EP1818599B1 - Dipped headlight which creates a strongly contrasted cut-off - Google Patents

Dipped headlight which creates a strongly contrasted cut-off Download PDF

Info

Publication number
EP1818599B1
EP1818599B1 EP07002685A EP07002685A EP1818599B1 EP 1818599 B1 EP1818599 B1 EP 1818599B1 EP 07002685 A EP07002685 A EP 07002685A EP 07002685 A EP07002685 A EP 07002685A EP 1818599 B1 EP1818599 B1 EP 1818599B1
Authority
EP
European Patent Office
Prior art keywords
lens
light
plane
headlamp
antidazzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP07002685A
Other languages
German (de)
French (fr)
Other versions
EP1818599A3 (en
EP1818599A2 (en
Inventor
Emil Dr. Stefanov
Dagmar Dr. Würtenberger
Veit Dr.-Ing. Schwegler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Odelo GmbH
Original Assignee
Odelo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Odelo GmbH filed Critical Odelo GmbH
Publication of EP1818599A2 publication Critical patent/EP1818599A2/en
Publication of EP1818599A3 publication Critical patent/EP1818599A3/en
Application granted granted Critical
Publication of EP1818599B1 publication Critical patent/EP1818599B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/26Elongated lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a low-beam headlamp having at least one light module, wherein the individual light module has at least one light source and at least one primary lens connected downstream of the light source, and wherein the light source is a light-emitting diode.
  • From the DE 10 2004 053 303 A1 is a low beam headlamp with several different lighting units known.
  • the light distributions of the individual lighting units overlap in areas. Apertures are used to create the cut-off. This can lead eg to color deviations, stripes and stains.
  • the publication EP 1 526 581 A2 also discloses a low beam headlamp with multiple LED illumination units.
  • the present invention is therefore based on the problem of developing a compact low-beam headlamp whose light distribution has a uniform basic distribution and a pronounced cut-off.
  • the low beam headlamp has at least a secondary lens which is optically connected downstream of the primary lens or lenses. Both the primary and secondary lenses have at least two superimposed lens segments. A lens segment of a secondary lens is associated with at least one lens segment of a primary lens.
  • the edges of the light entry surfaces create edges of objects in the lens segments of the primary lens and the secondary lens projects the objects and images them at least in the vertical direction.
  • FIGS. 1 to 5 show a motor vehicle low beam headlamp (10) with a light module (20).
  • Each headlamp (10) may comprise one or more such light modules (20), which may then be arranged side by side and / or one above the other.
  • FIG. 1 a dimetric view of the headlamp (10), the FIG. 2 shows a longitudinal section through the light module (20).
  • the sectional plane in this representation is the vertical central longitudinal plane (21) of the light module (20), cf. FIG. 3 ,
  • the beam paths of the light module (20) are shown by way of example from a light source (30) to a measuring wall (2).
  • the light propagation in a plan view of the light module (20) greatly simplifies the FIG. 5 ,
  • the image (150) which is produced during operation of the light source (30) on the measuring wall (2) is shown by way of example.
  • That in the FIGS. 1 to 5 illustrated light module (20) is for example 70 millimeters long, 50 millimeters wide and 50 millimeters high. It includes, for example, a housing, not shown here, in which the light source (30), a condenser (40), a primary (50) and a secondary lens (90) and a mirror (130) are arranged.
  • the light source (30), the condenser lens (40) and the primary lens (50) are optically connected in series, so that the light (140) generated by the light source (30) passes through these two lenses (40, 50).
  • From the primary lens (50) part of the light (140) is passed directly to the secondary lens (90), another part is reflected by the mirror (130) and then passes to the secondary lens (90).
  • the light propagation direction (26) is thus here from the light source (30) in FIG Direction of the secondary lens (90), ie, for example, in the direction of travel of the motor vehicle forward.
  • the optical axis (25) of the light module (20) is in the FIG. 2 shown as a horizontal line. It connects the light source (30) to the secondary lens (90). In addition, it is the intersection of the vertical central longitudinal plane (21) with a horizontal central longitudinal plane (22) of the light module (20), see. FIG. 3 ,
  • the light source (30) is e.g. a high power luminescent or light emitting diode (30) that emits, for example, white light. It comprises, for example, a light-emitting chip (33) with a conversion layer which is covered by a transparent light distribution body (34), e.g. a radiation shaped body (34) is surrounded.
  • the active area of the light-emitting chip (33) is, for example, one square millimeter.
  • the radiation molding (34) has a height of 2.8 millimeters in this embodiment. He can have optical functions. For example, it can focus the diverging light emitted by the light-emitting chip (33) in the direction of the optical axis (25) or widen it away from the optical axis (25).
  • the light source (30) projects into an eg concavely curved lens surface (42) of the condenser lens (40).
  • the boundary line (43) of the concavely curved lens surface (42) and the light-emitting chip (33) here span an imaginary conical surface, the light-emitting chip (33) forming the conical tip.
  • the apex angle of this cone is for example 130 degrees.
  • the condenser lens (40) is designed, for example, as a convex, hemispherical lens (45).
  • the condenser lens (40) is fixed in the housing, for example, by means of an annular flange (47).
  • the primary (50) and secondary (90) lenses are e.g. approximately transverse to the optical axis (25). Their minimum distance in the light propagation direction (26) is, for example, 50% of the distance between the light-emitting chip (33) and the farthest light exit surface (124) of the secondary lens (90) facing the surroundings (1). This latter distance is referred to below as the reference length (27).
  • the reference length (27) is 40 millimeters in this embodiment.
  • the distance of the primary lens (50) to the condenser lens (40) is here e.g. 1% of this reference length (27).
  • the distance between the primary (50) and the secondary lens (90) may also be greater than said value.
  • the primary (50) and secondary (90) lenses in a view normal to the optical axis (25), are, for example, rectangular lenses having side mounting flanges (51, 91) for mounting in the housing. Between the mounting flanges (51, 91), the lenses (50, 90) each have three lens segments (61, 71, 81, 101, 111, 121) arranged one above the other. In the view normal to the optical axis (25), the total area of the lens segments (101, 111, 121) of the secondary lens in this embodiment is 2.8 times as large as the total area of the lens segments (61, 71, 81) of the primary lens (50).
  • the ratio between the height - normal to the horizontal center longitudinal plane (22) - and the width - normal to the vertical central longitudinal plane (21) - is 1.8 times for the lens segments (61, 71, 81) of the primary lens (50) Lens segments of the secondary lens (90) the factor 1.5.
  • the height of the primary lens (50) in the embodiment described here is 40% of the reference length (27).
  • the primary (50) and the secondary lens (90) are - based on their external dimensions - at least approximately symmetrical to the vertical central longitudinal plane (21) of the light module (20).
  • the primary lens (50) is - at least approximately symmetrical to the horizontal center longitudinal plane (22) - with respect to their outer dimensions.
  • the secondary lens (90) protrudes in this embodiment with 37% of its height over the horizontal center longitudinal plane (22), the rest of the secondary lens (90) lies below this plane (22).
  • the lens segments (61, 71, 81, 101, 111, 121) are, for example, interconnected sections of plano-convex, biconvex or concave-convex lenses. They are made, for example, from a highly transparent plastic, glass, etc.
  • Each of the lens segments (61, 71, 81, 101, 111, 121) has a light entry surface (63, 73, 83, 103, 113, 123) facing the light source (30) and a light exit surface (64, 64) remote from the light source (30). 74, 84, 104, 114, 124).
  • All of these surfaces are composed of individual surface elements, for example. These surface elements may be spherical or aspherical segments, planar surface elements, etc. Hereinafter, these surfaces (63, 73, 83, 103, 113, 123, 64, 74, 84, 104, 114, 124) will be described by their envelope surfaces.
  • An envelope surface here is a geometrically interpolated, closed surface, to which the individual surface elements have the lowest standard deviation.
  • These envelope surfaces are, for example, lateral surface portion of an ellipsoid, a torus, a cylinder, etc., or may be composed of these.
  • the envelope surfaces or the envelope surface elements have, for example, a plurality of main axes, which are arranged, for example, normal to one another. The major axes of the envelope surfaces or envelope surfaces may also include angles other than 90 degrees with each other.
  • an intersection line which has a contour line of the respective surface (63, 73, 83, 103, 113, 123, 64, 74, 84, 104, 114 , 124).
  • the radii of curvature of the contour lines can be constant along these contour lines or increase or decrease steadily or discontinuously, etc. Also, jumps or straight sections of the contour lines are conceivable.
  • the lens segments (61, 71, 81) of the primary lens (50) are in the described embodiment parts of upper portions of lenses.
  • the thickness of the individual lens segment (61, 71, 81) decreases - in the illustration of FIG. 2 - from top to bottom too.
  • the top (62) of the upper lens segment here is two percent of the reference length (27) long, the bottom has five times the length of the top (62).
  • the top (72) of the central lens segment (71) has, for example, a length of seven percent of the reference length (27), the bottom is twice as long.
  • the length of the upper surface (82) is five percent of the reference length (27), and downwards the length increases three times.
  • the height of the upper (61) and the middle lens segment (71) is here in the middle transverse surfaces (65, 75) 11% of the reference length (27), the height of the lower lens segment (81) 16% of the reference length (27).
  • the central transverse surface (65) of the upper lens segment (61) is inclined, for example, by 3 degrees to a normal plane of the optical axis (25), the upper side (62) of the lens segment (61) being offset from the light propagation direction (26).
  • the center transverse surface (75) of the central lens segment (71) is for example normal to the optical axis (25).
  • the central transverse surface (85) for example inclined by 16 degrees to a normal plane of the optical axis (25), wherein the upper side (82) in the light propagation direction (26) is inclined forwardly.
  • the light entry surface (63) of the upper lens segment (61) in this embodiment is 31% of the total light entry surfaces (63, 73, 83).
  • the light entrance surface (73) of the middle lens segment (71) is 29% and the light entry surface (83) of the lower lens segment (81) 40% of the sum of these surfaces (63, 73, 83).
  • the upper lens segment (61) has, for example, a wedge-shaped shape.
  • the transverse to the vertical center longitudinal plane (21) oriented edges of the upper side (62) are at least approximately parallel to the horizontal central longitudinal plane (22), the lower edges (66, 67) here fall from the right to the left side of the vehicle.
  • At least the lower edge (66) delimiting the light entry surface (63), viewed in the light propagation direction (26), in this exemplary embodiment encloses an angle of 15 degrees with the horizontal central longitudinal plane (22).
  • the top (62) may also be e.g. be executed convex curved.
  • Both the light entry surface (63) and the light exit surface (64) are convexly curved.
  • the envelope surfaces of these surfaces (63, 64) are each lateral surface sections of a three-dimensionally curved aspherical surface.
  • both surfaces are designed such that two main axes span a plane which lies parallel to the lower edge (66) and intersects with the horizontal central longitudinal plane (22) in a straight line parallel to the optical axis (25).
  • One of the main axes and the third main axes then span a plane arranged normally to this plane in which the optical axis (25) lies or which does not intersect the optical axis (25).
  • the lateral surface sections may also be sections of Torusmantel vom, Ellipsoidmantel vom, etc.
  • the lower edge (66) of the light entry surface (63) in this embodiment in the vertical central longitudinal plane (21) has a distance of 10% of the reference length (27) from the horizontal center longitudinal plane (22). From the lower edge (67) of the light exit surface (64), the distance to the horizontal central longitudinal plane (22), also measured in the vertical central longitudinal plane (21), is 11% of the reference length (27).
  • the envelope contour of the light entry surface (63) for example a constant radius of curvature. This is, for example, 41% of the reference length (27) of the light module (20).
  • the center of curvature (68) here lies 60% of the reference length (27) in the light propagation direction (26) offset from the light emitting chip (33) and four percent of the reference length (27) offset above the horizontal center longitudinal plane (22).
  • the radius of the envelope contour of the light entry surface (63) can increase or decrease towards the upper and / or lower edge.
  • the light entry side (63) may also be formed as a plane surface.
  • the envelope surface of the light exit surface (64) also has a constant radius of curvature in the vertical central longitudinal plane (21), for example. This is for example 61% of the reference length (27).
  • the center of curvature (69) lies here by four percent of the reference length (27) opposite to the light propagation direction (26) offset to the light-emitting chip (33) and is three percent of this length above the horizontal center longitudinal plane (22). Also the radius of curvature of the envelope contour the light exit surface (64) can increase or decrease toward the upper and / or lower edge.
  • the radius of curvature of the envelope surface of the light exit surface (64) is greater than the distance of the light source (30) to the light exit surface (64). However, it is smaller than fifty times the reference length (27).
  • the surface element of the envelope surface of the light exit surface (64), which lies at the intersection of the two said planes - the vertical central longitudinal plane (21) and the plane parallel to the horizontal central longitudinal plane (22) - is thus at least biaxially curved.
  • the respective curvatures are the reciprocals of the radii of curvature.
  • the sum of the curvatures of the surface element in two mutually normal planes is for example between two and ten times the reciprocal of the reference length (27). Analogously, these relationships apply, for example. also for a surface element of the envelope surface of the light exit surface (64), which lies in the intersection of the main axis planes.
  • the middle lens segment (71) is here, following the upper lens segment (61), also wedge-shaped.
  • the top (72) is e.g. formed obliquely.
  • the lower edges (76, 77) lie, for example, parallel to the horizontal center longitudinal plane (22).
  • the envelope surfaces of the light entrance (73) and the light exit surface (74) in this exemplary embodiment are at least approximately sections of lateral surfaces of a three-axis curved body with principal axes lying normal to one another.
  • Two main axes span the vertical center longitudinal plane (21) or a plane parallel to it.
  • the third main axis lies, for example, in a plane which is three percent of the reference length (27) below the horizontal central longitudinal plane (22) and aligned parallel thereto.
  • the lower edge (76) of the light entry surface (73) lies, for example, in the horizontal central longitudinal plane (22).
  • the lower edge (77) of the light exit surface (74) is e.g. by one percent of the reference length (27) below this plane (22).
  • the radius of curvature of Schmieg Vietnamesees the light entrance surface (73) which intersects the plane spanned by the horizontal main axes plane, in the vertical central longitudinal plane (21) is 26% of the reference length (27).
  • the center point (78) of this osculation circle is here offset by 44% of the reference length (27) in the light propagation direction (26) offset to the light-emitting chip (33) and offset by three percent of the reference length (27) below the horizontal center longitudinal plane (22).
  • the corresponding radius of curvature of the light exit surface (74) is e.g. 28% of the reference length (27).
  • the center of curvature (79) here is offset by three percent of the reference length (27) in the light propagation direction (26) to the light emitting chip (33) and is three percent of this length (27) below the horizontal center longitudinal plane (22).
  • the radius of curvature of the light exit surface (74) in this embodiment is 20% greater than the radius of curvature of the envelope surface of the light exit surface (64) of the upper lens segment (61) in a plane parallel to the horizontal center longitudinal plane (22).
  • the radius of curvature of the surface element of the light exit surface (74) in this plane is at least 15% greater than the corresponding radius of curvature of the upper lens segment (61).
  • the radius of curvature of the light exit surface (74) in a horizontal plane may also be infinite.
  • the envelope surface of the light exit surface (74) then has the shape of a portion of a cylinder jacket surface. The sum of the two radii of curvature is thus greater than the sum of the corresponding radii of curvature of the upper lens segment (61).
  • the lower lens segment (81) of the primary lens (50) in this embodiment is an upper portion of a lens whose light entrance surface (83) is e.g. is a plane surface and the light exit surface (84) is three-axis convex curved.
  • the planar surface (83) encloses, for example, an angle of 50 degrees with the horizontal central longitudinal plane (22), the upper edge (87) of this planar surface (83) being offset in the light propagation direction (26) from the lower edge (86).
  • the envelope surface of the light exit surface (84) is, for example, a three-axis convexly curved surface, with two axes each spanning a plane of curvature. These curvature levels are normal here.
  • One of these planes of curvature lies, for example, in the vertical center longitudinal plane (21), another example in a plane which is inclined by 16 degrees with respect to the horizontal center longitudinal plane (22).
  • the center of curvature (89) of the osculating circle in the vertical center longitudinal plane (21) is here offset by 13% of the reference length (27) offset from the light-emitting chip (33) against the light propagation direction (26).
  • the radius of curvature in this plane is 33% of the reference length (27).
  • the radius of curvature is, for example, 20% greater than the radius of curvature of the upper lens segment (61) in the corresponding one eg horizontal main axis plane of the envelope surface of the light exit surface (64).
  • the sum of the radii of curvature of a surface element of the light exit surface (84) of the lower lens segment (81) in two mutually normal planes is therefore greater than the sum of the corresponding radii of curvature of the light exit surface (74) of the central lens segment (71) and greater than the sum in this embodiment the corresponding radii of curvature of the light exit surface (64) of the upper lens segment (61).
  • all the lens segments (101, 111, 121) are sections of plano-convex lenses.
  • the light entry surfaces (103, 113, 123) of these lens segments (101, 111, 121) are e.g. Planar surfaces that lie, for example, in a common plane normal to the optical axis (25).
  • the distance of the light entry surfaces (103, 113, 123) from the light source (30) is 82% of the reference length (27).
  • the light entry surfaces (103, 113, 123) or individual light entry surfaces (103, 113, 123) may also be e.g. be concavely arched.
  • the optical axis (25) intersects the middle lens segment (111) of the secondary lens (90).
  • the upper lens segment (101) and the lower lens segment (121) of the secondary lens (90) are, for example, upper lens sections of a lens.
  • the lens thickness at the top is 7.5% of the reference length (27), and at the bottom, the thickness of this lens segment (101) increases by about 50%.
  • the maximum thickness is 15% of the reference length (27).
  • the height of the upper lens segment (101) is for example 16% of the reference length (27), the lower lens segment (121) is for example 27% of the reference length (27) high.
  • the middle lens segment (111) is, for example, a middle section of a lens, which lies here asymmetrically with respect to the horizontal central longitudinal plane (22).
  • the middle lens segment (111) thus includes both an upper portion and a lower portion of a lens.
  • the thickness of the lens segment (111) in the horizontal center longitudinal plane (22) is here 12% of the reference length (27).
  • the middle lens segment (111) has a height of 22% of this reference length (27).
  • the lens segments (101, 111, 121) have, for example, over their width - normal to the cutting plane of the FIG. 2 - a constant height.
  • the envelope surface of the light exit surface (104) of the upper lens segment (101), for example, has the shape of a portion of a three-axis convex curved aspherical surface.
  • the major axes of the envelope surface of this surface are normal to each other.
  • a plane spanned by the major axes lies at least parallel to a plane spanned by the directions of the optical axis (25) and the lower edge (66).
  • Another curvature plane is inclined, for example, with respect to the vertical center longitudinal plane (21).
  • In the vertical center longitudinal plane (21) here is the distance of the first-mentioned main axis plane to the horizontal center longitudinal plane (22) 10% of the reference length (27).
  • the radius of curvature of the Schmieg Vietnamesees that intersects said main axis plane is in the vertical center longitudinal plane in this embodiment on average 37% of the reference length (27).
  • the center of curvature (109) is, for example, 57% of the reference length (27) in the light propagation direction (26) offset from the light emitting chip (33) and 10% of the reference length (27) above the horizontal center longitudinal plane (22).
  • the Schmieg Vietnamese in the Vietnamese vertical center plane (21) inclined main axis is then, for example, 44% of the reference length (27).
  • the lay circle of this lens segment (101) in the plane spanned by the major axes intersecting the vertical center longitudinal plane (21) has a radius of 170% of the reference length (27). The sum of these two last-mentioned radii is thus 214% of the reference length (27).
  • the light exit surface (104) can also be biaxially curved. It then has, for example, the shape of a torus. In this case, then the contour of the light exit surface (104) in the vertical center longitudinal plane (21) has a constant radius of curvature. In addition, then, e.g. for each horizontal plane, that the radius of curvature of the contour - the intersection of the light exit surface (104) with a plane - is constant in this plane.
  • the envelope surfaces of the light exit surfaces (114, 124) of the central lens segment (111) and of the lower lens segment (121) are sections of cylinder jacket surfaces in this exemplary embodiment.
  • the cylinder axis of the light exit surface (114) is at least approximately in the horizontal center longitudinal plane (22).
  • the cylinder axis of the light exit surface (124) lies in an at least approximately parallel plane. Both are aligned normal to the vertical center longitudinal plane (21).
  • the envelope surfaces of the light exit surfaces (114, 124) can also be elongated aspherical surfaces.
  • the distance between the cylinder axis and the light exit surface (114) is 34% of the reference length (27). This distance corresponds to the radius of curvature of the contour (118) of the light exit surface (114) in the vertical center longitudinal plane (22).
  • the distance of the center of curvature (119) from the light-emitting chip (33) is, for example, 60% of the reference length (27).
  • the second curvature plane is here the horizontal center longitudinal plane (22).
  • the optical axis (25) is thus in this embodiment, normal to the tangent plane (23) of the light exit surface (114) at the intersection with the optical axis (25).
  • the radius of curvature of the light exit surface (114) in the horizontal center longitudinal plane (22) is, for example, infinite. The sum of the two radii is thus infinite.
  • the envelope contour (128) of the light exit surface (124) in the vertical central longitudinal plane (21) is a circular segment having a radius of, for example, 40% of the reference length (27).
