Co. KGaA Lighting device for vehicles
CN202660430U (en) * 2012-04-12 2013-01-09 安徽华东光电技术研究所 Novel xenon electric discharge lamp for planes
DE102013206488A1 (en) * 2013-04-11 2014-10-30 Automotive Lighting Reutlingen Gmbh Light module for a motor vehicle lighting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3282181B1 (en) * 2016-07-29 2021-08-25 ZKW Group GmbH Microoptic lenses on glass with printed diaphragm - concept and production method
EP3540295A1 (en) * 2018-03-14 2019-09-18 T.Y.C. Brother Industrial Co., Ltd. Vehicle headlamp assembly

Also Published As

Publication number Publication date
US9546766B2 (en) 2017-01-17
CN104121533A (en) 2014-10-29
DE102013207845A1 (en) 2014-10-30
EP2799762A3 (en) 2016-09-14
US20140321140A1 (en) 2014-10-30
EP2799762B1 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
EP2799762B1 (en) Light module for a motor vehicle headlamp
EP2910847B1 (en) Light module of a motor vehicle headlight and headlight with such a light module
EP2587125B1 (en) Headlamp projection module for a motor vehicle
EP2616738B1 (en) Motor vehicle headlight comprising a multifunctional projection module
EP2799761B1 (en) Light module for a motor vehicle headlamp
EP2789900B1 (en) Light module for a motor vehicle lighting device
DE102012202290B4 (en) Light module for a glare-free motor vehicle high beam
EP2505910B1 (en) Motor vehicle headlamp with a semiconductor light source
DE102014200368B4 (en) Partial remote light projection light module for a motor vehicle headlight
EP2306074B1 (en) Motor vehicle headlight with a lighting module comprising semiconductor light sources, a primary optic and a secondary optic
EP1818599B1 (en) Dipped headlight which creates a strongly contrasted cut-off
EP1818600B1 (en) Dipped headlight with hot spot generation
DE102009022723A1 (en) Rear-mounted LED module for combination rear lights on motor vehicles
EP2789901A2 (en) Light module of a motor vehicle lighting device
EP2730836B1 (en) Light module for a headlight of a motor vehicle
DE102012202508A1 (en) Single-piece light conductor device for headlight, of motor car, has light guidance fingers whose boundary surfaces fulfill conditions mentioned in preamble, so that straight line of fingers is extended in sagittal surface of device
EP3524873B1 (en) Efficient projection light module comprising microprojectors for a motor vehicle headlamp
EP3301350B1 (en) Light module for a motor vehicle headlamp
EP3765781B1 (en) Light module for motor vehicle headlight
DE102013215359B3 (en) Mechanically-free bend lighting module
DE102019102040A1 (en) Arrangement with optics and vehicle headlights
WO2018220069A1 (en) Semiconductor light source
DE102020117785A1 (en) Motor vehicle headlights with a light source with a square light-emitting surface

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140416

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 8/10 20060101AFI20160808BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

R17P Request for examination filed (corrected)

Effective date: 20170314

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014015059

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0041147000

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/36 20180101ALI20191129BHEP

Ipc: F21S 41/33 20180101ALI20191129BHEP

Ipc: F21S 41/32 20180101ALI20191129BHEP

Ipc: F21S 41/147 20180101AFI20191129BHEP

Ipc: F21S 41/24 20180101ALI20191129BHEP

Ipc: F21S 41/155 20180101ALI20191129BHEP

Ipc: F21S 41/20 20180101ALI20191129BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200121

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200626

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1341320

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014015059

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210302

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210405

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014015059

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210402

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

26N No opposition filed

Effective date: 20210903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210416

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210402

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1341320

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230321

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140416

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 10