EP2776379A1 - Céramique transparente - Google Patents

Céramique transparente

Info

Publication number
EP2776379A1
EP2776379A1 EP12783991.8A EP12783991A EP2776379A1 EP 2776379 A1 EP2776379 A1 EP 2776379A1 EP 12783991 A EP12783991 A EP 12783991A EP 2776379 A1 EP2776379 A1 EP 2776379A1
Authority
EP
European Patent Office
Prior art keywords
transparent ceramic
μιτι
ceramic
ceramic according
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP12783991.8A
Other languages
German (de)
English (en)
Inventor
Lars Schnetter
Frank Wittig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceramtec ETEC GmbH
Original Assignee
Ceramtec ETEC GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramtec ETEC GmbH filed Critical Ceramtec ETEC GmbH
Publication of EP2776379A1 publication Critical patent/EP2776379A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/115Translucent or transparent products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Definitions

  • the present invention is a transparent ceramic, process for their preparation and their use.
  • the invention relates to a transparent high-strength ceramic which comprises all transparent ceramic materials, e.g. Mg-Al spinel, AION, yttrium aluminum garnets, yttria, zirconia, etc. Particularly interesting are the materials with increased mechanical strength and in particular protective ceramics, such as Mg-Al spinel, AION, alumina, etc.
  • transparent ceramic materials e.g. Mg-Al spinel, AION, yttrium aluminum garnets, yttria, zirconia, etc.
  • protective ceramics such as Mg-Al spinel, AION, alumina, etc.
  • Vehicles such as military vehicles or sometimes even civil vehicles to protect against fire, these are armored.
  • the armor is usually done by means of a metal or a metal-ceramic system.
  • windows such as side windows, windscreens or the like. contain.
  • These areas are, for example, equipped with bulletproof glass.
  • armored glass is known to have a significantly lower ballistic efficiency compared to hard core ammunition than composite or metal armor systems.
  • the window panes equipped with bulletproof glass are weak points of the vehicle. A sufficient protection performance can only be achieved by using very large weights, which significantly reduces the mobility of vehicles as well as admission limits.
  • Transparent ceramic has an improved protective behavior compared to bulletproof glass. For this reason, looking for alternatives to bulletproof glass relatively early. These were mainly found in ceramics such as spinel and AION. These ceramics have improved mechanical properties, such as increased strength and hardness, compared to bulletproof glass. In the known ceramics, however, it is difficult, in contrast to bulletproof glass, to produce virtually defect-free components. Usually remain in the components made of transparent ceramic single larger defects> 100 ⁇ . Examples of such defects are in particular pores, caused by pores in the Starting powder for the transparent ceramics, as well as Granulatrelikte, pressing errors, degassing, organic inclusions, or the like. Although these defects do not necessarily affect the transparency measurement, they are a hindrance to visibility and thus to be avoided. Inclusions, which are not reliably avoidable, especially in pressing processes, reduce the usefulness of the ceramic material, especially when used as a transparent ceramic protective material. There is also another effect:
  • HEL Human Elastic Limit
  • a high four-point bending strength is a good measure to characterize the component.
  • MER Corporation has prepared a spinel having a four point bending strength of about 300 MPa.
  • hot-pressed components which are usually produced with the aid of LiF, the pores have a smooth surface which promotes transparency and are therefore not visually disadvantageous.
  • microscopic analysis it can be shown that larger pores are present, and in addition the large crystals due to the high process temperatures also have a strength-lowering effect.
  • the maximum four-point bending strengths are on average ⁇ 300 MPa (MER specifications).
  • the ceramics with grain sizes ⁇ 1 ⁇ m produced according to EP 1 557 402 A2 also appear to have the strength-reducing elements, since the strengths specified there are even below the strengths of hot-pressed components at 200-250 MPa. Although no sizes of individual inclusions are disclosed, but the low strength causes such inclusions, since even with particle sizes of> 50 ⁇ higher strengths can be measured.
  • the present invention improves the application possibilities of transparent ceramics under increased mechanical load and thus enables the more efficient use of this ceramic, as, for example, thinner components can be manufactured and used, which, however, can fulfill the same function as thicker components with lower strength due to their lower tendency to fracture. This advantage becomes particularly clear when used as ballistic protection.
  • Another important parameter for the quality of a transparent ceramic is the scattering loss in the ceramic. Scattering losses in the ceramic are caused by stains in the ceramic. In order to minimize scattering losses in the ceramic as low as possible, the smallest possible stain frequency is therefore essential. Only thereby is it possible to achieve a corresponding optical quality for numerous applications such as optical lenses, protective glasses, sight glasses, lasers in the wear area, etc. If the number of scattering centers is too large or too large in general, the optical quality of a transparent ceramic is drastically reduced.
  • the invention is therefore based on the object to provide transparent ceramics with high strengths, which is paired with a high transparency (RIT> 75%) and high optical quality.
  • This object is achieved by the features of claim 1.
  • Preferred embodiments or further developments of the invention are characterized in the subclaims.
  • the object underlying the invention could be achieved by a ceramic whose mean grain size moves in a certain range.