  • the center point (129) of this circle section lies 56% in the light propagation direction (26) offset from the light emitting chip (33) below the horizontal center longitudinal plane (22) and has a distance of 33% of the reference length (27).
  • the second radius of curvature of the light exit surface (124) also has an infinite radius at the lower lens segment (121). The sum of the two radii is thus infinite.
  • the light exit surface (124) may have the shape of a toroidal lateral surface.
  • the radii of curvature of the contours of the light exit surfaces (114, 124) in the horizontal central longitudinal plane (22) or planes parallel to this plane (22) is then for example greater than fifty times the reference length (27).
  • the sums of the two radii of curvature are then also greater than fifty times the reference length (27).
  • the space between the primary lens (50) and the secondary lens (40) is limited in the illustrated embodiment down by a mirror (130).
  • This is for example a plane mirror whose edges are below the primary lens (50) and below the secondary lens (90).
  • the plane mirror (130) is located on the lower edge (86) of the light exit surface (84) of the lower lens segment (81) of the primary lens (50) and on the lower edge (126) of the light entry surface (123) of the lower lens segment (121) of the secondary lens (90 ) at. These two edges (86, 126) define the reflecting surface (131) of the mirror (130).
  • the mirror (130) closes in the vertical center longitudinal plane (21), cf. FIG. 2 , with the horizontal center longitudinal plane (22) an angle of 20 degrees.
  • the mirror (130) is normal to the plane of the bisector of the light entry surfaces (83, 123) of the lens segment (81) of the primary lens (50) and the lens segment (121) of the secondary lens (90).
  • the plane mirror (130) can also be larger than it is in the FIGS. 1 and 2 is shown. For example, it can be anchored laterally in the housing or in the longitudinal direction on the lenses (50, 90). In these marginal areas, outside of the used reflection area (131) in the visible in a plan view of the light module (20), for example, space between the lenses (50, 90), here referred to as a plane mirror (130) mirror (130) and vaults have non-reflective areas.
  • the headlamp (10) may also be constructed such that the plane mirror (130) lies against the lens segments (61, 101) which have high curvatures. It can also be adjacent to the middle lens segments (71, 111). The use of multiple mirrors (130) is conceivable.
  • the headlight (10) can be designed, for example, in one embodiment with a large condenser lens (40) or with light-guiding bodies without a mirror (130).
  • the primary (50) and secondary (90) lenses may also include other lens segments.
  • the shape of these lens segments then largely corresponds to one of the described lens segments (61, 71, 81, 101, 111, 121) of the primary lens (50) or the secondary lens (90).
  • the lenses (50, 90) e.g. have at least in the light exit surface (64) of the lens segment (61), the sum of the radii of curvature in two mutually normal planes is lower than in at least one other light exit surface (74, 84) of the primary lens (50) ,
  • the dipped-beam headlamp (10) is constructed for example in such a way that at each point of an edge (76) of the light entry surface (73) of the central lens segment (71) of the primary lens (50) there is a straight line that intersects this point with a point of the associated light exit surface ( 114) of the secondary lens (90) connects.
  • This straight line is normal to a tangential plane (23) in the piercing point of the light exit surface (114).
  • it is normal to a tangential plane at the point of penetration of the straight line through the light entry surface (113) of the secondary lens (90).
  • the straight line of the middle lens segments (71, 111) may in this case be e.g. lie in a plane parallel to the horizontal center longitudinal plane (22).
  • the light-emitting chip (33) emits light (140), for example as a Lambertian radiator, into a half-space.
  • the light-emitting diode (30) generates, for example, a luminous flux which is greater than 50 1 m.
  • the radiation is divergent and has only a small pronounced maximum.
  • the light intensity of the light source (30) drops towards the edge - with increasing angle between the light emission and the optical axis (25) - continuously.
  • the light (140) emerging from the light source (30) is e.g. bundled by the condenser lens (40) in the direction of the optical axis (25).
  • the light exit from the condenser lens (40) is then e.g. within an imaginary cone with a point angle of 60 degrees that widens in the light propagation direction (26), the cone axis coinciding with the optical axis (25).
  • a light-emitting diode (30) with a narrower radiation characteristic e.g. with +/- 30 degrees to the optical axis (25) to use.
  • the light distribution body (34) and / or the condenser lens (40) can be dispensed with here.
  • the light (140) emitted by the light emitting diode (30) may then be e.g. low-loss into the primary lens (50) are coupled.
  • the light (140) impinges on the light entry surfaces (63, 73, 83) of the primary lens (50) and enters the lens segments (61, 71, 81) of the primary lens (50) through these light entry surfaces (63, 73, 83) , In this case, the light bundle (140) is divided into three partial light bundles (141-143).
  • FIG. 4 is a beam path of the individual partial light bundles (141 - 143), for example, shown.
  • FIG. 5 shows a plan view of the light module (20). In this figure, for example, the upper light bundle (141), the middle light bundle (142) and the lower light bundle (143) are shown. The middle (142) and the lower light bundle (143) are, for example, congruent to one another in plan view.
  • the upper partial light bundle (141) is generated by light from the light source (30), which forms an angle with the optical axis (25), for example greater than 20 degrees.
  • the Light beam (141) of light emitted within an angular segment between 25 degrees and 45 degrees to the optical axis (25) of the light source (30). This partial light bundle (141) thus has no uniform light intensity.
  • This upper partial light bundle (141) strikes the light entry surface (63) of the upper lens segment (61). In this case, the light of higher light intensity strikes the lower region of the light entry surface (63). When penetrating the light entry surface (63), the individual light rays are refracted in the direction of the solder on the light entry surface (63) in the passage point. When passing through the light exit surface (64) - the light exit surface (64) is not completely illuminated here - the light beam (141) is fanned out, for example, both in the horizontal and in the vertical direction. In this case, it is oriented such that the entire partial light bundle (141) only strikes the light entry surface (103) of the upper lens segment (101) of the secondary lens (90).
  • the light beam (141) exits the secondary lens (90) through the light exit surface (104).
  • the opening angle of the light beam in the horizontal direction is for example 13 degrees, in the vertical direction e.g. 10 degrees.
  • FIG. 4 Simplifies a portion of the center transverse surface (65) shown as an object (165).
  • the beam paths of thin lenses are shown for illustration as beam paths.
  • the parallel beams (162, 166), the node beams (163, 167) and the focus beams (164, 168) extend to the secondary lens (90).
  • the ray model also shows the imaginary rays that are outside the imaging area lie, such as the focal point beam (164).
  • the distance of the primary lens (50) to the secondary lens (90) is greater than the maximum radius of curvature of the envelope shape of the light exit surface (104) of the upper lens segment (101) in the vertical central longitudinal plane (21) or in a plane parallel thereto.
  • the light beam (141) produces, for example, a bright region (151) bounded by a polygon. , a so-called hot spot (151), cf. FIG. 6 ,
  • the object (165) is in focus, in the horizontal direction, a blurred stain is created.
  • the lower edge of the object (165) is imaged as the upper boundary of the hot spot (151), while the image of the upper edge of the object (165) delimits the hot spot (151) towards the bottom.
  • the projection of the object (165) has no constant light intensity at least in the vertical direction.
  • the intensity maximum (152) of the hot spot (151) lies below the optical axis (25) and the horizontal center longitudinal plane (22). He is thus below the horizon.
  • the light intensity on the measuring wall (2) - when viewing only the upper light beam (141) - sounds continuously from the intensity maximum (152) of the hot spot (151) towards the outside.
  • the illuminated area (150) rises to the upper right, the angle of the increase corresponding to the angle of inclination of the lower edge (66) to the horizontal central longitudinal plane (22).
  • the height of the illuminated area (150) results from the quotient of the object height and the distance of the lens segments (61) and (101), multiplied by the distance between the headlight (10) and the measuring wall (2).
  • the center partial light bundle (142) is generated by light from the light source (30), which forms an angle with the optical axis (25), for example less than 25 degrees. Also, this partial light bundle (142) thus has no uniform light intensity.
  • the middle partial light bundle (142) passes through the light entry surface (73) into the middle lens segment (71) of the primary lens (50).
  • the light bundle (142) is widened in the horizontal direction, for example.
  • FIG. 5 In the vertical direction, the light bundle (142) is aligned by means of the lens segment (71) of the primary lens (50) such that the entire light beam (142) strikes the light entrance surface (113) of the central lens segment (111) of the secondary lens (90).
  • the light bundle (142) When exiting the secondary lens (90), the light bundle (142) is bundled, for example, in the vertical direction to an angle segment of 10 degrees. In the horizontal direction, the light bundle (142) is widened, for example, to an angle segment of 26 degrees.
  • the object (175) - it is shown here in simplified form as part of the central transverse surface (75) - is then projected in the vertical direction at a distance corresponding to, for example, a hundred times the reference length (27) and sharply imaged. In the horizontal direction results in a wide illuminated field.
  • the FIG. 4 shows a greatly simplified beam path of this partial light bundle (142).
  • the lower edge of the object (175) is generated by the lower edge (76) of the light entry surface (73).
  • This edge of the object (175) is a light-dark boundary within the lens segment (71).
  • the parallel beam (176) the node beam (177) and the focal point beam (178) coincide at least approximately.
  • These rays (176-178) are thus in a common plane that is normal to the tangent plane (23) at the light exit surface (114).
  • the beams (176-178) are at least approximately parallel to one another. In the embodiment shown here, they lie in the horizontal center longitudinal plane (22).
  • the object edge, or the lower edge (76) of the light entry surface (73) is imaged as sharply delimited upper edge (153), the so-called cut-off (153), of the illuminated region (150) on the measuring wall (2).
  • the light entry surfaces (63, 83) of the other two lens segments (61, 81) are darkened, for example - results on a measuring wall (eg, at a distance of 25 meters) ) an illuminated field having the shape of the object (175) of the lens segment (71).
  • This field has only slight brightness fluctuations.
  • the portion of the light beam (142) which is emitted by the light source (30) at least approximately parallel to the optical axis (25), for example within an angle of 5 degrees to the optical axis (25), projects the lower edge of the object (FIG. 175) as a horizontal, sharply defined cut-off (153), ie as a cut-off line on the measuring wall (2), cf.
  • the other boundaries (155) of the illuminated area (150) are out of focus.
  • the cut-off (153) is here, for example, on the horizontal plane (156), which is connected to the horizontal center longitudinal plane (22). coincides.
  • the cut-off can, for example, also be 0.7 degrees below the horizon line (156), depending on the installation in the motor vehicle.
  • the light module (20) shown is the quotient of the height of the object (165) of the lens segment (61) of the primary lens (50) and the distance of the lens segment (101) to the lens segment (61) at least approximately equal to the corresponding quotient of the lens segments (71). and (111).
  • the height of the two images is at least approximately the same.
  • the lower light bundle (143) enters the lower lens segment (81) of the primary lens (50), for example, through the light entry surface (83).
  • the light bundle (143) emerging from this lens segment (81) strikes the plane mirror (130).
  • the part of the light bundle (143) which exits near the upper edge (88) of the light exit surface (84) is directed onto the region of the mirror (130) which lies close to the secondary lens (90).
  • the portion of the light beam (143) emerging from the primary lens (50) near the lower edge (86) of the light exit surface (84) strikes the region of the mirror (130) near the primary lens (50).
  • the light beam (143) is reflected on the plane mirror (130) in the direction of the secondary lens (90).
  • the light beam (143) strikes the lower lens segment (121) and enters the secondary lens (90) through the light entry surface (123).
  • the part of the light beam (143) which is reflected near the primary lens (50) enters almost horizontally in the upper area of the light entry surface (123).
  • the part of the light beam (143) which is reflected near the secondary lens (90) enters almost horizontally in the lower region of the light entry surface (123).
  • the light bundle (143) When exiting the secondary lens (90), the light bundle (143) has an opening angle of 10 degrees in the vertical direction, for example. In the horizontal direction, for example, the light beam (143) is widened to an angle segment of 26 degrees.
  • the lens segment (81) is shown as a virtual virtual image (181) mirrored on the mirror (130).
  • a part (180) of the central transverse surface (85) thereby transitions into the virtual object (185).
  • the upper edge of the light bundle (143), for example shown on the measuring wall (2) - for example represented by the node beam (187) - is at least approximately congruent with the node beam (177) of the light bundle (142).
  • the cut-off lines (153) of both partial light bundles (142, 143) thus largely coincide.
  • the maximum deviation of two node beams (177, 187) spanning a vertical plane is for example 1 degree.
  • the upper edge of the light bundle (143) then lies, for example, below the upper edge of the light bundle (142).
  • the node beam (177, 187) is an imaginary node beam (177, 187).
  • the light bundle (143) in this embodiment is widened more than the light bundle (142).
  • the light distribution produced on the measuring wall is here 30% higher than the image produced by means of the middle lens segments (71, 111).
  • the quotient of the height of the object (185) and the distance of the lens segments (81, 121) is greater as the corresponding quotient of the lens segments (71, 111) for the middle light bundle (142).
  • the two quotients can also be the same size, whereby the heights of the illuminated areas are the same.
  • a straight line connects each point of the edge (87) whose virtual image (189) generates the boundary of the object (185) and a point of the associated light exit surface (124) of the secondary lens (90), the straight line being normal a tangent plane (24) in the point of the light exit surface (124). It is also normal to a tangential plane at the point of penetration of the straight line through the light entry surface (123) of the secondary lens (90).
  • One of these straight lines and a similar straight line of the middle lens segments (71, 111) span a common vertical plane. These two straight lines enclose in this plane an angle which is less than 1 degree. For example, this angle is 0.7 degrees, for example, the straight line of the lower lens segments (81, 121) in the light propagation direction (26) is inclined downwards more.
  • the light module (20) When the light module (20) is operated solely with this light bundle (143) - the light entry surfaces (63, 73) of the two other lens segments (61, 71) are darkened, for example - the result is e.g. at a distance of 25 meters, a illuminated area with only slight fluctuations in brightness.
  • a light distribution (150) results more uniformly Brightness without light or dark Stains.
  • the boundaries (155) of the illuminated area (150) is out of focus at the sides and down, while the upper edge (153) is sharply defined by a horizontal line.
  • This upper edge (153) lies here directly below the horizon line (156), cf. FIG. 6 , which lies for example in the horizontal center longitudinal plane (22).
  • the height of the image (150) corresponds in the exemplary embodiment, at least in the sectional plane of the vertical central longitudinal plane (21) 130% of the height of the basic distribution, which is generated by means of the middle lens segments (71, 111).
  • the result in the FIG. 6 illustrated illuminated area (150).
  • the individual lines (159) connect points of the same intensity on the measuring wall (2).
  • the light intensity of the illuminated field (150) drops very sharply in the direction of the region above the horizon line (156). To the left and down, the light intensity drops continuously over an angle of, for example, 8 degrees, to the right, the light intensity drops, for example, in an angular range of 10 degrees.
  • the headlamp can be constructed so that the lower edges (66, 67) of the upper lens segments (61) fall from top left to bottom right.
  • FIG. 7 shows a dipped beam headlamp (210) with a single light module (220), the upper lens segment (261) is parallel to the horizontal center longitudinal plane (22) of the light module (220). Also, the adjoining middle lens segment (271) is aligned parallel to this plane (22).
  • the longitudinal section of this light module (220) in the vertical central longitudinal plane (22) is identical to the illustration of FIG. 2 ,
  • FIG. 8 illustrated light distribution (350).
  • the hot spot (351) is 1.5 degrees below the horizon (356).
  • the illuminated field (350) on the measuring wall (2) is approximately symmetrical to the vertical center longitudinal plane (21).
  • the horizontal cut-off (353) is clearly formed and forms the upper edge (353) of the illuminated field (350).
  • the lines of equal luminous intensity (359) are largely equidistant to the side and to the bottom. The light intensity drop to the edges is thus uniform without stripes and without cracks.
  • the FIG. 9 shows a low beam headlight (410) with, for example, eight light modules (420, 620).
  • the individual light modules (420, 620) are distributed in the vehicle body in such a way that the vertical central longitudinal planes (21) of respectively two adjacent light modules (420, 620) enclose an angle of 4 degrees.
  • the light modules (420, 620) sit here in a common - not shown - Housing, wherein the individual light modules (420, 620) are not separated by partitions from each other.
  • the low beam headlamp (410) has a width of 140 millimeters in this embodiment.
  • the light modules (420, 620) here each comprise a primary lens (450, 650) and a secondary lens (490), each of which consists of three lens segments (461, 471, 481, 501, 511, 521, 661, 671, 681) arranged one above the other. consist.
  • the middle lens segment (511) and the lower lens segment (521) of the secondary lens (490) are part of all the light modules (420, 620).
  • the light exit surfaces (514, 524) of these lens segments (511, 521) have the shape of gates.
  • the light bundles which pass through the central lens segments (471, 671) of the primary lenses (450) strike the middle lens segment (511) of the secondary lens (490) associated with these lens segments (471, 671).
  • the individual light bundles of the light modules (420, 620) arranged next to one another can penetrate one another.
  • the light beams emerging from the lower lens segments (481, 681) strike the mirror (530).
  • the mirror (530) has the shape of a part of a lateral surface of a cone portion.
  • the imaginary cone section in this embodiment has a circle as a base and as a top surface.
  • the imaginary cone axis lies outside the dipped beam headlamp (410).
  • the lens segments (461, 471, 481) of the primary lenses (450) are at least approximately as formed as the lens segments (61, 71, 81) of FIG FIG. 1 shown Abblertztscheinwerfers (10).
  • the shape of the primary lens (650) corresponds at least substantially to the shape of the in the FIG. 7 illustrated primary lens (250).
  • the upper lens segments (501) are formed separately for each light module (420, 620). All of these lens segments (501) are directed to one area, the hot spot (551).
  • the dipped-beam headlamp (410) arises, for example, on a measuring wall (2), which is placed for example at a distance of 25 meters, in the FIG. 10 illustrated light distribution (550).
  • the middle and lower lens segments (471, 511, 481, 521, 671, 511, 681, 521) each produce background light distributions that overlap. This results in a streak and spot-free image, which has the shape of a wide oval in this embodiment.
  • the width of this oval is limited, for example, by two planes which intersect at the geometric center of the dipped-beam headlamp (410) and which together enclose an angle of, for example, 50 degrees.
  • the height of the oval is limited by the horizontal center longitudinal plane (22) of all modules (420, 520) and another, the measuring wall (2) below the horizontal center longitudinal plane (22) intersecting plane, wherein the planes, for example, in the geometric center of the dipped beam headlamp ( 410) and enclose an angle of 10 degrees with each other.
  • the upper edge (553) of the illuminated area (550) is an approximately horizontally formed high-contrast boundary. In addition to the other edges, the light intensity of the illumination drops continuously. Due to the juxtaposed light modules (420, 620) arise at least in the width of the illumination no distortion, color aberrations or shades.
  • the basic light distribution is superimposed by the light passing through the upper lens segments (461, 501, 661, 501). This creates a high-intensity hotspot (551).
  • a high-intensity hotspot (551).
  • Above the cut-off (553) for example, an illuminated, at least approximately right-angled triangle above the horizontal plane (556) is generated on the right.
  • An imaginary catheter lies on the extension of the cut-off line (553).
  • the hypotenuse (561) makes an angle of 15 degrees with this catheter and rises to the right.
  • the illumination of this triangle is effected by means of the lens segments (461, 501) of the middle light modules (450).
  • the brightness of the illumination is less than the illumination of the hot spot (551), which is hit by light from all light modules (420, 620).
  • the distance between the primary lens (50, 250, 450) and the secondary lens (90, 290, 490) can be increased.
  • at least the upper lens segment (61, 261, 461, 661) of the primary lens (50, 250, 450, 650) is to be aligned so that only the light entry surface (103) of the secondary lens (90, 290, 490) is illuminated.
  • the curvature of the light exit surface (61, 264, 464, 664) can be increased.
  • the secondary lens (90, 290, 490) or individual lens segments (101, 111 , 121, 301, 311, 321, 501, 511, 521) of this lens (90, 290, 490) are displaced downwards or upwards.
  • the use of other lens sections for the lens segments (101, 111, 121, 301, 311, 321, 501, 511, 521) is also conceivable.
  • the primary lens (50, 250, 450) is also to be embodied here in such a way that the individual partial light bundles (141-143) separate the associated lens segment (101, 111, 121, 301, 311, 321, 501, 511, 521) of the secondary lens (90 , 290, 490).
  • the hot spot (151, 351, 551) can also be generated by means of the light beam (143), which is reflected by the mirror (130, 530).
  • a change in the intensity distribution within the light bundles (141, 142, 143) takes place, for example, by means of the primary lens (50, 250, 450).
  • the individual lens segments (61, 71, 81, 261, 271, 281, 461, 471, 481, 661, 671, 681) are displaced downwards or upwards.
  • other lens sections may be chosen or e.g. the curvature of the upper lens segment (61, 261, 461, 661) is increased in the horizontal and / or vertical direction, or the inclination of the lens segment (61, 261, 461, 661) is changed.
  • the dipped-beam headlamp (10, 210, 410) or the single light module (20, 220, 420, 620) may be of e.g. clear disc which is optically downstream of the secondary lens (90, 290, 490).
  • the condenser lens (40) it is also possible to use at least one light guide body, which directs the light emitted by the light source (30) to the light entry surfaces (63, 73, 83) of the primary lens (50). Due to the large-area coupling, the position of the light-emitting chip (33) is not critical.
  • the middle light modules (420) can be supplemented by adjacent light modules, in which the upper lens segment (461) is inclined in the other direction.
  • the upper lens segments (461) of these light modules (20) can then be opened or closed by means of a diaphragm. The basic distribution can then be generated with all light modules (20).

Description

Die Erfindung betrifft einen Abblendlichtscheinwerfer mit mindestens einem Lichtmodul, wobei das einzelne Lichtmodul mindestens eine Lichtquelle und mindestens eine der Lichtquelle nachgeschaltete Primärlinse aufweist und wobei die Lichtquelle eine Lumineszenzdiode ist.The invention relates to a low-beam headlamp having at least one light module, wherein the individual light module has at least one light source and at least one primary lens connected downstream of the light source, and wherein the light source is a light-emitting diode.

Aus der DE 10 2004 053 303 A1 ist ein Abblendlichtscheinwerfer mit mehreren unterschiedlich aufgebauten Beleuchtungseinheiten bekannt. Die Lichtverteilungen der einzelnen Beleuchtungseinheiten überlappen sich bereichsweise. Zur Erzeugung des Cut-offs dienen Blenden. Dies kann z.B. zu Farbabweichungen, Streifen und Flecken führen.From the DE 10 2004 053 303 A1 is a low beam headlamp with several different lighting units known. The light distributions of the individual lighting units overlap in areas. Apertures are used to create the cut-off. This can lead eg to color deviations, stripes and stains.

Die Druckschrift EP 1 526 581 A2 offenbart auch einen Abblendlichtscheinwerfer mit mehreren LED Beleuchtungseinheiten.The publication EP 1 526 581 A2 also discloses a low beam headlamp with multiple LED illumination units.

Der vorliegenden Erfindung liegt daher die Problemstellung zugrunde, einen kompakten Abblendlichtscheinwerfer zu entwickeln, dessen Lichtverteilung eine gleichmäßige Grundverteilung und einen deutlich ausgeprägten Cut-off aufweist.The present invention is therefore based on the problem of developing a compact low-beam headlamp whose light distribution has a uniform basic distribution and a pronounced cut-off.

Diese Problemstellung wird mit den Merkmalen des Hauptanspruches gelöst. Dazu hat der Abblendlichtscheinwerfer mindestens eine Sekundärlinse, die der Primärlinse oder den Primärlinsen optisch nachgeschaltet ist. Sowohl die Primär- als auch die Sekundärlinse weist mindestens zwei übereinander angeordnete Linsensegmente auf. Einem Linsensegment einer Sekundärlinse ist mindestens ein Linsensegment einer Primärlinse zugeordnet. Beim Betrieb der Lichtquelle erzeugen die Kanten der Lichteintrittsflächen Kanten von Objekten in den Linsensegmenten der Primärlinse und die Sekundärlinse projiziert die Objekte und bildet sie zumindest in vertikaler Richtung ab. Die aus der Sekundärlinse austretenden zumindest gedachten Knotenpunktstrahlen, die von den genannten Kanten beider Objekte ausgehen und die eine gemeinsame vertikale Ebene aufspannen, einen Winkel einschließen, der kleiner ist als 1 Grad.This problem is solved with the features of the main claim. In addition, the low beam headlamp has at least a secondary lens which is optically connected downstream of the primary lens or lenses. Both the primary and secondary lenses have at least two superimposed lens segments. A lens segment of a secondary lens is associated with at least one lens segment of a primary lens. During operation of the light source, the edges of the light entry surfaces create edges of objects in the lens segments of the primary lens and the secondary lens projects the objects and images them at least in the vertical direction. The at least imaginary node beams emanating from the secondary lens, emanating from said edges of both objects and spanning a common vertical plane, enclose an angle that is less than 1 degree.

Weitere Einzelheiten der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung schematisch dargestellter Ausführungsformen.

Figur 1:
Abblendlichtscheinwerfer mit einem Lichtmodul;
Figur 2:
Längsschnitt durch das Lichtmodul aus Fig. 1;
Figur 3:
Mittenlängsebenen des Lichtmoduls nach Figur 1;
Figur 4:
Strahlenmodell zu Figur 2;
Figur 5:
Draufsicht auf Figur 1;
Figur 6:
Lichtverteilung mit 15 Grad-Anstieg;
Figur 7:
Abblendlichtscheinwerfer zur Erzeugung eines waagerechten Cut-offs;
Figur 8:
Lichtverteilung mit waagerechtem Cut-off;
Figur 9:
Abblendlichtscheinwerfer mit mehreren Lichtmodulen;
Figur 10:
Lichtverteilung des Scheinwerfers aus Figur 9.
Further details of the invention will become apparent from the dependent claims and the following description of schematically illustrated embodiments.
FIG. 1:
Dipped-beam headlamp with a light module;
FIG. 2:
Longitudinal section through the light module Fig. 1 ;
FIG. 3:
Center longitudinal planes of the light module after FIG. 1 ;
FIG. 4:
Ray model too FIG. 2 ;
FIG. 5:
Top view FIG. 1 ;
FIG. 6:
Light distribution with 15 degree rise;
FIG. 7:
Dipped beam headlamps for creating a horizontal cut-off;
FIG. 8:
Light distribution with horizontal cut-off;
FIG. 9:
Dipped beam headlamp with multiple light modules;
FIG. 10:
Light distribution of the headlight off FIG. 9 ,

Die Figuren 1 bis 5 zeigen einen Kraftfahrzeug-Abblendlichtscheinwerfer (10) mit einem Lichtmodul (20). Jeder Scheinwerfer (10) kann ein oder mehrere derartiger Lichtmodule (20) umfassen, die dann nebeneinander und/oder übereinander angeordnet sein können.The FIGS. 1 to 5 show a motor vehicle low beam headlamp (10) with a light module (20). Each headlamp (10) may comprise one or more such light modules (20), which may then be arranged side by side and / or one above the other.

In der Figur 1 ist eine dimetrische Ansicht des Scheinwerfers (10) dargestellt, die Figur 2 zeigt einen Längsschnitt durch das Lichtmodul (20). Die Schnittebene in dieser Darstellung ist die vertikale Mittenlängsebene (21) des Lichtmoduls (20), vgl. Figur 3. In der Figur 4 sind die Strahlengänge des Lichtmoduls (20) exemplarisch von einer Lichtquelle (30) bis zu einer Messwand (2) dargestellt. Die Lichtausbreitung in einer Draufsicht auf das Lichtmodul (20) zeigt stark vereinfacht die Figur 5. In der Figur 6 ist schließlich exemplarisch das Abbild (150) dargestellt, das beim Betrieb der Lichtquelle (30) auf der Messwand (2) erzeugt wird.In the FIG. 1 is shown a dimetric view of the headlamp (10), the FIG. 2 shows a longitudinal section through the light module (20). The sectional plane in this representation is the vertical central longitudinal plane (21) of the light module (20), cf. FIG. 3 , In the FIG. 4 the beam paths of the light module (20) are shown by way of example from a light source (30) to a measuring wall (2). The light propagation in a plan view of the light module (20) greatly simplifies the FIG. 5 , In the FIG. 6 Finally, the image (150) which is produced during operation of the light source (30) on the measuring wall (2) is shown by way of example.

Das in den Figuren 1 bis 5 dargestellte Lichtmodul (20) ist beispielsweise 70 Millimeter lang, 50 Millimeter breit und 50 Millimeter hoch. Es umfasst z.B. ein hier nicht dargestelltes Gehäuse, in dem die Lichtquelle (30), eine Kondensor (40), eine Primär- (50) und eine Sekundärlinse (90) sowie ein Spiegel (130) angeordnet sind. Hierbei sind die Lichtquelle (30), die Kondensorlinse (40) und die Primärlinse (50) optisch in Reihe geschaltet, so dass das von der Lichtquelle (30) erzeugte Licht (140) durch diese beiden Linsen (40, 50) hindurchtritt. Von der Primärlinse (50) wird ein Teil des Lichts (140) direkt zur Sekundärlinse (90) geleitet, ein anderer Teil wird am Spiegel (130) reflektiert und gelangt dann zur Sekundärlinse (90). Durch die Sekundärlinse (90) hindurch tritt das Licht (140) in die Umgebung (1) . Die Lichtausbreitungsrichtung (26) ist somit hier von der Lichtquelle (30) in Richtung der Sekundärlinse (90), also z.B. in der Fahrtrichtung des Kraftfahrzeugs nach vorne, gerichtet.That in the FIGS. 1 to 5 illustrated light module (20) is for example 70 millimeters long, 50 millimeters wide and 50 millimeters high. It includes, for example, a housing, not shown here, in which the light source (30), a condenser (40), a primary (50) and a secondary lens (90) and a mirror (130) are arranged. Here, the light source (30), the condenser lens (40) and the primary lens (50) are optically connected in series, so that the light (140) generated by the light source (30) passes through these two lenses (40, 50). From the primary lens (50) part of the light (140) is passed directly to the secondary lens (90), another part is reflected by the mirror (130) and then passes to the secondary lens (90). Through the secondary lens (90) passes through the light (140) in the environment (1). The light propagation direction (26) is thus here from the light source (30) in FIG Direction of the secondary lens (90), ie, for example, in the direction of travel of the motor vehicle forward.

Die optische Achse (25) des Lichtmoduls (20) ist in der Figur 2 als waagerechte Gerade dargestellt. Sie verbindet die Lichtquelle (30) mit der Sekundärlinse (90). Außerdem ist sie die Schnittlinie der vertikalen Mittenlängsebene (21) mit einer horizontalen Mittenlängsebene (22) des Lichtmoduls (20), vgl. Figur 3.The optical axis (25) of the light module (20) is in the FIG. 2 shown as a horizontal line. It connects the light source (30) to the secondary lens (90). In addition, it is the intersection of the vertical central longitudinal plane (21) with a horizontal central longitudinal plane (22) of the light module (20), see. FIG. 3 ,

Die Lichtquelle (30) ist z.B. eine Lumineszenz- oder Leuchtdiode (30) hoher Leistung, die beispielsweise weißes Licht abstrahlt. Sie umfasst beispielsweise einen lichtemittierenden Chip (33) mit einer Konversionsschicht, der von einem transparenten Lichtverteilkörper (34), z.B. einem Strahlungsformkörper (34) umgeben ist. Die aktive Fläche des lichtemittierenden Chips (33) beträgt beispielsweise ein Quadratmillimeter.The light source (30) is e.g. a high power luminescent or light emitting diode (30) that emits, for example, white light. It comprises, for example, a light-emitting chip (33) with a conversion layer which is covered by a transparent light distribution body (34), e.g. a radiation shaped body (34) is surrounded. The active area of the light-emitting chip (33) is, for example, one square millimeter.

Der Strahlungsformkörper (34) hat in diesem Ausführungsbeispiel eine Höhe von 2,8 Millimeter. Er kann optische Funktionen haben. Beispielsweise kann er das vom lichtemittierenden Chip (33) emittierte divergierende Licht in Richtung der optischen Achse (25) bündeln oder von der optischen Achse (25) weg aufweiten.The radiation molding (34) has a height of 2.8 millimeters in this embodiment. He can have optical functions. For example, it can focus the diverging light emitted by the light-emitting chip (33) in the direction of the optical axis (25) or widen it away from the optical axis (25).

Die Lichtquelle (30) ragt in diesem Ausführungsbeispiel in eine z.B. konkav gewölbte Linsenfläche (42) der Kondensorlinse (40). Die Begrenzungslinie (43) der konkav gewölbten Linsenfläche (42) und der lichtemittierende Chip (33) spannen hier eine gedachte Kegelmantelfläche auf, wobei der lichtemittierende Chip (33) die Kegelspitze bildet. Der Spitzenwinkel dieses Kegels beträgt beispielsweise 130 Grad. Auf ihrer der Primärlinse (50) zugewandten Seite ist die Kondensorlinse (40) beispielsweise als konvexe, halbkugelförmige Linse (45) ausgebildet. Die Kondensorlinse (40) ist z.B. mittels eines Ringflansches (47) im Gehäuse befestigt.In this exemplary embodiment, the light source (30) projects into an eg concavely curved lens surface (42) of the condenser lens (40). The boundary line (43) of the concavely curved lens surface (42) and the light-emitting chip (33) here span an imaginary conical surface, the light-emitting chip (33) forming the conical tip. The apex angle of this cone is for example 130 degrees. On its side facing the primary lens (50), the condenser lens (40) is designed, for example, as a convex, hemispherical lens (45). The condenser lens (40) is fixed in the housing, for example, by means of an annular flange (47).

Die Primär- (50) und die Sekundärlinse (90) stehen z.B. annähernd quer zur optischen Achse (25). Ihr minimaler Abstand in der Lichtausbreitungsrichtung (26) beträgt beispielsweise 50 % des Abstandes zwischen dem lichtemittierenden Chip (33) und der entferntesten der Umgebung (1) zugewandten Lichtaustrittsfläche (124) der Sekundärlinse (90). Dieser letztgenannte Abstand wird im Folgenden als Bezugslänge (27) bezeichnet. Die Bezugslänge (27) beträgt in diesem Ausführungsbeispiel 40 Millimeter. Der Abstand der Primärlinse (50) zur Kondensorlinse (40) beträgt hier z.B. 1 % dieser Bezugslänge (27). Der Abstand zwischen der Primär- (50) und der Sekundärlinse (90) kann auch größer sein als der genannte Wert.The primary (50) and secondary (90) lenses are e.g. approximately transverse to the optical axis (25). Their minimum distance in the light propagation direction (26) is, for example, 50% of the distance between the light-emitting chip (33) and the farthest light exit surface (124) of the secondary lens (90) facing the surroundings (1). This latter distance is referred to below as the reference length (27). The reference length (27) is 40 millimeters in this embodiment. The distance of the primary lens (50) to the condenser lens (40) is here e.g. 1% of this reference length (27). The distance between the primary (50) and the secondary lens (90) may also be greater than said value.

Die Primär- (50) und die Sekundärlinse (90) sind in einer Ansicht normal zur optischen Achse (25) z.B. rechteckige Linsen, die seitliche Befestigungsflansche (51, 91) zur Befestigung im Gehäuse aufweisen. Zwischen den Befestigungsflanschen (51, 91) haben die Linsen (50, 90) jeweils drei übereinander angeordnete Linsensegmente (61, 71, 81; 101, 111, 121). In der Ansicht normal zur optischen Achse (25) ist die Gesamtfläche der Linsensegmente (101, 111, 121) der Sekundärlinse in diesem Ausführungsbeispiel 2,8 mal so groß wie die Gesamtfläche der Linsensegmente (61, 71, 81) der Primärlinse (50). Das Verhältnis zwischen der Höhe - normal zur horizontalen Mittenlängsebene (22) - und der Breite - normal zur vertikalen Mittenlängsebene (21) - beträgt bei den Linsensegmenten (61, 71, 81) der Primärlinse (50) den Faktor 1,8, bei den Linsensegmenten der Sekundärlinse (90) den Faktor 1,5. Die Höhe der Primärlinse (50) beträgt in dem hier beschriebenen Ausführungsbeispiel 40 % der Bezugslänge (27). Die Primär- (50) und die Sekundärlinse (90) liegen - bezogen auf ihre Außenmaße - zumindest annähernd symmetrisch zur vertikalen Mittenlängsebene (21) des Lichtmoduls (20). Die Primärlinse (50) ist - bezogen auf ihre Außenmaße - außerdem zumindest annähernd symmetrisch zur horizontalen Mittenlängsebene (22). Die Sekundärlinse (90) ragt in diesem Ausführungsbeispiel mit 37 % ihrer Höhe über die horizontale Mittenlängsebene (22), der Rest der Sekundärlinse (90) liegt unterhalb dieser Ebene (22).The primary (50) and secondary (90) lenses, in a view normal to the optical axis (25), are, for example, rectangular lenses having side mounting flanges (51, 91) for mounting in the housing. Between the mounting flanges (51, 91), the lenses (50, 90) each have three lens segments (61, 71, 81, 101, 111, 121) arranged one above the other. In the view normal to the optical axis (25), the total area of the lens segments (101, 111, 121) of the secondary lens in this embodiment is 2.8 times as large as the total area of the lens segments (61, 71, 81) of the primary lens (50). , The ratio between the height - normal to the horizontal center longitudinal plane (22) - and the width - normal to the vertical central longitudinal plane (21) - is 1.8 times for the lens segments (61, 71, 81) of the primary lens (50) Lens segments of the secondary lens (90) the factor 1.5. The height of the primary lens (50) in the embodiment described here is 40% of the reference length (27). The primary (50) and the secondary lens (90) are - based on their external dimensions - at least approximately symmetrical to the vertical central longitudinal plane (21) of the light module (20). The primary lens (50) is - at least approximately symmetrical to the horizontal center longitudinal plane (22) - with respect to their outer dimensions. The secondary lens (90) protrudes in this embodiment with 37% of its height over the horizontal center longitudinal plane (22), the rest of the secondary lens (90) lies below this plane (22).

Die Linsensegmente (61, 71, 81; 101, 111, 121) sind beispielsweise miteinander verbundene Abschnitte plankonvexer, bikonvexer oder konkav-konvexer Linsen. Sie sind z.B. aus einem hochtransparentem Kunststoff, Glas, etc. hergestellt. Jedes der Linsensegmente (61, 71, 81; 101, 111, 121) hat eine der Lichtquelle (30) zugewandte Lichteintrittsfläche (63, 73, 83; 103, 113, 123) und eine der Lichtquelle (30) abgewandte Lichtaustrittsfläche (64, 74, 84; 104, 114, 124). Alle diese Flächen (63, 73, 83; 103, 113, 123; 64, 74, 84; 104, 114, 124) sind beispielsweise aus einzelnen Flächenelementen zusammengesetzt. Diese Flächenelemente können sphärische oder asphärische Segmente, ebenen Flächenelemente, etc. sein. Im Folgenden werden diese Flächen (63, 73, 83; 103, 113, 123; 64, 74, 84; 104, 114, 124) daher über ihre Hüllflächen beschrieben. Eine Hüllfläche ist hier eine geometrisch interpolierte, geschlossene Fläche, zu der die einzelnen Flächenelemente die geringste Standardabweichung aufweisen. Diese Hüllflächen sind beispielsweise Mantelflächenabschnitts eines Ellipsoiden, eines Torus, eines Zylinders, etc. oder können aus diesen zusammengesetzt sein. Die Hüllflächen oder die Hüllflächenelemente haben z.B. mehrere Hauptachsen, die beispielsweise normal zueinander angeordnet sind. Die Hauptachsen der Hüllflächen oder der Hüllflächenelemente können miteinander auch Winkel einschließen, die ungleich 90 Grad sind.The lens segments (61, 71, 81, 101, 111, 121) are, for example, interconnected sections of plano-convex, biconvex or concave-convex lenses. They are made, for example, from a highly transparent plastic, glass, etc. Each of the lens segments (61, 71, 81, 101, 111, 121) has a light entry surface (63, 73, 83, 103, 113, 123) facing the light source (30) and a light exit surface (64, 64) remote from the light source (30). 74, 84, 104, 114, 124). All of these surfaces (63, 73, 83, 103, 113, 123, 64, 74, 84, 104, 114, 124) are composed of individual surface elements, for example. These surface elements may be spherical or aspherical segments, planar surface elements, etc. Hereinafter, these surfaces (63, 73, 83, 103, 113, 123, 64, 74, 84, 104, 114, 124) will be described by their envelope surfaces. An envelope surface here is a geometrically interpolated, closed surface, to which the individual surface elements have the lowest standard deviation. These envelope surfaces are, for example, lateral surface portion of an ellipsoid, a torus, a cylinder, etc., or may be composed of these. The envelope surfaces or the envelope surface elements have, for example, a plurality of main axes, which are arranged, for example, normal to one another. The major axes of the envelope surfaces or envelope surfaces may also include angles other than 90 degrees with each other.

Wird eine Hüllfläche oder ein Hüllflächenelement in einer Ebene geschnitten, z.B. in der vertikalen (21) oder in der horizontalen Mittenlängsebene (22), ergibt sich als Schnittlinie eine Hüllkurve, die eine Konturlinie der jeweiligen Fläche (63, 73, 83; 103, 113, 123; 64, 74, 84; 104, 114, 124) ist. Die Krümmungsradien der Konturlinien können entlang dieser Konturlinien konstant sein oder stetig oder unstetig zu- und/oder abnehmen, etc. Auch Sprünge oder gerade Abschnitte der Konturlinien sind denkbar.When an envelope surface or envelope is cut in a plane, e.g. in the vertical (21) or in the horizontal central longitudinal plane (22), the result is an intersection line which has a contour line of the respective surface (63, 73, 83, 103, 113, 123, 64, 74, 84, 104, 114 , 124). The radii of curvature of the contour lines can be constant along these contour lines or increase or decrease steadily or discontinuously, etc. Also, jumps or straight sections of the contour lines are conceivable.

Die Linsensegmente (61, 71, 81) der Primärlinse (50) sind in dem beschriebenen Ausführungsbeispiel Teile von oberen Abschnitten von Linsen. Die Dicke des einzelnen Linsensegments (61, 71, 81) nimmt - in der Darstellung der Figur 2 - von oben nach unten zu. Die Oberseite (62) des oberen Linsensegments ist hier zwei Prozent der Bezugslänge (27) lang, die Unterseite hat die fünffache Länge der Oberseite (62). Die Oberseite (72) des mittleren Linsensegments (71) hat z.B. eine Länge von sieben Prozent der Bezugslänge (27), die Unterseite ist doppelt so lang. Im unteren Linsensegment (81) beträgt die Länge der Oberseite (82) beispielsweise fünf Prozent der Bezugslänge (27), nach unten hin steigt die Länge auf das dreifache.The lens segments (61, 71, 81) of the primary lens (50) are in the described embodiment parts of upper portions of lenses. The thickness of the individual lens segment (61, 71, 81) decreases - in the illustration of FIG. 2 - from top to bottom too. The top (62) of the upper lens segment here is two percent of the reference length (27) long, the bottom has five times the length of the top (62). The top (72) of the central lens segment (71) has, for example, a length of seven percent of the reference length (27), the bottom is twice as long. For example, in the lower lens segment (81), the length of the upper surface (82) is five percent of the reference length (27), and downwards the length increases three times.