  • a ceramic with very fine mean particle sizes for example, if instead of a ceramic with average particle sizes in the range of ⁇ 1 ⁇ , a ceramic with average particle sizes in Range of> 10 to ⁇ 100 ⁇ , preferably a ceramic having average particle sizes in the range of> 10 to 50 ⁇ , more preferably a ceramic having average particle sizes in the range of> 10 to 20 ⁇ , most preferably a ceramic with average grain sizes in the range is provided from 1 1 to 20 ⁇ , which has a high transparency (RIT> 75%) and a high optical quality.
  • the raw materials to be used according to the invention have an average primary particle size d50 of ⁇ 2 ⁇ m, preferably of 5 to 500 nm and a purity of> 99.5%, preferably of> 99.9%, ie. largest contamination ⁇ 0.5% and ⁇ 0.1%, respectively.
  • the mean grain size is determined by the line-cut method according to DIN EN 623, the RIT value on a 2 mm thick, polished disk with light of the wavelength of 600 nm.
  • the high optical quality is characterized in the context of the present invention by the degree of spotting frequency, determined by the method described below.
  • a preferred ceramic according to the invention has a stain frequency of ⁇ 10%, a particularly preferred ceramic according to the invention has a stain frequency of ⁇ 1%.
  • Another essential aspect of transparent ceramics is the need for good polishability and further processing of the ceramics, since this significantly influences a large proportion of the overall costs. It has surprisingly been found that in a ceramic according to the invention with average particle sizes in the range of> 10 to ⁇ 100 ⁇ , especially in a ceramic according to the invention with average particle sizes in the range of> 10 to 20 ⁇ not in ceramics with average particle sizes in the range of ⁇ 10 ⁇ incipient significant fine grain hardening can be determined.
  • the known in the prior art ceramics with average particle sizes in the range of ⁇ 10 m significantly onset fine grain hardening not only complicates the processing of the ceramic but also deteriorates the fracture behavior.
  • Another advantage of the ceramic according to the invention is its particularly good ballistic performance, which was found by bombardment tests in comparison to fine-crystalline ceramic (particle size ⁇ 1 ⁇ ).
  • the ballistic advantages of the ceramic according to the invention are particularly surprising since their hardness is lower, but the fracture behavior is better than that of the very fine ceramics known from the prior art (for example EP 1 557 402 A2, DE 10 2004 004 259).
  • both the hardness and the fracture behavior of the ceramic according to the invention are better in comparison with the known coarsely crystalline ceramics (for example US 2004/0266605, US 5,001,093, US 4,983,555).
  • the multiple bombardment is favored (multihit resistance), ie the triangular bombardment of a transparent ballistic target produced from the ceramic according to the invention.
  • An average grain size in the range from> 10 to ⁇ 100 ⁇ , in particular an average grain size in the inventive range of> 10 up to 50 ⁇ also allows optimal processing, easier cutting (eg water jet) than with finely crystalline material (lower hardness than fine crystalline material), simplified grinding, polishing against coarse-grained material (the emerging crystals are smaller).
  • the simplified processing allows important freedom in the later design of any free-form surfaces. This is of particular interest in the design of curved windows for civil protected vehicles.
  • Another advantage of the ceramic according to the invention lies in the significantly lower production costs, since coarser and thus cheaper powder can be used (the average (final) grain size is in the range of> 10 to ⁇ 100 ⁇ ), an optimal hard machining and cheaper manufacturing processes possible are. Since the raw materials in a general economic manufacturing process account for the vast majority of the manufacturing costs, it is precisely through the use of coarser raw materials possible to produce a significantly cheaper product.
  • Transparent ceramic having a RIT> 75% with average grain sizes in the range of> 10 to ⁇ 100 ⁇ m, measured on a 2 mm thick, polished disk with light of wavelength 600 nm, preferably a transparent ceramic with average grain sizes in the range of> 10 to
  • a transparent ceramic with average particle sizes in the range of> 10 to 20 ⁇ particularly preferably a transparent ceramic with average particle sizes in the range of 1 1 to 20 ⁇ ;
  • Preferred is a transparent ceramic as described above
  • Mg-Al spinel AION, alumina, yttrium aluminum garnet, yttria, zirconia;
  • the ceramic according to the invention can be used for example in ballistics.
  • the granules are then uniaxially pressed at 160 MPa into a 50 mm x 50 mm plate which, due to its homogeneity, can be densely sintered at 1500 ° C. Thereafter, a HIP process is also carried out at 1500 ° C and 2000 bar. After the HIP process results in a measured density of 3.575 g / cm 3 which is determined according to the Archimedes method analogous to DIN EN 623-2. This represents a density of> 99.9%. The high homogeneous density results in a RIT value of 83% - with 0.2% fluctuation within the produced board. The existing stain content is ⁇ 0.5%.
  • the average grain size of the ceramic determined according to the line-cut method according to DIN EN 623 is 12 ⁇ +/- 0.5 ⁇ after thermal etching of the polished samples.
  • FIG. 1 shows a photograph of a cold isostatically pressed sample of pure powder.
  • the stain analysis procedure described below provides information on stain size distribution, stain frequency and the sum of stains within the sample.
  • the sample center or the sample surface is focused in the light microscope and an image is taken. This image is subdivided into white and black areas via automated image processing, so that a clear visual difference between spots and transparent areas can be recognized.
  • Typical images after microscopic analysis (left) and after image processing (right) are shown in FIG. Use is a 6.3x magnification and a screen area of 1280 * 1024 pixels.
  • the accuracy of the evaluation is determined by the resolution (default 1280 * 1024 pixels) and the error size and magnification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Ceramic Products (AREA)