Die Höhe des oberen (61) und des mittleren Linsensegments (71) beträgt hier in den Mittenquerflächen (65, 75) 11 % der Bezugslänge (27), die Höhe des unteren Linsensegments (81) 16 % der Bezugslänge (27). Die Mittenquerfläche (65) des oberen Linsensegments (61) ist z.B. um 3 Grad zu einer Normalenebene der optischen Achse (25) geneigt, wobei die Oberseite (62) des Linsensegments (61) entgegen der Lichtausbreitungsrichtung (26) versetzt ist. Die Mittenquerfläche (75) des mittleren Linsensegments (71) steht beispielsweise normal zur optischen Achse (25). Im unteren Linsensegment (81) ist in diesem Ausführungsbeispiel die Mittenquerfläche (85) z.B. um 16 Grad zu einer Normalenebene der optischen Achse (25) geneigt, wobei die Oberseite (82) in der Lichtausbreitungsrichtung (26) nach vorne geneigt ist.The height of the upper (61) and the middle lens segment (71) is here in the middle transverse surfaces (65, 75) 11% of the reference length (27), the height of the lower lens segment (81) 16% of the reference length (27). The central transverse surface (65) of the upper lens segment (61) is inclined, for example, by 3 degrees to a normal plane of the optical axis (25), the upper side (62) of the lens segment (61) being offset from the light propagation direction (26). The center transverse surface (75) of the central lens segment (71) is for example normal to the optical axis (25). In the lower lens segment (81) is in this Embodiment, the central transverse surface (85), for example inclined by 16 degrees to a normal plane of the optical axis (25), wherein the upper side (82) in the light propagation direction (26) is inclined forwardly.

Die Lichteintrittsfläche (63) des oberen Linsensegments (61) beträgt in diesem Ausführungsbeispiel 31 % der gesamten Lichteintrittsflächen (63, 73, 83). Die Lichteintrittsfläche (73) des mittleren Linsensegments (71) beträgt 29 % und die Lichteintrittsfläche (83) des unteren Linsensegments (81) 40 % der Summe dieser Flächen (63, 73, 83).The light entry surface (63) of the upper lens segment (61) in this embodiment is 31% of the total light entry surfaces (63, 73, 83). The light entrance surface (73) of the middle lens segment (71) is 29% and the light entry surface (83) of the lower lens segment (81) 40% of the sum of these surfaces (63, 73, 83).

Das obere Linsensegment (61) hat beispielsweise eine keilförmige Gestalt. Die quer zur vertikalen Mittenlängsebene (21) orientierten Kanten der Oberseite (62) liegen zumindest annähernd parallel zur horizontalen Mittenlängsebene (22), die Unterkanten (66, 67) fallen hier von der rechten zur linken Fahrzeugseite ab. Zumindest die Unterkante (66), die die Lichteintrittsfläche (63) begrenzt, schließt - in der Lichtausbreitungsrichtung (26) betrachtet - in diesem Ausführungsbeispiel mit der horizontalen Mittenlängsebene (22) einen Winkel von 15 Grad ein. Die Oberseite (62) kann auch z.B. konvex gewölbt ausgeführt sein.The upper lens segment (61) has, for example, a wedge-shaped shape. The transverse to the vertical center longitudinal plane (21) oriented edges of the upper side (62) are at least approximately parallel to the horizontal central longitudinal plane (22), the lower edges (66, 67) here fall from the right to the left side of the vehicle. At least the lower edge (66) delimiting the light entry surface (63), viewed in the light propagation direction (26), in this exemplary embodiment encloses an angle of 15 degrees with the horizontal central longitudinal plane (22). The top (62) may also be e.g. be executed convex curved.

Sowohl die Lichteintrittsfläche (63) als auch die Lichtaustrittsfläche (64) sind konvex gekrümmt. Beispielsweise sind die Hüllflächen dieser Flächen (63, 64) jeweils Mantelflächenabschnitte einer dreidimensional gekrümmten asphärischen Fläche. Beide Flächen sind z.B. so ausgebildet, dass zwei Hauptachsen eine Ebene aufspannen, die parallel zur Unterkante (66) liegt und sich mit der horizontalen Mittenlängsebene (22) in einer Geraden parallel zur optischen Achse (25) schneidet. Eine der genannten Hauptachsen und die dritte Hauptachsen spannen dann eine normal zu dieser Ebene angeordnete Ebene auf, in der die optische Achse (25) liegt oder die die optische Achse (25) nicht schneidet. Die Mantelflächenabschnitte können auch Abschnitte von Torusmantelflächen, Ellipsoidmantelflächen, etc. sein.Both the light entry surface (63) and the light exit surface (64) are convexly curved. For example, the envelope surfaces of these surfaces (63, 64) are each lateral surface sections of a three-dimensionally curved aspherical surface. For example, both surfaces are designed such that two main axes span a plane which lies parallel to the lower edge (66) and intersects with the horizontal central longitudinal plane (22) in a straight line parallel to the optical axis (25). One of the main axes and the third main axes then span a plane arranged normally to this plane in which the optical axis (25) lies or which does not intersect the optical axis (25). The lateral surface sections may also be sections of Torusmantelflächen, Ellipsoidmantelflächen, etc.

Die Unterkante (66) der Lichteintrittsfläche (63) hat in diesem Ausführungsbeispiel in der vertikalen Mittenlängsebene (21) einen Abstand von 10 % der Bezugslänge (27) von der horizontalen Mittenlängsebene (22). Von der Unterkante (67) der Lichtaustrittsfläche (64) beträgt der Abstand zur horizontalen Mittenlängsebene (22), ebenfalls in der vertikalen Mittenlängsebene (21) gemessen, 11 % der Bezugslänge (27).The lower edge (66) of the light entry surface (63) in this embodiment in the vertical central longitudinal plane (21) has a distance of 10% of the reference length (27) from the horizontal center longitudinal plane (22). From the lower edge (67) of the light exit surface (64), the distance to the horizontal central longitudinal plane (22), also measured in the vertical central longitudinal plane (21), is 11% of the reference length (27).

In der vertikalen Mittenlängsebene (21) hat in der Darstellung der Figur 2 die Hüllkontur der Lichteintrittsfläche (63) z.B. einen konstanten Krümmungsradius. Dieser beträgt beispielsweise 41 % der Bezugslänge (27) des Lichtmoduls (20). Der Krümmungsmittelpunkt (68) liegt hier um 60 % der Bezugslänge (27) in der Lichtausbreitungsrichtung (26) versetzt zum lichtemittierenden Chip (33) und um vier Prozent der Bezugslänge (27) versetzt oberhalb der horizontalen Mittenlängsebene (22). Der Radius der Hüllkontur der Lichteintrittsfläche (63) kann zum oberen und/oder zum unteren Rand hin zu- oder abnehmen. Die Lichteintrittsseite (63) kann auch als Planfläche ausgebildet sein.In the vertical center longitudinal plane (21) has in the representation of FIG. 2 the envelope contour of the light entry surface (63), for example a constant radius of curvature. This is, for example, 41% of the reference length (27) of the light module (20). The center of curvature (68) here lies 60% of the reference length (27) in the light propagation direction (26) offset from the light emitting chip (33) and four percent of the reference length (27) offset above the horizontal center longitudinal plane (22). The radius of the envelope contour of the light entry surface (63) can increase or decrease towards the upper and / or lower edge. The light entry side (63) may also be formed as a plane surface.

Die Hüllfläche der Lichtaustrittsfläche (64) hat in der vertikalen Mittenlängsebene (21) beispielsweise ebenfalls einen konstanten Krümmungsradius. Dieser beträgt z.B. 61 % der Bezugslänge (27). Der Krümmungsmittelpunkt (69) liegt hier um vier Prozent der Bezugslänge (27) entgegen der Lichtausbreitungsrichtung (26) versetzt zum lichtemittierenden Chip (33) und liegt um drei Prozent dieser Länge oberhalb der horizontalen Mittenlängsebene (22). Auch der Krümmungsradius der Hüllkontur der Lichtaustrittsfläche (64) kann zum oberen und/oder zum unteren Rand hin zu- oder abnehmen.The envelope surface of the light exit surface (64) also has a constant radius of curvature in the vertical central longitudinal plane (21), for example. This is for example 61% of the reference length (27). The center of curvature (69) lies here by four percent of the reference length (27) opposite to the light propagation direction (26) offset to the light-emitting chip (33) and is three percent of this length above the horizontal center longitudinal plane (22). Also the radius of curvature of the envelope contour the light exit surface (64) can increase or decrease toward the upper and / or lower edge.

In einer Ebene parallel zur horizontalen Mittenlängsebene (22) durch den Krümmungsmittelpunkt (69) ist in diesem Ausführungsbeispiel der Krümmungsradius der Hüllfläche der Lichtaustrittsfläche (64) größer als der Abstand der Lichtquelle (30) zur Lichtaustrittsfläche (64). Er ist jedoch kleiner als das Fünfzigfache der Bezugslänge (27).In a plane parallel to the horizontal center longitudinal plane (22) through the center of curvature (69) in this embodiment, the radius of curvature of the envelope surface of the light exit surface (64) is greater than the distance of the light source (30) to the light exit surface (64). However, it is smaller than fifty times the reference length (27).

Das Flächenelement der Hüllfläche der Lichtaustrittsfläche (64), das im Schnittpunkt der beiden genannten Ebenen - der vertikalen Mittenlängsebene (21) und der Ebene parallel zur horizontalen Mittenlängsebene (22) - liegt, ist somit mindestens zweiachsig gekrümmt. Die jeweiligen Krümmungen sind die Kehrwerte der Krümmungsradien. Die Summe der Krümmungen des Flächenelementes in zwei zueinander normalen Ebenen liegt beispielsweise zwischen dem zwei- und zehnfachen des Kehrwertes der Bezugslänge (27). Analog gelten diese Zusammenhänge z.B. auch für ein Flächenelement der Hüllfläche der Lichtaustrittsfläche (64), das in der Schnittgeraden der Hauptachsenebenen liegt.The surface element of the envelope surface of the light exit surface (64), which lies at the intersection of the two said planes - the vertical central longitudinal plane (21) and the plane parallel to the horizontal central longitudinal plane (22) - is thus at least biaxially curved. The respective curvatures are the reciprocals of the radii of curvature. The sum of the curvatures of the surface element in two mutually normal planes is for example between two and ten times the reciprocal of the reference length (27). Analogously, these relationships apply, for example. also for a surface element of the envelope surface of the light exit surface (64), which lies in the intersection of the main axis planes.

Das mittlere Linsensegment (71) ist hier, anschließend an das obere Linsensegment (61), ebenfalls keilförmig ausgebildet. Die Oberseite (72) ist z.B. schräg ausgebildet. Die Unterkanten (76, 77) liegen beispielsweise parallel zur horizontalen Mittenlängsebene (22).The middle lens segment (71) is here, following the upper lens segment (61), also wedge-shaped. The top (72) is e.g. formed obliquely. The lower edges (76, 77) lie, for example, parallel to the horizontal center longitudinal plane (22).

Die Hüllflächen der Lichteintritts- (73) und der Lichtaustrittsfläche (74) sind in diesem Ausführungsbeispiel zumindest annähernd Abschnitte von Mantelflächen eines dreiachsig gekrümmten Körpers mit normal zueinander liegenden Hauptachsen. Zwei Hauptachsen spannen die vertikale Mittenlängsebene (21) oder eine Ebene parallel hierzu auf. Die dritte Hauptachse liegt z.B. in einer Ebene, die um drei Prozent der Bezugslänge (27) unterhalb der horizontalen Mittellängsebene (22) liegt und parallel zu dieser ausgerichtet ist.The envelope surfaces of the light entrance (73) and the light exit surface (74) in this exemplary embodiment are at least approximately sections of lateral surfaces of a three-axis curved body with principal axes lying normal to one another. Two main axes span the vertical center longitudinal plane (21) or a plane parallel to it. The third main axis lies, for example, in a plane which is three percent of the reference length (27) below the horizontal central longitudinal plane (22) and aligned parallel thereto.

Die Unterkante (76) der Lichteintrittsfläche (73) liegt beispielsweise in der horizontalen Mittenlängsebene (22). Die Unterkante (77) der Lichtaustrittsfläche (74) liegt z.B. um ein Prozent der Bezugslänge (27) unterhalb dieser Ebene (22).The lower edge (76) of the light entry surface (73) lies, for example, in the horizontal central longitudinal plane (22). The lower edge (77) of the light exit surface (74) is e.g. by one percent of the reference length (27) below this plane (22).

In dem in den Figuren 1 und 2 dargestellten Ausführungsbeispiel beträgt der Krümmungsradius des Schmiegkreises der Lichteintrittsfläche (73), der die von den horizontalen Hauptachsen aufgespannte Ebene schneidet, in der vertikalen Mittenlängsebene (21) 26 % der Bezugslänge (27). Der Mittelpunkt (78) dieses Schmiegkreises liegt hier um 44 % der Bezugslänge (27) in der Lichtausbreitungsrichtung (26) versetzt zum lichtemittierenden Chip (33) und um drei Prozent der Bezugslänge (27) versetzt unterhalb der horizontalen Mittenlängsebene (22).In the in the FIGS. 1 and 2 illustrated embodiment, the radius of curvature of Schmiegkreises the light entrance surface (73) which intersects the plane spanned by the horizontal main axes plane, in the vertical central longitudinal plane (21) is 26% of the reference length (27). The center point (78) of this osculation circle is here offset by 44% of the reference length (27) in the light propagation direction (26) offset to the light-emitting chip (33) and offset by three percent of the reference length (27) below the horizontal center longitudinal plane (22).

Der entsprechende Krümmungsradius der Lichtaustrittsfläche (74) beträgt z.B. 28 % der Bezugslänge (27). Der Krümmungsmittelpunkt (79) ist hier um drei Prozent der Bezugslänge (27) in der Lichtausbreitungsrichtung (26) versetzt zum lichtemittierenden Chip (33) und liegt um drei Prozent dieser Länge (27) unterhalb der horizontalen Mittenlängsebene (22).The corresponding radius of curvature of the light exit surface (74) is e.g. 28% of the reference length (27). The center of curvature (79) here is offset by three percent of the reference length (27) in the light propagation direction (26) to the light emitting chip (33) and is three percent of this length (27) below the horizontal center longitudinal plane (22).

In einer Ebene parallel zur horizontalen Mittenlängsebene (22) durch den Krümmungsmittelpunkt (79) ist der Krümmungsradius der Lichtaustrittsfläche (74) in diesem Ausführungsbeispiel um 20 % größer als der Krümmungsradius der Hüllfläche der Lichtaustrittsfläche (64) des oberen Linsensegments (61) in einer Ebene parallel zur horizontalen Mittenlängsebene (22). Der Krümmungsradius des Flächenelements der Lichtaustrittsfläche (74) in dieser Ebene ist mindestens um 15 % größer als der entsprechende Krümmungsradius des oberen Linsensegments (61). Der Krümmungsradius der Lichtaustrittsfläche (74) in einer horizontalen Ebene kann auch unendlich sein. Die Hüllfläche der Lichtaustrittsfläche (74) hat dann die Gestalt eines Abschnitts einer Zylindermantelfläche. Die Summe der beiden Krümmungsradien ist somit größer als die Summe der entsprechenden Krümmungsradien des oberen Linsensegments (61).In a plane parallel to the horizontal center longitudinal plane (22) through the center of curvature (79), the radius of curvature of the light exit surface (74) in this embodiment is 20% greater than the radius of curvature of the envelope surface of the light exit surface (64) of the upper lens segment (61) in a plane parallel to the horizontal center longitudinal plane (22). Of the The radius of curvature of the surface element of the light exit surface (74) in this plane is at least 15% greater than the corresponding radius of curvature of the upper lens segment (61). The radius of curvature of the light exit surface (74) in a horizontal plane may also be infinite. The envelope surface of the light exit surface (74) then has the shape of a portion of a cylinder jacket surface. The sum of the two radii of curvature is thus greater than the sum of the corresponding radii of curvature of the upper lens segment (61).

Das untere Linsensegment (81) der Primärlinse (50) ist in diesem Ausführungsbeispiel ein oberer Abschnitt einer Linse, deren Lichteintrittsfläche (83) z.B. eine Planfläche ist und deren Lichtaustrittsfläche (84) dreiachsig konvex gekrümmt ist. Die Planfläche (83) schließt mit der horizontalen Mittenlängsebene (22) beispielsweise einen Winkel von 50 Grad ein, wobei die Oberkante (87) dieser Planfläche (83) in der Lichtausbreitungsrichtung (26) versetzt ist zur Unterkante (86).The lower lens segment (81) of the primary lens (50) in this embodiment is an upper portion of a lens whose light entrance surface (83) is e.g. is a plane surface and the light exit surface (84) is three-axis convex curved. The planar surface (83) encloses, for example, an angle of 50 degrees with the horizontal central longitudinal plane (22), the upper edge (87) of this planar surface (83) being offset in the light propagation direction (26) from the lower edge (86).

Die Hüllfläche der Lichtaustrittsfläche (84) ist beispielsweise eine dreiachsig konvex gekrümmte Fläche, wobei jeweils zwei Achsen eine Krümmungsebene aufspannen. Diese Krümmungsebenen stehen hier normal aufeinander. Eine dieser Krümmungsebenen liegt beispielsweise in der vertikalen Mittenlängsebene (21), eine andere z.B. in einer Ebene, die gegenüber der horizontalen Mittenlängsebene (22) um 16 Grad geneigt ist. Der Krümmungsmittelpunkt (89) des Schmiegkreises in der vertikalen Mittenlängsebene (21) liegt hier um 13 % der Bezugslänge (27) versetzt zum lichtemittierenden Chip (33) entgegen der Lichtausbreitungsrichtung (26). Der Krümmungsradius in dieser Ebene beträgt hier 33 % der Bezugslänge (27). In der zur horizontalen Mittenlängsebene (22) geneigten Krümmungsebene ist der Krümmungsradius beispielsweise um 20 % größer als der Krümmungsradius des oberen Linsensegments (61) in der entsprechenden z.B. horizontalen Hauptachsenebene der Hüllfläche der Lichtaustrittsfläche (64). Die Summe der Krümmungsradien eines Flächenelementes der Lichtaustrittsfläche (84) des unteren Linsensegments (81) in zwei zueinander normalen Ebenen ist damit in diesem Ausführungsbeispiel größer als die Summe der entsprechenden Krümmungsradien der Lichtaustrittsfläche (74) des mittleren Linsensegments (71) und größer als die Summe der entsprechenden Krümmungsradien der Lichtaustrittsfläche (64) des oberen Linsensegments (61).The envelope surface of the light exit surface (84) is, for example, a three-axis convexly curved surface, with two axes each spanning a plane of curvature. These curvature levels are normal here. One of these planes of curvature lies, for example, in the vertical center longitudinal plane (21), another example in a plane which is inclined by 16 degrees with respect to the horizontal center longitudinal plane (22). The center of curvature (89) of the osculating circle in the vertical center longitudinal plane (21) is here offset by 13% of the reference length (27) offset from the light-emitting chip (33) against the light propagation direction (26). The radius of curvature in this plane is 33% of the reference length (27). In the plane of curvature inclined to the horizontal center longitudinal plane (22), the radius of curvature is, for example, 20% greater than the radius of curvature of the upper lens segment (61) in the corresponding one eg horizontal main axis plane of the envelope surface of the light exit surface (64). The sum of the radii of curvature of a surface element of the light exit surface (84) of the lower lens segment (81) in two mutually normal planes is therefore greater than the sum of the corresponding radii of curvature of the light exit surface (74) of the central lens segment (71) and greater than the sum in this embodiment the corresponding radii of curvature of the light exit surface (64) of the upper lens segment (61).

In der Sekundärlinse (90) sind im Ausführungsbeispiel alle Linsensegmente (101, 111, 121) Abschnitte plankonvexer Linsen. Die Lichteintrittsflächen (103, 113, 123) dieser Linsensegmente (101, 111, 121) sind z.B. Planflächen, die beispielsweise in einer gemeinsamen Ebene normal zur optischen Achse (25) liegen. Der Abstand der Lichteintrittsflächen (103, 113, 123) von der Lichtquelle (30) beträgt 82 % der Bezugslänge (27). Die Lichteintrittsflächen (103, 113, 123) oder einzelne Lichteintrittsflächen (103; 113; 123) können auch z.B. konkav gewölbt sein. Die optische Achse (25) schneidet das mittlere Linsensegment (111) der Sekundärlinse (90).In the secondary lens (90) in the exemplary embodiment, all the lens segments (101, 111, 121) are sections of plano-convex lenses. The light entry surfaces (103, 113, 123) of these lens segments (101, 111, 121) are e.g. Planar surfaces that lie, for example, in a common plane normal to the optical axis (25). The distance of the light entry surfaces (103, 113, 123) from the light source (30) is 82% of the reference length (27). The light entry surfaces (103, 113, 123) or individual light entry surfaces (103, 113, 123) may also be e.g. be concavely arched. The optical axis (25) intersects the middle lens segment (111) of the secondary lens (90).

Das obere Linsensegment (101) und das untere Linsensegment (121) der Sekundärlinse (90) sind z.B. obere Linsenabschnitte einer Linse. Beim oberen Linsensegment (101) beträgt die Linsendicke oben z.B. 7,5 % der Bezugslänge (27), nach unten hin steigt die Dicke dieses Linsensegments (101) um etwa 50 % an. Im unteren Linsensegment (121) beträgt die maximale Dicke 15 % der Bezugslänge (27). Die Höhe des oberen Linsensegments (101) beträgt z.B. 16 % der Bezugslänge (27), das untere Linsensegment (121) ist z.B. 27 % der Bezugslänge (27) hoch.The upper lens segment (101) and the lower lens segment (121) of the secondary lens (90) are, for example, upper lens sections of a lens. For example, in the upper lens segment (101), the lens thickness at the top is 7.5% of the reference length (27), and at the bottom, the thickness of this lens segment (101) increases by about 50%. In the lower lens segment (121), the maximum thickness is 15% of the reference length (27). The height of the upper lens segment (101) is for example 16% of the reference length (27), the lower lens segment (121) is for example 27% of the reference length (27) high.

Das mittlere Linsensegment (111) ist beispielsweise ein mittlerer Abschnitt einer Linse, der hier unsymmetrisch zur horizontalen Mittenlängsebene (22) liegt. Das mittlere Linsensegment (111) umfasst somit sowohl einen oberen Abschnitt als auch einen unteren Abschnitt einer Linse. In Richtung des oberen Linsensegments (101) ragt es um 8 % der Bezugslänge (27) über die horizontale Mittenlängsebene (22), nach unten steht es um 13 % der Bezugslänge (27) über diese Ebene (22) über. Die Stärke des Linsensegments (111) in der horizontalen Mittenlängsebene (22) beträgt hier 12 % der Bezugslänge (27). Das mittlere Linsensegment (111) hat eine Höhe von 22 % dieser Bezugslänge (27). Die Linsensegmente (101, 111, 121) haben beispielsweise über ihre Breite - normal zur Schnittebene der Figur 2 - eine konstante Höhe.The middle lens segment (111) is, for example, a middle section of a lens, which lies here asymmetrically with respect to the horizontal central longitudinal plane (22). The middle lens segment (111) thus includes both an upper portion and a lower portion of a lens. In the direction of the upper lens segment (101) it protrudes by 8% of the reference length (27) over the horizontal center longitudinal plane (22), downwards by 13% of the reference length (27) via this plane (22). The thickness of the lens segment (111) in the horizontal center longitudinal plane (22) is here 12% of the reference length (27). The middle lens segment (111) has a height of 22% of this reference length (27). The lens segments (101, 111, 121) have, for example, over their width - normal to the cutting plane of the FIG. 2 - a constant height.

Die Hüllfläche der Lichtaustrittsfläche (104) des oberen Linsensegments (101) hat beispielsweise die Gestalt eines Abschnitts einer dreiachsig konvex gekrümmten asphärischen Fläche. Die Hauptachsen der Hüllfläche dieser Fläche liegen z.B. normal zueinander. Eine von den Hauptachsen aufgespannte Ebene liegt zumindest parallel zu einer Ebene, die von den Richtungen der optischen Achse (25) und der Unterkante (66) aufgespannt wird. Eine andere Krümmungsebene ist z.B. gegenüber der vertikalen Mittenlängsebene (21) geneigt. In der vertikalen Mittenlängsebene (21) beträgt hier der Abstand der erstgenannten Hauptachsenebene zur horizontalen Mittenlängsebene (22) 10 % der Bezugslänge (27). Der Krümmungsradius des Schmiegkreises, der die genannte Hauptachsenebene schneidet, beträgt in der vertikalen Mittenlängsebene in diesem Ausführungsbeispiel im Mittel 37 % der Bezugslänge (27). Der Krümmungsmittelpunkt (109) liegt z.B. um 57 % der Bezugslänge (27) in der Lichtausbreitungsrichtung (26) versetzt zum lichtemittierenden Chip (33) und um 10 % der Bezugslänge (27) oberhalb der horizontalen Mittenlängsebene (22). Der Schmiegkreis in der zur vertikalen Mittenlängsebene (21) geneigten Hauptachsenebene beträgt dann beispielsweise 44 % der Bezugslänge (27). Der Schmiegkreis dieses Linsensegments (101) in der von den Hauptachsen aufgespannten Ebene, der die vertikale Mittenlängsebene (21) schneidet, hat einen Radius von 170 % der Bezugslänge (27). Die Summe dieser beiden letztgenannten Radien beträgt hier somit 214 % der Bezugslänge (27).The envelope surface of the light exit surface (104) of the upper lens segment (101), for example, has the shape of a portion of a three-axis convex curved aspherical surface. For example, the major axes of the envelope surface of this surface are normal to each other. A plane spanned by the major axes lies at least parallel to a plane spanned by the directions of the optical axis (25) and the lower edge (66). Another curvature plane is inclined, for example, with respect to the vertical center longitudinal plane (21). In the vertical center longitudinal plane (21) here is the distance of the first-mentioned main axis plane to the horizontal center longitudinal plane (22) 10% of the reference length (27). The radius of curvature of the Schmiegkreises that intersects said main axis plane is in the vertical center longitudinal plane in this embodiment on average 37% of the reference length (27). The center of curvature (109) is, for example, 57% of the reference length (27) in the light propagation direction (26) offset from the light emitting chip (33) and 10% of the reference length (27) above the horizontal center longitudinal plane (22). The Schmiegkreis in the zur vertical center plane (21) inclined main axis is then, for example, 44% of the reference length (27). The lay circle of this lens segment (101) in the plane spanned by the major axes intersecting the vertical center longitudinal plane (21) has a radius of 170% of the reference length (27). The sum of these two last-mentioned radii is thus 214% of the reference length (27).

Die Lichtaustrittsfläche (104) kann auch zweiachsig gekrümmt sein. Sie hat dann beispielsweise die Gestalt eines Torus. Hierbei hat dann die Kontur der Lichtaustrittsfläche (104) in der vertikalen Mittenlängsebene (21) einen konstanten Krümmungsradius. Außerdem gilt dann z.B. für jede horizontale Ebene, dass der Krümmungsradius der Kontur - der Schnittlinie der Lichtaustrittsfläche (104) mit einer Ebene - in dieser Ebene konstant ist.The light exit surface (104) can also be biaxially curved. It then has, for example, the shape of a torus. In this case, then the contour of the light exit surface (104) in the vertical center longitudinal plane (21) has a constant radius of curvature. In addition, then, e.g. for each horizontal plane, that the radius of curvature of the contour - the intersection of the light exit surface (104) with a plane - is constant in this plane.

Die Hüllflächen der Lichtaustrittsflächen (114, 124) des mittleren Linsensegments (111) und des unteren Linsensegments (121) sind in diesem Ausführungsbeispiel Abschnitte von Zylindermantelflächen. Die Zylinderachse der Lichtaustrittsfläche (114) liegt zumindest annähernd in der horizontalen Mittenlängsebene (22). Die Zylinderachse der Lichtaustrittsfläche (124) liegt in einer hierzu zumindest annähernd parallelen Ebene. Beide sind normal zur vertikalen Mittenlängsebene (21) ausgerichtet. Die Hüllflächen der Lichtaustrittsflächen (114, 124) können auch langgezogene asphärische Flächen sein.The envelope surfaces of the light exit surfaces (114, 124) of the central lens segment (111) and of the lower lens segment (121) are sections of cylinder jacket surfaces in this exemplary embodiment. The cylinder axis of the light exit surface (114) is at least approximately in the horizontal center longitudinal plane (22). The cylinder axis of the light exit surface (124) lies in an at least approximately parallel plane. Both are aligned normal to the vertical center longitudinal plane (21). The envelope surfaces of the light exit surfaces (114, 124) can also be elongated aspherical surfaces.

Beim mittleren Linsensegment (111) beträgt der Abstand der Zylinderachse zur Lichtaustrittsfläche (114) hier 34 % der Bezugslänge (27). Dieser Abstand entspricht dem Krümmungsradius der Kontur (118) der Lichtaustrittsfläche (114) in der vertikalen Mittenlängsebene (22). Der Abstand des Krümmungsmittelpunkts (119) vom lichtemittierenden Chip (33) beträgt z.B. 60 % der Bezugslänge (27). Die zweite Krümmungsebene ist hier die horizontale Mittenlängsebene (22). Die optische Achse (25) steht damit in diesem Ausführungsbeispiel normal zur Tangentialebene (23) der Lichtaustrittsfläche (114) im Schnittpunkt mit der optischen Achse (25). Der Krümmungsradius der Lichtaustrittsfläche (114) in der horizontalen Mittenlängsebene (22) ist beispielsweise unendlich. Die Summe der beiden Radien ist somit unendlich.In the middle lens segment (111), the distance between the cylinder axis and the light exit surface (114) is 34% of the reference length (27). This distance corresponds to the radius of curvature of the contour (118) of the light exit surface (114) in the vertical center longitudinal plane (22). The distance of the center of curvature (119) from the light-emitting chip (33) is, for example, 60% of the reference length (27). The second curvature plane is here the horizontal center longitudinal plane (22). The optical axis (25) is thus in this embodiment, normal to the tangent plane (23) of the light exit surface (114) at the intersection with the optical axis (25). The radius of curvature of the light exit surface (114) in the horizontal center longitudinal plane (22) is, for example, infinite. The sum of the two radii is thus infinite.

Im unteren Linsensegment (121) ist die Hüllkontur (128) der Lichtaustrittsfläche (124) in der vertikalen Mittenlängsebene (21) ein Kreisabschnitt mit einem Radius von beispielsweise 40 % der Bezugslänge (27). Der Mittelpunkt (129) dieses Kreisabschnitts liegt um 56 % in der Lichtausbreitungsrichtung (26) versetzt zum lichtemittierenden Chip (33) unterhalb der horizontalen Mittenlängsebene (22) und hat zu dieser einen Abstand von 33 % der Bezugslänge (27). Der zweite Krümmungsradius der Lichtaustrittsfläche (124) hat auch beim unteren Linsensegment (121) einen unendlichen Radius. Die Summe der beiden Radien ist damit unendlich.In the lower lens segment (121), the envelope contour (128) of the light exit surface (124) in the vertical central longitudinal plane (21) is a circular segment having a radius of, for example, 40% of the reference length (27). The center point (129) of this circle section lies 56% in the light propagation direction (26) offset from the light emitting chip (33) below the horizontal center longitudinal plane (22) and has a distance of 33% of the reference length (27). The second radius of curvature of the light exit surface (124) also has an infinite radius at the lower lens segment (121). The sum of the two radii is thus infinite.

Im mittleren (111) und unteren Linsensegment (121) kann die Lichtaustrittsfläche (124) die Gestalt einer Torusmantelfläche haben. Die Krümmungsradien der Konturen der Lichtaustrittsflächen (114, 124) in der horizontalen Mittenlängsebene (22) oder in zu dieser Ebene (22) parallelen Ebenen ist dann beispielsweise größer als das Fünfzigfache der Bezugslänge (27). Die Summen der beiden Krümmungsradien ist dann ebenfalls größer als das Fünfzigfache der Bezugslänge (27).In the middle (111) and lower lens segment (121), the light exit surface (124) may have the shape of a toroidal lateral surface. The radii of curvature of the contours of the light exit surfaces (114, 124) in the horizontal central longitudinal plane (22) or planes parallel to this plane (22) is then for example greater than fifty times the reference length (27). The sums of the two radii of curvature are then also greater than fifty times the reference length (27).

Der Raum zwischen der Primärlinse (50) und der Sekundärlinse (40) wird im dargestellten Ausführungsbeispiel nach unten durch einen Spiegel (130) begrenzt. Dies ist beispielsweise ein Planspiegel, dessen Ränder hier unterhalb der Primärlinse (50) und unterhalb der Sekundärlinse (90) liegen. Der Planspiegel (130) liegt an der Unterkante (86) der Lichtaustrittsfläche (84) des unteren Linsensegments (81) der Primärlinse (50) und an der Unterkante (126) der Lichteintrittsfläche (123) des unteren Linsensegments (121) der Sekundärlinse (90) an. Diese beiden Kanten (86, 126) begrenzen die Reflexionsfläche (131) des Spiegels (130). Der Spiegel (130) schließt in der vertikalen Mittenlängsebene (21), vgl. Figur 2, mit der horizontalen Mittenlängsebene (22) einen Winkel von 20 Grad ein. Beispielsweise liegt der Spiegel (130) normal zu der Ebene der Winkelhalbierenden der Lichteintrittsflächen (83, 123) des Linsensegments (81) der Primärlinse (50) und des Linsensegments (121) der Sekundärlinse (90).The space between the primary lens (50) and the secondary lens (40) is limited in the illustrated embodiment down by a mirror (130). This is for example a plane mirror whose edges are below the primary lens (50) and below the secondary lens (90). The plane mirror (130) is located on the lower edge (86) of the light exit surface (84) of the lower lens segment (81) of the primary lens (50) and on the lower edge (126) of the light entry surface (123) of the lower lens segment (121) of the secondary lens (90 ) at. These two edges (86, 126) define the reflecting surface (131) of the mirror (130). The mirror (130) closes in the vertical center longitudinal plane (21), cf. FIG. 2 , with the horizontal center longitudinal plane (22) an angle of 20 degrees. For example, the mirror (130) is normal to the plane of the bisector of the light entry surfaces (83, 123) of the lens segment (81) of the primary lens (50) and the lens segment (121) of the secondary lens (90).

Der Planspiegel (130) kann auch größer sein, als er in den Figuren 1 und 2 dargestellt ist. So kann er z.B. seitlich im Gehäuse oder in Längsrichtung an den Linsen (50, 90) verankert sein. In diesen Rändbereichen, außerhalb des genutzten Reflexionsbereichs (131) in dem in einer Draufsicht auf das Lichtmodul (20) z.B. sichtbaren Zwischenraum zwischen den Linsen (50, 90), kann der hier als Planspiegel (130) bezeichnete Spiegel (130) auch Wölbungen oder nicht reflektierende Bereiche aufweisen.The plane mirror (130) can also be larger than it is in the FIGS. 1 and 2 is shown. For example, it can be anchored laterally in the housing or in the longitudinal direction on the lenses (50, 90). In these marginal areas, outside of the used reflection area (131) in the visible in a plan view of the light module (20), for example, space between the lenses (50, 90), here referred to as a plane mirror (130) mirror (130) and vaults have non-reflective areas.

Der Scheinwerfer (10) kann auch derart aufgebaut sein, dass der Planspiegel (130) an den Linsensegmenten (61, 101) liegt, die hohe Krümmungen aufweisen. Er kann auch an die mittleren Linsensegmente (71, 111) angrenzen. Auch der Einsatz mehrerer Spiegel (130) ist denkbar. Der Scheinwerfer (10) kann z.B. bei einer Ausführung mit einer großen Kondensorlinse (40) oder mit Lichtleitkörpern ohne Spiegel (130) ausgeführt sein.The headlamp (10) may also be constructed such that the plane mirror (130) lies against the lens segments (61, 101) which have high curvatures. It can also be adjacent to the middle lens segments (71, 111). The use of multiple mirrors (130) is conceivable. The headlight (10) can be designed, for example, in one embodiment with a large condenser lens (40) or with light-guiding bodies without a mirror (130).

Die Primär- (50) und die Sekundärlinse (90) können auch weitere Linsensegmente aufweisen. Die Gestalt dieser Linsensegmente entspricht dann weitgehend einem der beschriebenen Linsensegmente (61, 71, 81, 101, 111, 121) der Primärlinse (50) bzw. der Sekundärlinse (90). So können z.B. die Linsen (50, 90) z.B. mehrere Linsensegmente (61, 101) haben, wobei zumindest in der Lichtaustrittsfläche (64) des Linsensegments (61) die Summe der Krümmungsradien in zwei aufeinander normal liegenden Ebenen niedriger ist als in mindestens einer anderen Lichtaustrittsfläche (74, 84) der Primärlinse (50).The primary (50) and secondary (90) lenses may also include other lens segments. The shape of these lens segments then largely corresponds to one of the described lens segments (61, 71, 81, 101, 111, 121) of the primary lens (50) or the secondary lens (90). Thus, e.g. the lenses (50, 90) e.g. have at least in the light exit surface (64) of the lens segment (61), the sum of the radii of curvature in two mutually normal planes is lower than in at least one other light exit surface (74, 84) of the primary lens (50) ,

Der Abblendlichtscheinwerfer (10) ist beispielsweise so aufgebaut, dass es zu jedem Punkt einer Kante (76) der Lichteintrittsfläche (73) des mittleren Linsensegments (71) der Primärlinse (50) eine Gerade gibt, die diesen Punkt mit einen Punkt der zugehörigen Lichtaustrittsfläche (114) der Sekundärlinse (90) verbindet. Diese Gerade steht normal zu einer Tangentialebene (23) in dem Durchstoßpunkt der Lichtaustrittsfläche (114). Außerdem steht sie normal zu einer Tangentialebene im Durchstoßpunkt der Geraden durch die Lichteintrittsfläche (113) der Sekundärlinse (90). Die Gerade der mittleren Linsensegmente (71, 111) kann hierbei z.B. in einer Ebene parallel zur horizontalen Mittenlängsebene (22) liegen.The dipped-beam headlamp (10) is constructed for example in such a way that at each point of an edge (76) of the light entry surface (73) of the central lens segment (71) of the primary lens (50) there is a straight line that intersects this point with a point of the associated light exit surface ( 114) of the secondary lens (90) connects. This straight line is normal to a tangential plane (23) in the piercing point of the light exit surface (114). In addition, it is normal to a tangential plane at the point of penetration of the straight line through the light entry surface (113) of the secondary lens (90). The straight line of the middle lens segments (71, 111) may in this case be e.g. lie in a plane parallel to the horizontal center longitudinal plane (22).

Beim Betrieb der Lichtquelle (30) emittiert der lichtemittierende Chip (33) Licht (140) z.B. als Lambert'scher Strahler in einen Halbraum. Die Leuchtdiode (30) erzeugt beispielsweise einen Lichtstrom, der größer ist als 50 1m. Die Abstrahlung ist divergent und weist nur ein gering ausgeprägtes Maximum auf. Die Lichtstärke der Lichtquelle (30) fällt zum Rand hin - mit steigendem Winkel zwischen der Lichtabstrahlung und der optischen Achse (25) - kontinuierlich ab.During operation of the light source (30), the light-emitting chip (33) emits light (140), for example as a Lambertian radiator, into a half-space. The light-emitting diode (30) generates, for example, a luminous flux which is greater than 50 1 m. The radiation is divergent and has only a small pronounced maximum. The light intensity of the light source (30) drops towards the edge - with increasing angle between the light emission and the optical axis (25) - continuously.

Das aus der Lichtquelle (30) austretende Licht (140) wird z.B. mittels der Kondensorlinse (40) in Richtung der optischen Achse (25) gebündelt. Der Lichtaustritt aus der Kondensorlinse (40) erfolgt dann z.B. innerhalb eines gedachten, sich in der Lichtausbreitungsrichtung (26) aufweitenden Kegels mit einem Spitzenwinkel von 60 Grad, wobei die Kegelachse mit der optischen Achse (25) zusammenfällt.The light (140) emerging from the light source (30) is e.g. bundled by the condenser lens (40) in the direction of the optical axis (25). The light exit from the condenser lens (40) is then e.g. within an imaginary cone with a point angle of 60 degrees that widens in the light propagation direction (26), the cone axis coinciding with the optical axis (25).

Es ist auch denkbar, eine Leuchtdiode (30) mit einer engeren Abstrahlcharakteristik, z.B. mit +/- 30 Grad zur optischen Achse (25), einzusetzen. Hierbei kann gegebenenfalls auf den Lichtverteilkörper (34) und/oder auf die Kondensorlinse (40) verzichtet werden. Das von der Leuchtdiode (30) emittierte Licht (140) kann dann z.B. verlustarm in die Primärlinse (50) eingekoppelt werden.It is also conceivable to use a light-emitting diode (30) with a narrower radiation characteristic, e.g. with +/- 30 degrees to the optical axis (25) to use. Optionally, the light distribution body (34) and / or the condenser lens (40) can be dispensed with here. The light (140) emitted by the light emitting diode (30) may then be e.g. low-loss into the primary lens (50) are coupled.

Das Licht (140) trifft auf die Lichteintrittsflächen (63, 73, 83) der Primärlinse (50) auf und tritt durch diese Lichteintrittsflächen (63, 73, 83) in die Linsensegmente (61, 71, 81) der Primärlinse (50) ein. Hierbei wird das Lichtbündel (140) in drei Teillichtbündel (141 - 143) geteilt.The light (140) impinges on the light entry surfaces (63, 73, 83) of the primary lens (50) and enters the lens segments (61, 71, 81) of the primary lens (50) through these light entry surfaces (63, 73, 83) , In this case, the light bundle (140) is divided into three partial light bundles (141-143).

In der Figur 4 ist ein Strahlengang der einzelnen Teillichtbündel (141 - 143) beispielsweise dargestellt. Die Figur 5 zeigt eine Draufsicht auf das Lichtmodul (20). In dieser Figur sind beispielsweise das obere Lichtbündel (141), das mittlere Lichtbündel (142) und das untere Lichtbündel (143) dargestellt. Das mittlere (142) und das untere Lichtbündel (143) sind in der Draufsicht z.B. kongruent zueinander.In the FIG. 4 is a beam path of the individual partial light bundles (141 - 143), for example, shown. The FIG. 5 shows a plan view of the light module (20). In this figure, for example, the upper light bundle (141), the middle light bundle (142) and the lower light bundle (143) are shown. The middle (142) and the lower light bundle (143) are, for example, congruent to one another in plan view.

Das obere Teillichtbündel (141) wird durch Licht der Lichtquelle (30) erzeugt, das mit der optischen Achse (25) einen Winkel einschließt, der beispielsweise größer ist als 20 Grad. In dem hier dargestellten Ausführungsbeispiel besteht das Lichtbündel (141) aus Licht, das innerhalb eines Winkelsegments zwischen 25 Grad und 45 Grad zur optischen Achse (25) von der Lichtquelle (30) abgestrahlt wird. Dieses Teillichtbündel (141) hat somit keine einheitliche Lichtstärke.The upper partial light bundle (141) is generated by light from the light source (30), which forms an angle with the optical axis (25), for example greater than 20 degrees. In the embodiment shown here is the Light beam (141) of light emitted within an angular segment between 25 degrees and 45 degrees to the optical axis (25) of the light source (30). This partial light bundle (141) thus has no uniform light intensity.

Dieses obere Teillichtbündel (141) trifft auf die Lichteintrittsfläche (63) des oberen Linsensegments (61). Hierbei trifft das Licht höherer Lichtstärke auf den unteren Bereich der Lichteintrittsfläche (63). Beim Durchdringen der Lichteintrittsfläche (63) werden die einzelnen Lichtstrahlen in Richtung des Lots auf die Lichteintrittsfläche (63) im Durchtrittspunkt gebrochen. Beim Durchtritt durch die Lichtaustrittsfläche (64) - die Lichtaustrittsfläche (64) wird hierbei nicht vollständig ausgeleuchtet - wird das Lichtbündel (141) beispielsweise sowohl in horizontaler als auch in vertikaler Richtung aufgefächert. Hierbei ist es so ausgerichtet, dass das gesamte Teillichtbündel (141) nur auf die Lichteintrittsfläche (103) des oberen Linsensegments (101) der Sekundärlinse (90) trifft. Das Lichtbündel (141) tritt durch die Lichtaustrittsfläche (104) aus der Sekundärlinse (90) aus. Hierbei wird es in vertikaler Richtung und in horizontaler Richtung geringfügig gebündelt. Der Öffnungswinkel des Lichtbündels in horizontaler Richtung beträgt beispielsweise 13 Grad, in vertikaler Richtung z.B. 10 Grad.This upper partial light bundle (141) strikes the light entry surface (63) of the upper lens segment (61). In this case, the light of higher light intensity strikes the lower region of the light entry surface (63). When penetrating the light entry surface (63), the individual light rays are refracted in the direction of the solder on the light entry surface (63) in the passage point. When passing through the light exit surface (64) - the light exit surface (64) is not completely illuminated here - the light beam (141) is fanned out, for example, both in the horizontal and in the vertical direction. In this case, it is oriented such that the entire partial light bundle (141) only strikes the light entry surface (103) of the upper lens segment (101) of the secondary lens (90). The light beam (141) exits the secondary lens (90) through the light exit surface (104). Here it is slightly bundled in the vertical direction and in the horizontal direction. The opening angle of the light beam in the horizontal direction is for example 13 degrees, in the vertical direction e.g. 10 degrees.

Zur Veranschaulichung des Strahlengangs ist in der Figur 4 vereinfacht ein Abschnitt der Mittenquerfläche (65) als Objekt (165) dargestellt. Außerdem sind zur Veranschaulichung als Strahlengänge die Strahlengänge dünner Linsen dargestellt. Von oberen und vom unteren Endpunkt das Objekts (165) aus verlaufen die Parallelstrahlen (162, 166), die Knotenpunktstrahlen (163, 167) und die Brennpunktstrahlen (164, 168) zur Sekundärlinse (90). Im Strahlenmodell sind auch die gedachten Strahlen dargestellt, die außerhalb des Abbildungsbereichs liegen, so z.B. der Brennpunktstrahl (164). Der Abstand der Primärlinse (50) zur Sekundärlinse (90) ist größer als der maximale Krümmungsradius der Hüllgestalt der Lichtaustrittsfläche (104) des oberen Linsensegments (101) in der vertikalen Mittenlängsebene (21) oder in einer hierzu parallelen Ebene.To illustrate the beam path is in the FIG. 4 Simplifies a portion of the center transverse surface (65) shown as an object (165). In addition, the beam paths of thin lenses are shown for illustration as beam paths. From the upper and lower end points of the object (165), the parallel beams (162, 166), the node beams (163, 167) and the focus beams (164, 168) extend to the secondary lens (90). The ray model also shows the imaginary rays that are outside the imaging area lie, such as the focal point beam (164). The distance of the primary lens (50) to the secondary lens (90) is greater than the maximum radius of curvature of the envelope shape of the light exit surface (104) of the upper lens segment (101) in the vertical central longitudinal plane (21) or in a plane parallel thereto.

In einer Entfernung von beispielsweise 25 Metern von der Sekundärlinse (90) - diese Entfernung ist größer als das Hundertfache des Krümmungsradius der Hüllfläche in der vertikalen Mittenlängsebene (21) - erzeugt das Lichtbündel (141) z.B. ein durch einen Polygonzug begrenzten hellen Bereich (151), einen sogenannten Hot-Spot (151), vgl. Figur 6. In vertikaler Richtung wird das Objekt (165) scharf abgebildet, in horizontaler Richtung wird ein unscharf begrenzter Fleck erzeugt. Hierbei wird die Unterkante des Objekts (165) als obere Begrenzung des Hot-Spots (151) abgebildet, während die Abbildung der Oberkante des Objekts (165) den Hot-Spot (151) nach unten hin begrenzt. Da das Teillichtbündel (141) keine einheitliche Lichtstärke hat, hat die Projektion des Objekts (165) zumindest in vertikaler Richtung keine konstante Lichtstärke. Das Intensitätsmaximum (152) des Hot-Spots (151) liegt unterhalb der optischen Achse (25) und der horizontalen Mittenlängsebene (22). Er liegt damit unterhalb des Horizonts. Die Lichtstärke auf der Messwand (2) - bei alleiniger Betrachtung des oberen Lichtbündels (141) - klingt vom Intensitätsmaximum (152) des Hot-Spots (151) nach außen hin kontinuierlich ab. Der ausgeleuchtete Bereich (150) steigt hier nach rechts oben an, wobei der Winkel des Anstiegs dem Neigungswinkel der Unterkante (66) zur horizontalen Mittenlängsebene (22) entspricht.At a distance of, for example, 25 meters from the secondary lens (90) - this distance is greater than one hundred times the radius of curvature of the envelope surface in the vertical central longitudinal plane (21) - the light beam (141) produces, for example, a bright region (151) bounded by a polygon. , a so-called hot spot (151), cf. FIG. 6 , In the vertical direction, the object (165) is in focus, in the horizontal direction, a blurred stain is created. In this case, the lower edge of the object (165) is imaged as the upper boundary of the hot spot (151), while the image of the upper edge of the object (165) delimits the hot spot (151) towards the bottom. Since the partial light bundle (141) has no uniform light intensity, the projection of the object (165) has no constant light intensity at least in the vertical direction. The intensity maximum (152) of the hot spot (151) lies below the optical axis (25) and the horizontal center longitudinal plane (22). He is thus below the horizon. The light intensity on the measuring wall (2) - when viewing only the upper light beam (141) - sounds continuously from the intensity maximum (152) of the hot spot (151) towards the outside. Here, the illuminated area (150) rises to the upper right, the angle of the increase corresponding to the angle of inclination of the lower edge (66) to the horizontal central longitudinal plane (22).

Die Höhe des ausgeleuchteten Bereichs (150) ergibt sich aus dem Quotienten aus der Objekthöhe und dem Abstand der Linsensegmente (61) und (101), multipliziert mit dem Abstand zwischen dem Scheinwerfer (10) und der Messwand (2).The height of the illuminated area (150) results from the quotient of the object height and the distance of the lens segments (61) and (101), multiplied by the distance between the headlight (10) and the measuring wall (2).

Das mittlere Teillichtbündel (142) wird durch Licht der Lichtquelle (30) erzeugt, das mit der optischen Achse (25) einen Winkel einschließt, der beispielsweise kleiner ist als 25 Grad. Auch dieses Teillichtbündel (142) hat somit keine einheitliche Lichtstärke.The center partial light bundle (142) is generated by light from the light source (30), which forms an angle with the optical axis (25), for example less than 25 degrees. Also, this partial light bundle (142) thus has no uniform light intensity.

Das mittlere Teillichtbündel (142) tritt durch die Lichteintrittsfläche (73) in das mittlere Linsensegment (71) der Primärlinse (50). Beim Austritt aus der Primärlinse (50) - auch in diesem Linsensegment (71) wird nur ein Teil der Lichtaustrittsfläche (74) ausgeleuchtet - wird das Lichtbündel (142) in horizontaler Richtung beispielsweise aufgeweitet, vgl. Figur 5. In vertikaler Richtung wird das Lichtbündel (142) mittels des Linsensegments (71) der Primärlinse (50) derart ausgerichtet, dass das gesamte Lichtbündel (142) auf die Lichteintrittsfläche (113) des mittleren Linsensegments (111) der Sekundärlinse (90) trifft.The middle partial light bundle (142) passes through the light entry surface (73) into the middle lens segment (71) of the primary lens (50). When exiting the primary lens (50) - also in this lens segment (71) only part of the light exit surface (74) is illuminated - the light bundle (142) is widened in the horizontal direction, for example. FIG. 5 , In the vertical direction, the light bundle (142) is aligned by means of the lens segment (71) of the primary lens (50) such that the entire light beam (142) strikes the light entrance surface (113) of the central lens segment (111) of the secondary lens (90).

Beim Austritt aus der Sekundärlinse (90) wird das Lichtbündel (142) beispielsweise in vertikaler Richtung auf ein Winkelsegment von 10 Grad gebündelt. In horizontaler Richtung wird das Lichtbündel (142) beispielsweise auf ein Winkelsegment von 26 Grad aufgeweitet. Das Objekt (175) - es ist hier vereinfacht als Teil der Mittenquerfläche (75) dargestellt - wird dann in einer Entfernung, die beispielsweise dem Hundertfachen der Bezugslänge (27) entspricht, in vertikaler Richtung projiziert und scharf abgebildet. In horizontaler Richtung ergibt sich ein breites ausgeleuchtetes Feld.When exiting the secondary lens (90), the light bundle (142) is bundled, for example, in the vertical direction to an angle segment of 10 degrees. In the horizontal direction, the light bundle (142) is widened, for example, to an angle segment of 26 degrees. The object (175) - it is shown here in simplified form as part of the central transverse surface (75) - is then projected in the vertical direction at a distance corresponding to, for example, a hundred times the reference length (27) and sharply imaged. In the horizontal direction results in a wide illuminated field.

Die Figur 4 zeigt einen stark vereinfachten Strahlengang dieses Teillichtbündels (142). Die untere Kante des Objekts (175) wird durch die Unterkante (76) der Lichteintrittsfläche (73) erzeugt. Diese Kante des Objekts (175) ist eine Hell-Dunkel-Grenze innerhalb des Linsensegments (71). Bei dem Anteil des Teillichtbündels (142), der das untere Ende des Objekts (175) abbildet, fallen beispielsweise der Parallelstrahl (176), der Knotenpunktstrahl (177) und der Brennpunktstrahl (178) zumindest annähernd zusammen. Diese Strahlen (176 - 178) liegen damit in einer gemeinsamen Ebene, die normal ist zur Tangentialebene (23) an der Lichtaustrittsfläche (114). Beim Austritt aus der Sekundärlinse (90) liegen die Strahlen (176 - 178) zumindest annähernd parallel zueinander. In dem hier dargestellten Ausführungsbeispiel liegen sie in der horizontalen Mittenlängsebene (22). Die Objektkante, bzw. die Unterkante (76) der Lichteintrittsfläche (73), wird als scharf begrenzte Oberkante (153), den sogenannten Cut-off (153), des ausgeleuchteten Bereichs (150) auf der Messwand (2) abgebildet.The FIG. 4 shows a greatly simplified beam path of this partial light bundle (142). The lower edge of the object (175) is generated by the lower edge (76) of the light entry surface (73). This edge of the object (175) is a light-dark boundary within the lens segment (71). In the case of the partial light bundle (142) which images the lower end of the object (175), for example, the parallel beam (176), the node beam (177) and the focal point beam (178) coincide at least approximately. These rays (176-178) are thus in a common plane that is normal to the tangent plane (23) at the light exit surface (114). When exiting the secondary lens (90), the beams (176-178) are at least approximately parallel to one another. In the embodiment shown here, they lie in the horizontal center longitudinal plane (22). The object edge, or the lower edge (76) of the light entry surface (73), is imaged as sharply delimited upper edge (153), the so-called cut-off (153), of the illuminated region (150) on the measuring wall (2).

Beim alleinigen Betrieb des Lichtmoduls (20) mit diesem Lichtbündel (142) - die Lichteintrittsflächen (63, 83) der beiden anderen Linsensegmente (61, 81) sind beispielsweise abgedunkelt - ergibt sich auf einer z.B. in einer Entfernung von 25 Metern aufgestellten Messwand (2) ein ausgeleuchtetes Feld mit der Gestalt des Objekts (175) des Linsensegments (71). Dieses Feld hat nur geringe Helligkeitsschwankungen. Der Anteil des Lichtbündels (142), der von der Lichtquelle (30) zumindest annähernd parallel zur optischen Achse (25) - das ist beispielsweise innerhalb eines Winkels von 5 Grad zur optischen Achse (25) - abgestrahlt wird, projiziert die Unterkante des Objekts (175) als waagerecht liegenden, scharf ausgeprägten Cut-off (153), also als Hell-Dunkel-Grenze auf die Messwand (2), vgl. Figur 6. Die anderen Begrenzungen (155) des ausgeleuchteten Bereichs (150) sind unscharf ausgebildet. Der Cut-off (153) liegt hier beispielsweise auf der Horizontebene (156), die mit der horizontalen Mittenlängsebene (22) zusammenfällt. Der Cut-off kann z.B. auch - je nach Einbau im Kraftfahrzeug - 0,7 Grad unterhalb der Horizontlinie (156) liegen.In the sole operation of the light module (20) with this light bundle (142) - the light entry surfaces (63, 83) of the other two lens segments (61, 81) are darkened, for example - results on a measuring wall (eg, at a distance of 25 meters) ) an illuminated field having the shape of the object (175) of the lens segment (71). This field has only slight brightness fluctuations. The portion of the light beam (142) which is emitted by the light source (30) at least approximately parallel to the optical axis (25), for example within an angle of 5 degrees to the optical axis (25), projects the lower edge of the object (FIG. 175) as a horizontal, sharply defined cut-off (153), ie as a cut-off line on the measuring wall (2), cf. FIG. 6 , The other boundaries (155) of the illuminated area (150) are out of focus. The cut-off (153) is here, for example, on the horizontal plane (156), which is connected to the horizontal center longitudinal plane (22). coincides. The cut-off can, for example, also be 0.7 degrees below the horizon line (156), depending on the installation in the motor vehicle.

In dem in den Figuren 1 und 2 dargestellten Lichtmodul (20) ist der Quotient aus der Höhe der Objekts (165) des Linsensegments (61) der Primärlinse (50) und dem Abstand der Linsensegments (101) zum Linsensegment (61) zumindest annähernd gleich dem entsprechenden Quotienten der Linsensegmente (71) und (111). Damit ist auf einer Messwand, beispielsweise in einer Entfernung von 25 Metern, die Höhe der beiden Abbildungen zumindest annähernd gleich.In the in the FIGS. 1 and 2 The light module (20) shown is the quotient of the height of the object (165) of the lens segment (61) of the primary lens (50) and the distance of the lens segment (101) to the lens segment (61) at least approximately equal to the corresponding quotient of the lens segments (71). and (111). Thus, on a measuring wall, for example at a distance of 25 meters, the height of the two images is at least approximately the same.

Das untere Lichtbündel (143) tritt beispielsweise durch die Lichteintrittsfläche (83) in das untere Linsensegment (81) der Primärlinse (50) ein. Das aus diesem Linsensegment (81) austretende Lichtbündel (143) trifft auf den Planspiegel (130). Hierbei wird der Teil des Lichtbündels (143), der nahe der Oberkante (88) der Lichtaustrittsfläche (84) austritt, auf den Bereich des Spiegels (130) gelenkt, der nahe der Sekundärlinse (90) liegt. Der Teil des Lichtbündels (143), der nahe der Unterkante (86) der Lichtaustrittsfläche (84) aus der Primärlinse (50) austritt, trifft auf den Bereich des Spiegels (130) nahe der Primärlinse (50). Das Lichtbündel (143) wird am Planspiegel (130) in Richtung der Sekundärlinse (90) reflektiert. Hier trifft das Lichtbündel (143) auf das untere Linsensegment (121) und tritt durch die Lichteintrittsfläche (123) in die Sekundärlinse (90) ein. Der Teil des Lichtbündels (143), der nahe der Primärlinse (50) reflektiert wird, tritt nahezu waagerecht in den oberen Bereich der Lichteintrittsfläche (123) ein. Der Teil des Lichtbündels (143), der nahe der Sekundärlinse (90) reflektiert wird, tritt nahezu waagerecht in den unteren Bereich der Lichteintrittsfläche (123) ein.The lower light bundle (143) enters the lower lens segment (81) of the primary lens (50), for example, through the light entry surface (83). The light bundle (143) emerging from this lens segment (81) strikes the plane mirror (130). In this case, the part of the light bundle (143) which exits near the upper edge (88) of the light exit surface (84) is directed onto the region of the mirror (130) which lies close to the secondary lens (90). The portion of the light beam (143) emerging from the primary lens (50) near the lower edge (86) of the light exit surface (84) strikes the region of the mirror (130) near the primary lens (50). The light beam (143) is reflected on the plane mirror (130) in the direction of the secondary lens (90). Here, the light beam (143) strikes the lower lens segment (121) and enters the secondary lens (90) through the light entry surface (123). The part of the light beam (143) which is reflected near the primary lens (50) enters almost horizontally in the upper area of the light entry surface (123). The part of the light beam (143) which is reflected near the secondary lens (90) enters almost horizontally in the lower region of the light entry surface (123).

Beim Austritt aus der Sekundärlinse (90) hat das Lichtbündel (143) in vertikaler Richtung beispielsweise einen Öffnungswinkel von 10 Grad. In horizontaler Richtung wird das Lichtbündel (143) beispielsweise auf ein Winkelsegment von 26 Grad aufgeweitet.When exiting the secondary lens (90), the light bundle (143) has an opening angle of 10 degrees in the vertical direction, for example. In the horizontal direction, for example, the light beam (143) is widened to an angle segment of 26 degrees.

Im Strahlenmodell der Figur 4 ist das Linsensegment (81) als virtuelles, am Spiegel (130) gespiegeltes virtuelles Bild (181) dargestellt. Ein Teil (180) der Mittenquerfläche (85) geht dabei in das virtuelle Objekt (185) über. Die z.B. auf der Messwand (2) abgebildete Oberkante des Lichtbündels (143) - z.B. dargestellt durch den Knotenpunktstrahl (187) - ist zumindest annähernd kongruent mit dem Knotenpunktstrahl (177) des Lichtbündels (142). Die Cut-off-Linien (153) beider Teillichtbündel (142, 143) fallen somit weitgehend zusammen. Die maximale Abweichung zweier eine vertikale Ebene aufspannender Knotenpunktstrahlen (177, 187) beträgt beispielsweise 1 Grad. Die Oberkante des Lichtbündels (143) liegt dann z.B. unterhalb der Oberkante des Lichtbündels (142). Bei einem Linsensegment (111, 121), dessen Linsenmitte nicht ausgebildet ist, ist der Knotenpunktstrahl (177, 187) ein gedachter Knotenpunktstrahl (177, 187).In the radiation model of FIG. 4 the lens segment (81) is shown as a virtual virtual image (181) mirrored on the mirror (130). A part (180) of the central transverse surface (85) thereby transitions into the virtual object (185). The upper edge of the light bundle (143), for example shown on the measuring wall (2) - for example represented by the node beam (187) - is at least approximately congruent with the node beam (177) of the light bundle (142). The cut-off lines (153) of both partial light bundles (142, 143) thus largely coincide. The maximum deviation of two node beams (177, 187) spanning a vertical plane is for example 1 degree. The upper edge of the light bundle (143) then lies, for example, below the upper edge of the light bundle (142). In a lens segment (111, 121) whose lens center is not formed, the node beam (177, 187) is an imaginary node beam (177, 187).

Auch im Strahlengang des Lichtbündels (143) fällt der Brennpunktstrahl (186) und der Mittelpunktstrahl (187), die von der Unterkante des virtuellen Objekts (185) ausgehen, zumindest annähernd zusammen. In vertikaler Richtung ist das Lichtbündel (143) in diesem Ausführungsbeispiel stärker aufgeweitet als das Lichtbündel (142). Die auf der Messwand erzeugte Lichtverteilung ist hier um 30 % höher als das Abbild, das mittels der mittleren Linsensegmente (71, 111) erzeugt wird. Um diesen Betrag ist auch der Quotient aus der Höhe der Objekts (185) und dem Abstand der Linsensegmente (81, 121) größer als der entsprechende Quotient der Linsensegmente (71, 111) für das mittleren Lichtbündel (142). Die beiden Quotienten können auch gleich groß sein, wodurch die Höhen der ausgeleuchteten Bereiche gleich sind.Also in the beam path of the light beam (143), the focal point beam (186) and the center beam (187), which emanate from the lower edge of the virtual object (185), at least approximately coincide. In the vertical direction, the light bundle (143) in this embodiment is widened more than the light bundle (142). The light distribution produced on the measuring wall is here 30% higher than the image produced by means of the middle lens segments (71, 111). By this amount, the quotient of the height of the object (185) and the distance of the lens segments (81, 121) is greater as the corresponding quotient of the lens segments (71, 111) for the middle light bundle (142). The two quotients can also be the same size, whereby the heights of the illuminated areas are the same.

Im Ausführungsbeispiel verbindet eine Gerade je einen Punkt der Kante (87), deren virtuelles Bild (189) die Begrenzung des Objekts (185) erzeugt, und einen Punkt der zugehörigen Lichtaustrittsfläche (124) der Sekundärlinse (90), wobei die Gerade normal ist zu einer Tangentialebene (24) in dem Punkt der Lichtaustrittsfläche (124). Sie ist außerdem normal zu einer Tangentialebene im Durchstoßpunkt der Geraden durch die Lichteintrittsfläche (123) der Sekundärlinse (90).In the exemplary embodiment, a straight line connects each point of the edge (87) whose virtual image (189) generates the boundary of the object (185) and a point of the associated light exit surface (124) of the secondary lens (90), the straight line being normal a tangent plane (24) in the point of the light exit surface (124). It is also normal to a tangential plane at the point of penetration of the straight line through the light entry surface (123) of the secondary lens (90).

Eine dieser Geraden und eine gleichartige Gerade der mittleren Linsensegmente (71, 111) spannen eine gemeinsame vertikale Ebene auf. Diese beiden Geraden schließen in dieser Ebene einen Winkel ein, der kleiner ist als 1 Grad. Beispielsweise beträgt dieser Winkel 0,7 Grad, wobei beispielsweise die Gerade der unteren Linsensegmente (81, 121) in der Lichtausbreitungsrichtung (26) stärker nach unten geneigt ist.One of these straight lines and a similar straight line of the middle lens segments (71, 111) span a common vertical plane. These two straight lines enclose in this plane an angle which is less than 1 degree. For example, this angle is 0.7 degrees, for example, the straight line of the lower lens segments (81, 121) in the light propagation direction (26) is inclined downwards more.

Beim alleinigen Betrieb des Lichtmoduls (20) mit diesem Lichtbündel (143) - die Lichteintrittsflächen (63, 73) der beiden anderen Linsensegmente (61, 71) sind beispielsweise abgedunkelt - ergibt sich auf einer z.B. in einer Entfernung von 25 Metern aufgestellten Messwand ein ausgeleuchteter Bereich mit nur geringen Helligkeitsschwankungen.When the light module (20) is operated solely with this light bundle (143) - the light entry surfaces (63, 73) of the two other lens segments (61, 71) are darkened, for example - the result is e.g. at a distance of 25 meters, a illuminated area with only slight fluctuations in brightness.

Bei der Überlagerung der beiden Grundverteilungen, die im Ausführungsbeispiel durch die mittleren (71, 111) und die unteren Linsensegmente (81, 121) der Primär- (50) und der Sekundärlinse (90) erzeugt werden, ergibt sich eine Lichtverteilung (150) gleichmäßiger Helligkeit ohne helle oder dunkle Flecken. Die Begrenzungen (155) des ausgeleuchteten Bereichs (150) ist an den Seiten und nach unten unscharf, während die Oberkante (153) durch eine waagerechte Linie scharf begrenzt ist. Diese Oberkante (153) liegt hier unmittelbar unter der Horizontlinie (156), vgl. Figur 6, die beispielsweise in der horizontalen Mittenlängsebene (22) liegt. Die Höhe des Abbildes (150) entspricht im Ausführungsbeispiel zumindest in der Schnittebene der vertikalen Mittenlängsebene (21) 130 % der Höhe der Grundverteilung, die mittels der mittleren Linsensegmente (71, 111) erzeugt wird.In the superimposition of the two basic distributions, which are generated in the exemplary embodiment by the middle (71, 111) and the lower lens segments (81, 121) of the primary (50) and the secondary lens (90), a light distribution (150) results more uniformly Brightness without light or dark Stains. The boundaries (155) of the illuminated area (150) is out of focus at the sides and down, while the upper edge (153) is sharply defined by a horizontal line. This upper edge (153) lies here directly below the horizon line (156), cf. FIG. 6 , which lies for example in the horizontal center longitudinal plane (22). The height of the image (150) corresponds in the exemplary embodiment, at least in the sectional plane of the vertical central longitudinal plane (21) 130% of the height of the basic distribution, which is generated by means of the middle lens segments (71, 111).

Wird nun zusätzlich das mittels der oberen Linsensegmente (61, 101) erzeugte Lichtbündel (141) überlagert, ergibt sich der in der Figur 6 dargestellte ausgeleuchtete Bereich (150). Die einzelnen Linien (159) verbinden Punkte gleicher Lichtstärke auf der Messwand (2). Oberhalb des Hot-Spots (151) liegt an der Horizontlinie (156) der waagerechte Cut-off (153), der in einen 15 Grad-Anstieg (154) übergeht. An dieser Kante(153, 154) fällt die Lichtstärke des ausgeleuchteten Feldes (150) - in Richtung des Bereichs oberhalb der Horizontlinie (156) - sehr stark ab. Nach links und nach unten fällt die Lichtstärke über einen Winkel von beispielsweise 8 Grad kontinuierlich ab, nach rechts fällt die Lichtstärke z.B. in einem Winkelbereich von 10 Grad ab.If, in addition, the light bundle (141) generated by means of the upper lens segments (61, 101) is then superimposed, the result in the FIG. 6 illustrated illuminated area (150). The individual lines (159) connect points of the same intensity on the measuring wall (2). Above the hot spot (151) lies on the horizon line (156) the horizontal cut-off (153), which merges into a 15 degree rise (154). At this edge (153, 154), the light intensity of the illuminated field (150) drops very sharply in the direction of the region above the horizon line (156). To the left and down, the light intensity drops continuously over an angle of, for example, 8 degrees, to the right, the light intensity drops, for example, in an angular range of 10 degrees.

Beim Betrieb des Abblendlichtscheinwerfers in einem Kraftfahrzeug entsteht so eine Lichtstärkeverteilung, wie sie beispielsweise von herkömmlichen Halogenscheinwerfern erzeugt wird. Die Blendung des Gegenverkehrs wird durch die Anordnung des Cut-offs (153) unterhalb der Horizontebene (156) verhindert. Gleichzeitig ermöglicht der 15 Grad-Anstieg eine Ausleuchtung des z.B. rechten Straßenrandes.When operating the low beam headlamp in a motor vehicle so creates a light intensity distribution, as generated for example by conventional halogen headlamps. The glare of oncoming traffic is prevented by the arrangement of the cut-off (153) below the horizontal plane (156). At the same time, the 15 degree increase allows illumination of eg the right roadside.

Beim Einsatz eines derartigen Abblendlichtscheinwerfers für den Linksverkehr kann der Scheinwerfer so aufgebaut sein, dass die Unterkanten (66, 67) der oberen Linsensegmente (61) von links oben nach rechts unten abfallen.When using such a low beam headlamp for left-hand traffic, the headlamp can be constructed so that the lower edges (66, 67) of the upper lens segments (61) fall from top left to bottom right.

Die Figur 7 zeigt einen Abblendlichtscheinwerfer (210) mit einem einzigen Lichtmodul (220), dessen oberes Linsensegment (261) parallel zur horizontalen Mittenlängsebene (22) des Lichtmoduls (220) liegt. Auch das hieran anschließende mittlere Linsensegment (271) ist parallel zu dieser Ebene (22) ausgerichtet. Der Längsschnitt dieses Lichtmoduls (220) in der vertikalen Mittenlängsebene (22) ist beispielsweise identisch zur Darstellung der Figur 2.The FIG. 7 shows a dipped beam headlamp (210) with a single light module (220), the upper lens segment (261) is parallel to the horizontal center longitudinal plane (22) of the light module (220). Also, the adjoining middle lens segment (271) is aligned parallel to this plane (22). The longitudinal section of this light module (220) in the vertical central longitudinal plane (22) is identical to the illustration of FIG FIG. 2 ,

Beim Betrieb des Abblendlichtscheinwerfers (210) ergibt sich auf einer Messwand (2) z.B. die in der Figur 8 dargestellte Lichtverteilung (350). Der Hot-Spot (351) liegt hier 1,5 Grad unterhalb der Horizontebene (356). Das ausgeleuchtete Feld (350) auf der Messwand (2) ist annähernd symmetrisch zur vertikalen Mittenlängsebene (21). Der waagerechte Cut-off (353) ist deutlich ausgebildet und bildet die Oberkante (353) des ausgeleuchteten Feldes (350). Die Linien gleicher Lichtstärke (359) haben zur Seite und nach unten hin weitgehend einen gleichen Abstand zueinander. Die Lichtstärkeabfall zu den Rändern erfolgt damit gleichförmig ohne Streifen und ohne Sprünge.When operating the low beam headlamp (210) results on a measuring wall (2), for example, in the FIG. 8 illustrated light distribution (350). The hot spot (351) is 1.5 degrees below the horizon (356). The illuminated field (350) on the measuring wall (2) is approximately symmetrical to the vertical center longitudinal plane (21). The horizontal cut-off (353) is clearly formed and forms the upper edge (353) of the illuminated field (350). The lines of equal luminous intensity (359) are largely equidistant to the side and to the bottom. The light intensity drop to the edges is thus uniform without stripes and without cracks.

Die Figur 9 zeigt einen Abblendlichtscheinwerfer (410) mit beispielsweise acht Lichtmodulen (420, 620). Die einzelnen Lichtmodule (420, 620) sind beispielsweise so in der Fahrzeugkarosserie verteilt, dass die vertikalen Mittenlängsebenen (21) jeweils zweier benachbarter Lichtmodule (420, 620) einen Winkel von 4 Grad einschließen. Die Lichtmodule (420, 620) sitzen hier in einem gemeinsamen - nicht dargestellten - Gehäuse, wobei die einzelnen Lichtmodule (420, 620) nicht durch Trennwände voneinander abgetrennt sind. Der Abblendlichtscheinwerfer (410) hat in diesem Ausführungsbeispiel eine Breite von 140 Millimetern.The FIG. 9 shows a low beam headlight (410) with, for example, eight light modules (420, 620). For example, the individual light modules (420, 620) are distributed in the vehicle body in such a way that the vertical central longitudinal planes (21) of respectively two adjacent light modules (420, 620) enclose an angle of 4 degrees. The light modules (420, 620) sit here in a common - not shown - Housing, wherein the individual light modules (420, 620) are not separated by partitions from each other. The low beam headlamp (410) has a width of 140 millimeters in this embodiment.

Die Lichtmodule (420, 620) umfassen hier jeweils eine Primärlinse (450, 650) und eine Sekundärlinse (490), die jeweils aus drei übereinander angeordneten Linsensegmenten (461, 471, 481; 501, 511, 521; 661, 671, 681) bestehen. Hierbei ist jeweils das mittlere Linsensegment (511) und das untere Linsensegment (521) der Sekundärlinse (490) Teil aller Lichtmodule (420, 620). Die Lichtaustrittsflächen (514, 524) dieser Linsensegmente (511, 521) haben die Gestalt von Toren. Die Lichtbündel, die die mittleren Linsensegmente (471, 671) der Primärlinsen (450) durchqueren, treffen auf das diesen Linsensegmenten (471, 671) zugeordnete mittlere Linsensegment (511) der Sekundärlinse (490). Hierbei können sich die einzelnen Lichtbündel der nebeneinander angeordneten Lichtmodule (420, 620) gegenseitig durchdringen. Die aus den unteren Linsensegmenten (481, 681) austretenden Lichtbündel treffen auf den Spiegel (530). Der Spiegel (530) hat die Gestalt eines Teils einer Mantelfläche eines Kegelabschnitts. Der gedachte Kegelabschnitt hat in diesem Ausführungsbeispiel einen Kreis als Grund- und als Deckfläche. Die gedachte Kegelachse liegt au-ßerhalb des Abblendlichtscheinwerfers (410).The light modules (420, 620) here each comprise a primary lens (450, 650) and a secondary lens (490), each of which consists of three lens segments (461, 471, 481, 501, 511, 521, 661, 671, 681) arranged one above the other. consist. In this case, in each case the middle lens segment (511) and the lower lens segment (521) of the secondary lens (490) are part of all the light modules (420, 620). The light exit surfaces (514, 524) of these lens segments (511, 521) have the shape of gates. The light bundles which pass through the central lens segments (471, 671) of the primary lenses (450) strike the middle lens segment (511) of the secondary lens (490) associated with these lens segments (471, 671). In this case, the individual light bundles of the light modules (420, 620) arranged next to one another can penetrate one another. The light beams emerging from the lower lens segments (481, 681) strike the mirror (530). The mirror (530) has the shape of a part of a lateral surface of a cone portion. The imaginary cone section in this embodiment has a circle as a base and as a top surface. The imaginary cone axis lies outside the dipped beam headlamp (410).

Beispielsweise in den vier mittleren Lichtmodulen (420) sind die Linsensegmente (461, 471, 481) der Primärlinsen (450) zumindest annähernd so ausgebildet wie die Linsensegmente (61, 71, 81) des in der Figur 1 dargestellten Abblendlichtscheinwerfers (10). In den anderen Lichtmodulen (620), die hier am Rand des Abblendlichtscheinwerfers (410) angeordnet sind, entspricht die Gestalt der Primärlinse (650) zumindest weitgehend der Gestalt der in der Figur 7 dargestellten Primärlinse (250). In den Sekundärlinsen (490) sind die oberen Linsensegmente (501) für jedes Lichtmodul (420, 620) separat ausgebildet. Alle diese Linsensegmente (501) sind auf einen Bereich, den Hot-Spot (551), gerichtet.For example, in the four central light modules (420), the lens segments (461, 471, 481) of the primary lenses (450) are at least approximately as formed as the lens segments (61, 71, 81) of FIG FIG. 1 shown Abblendlichtscheinwerfers (10). In the other light modules (620), which are arranged here at the edge of the dipped-beam headlamp (410), the shape of the primary lens (650) corresponds at least substantially to the shape of the in the FIG. 7 illustrated primary lens (250). In the secondary lenses (490), the upper lens segments (501) are formed separately for each light module (420, 620). All of these lens segments (501) are directed to one area, the hot spot (551).

Beim Betreib des Abblendlichtscheinwerfers (410) entsteht z.B. auf einer Messwand (2), die beispielsweise in einer Entfernung von 25 Metern aufgestellt ist, die in der Figur 10 dargestellte Lichtverteilung (550). Die mittleren und die unteren Linsensegmente (471, 511; 481, 521; 671, 511; 681, 521) erzeugen jeweils Grundlichtverteilungen, die sich überlagern. Hierbei ergibt sich ein streifen- und fleckenfreies Bild, das in diesem Ausführungsbeispiel die Gestalt eines breiten Ovals hat. Die Breite dieses Ovals wird beispielsweise durch zwei Ebenen begrenzt, die sich in der geometrischen Mitte des Abblendlichtscheinwerfers (410) schneiden und die miteinander einen Winkel von beispielsweise 50 Grad einschließen. Die Höhe des Ovals wird durch die horizontale Mittenlängsebene (22) aller Module (420, 520) und eine weitere, die Messwand (2) unterhalb der horizontalen Mittenlängsebene (22) schneidende Ebene begrenzt, wobei sich die Ebenen beispielsweise im geometrischen Zentrum des Abblendlichtscheinwerfers (410) schneiden und miteinander einen Winkel von 10 Grad einschließen. Die Oberkante (553) des ausgeleuchteten Bereichs (550) ist eine annährend waagerecht ausgebildete kontraststarke Begrenzung. Zu den übrigen Rändern hin fällt die Lichtstärke der Ausleuchtung kontinuierlich ab. Aufgrund der nebeneinander angeordneten Lichtmodule (420, 620) entstehen zumindest in der Breite der Ausleuchtung keine Verzerrungen, Farbabweichungen oder -schattierungen.When operating the dipped-beam headlamp (410) arises, for example, on a measuring wall (2), which is placed for example at a distance of 25 meters, in the FIG. 10 illustrated light distribution (550). The middle and lower lens segments (471, 511, 481, 521, 671, 511, 681, 521) each produce background light distributions that overlap. This results in a streak and spot-free image, which has the shape of a wide oval in this embodiment. The width of this oval is limited, for example, by two planes which intersect at the geometric center of the dipped-beam headlamp (410) and which together enclose an angle of, for example, 50 degrees. The height of the oval is limited by the horizontal center longitudinal plane (22) of all modules (420, 520) and another, the measuring wall (2) below the horizontal center longitudinal plane (22) intersecting plane, wherein the planes, for example, in the geometric center of the dipped beam headlamp ( 410) and enclose an angle of 10 degrees with each other. The upper edge (553) of the illuminated area (550) is an approximately horizontally formed high-contrast boundary. In addition to the other edges, the light intensity of the illumination drops continuously. Due to the juxtaposed light modules (420, 620) arise at least in the width of the illumination no distortion, color aberrations or shades.

Die Grundlichtverteilung wird überlagert von dem Licht, das durch die oberen Linsensegmente (461, 501; 661, 501) geleitet wird. Hierbei wird ein Hot-Spot (551) mit hoher Intensität erzeugt. Oberhalb des Cut-offs (553) wird beispielsweise rechts ein ausgeleuchtetes, zumindest annährend rechtwinkliges Dreieck oberhalb der Horizontebene (556) erzeugt. Eine gedachte Kathete liegt auf der Verlängerung der Cut-off-Linie (553). Die Hypotenuse (561) schließt mit dieser Kathete einen Winkel von 15 Grad ein und steigt nach rechts hin an. Die Ausleuchtung dieses Dreiecks erfolgt mittels der Linsensegmente (461, 501) der mittleren Lichtmodule (450). Die Helligkeit der Ausleuchtung ist geringer als die Ausleuchtung des Hot-Spots (551), auf den Licht aus allen Lichtmodulen (420, 620) trifft.The basic light distribution is superimposed by the light passing through the upper lens segments (461, 501, 661, 501). This creates a high-intensity hotspot (551). Above the cut-off (553), for example, an illuminated, at least approximately right-angled triangle above the horizontal plane (556) is generated on the right. An imaginary catheter lies on the extension of the cut-off line (553). The hypotenuse (561) makes an angle of 15 degrees with this catheter and rises to the right. The illumination of this triangle is effected by means of the lens segments (461, 501) of the middle light modules (450). The brightness of the illumination is less than the illumination of the hot spot (551), which is hit by light from all light modules (420, 620).

Soll die Intensität des Hot-Spots (151, 351, 551) erhöht werden, kann der Abstand zwischen der Primärlinse (50, 250, 450) und der Sekundärlinse (90, 290, 490) erhöht werden. Hierbei ist dann zumindest das obere Linsensegment (61, 261, 461, 661) der Primärlinse (50, 250, 450, 650) so auszurichten, dass nur die Lichteintrittsfläche (103) der Sekundärlinse (90, 290, 490) ausgeleuchtet wird. Hierfür kann beispielsweise die Krümmung der Lichtaustrittsfläche (61, 264, 464, 664) erhöht werden.If the intensity of the hot spot (151, 351, 551) is to be increased, the distance between the primary lens (50, 250, 450) and the secondary lens (90, 290, 490) can be increased. In this case, then at least the upper lens segment (61, 261, 461, 661) of the primary lens (50, 250, 450, 650) is to be aligned so that only the light entry surface (103) of the secondary lens (90, 290, 490) is illuminated. For this purpose, for example, the curvature of the light exit surface (61, 264, 464, 664) can be increased.

Um den Hot-Spot (151, 351, 551) bzw. die gesamte Lichtverteilung (150, 350, 550) nach unten oder nach oben zu versetzen, kann z.B. die Sekundärlinse (90, 290, 490) oder einzelne Linsensegmente (101, 111, 121; 301, 311, 321; 501, 511, 521) dieser Linse (90, 290, 490) nach unten bzw. nach oben versetzt werden. Auch der Einsatz anderer Linsenabschnitte für die Linsensegmente (101, 111, 121; 301, 311, 321; 501, 511, 521) ist denkbar. Die Primärlinse (50, 250, 450) ist auch hier so auszubilden, dass die einzelnen Teillichtbündel (141 - 143) das zugehörige Linsensegment (101, 111, 121; 301, 311, 321, 501, 511, 521) der Sekundärlinse (90, 290, 490) treffen.In order to shift the hot spot (151, 351, 551) or the entire light distribution (150, 350, 550) downwards or upwards, the secondary lens (90, 290, 490) or individual lens segments (101, 111 , 121, 301, 311, 321, 501, 511, 521) of this lens (90, 290, 490) are displaced downwards or upwards. The use of other lens sections for the lens segments (101, 111, 121, 301, 311, 321, 501, 511, 521) is also conceivable. The primary lens (50, 250, 450) is also to be embodied here in such a way that the individual partial light bundles (141-143) separate the associated lens segment (101, 111, 121, 301, 311, 321, 501, 511, 521) of the secondary lens (90 , 290, 490).

Der Hot-Spot (151, 351, 551) kann auch mittels des Lichtbündels (143) erzeugt werden, das am Spiegel (130, 530) reflektiert wird.The hot spot (151, 351, 551) can also be generated by means of the light beam (143), which is reflected by the mirror (130, 530).

Eine Veränderung der Intensitätsverteilung innerhalb der Lichtbündel (141; 142; 143) erfolgt beispielsweise mittels der Primärlinse (50, 250, 450). Hierbei werden z.B. die einzelnen Linsensegmente (61, 71, 81; 261, 271, 281; 461, 471, 481; 661, 671, 681) nach unten oder nach oben verschoben. Auch können andere Linsenabschnitte gewählt werden oder z.B. die Krümmung des oberen Linsensegments (61, 261, 461, 661) in horizontaler und/oder in vertikaler Richtung erhöht werden oder die Neigung des Linsensegments (61, 261, 461, 661) verändert werden.A change in the intensity distribution within the light bundles (141, 142, 143) takes place, for example, by means of the primary lens (50, 250, 450). Here, e.g. the individual lens segments (61, 71, 81, 261, 271, 281, 461, 471, 481, 661, 671, 681) are displaced downwards or upwards. Also, other lens sections may be chosen or e.g. the curvature of the upper lens segment (61, 261, 461, 661) is increased in the horizontal and / or vertical direction, or the inclination of the lens segment (61, 261, 461, 661) is changed.

Der Abblendlichtscheinwerfer (10, 210, 410) oder das einzelne Lichtmodul (20, 220, 420, 620) kann eine z.B. klare Scheibe umfassen, die der Sekundärlinse (90, 290, 490) optisch nachgeschaltet ist.The dipped-beam headlamp (10, 210, 410) or the single light module (20, 220, 420, 620) may be of e.g. clear disc which is optically downstream of the secondary lens (90, 290, 490).

Anstatt der Kondensorlinse (40) kann auch mindestens ein Lichtleitkörper eingesetzt werden, der das von der Lichtquelle (30) emittierte Licht zu den Lichteintrittsflächen (63, 73, 83) der Primärlinse (50) lenkt. Aufgrund der großflächigen Auskopplung ist die Lage des lichtemittierenden Chips (33) unkritisch.Instead of the condenser lens (40), it is also possible to use at least one light guide body, which directs the light emitted by the light source (30) to the light entry surfaces (63, 73, 83) of the primary lens (50). Due to the large-area coupling, the position of the light-emitting chip (33) is not critical.

Soll beispielsweise der Abblendlichtscheinwerfer (410) für Linksverkehr eingesetzt werden, können z.B. die mittleren Lichtmodule (420) durch benachbarte Lichtmodule ergänzt werden, bei denen das obere Linsensegment (461) in die andere Richtung geneigt ist. Beispielsweise können dann mittels einer Blende die oberen Linsensegmente (461) dieser Lichtmodule (20) geöffnet oder verschlossen werden. Die Grundverteilung kann dann mit allen Lichtmodulen (20) erzeugt werden.If, for example, the low-beam headlight (410) is to be used for left-hand traffic, then, for example, the middle light modules (420) can be supplemented by adjacent light modules, in which the upper lens segment (461) is inclined in the other direction. For example, the upper lens segments (461) of these light modules (20) can then be opened or closed by means of a diaphragm. The basic distribution can then be generated with all light modules (20).

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
Umgebung, LuftEnvironment, air
22
Messwandmeasuring wall
10, 210, 41010, 210, 410
Abblendlichtscheinwerferlow beam headlights
20, 220, 420, 62020, 220, 420, 620
Lichtmodulelight modules
2121
vertikale Mittenlängsebenevertical middle longitudinal plane
2222
horizontale Mittenlängsebenehorizontal middle longitudinal plane
2323
Tangentialebene an (114, 314, 514)Tangential plane (114, 314, 514)
2424
Tangentialebene an (124, 324, 524)Tangential plane (124, 324, 524)
2525
optische Achseoptical axis
2626
LichtausbreitungsrichtungLight propagation direction
2727
Bezugslängereference length
3030
Lichtquelle, LeuchtdiodeLight source, LED
3333
lichtemittierender Chiplight emitting chip
3434
Lichtverteilkörper, StrahlungsformkörperLight distribution body, shaped radiation body
4040
Kondensorlinsecondenser
4242
konkav gewölbter Linsenflächeconcave arched lens surface
4343
Begrenzungslinieboundary line
4545
Sammellinseconverging lens
4747
Ringflanschannular flange
50, 250, 450, 65050, 250, 450, 650
Primärlinsenprimary lenses
5151
Befestigungsflanschemounting flanges
5959
Hüllkontur von (64) in (21)Hull contour of (64) in (21)
61, 261, 461, 66161, 261, 461, 661
obere Linsensegmenteupper lens segments
6262
Oberseitetop
6363
Lichteintrittsfläche von (61)Light entrance surface of (61)
64, 264, 464, 66464, 264, 464, 664
Lichtaustrittsflächen von (61, 261, 461, 661)Light exit surfaces of (61, 261, 461, 661)
6565
MittenquerflächeMiddle transverse surface
6666
Unterkante von (63)Lower edge of (63)
6767
Unterkante von (64)Lower edge of (64)
6868
Krümmungsmittelpunkt von (63)Center of curvature of (63)
6969
Krümmungsmittelpunkt von (64)Center of curvature of (64)
71, 271, 471, 67171, 271, 471, 671
mittlere Linsensegmentemiddle lens segments
7272
Oberseitetop
7373
Lichteintrittsfläche von (71)Light entrance surface of (71)
74, 274, 474, 67474, 274, 474, 674
Lichtaustrittsflächen von (74, 274, 474, 674)Light exit surfaces of (74, 274, 474, 674)
7575
MittenquerflächeMiddle transverse surface
7676
Unterkante von (73)Lower edge of (73)
7777
Unterkante von (74)Lower edge of (74)
7878
Krümmungsmittelpunkt von (73)Center of curvature of (73)
7979
Krümmungsmittelpunkt von (74)Center of curvature of (74)
81, 281, 481, 68181, 281, 481, 681
untere Linsensegmentelower lens segments
8282
Oberseitetop
8383
Lichteintrittsfläche, PlanflächeLight entry surface, plane surface
84, 284, 484, 68484, 284, 484, 684
Lichtaustrittsflächen von (81, 281, 481, 681)Light emission surfaces of (81, 281, 481, 681)
8585
MittenquerflächeMiddle transverse surface
8686
Unterkante von (84)Lower edge of (84)
8787
Oberkante von (83)Top edge of (83)
8888
Oberkante von (84)Top edge of (84)
8989
Krümmungsmittelpunkt von (84)Center of curvature of (84)
90, 290, 49090, 290, 490
Sekundärlinsensecondary lenses
9191
Befestigungsflanschemounting flanges
101, 301, 501101, 301, 501
obere Linsensegmenteupper lens segments
103103
LichteintrittsflächeLight entry surface
104, 304, 504104, 304, 504
Lichtaustrittsfläche von (101, 301, 501Light exit surface of (101, 301, 501
109109
KrümmungsmittelpunktCenter of curvature
111, 311, 511111, 311, 511
mittlere Linsensegmentemiddle lens segments
113113
LichteintrittsflächeLight entry surface
114, 314, 514114, 314, 514
Lichtaustrittsflächen von (111, 311, 511)Light exit surfaces of (111, 311, 511)
118118
Konturcontour
119119
KrümmungsmittelpunktCenter of curvature
121, 321, 521121, 321, 521
untere Linsensegmentelower lens segments
123123
LichteintrittsflächeLight entry surface
124, 324, 524124, 324, 524
Lichtaustrittsflächen von (121, 321, 521)Light-emitting surfaces of (121, 321, 521)
126126
Unterkante von (123)Lower edge of (123)
128128
Kontur von (124)Contour of (124)
129129
Mittelpunkt von (128)Center of (128)
130, 530130, 530
Spiegelmirror
131131
Reflexionsbereichreflection area
140140
Lichtlight
141 - 143141 - 143
TeillichtbündelDivided light beam
150, 350, 550150, 350, 550
ausgeleuchtete Bereiche, Lichtverteilungilluminated areas, light distribution
151, 351, 551151, 351, 551
Hot-Spots, ZielgebietHot spots, target area
152152
Intensitätsmaximum von (151)Intensity maximum of (151)
153, 353, 553153, 353, 553
Oberkante, Cut-off LinieTop edge, cut-off line
154, 554154, 554
15 -Grad-Anstieg15-degree increase
155155
Begrenzungenlimitations
156, 356, 556156, 356, 556
Horizontebenehorizon plain
159, 359, 559159, 359, 559
Linienlines
162, 166162, 166
Parallelstrahlen von (165)Parallel rays of (165)
163, 167163, 167
Knotenpunktstrahlen von (165)Node rays of (165)
164, 168164, 168
Brennpunktstrahlen von (165)Focus rays of (165)
165165
Objektobject
172, 176172, 176
Parallelstrahlen von (175)Parallel rays of (175)
173, 177173, 177
Knotenpunktstrahlen von (175)Node rays of (175)
174, 178174, 178
Brennpunktstrahlen von (175)Focus rays of (175)
175175
Objektobject
180180
Objektobject
181181
virtuelles Bild von (81)virtual picture of (81)
182182
Parallelstrahl von (185)Parallel beam of (185)
183183
Knotenpunktstrahl von (185)Node beam of (185)
184184
Brennpunktstrahl von (185)Focal point of (185)
185185
virtuelles Objektvirtual object
186186
Parallelstrahl von (185)Parallel beam of (185)
187187
Knotenpunktstrahl von (185)Node beam of (185)
188188
Brennpunktstrahl von (185)Focal point of (185)
189189
virtuelles Bild von (87)virtual image of (87)
561561
Hypotenusehypotenuse

Claims (16)

  1. An antidazzle headlamp including at least one light module, wherein each light module includes at least one light source disposed downstream of at least one primary lens and wherein the light source is a light emitting diode,
    characterized in
    - that the antidazzle headlamp (10, 210, 410) includes at least one secondary lens (90, 290, 490), the at least one secondary lens (90, 290, 490) being disposed optically downstream of the at least one primary lens (50, 250, 450, 650);
    - that the primary lens (50, 250, 450, 650) together with the secondary lens (90, 290, 490) are provided with at least two lens segments (61, 71, 81; 101, 111, 121; 261, 271, 281; 301, 311, 321; 461, 471, 481; 501, 511, 521; 661, 671, 681) which are arranged over one another;
    - that one lens segment (101, 111, 121; 301, 311, 321; 501, 511, 521) of the secondary lens (90, 290, 490) is associated with at least one lens segment (61, 71, 81; 261, 271, 281; 461, 471, 481, 661, 671, 681) of one primary lens (50; 250; 450, 650);
    - that during operation of the light source (30) the edges (76, 87) of the light entry plane (73, 83) generate objects (175, 185) in the lens segments (71, 81) of the primary lens (50; 250; 450; 650), and the secondary lens (90, 290, 490) projects these objects (175, 185) and images it in at least in a vertical direction; and
    - that the rays (177, 187) exiting from the secondary lens (90, 290, 490) are at least virtual focal point rays (177, 187) subtending an angle which is less than 1 degree, the rays both exiting from the aforementioned edge of both objects (175, 185) and a common vertical plane.
  2. An antidazzle headlamp as claimed in claim 1, characterized in that the product of the minimum curvature of the surface of the light exit plane (104, 114, 124; 304, 314, 324; 504, 514, 524) of the secondary lens (90, 290, 490) and the object height of the primary lens (50, 250, 450) in the vertical mid-plane (21) of the light module (20, 220, 420, 620) for each paring of the lens segments (61, 101; 71, 111; 81, 121; 261, 301; 271, 311; 281, 321; 461, 501; 471, 511; 481, 521; 661, 501; 671, 511; 681, 521) from the primary lens (50, 250, 450) and the secondary lens (90, 290, 490) are maximally differing from one another by 30%.
  3. An antidazzle headlamp as claimed in claim 1, characterized in that the surface of the light exit plane (104, 114, 124; 304, 314, 324; 504, 514, 524) of all of the lens segments (101, 111, 121; 301, 311, 321; 501, 511, 521) of the secondary les (90, 290, 490) are convexly curved in at least in the vertical mid-plane (21).
  4. An antidazzle headlamp as claimed in claim 1, characterized in that all the lens segments (101, 111, 121; 301, 311, 321; 501, 511, 521) of the secondary lens (90, 290, 490) comprises at least a homogeneous portions of optical lenses.
  5. An antidazzle headlamp as claimed in claim 1, characterized in that in a plan of a light module (20, 220, 520, 620) there is included at least a mirror (130, 530) between the primary lens (50, 250, 450, 650) and the secondary lens (90, 290, 490), the mirror reflecting a picture of the object (180) completely in the direction of the corresponding lens segments (121, 321, 521) of the secondary lens (90, 290, 490).
  6. An antidazzle headlamp as claimed in claim 5, characterized in that the mirror (130, 530) is a planar mirror, or that the mirror (130, 530) is a section of a cone-shaped surface, wherein the virtual cone axis lies outside the antidazzle headlamp (10, 210, 410).
  7. An antidazzle headlamp as claimed in claim 6, characterized in that in the cross-section of the vertical mid-plane (21) through a light module (20, 220, 420, 620) of the mirror (130, 530) is normal to the plane of the semiangle of the light entry plane (83, 123) of the lens segments (81, 281, 481, 681) of the primary lens (50, 250, 450, 650) and of its corresponding lens segments (121, 321, 521) of the secondary lens (90, 290, 490).
  8. An antidazzle headlamp as claimed in claim 1, characterized in that the breadth of each of the lens segments (61, 71, 81, 101, 111, 121; 261, 271, 281, 301, 311, 321; 461, 471, 481, 501, 511, 521, 661, 571, 681) normal to the vertical mid-plane (21) is larger than its height in the vertical mid-plane (21).
  9. An antidazzle headlamp as claimed in claim 1, characterized in that the primary lens (50, 250, 450, 650) and the secondary lens (90, 290, 490) are each provided with three lens segments (61, 71, 81; 101, 111, 121; 261, 271, 281; 301, 311, 321; 461, 471, 481; 501, 511, 521, 661, 671, 681),
  10. An antidazzle headlamp as claimed in claim 1, characterized in that at least two mutually associated lens segments (111, 121; 311, 321, 511, 521) of the secondary lens (90, 290, 490) have light exit planes (114, 124; 314, 324; 514, 524), the exit planes being portions of a cylindrical exterior surface or a toroidal exterior surface.
  11. An antidazzle headlamp as claimed in claim 1, characterized in that for each point of an edge (76) of the light entry plane (73) of the lens segments (71; 271; 471; 671) of the primary lens (50; 250; 450; 650) there is a point of the corresponding light exit plane (114; 314; 514) of the secondary lens (90; 290; 490), wherein these points lie on a straight line, the line being normal to a tangential plane (23) of the point in the light exit plane (114; 314; 514) and being normal to a tangential plane in the intersection point of the straight line through the light entry plane (113) of the secondary lens (90; 290; 490).
  12. An antidazzle headlamp as claimed in claim 11, characterized in that for each point of a homogenous edge (189) of a second lens segment (181) there is a point of the corresponding light exit plane (124; 324; 524) of the secondary lens (90, 290, 490), wherein this point lies on a straight line, the line being normal to a tangential plane (24) in which the light exit plane (124; 324; 524) is normal to a tangential plane of the point in the light exit plane (124; 324; 524)and being normal to a tangential plane in the intersection point of the straight line through the light entry plane (123) of the secondary lens (90; 290; 490), and that two of the aforementioned straight lines subtend an angle which is less than 1 degree, the two straight lines lying in a mutually common vertical plane.
  13. An antidazzle headlamp as claimed in claim 1, characterized in that the sum of the radii of curvature of at least one surface element of the surface of a light exit plane (64, 26, 464, 664) in two mutually normal planes is smaller than the sum of the radii of curvature of at least a surface element of the surface of one other light exit plane (74, 84; 274, 284; 474, 484, 674, 684) of the primary lens (50, 250, 450, 650) in two mutually normal planes.
  14. An antidazzle headlamp as claimed in claim 1, characterized in that the opening angle of a light bundle (142) in a horizontal direction is greater than in a vertical direction, wherein the opening angle in the vertical direction is equal to or smaller than 10 degrees.
  15. An antidazzle headlamp as claimed in claim 1, characterized in that, in operation, the light source (30) does not fully illuminate the light exit plane (64, 74, 84; 264, 274, 284; 464, 474, 484; 664, 674, 684) of the primary lens (50, 250, 450, 650).
  16. An antidazzle headlamp as claimed in claim 1, characterized in that, in operation, the light source (30) does not fully illuminate the light exit plane (104, 114, 124; 304, 314, 324; 504, 514, 524) of the secondary lens (90, 290, 490).
EP07002685A 2006-02-14 2007-02-08 Dipped headlight which creates a strongly contrasted cut-off Expired - Fee Related EP1818599B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006006635A DE102006006635A1 (en) 2006-02-14 2006-02-14 Low beam headlamp, which produces a high-contrast cut-off

Publications (3)

Publication Number Publication Date
EP1818599A2 EP1818599A2 (en) 2007-08-15
EP1818599A3 EP1818599A3 (en) 2007-09-26
EP1818599B1 true EP1818599B1 (en) 2009-05-06

Family

ID=37904385

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07002685A Expired - Fee Related EP1818599B1 (en) 2006-02-14 2007-02-08 Dipped headlight which creates a strongly contrasted cut-off

Country Status (4)

Country Link
US (1) US20070236950A1 (en)
EP (1) EP1818599B1 (en)
CN (1) CN101025259A (en)
DE (2) DE102006006635A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006006634A1 (en) * 2006-02-14 2007-08-16 Schefenacker Vision Systems Germany Gmbh Low beam headlamp with hot spot generation
DE102008056403B4 (en) * 2008-11-07 2016-10-06 Hella Kgaa Hueck & Co. Headlights for vehicles
FR2944578B1 (en) * 2009-04-21 2013-08-02 Valeo Vision Sas MODULE AND LIGHTING DEVICE FOR VEHICLE WITH ENHANCED ROAD FUNCTION
AT508604B1 (en) * 2009-07-31 2012-07-15 Zizala Lichtsysteme Gmbh LED MOTOR VEHICLE HEADLIGHT FOR GENERATING A DYNAMIC LIGHT DISTRIBUTION
JP5808620B2 (en) * 2011-09-06 2015-11-10 株式会社小糸製作所 Vehicle headlamp device and vehicle headlamp control system
DE102011085314B3 (en) * 2011-10-27 2013-04-11 Automotive Lighting Reutlingen Gmbh Light module for illumination device e.g. headlight of motor car, has primary optics having one lens element that is formed by translation of ellipse portion and light exit surface of another lens element in sectional plane
CN104603524B (en) * 2012-08-28 2017-03-01 三菱电机株式会社 Head lamp light source and headlamp
DE102012223658A1 (en) * 2012-12-18 2014-06-18 Automotive Lighting Reutlingen Gmbh Motor vehicle headlight with a glare-free high beam
CN105358902B (en) * 2013-06-26 2018-06-22 市光工业株式会社 Lamps apparatus for vehicle
DE102013215359B3 (en) * 2013-08-05 2015-02-19 Automotive Lighting Reutlingen Gmbh Mechanically-free bend lighting module
KR20150018288A (en) * 2013-08-09 2015-02-23 현대모비스 주식회사 Lamp for vehicle and Vehicle having the same
DE102014203335A1 (en) * 2014-02-25 2015-08-27 Automotive Lighting Reutlingen Gmbh Light module of a motor vehicle headlight and headlights with such a light module
WO2015178155A1 (en) * 2014-05-23 2015-11-26 スタンレー電気株式会社 Lens body, combined lens body, and vehicular lamp fitting
AT516555B1 (en) * 2014-12-10 2016-09-15 Zizala Lichtsysteme Gmbh Headlights for vehicles
US9863596B2 (en) * 2016-01-29 2018-01-09 Chun-Te Wu Optical element, optical module, and lens carrier
FR3056694B1 (en) * 2016-09-29 2020-06-19 Valeo Vision LIGHTING DEVICE FOR A MOTOR VEHICLE COMPRISING A LIGHT GUIDE
CN106439682B (en) * 2016-09-30 2018-12-25 武汉通畅汽车电子照明有限公司 A kind of condenser for dipped beam car light mould group
CN110145708A (en) * 2019-06-13 2019-08-20 周翔 A kind of coal mining tunnel lamp
KR20220021309A (en) * 2020-08-13 2022-02-22 현대모비스 주식회사 Lamp for automobile and automobile including the same
CN114353012A (en) * 2021-12-29 2022-04-15 马瑞利汽车零部件(芜湖)有限公司 Car lamp module system with extremely narrow opening capable of being freely combined

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2512623A (en) * 1944-06-27 1950-06-27 Bristol Steel & Iron Works Inc Headlight lens
JP3904760B2 (en) * 1999-05-17 2007-04-11 株式会社小糸製作所 Vehicle sign light
JP4100151B2 (en) * 2002-12-02 2008-06-11 市光工業株式会社 Automotive headlamps, reflectors for automotive headlamps
DE10308704A1 (en) * 2003-02-28 2004-11-11 Audi Ag Headlamp with white light LED for road vehicle has reflector and aspherical collimating lens and has opaque barrier in lower part of beam between collimating and scattering lenses
JP4314911B2 (en) * 2003-08-20 2009-08-19 スタンレー電気株式会社 Vehicle headlamp
JP4115921B2 (en) * 2003-11-04 2008-07-09 株式会社小糸製作所 Vehicle headlamp
JP2005158362A (en) * 2003-11-21 2005-06-16 Stanley Electric Co Ltd Lighting fixture for vehicle
US8223444B2 (en) * 2005-01-07 2012-07-17 Olympus Corporation Medium exhibiting negative refraction, optical element, and optical system
DE102005030932B4 (en) * 2005-06-30 2022-01-13 HELLA GmbH & Co. KGaA headlights for vehicles

Also Published As

Publication number Publication date
US20070236950A1 (en) 2007-10-11
EP1818599A3 (en) 2007-09-26
DE502007000678D1 (en) 2009-06-18
DE102006006635A1 (en) 2007-08-16
CN101025259A (en) 2007-08-29
EP1818599A2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
EP1818599B1 (en) Dipped headlight which creates a strongly contrasted cut-off
EP1818600B1 (en) Dipped headlight with hot spot generation
DE102005003367B4 (en) Light unit with light divider
DE102004005932B4 (en) vehicle headlights
EP2910847B1 (en) Light module of a motor vehicle headlight and headlight with such a light module
EP2799761B1 (en) Light module for a motor vehicle headlamp
DE102009053581B3 (en) Light module for a lighting device of a motor vehicle
DE602004002043T2 (en) Elliptical illumination unit without light aperture for generating a low beam and headlights with such a barking unit
EP2799762B1 (en) Light module for a motor vehicle headlamp
DE102004043706B4 (en) Optical system for a motor vehicle headlight, lighting unit for a motor vehicle headlight and motor vehicle headlight
EP3080513B1 (en) Motor-vehicle lighting device
EP2523022B1 (en) Lighting module of a motor vehicle headlamp for creating a variable light distribution and motor vehicle headlamp with such a lighting module
EP2505910B1 (en) Motor vehicle headlamp with a semiconductor light source
DE102009037698A1 (en) Vehicle lighting unit and vehicle light
DE19814480A1 (en) Headlamp for cars according to projection principle
DE102008036845B4 (en) lighting device
DE19814479A1 (en) Headlamp for cars according to projection principle
DE102018105720B4 (en) Light module for motor vehicle headlights
EP1577608A2 (en) Lamp with an optical structure for influencing the radiation
DE202014003075U1 (en) lighting device
WO2019076550A1 (en) Lighting device for a motor vehicle headlight
EP3719391B1 (en) Partial high beam module for a motor vehicle headlight
DE202016104672U1 (en) Motor vehicle light with a linear faceted reflector
DE4429839A1 (en) Vehicle headlamp design
DE102011087308A1 (en) Lighting device with reflector, lens and aperture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080307

AKX Designation fees paid

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ODELO GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 502007000678

Country of ref document: DE

Date of ref document: 20090618

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100209

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120222

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140219

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007000678

Country of ref document: DE

Representative=s name: KAUFMANN, URSULA, DIPL.-PHYS. DR.RER.NAT., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007000678

Country of ref document: DE

Representative=s name: RPK PATENTANWAELTE REINHARDT, POHLMANN UND KAU, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140219

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007000678

Country of ref document: DE

Representative=s name: RPK PATENTANWAELTE REINHARDT, POHLMANN UND KAU, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007000678

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140208