Abstract

L'invention concerne une céramique transparente et son utilisation. Cette céramique transparente présente une valeur RIT > 75% mesurée au niveau d'une plaque polie d'une épaisseur de 2 mm au moyen d'une lumière présentant une longueur d'onde de 600 nm, ainsi qu'une granulométrie moyenne strictement supérieure à 10 et inférieure ou égale à 100 micromètres, de préférence strictement supérieure à 10 et jusqu'à 50 micromètres, encore mieux strictement supérieure à 10 jusqu'à 20 micromètres. Cette céramique transparente se présente par exemple sous la forme de Mg-Al-spinelle, ALON, oxyde d'aluminium, grenat d'aluminium d'yttrium ou d'oxyde de zircon.
EP12783991.8A 2011-11-07 2012-11-07 Céramique transparente Ceased EP2776379A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011085868 2011-11-07
PCT/EP2012/072055 WO2013068418A1 (fr) 2011-11-07 2012-11-07 Céramique transparente

Publications (1)

Publication Number Publication Date
EP2776379A1 true EP2776379A1 (fr) 2014-09-17

Family

ID=47148806

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12783991.8A Ceased EP2776379A1 (fr) 2011-11-07 2012-11-07 Céramique transparente

Country Status (12)

Country Link
US (1) US20140360345A1 (fr)
EP (1) EP2776379A1 (fr)
JP (1) JP6195838B2 (fr)
KR (1) KR20140103111A (fr)
CN (1) CN104024179A (fr)
AR (1) AR088684A1 (fr)
BR (1) BR112014010888A8 (fr)
DE (1) DE102012220257A1 (fr)
IL (1) IL232465A0 (fr)
IN (1) IN2014CN04116A (fr)
RU (1) RU2014123066A (fr)
WO (1) WO2013068418A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220397A (zh) * 2011-11-10 2014-12-17 陶瓷技术-Etec有限责任公司 借助流化床造粒制备透明陶瓷物品的方法
CN106715361A (zh) 2014-05-21 2017-05-24 陶瓷技术-Etec有限责任公司 陶瓷的轻迫
EP2949633B1 (fr) 2014-05-27 2019-04-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Céramiques de Spinelle transparentes et leur procédé de fabrication
WO2015181066A1 (fr) 2014-05-27 2015-12-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Céramiques à base de spinelle, transparentes, et leur procédé de fabrication
DE102014210071A1 (de) 2014-05-27 2015-12-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transparente Spinellkeramiken und Verfahren zu ihrer Herstellung
US9309156B2 (en) 2014-05-27 2016-04-12 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Transparent spinel ceramics and method for the production thereof
WO2015181975A1 (fr) * 2014-05-30 2015-12-03 住友電気工業株式会社 Plaque de protection de panneau tactile à cristaux liquides
US9287106B1 (en) 2014-11-10 2016-03-15 Corning Incorporated Translucent alumina filaments and tape cast methods for making
CN106166792A (zh) 2015-10-16 2016-11-30 圣戈本陶瓷及塑料股份有限公司 具有复杂几何形状的透明陶瓷和其制造方法
WO2018013387A1 (fr) * 2016-07-13 2018-01-18 Tosoh Smd, Inc. Cible de pulvérisation d'oxyde de magnésium et son procédé de fabrication
DE102016009730A1 (de) 2016-07-28 2018-02-01 Forschungszentrum Jülich GmbH Verfahren zur Verstärkung von transparenten Keramiken sowie Keramik
WO2018174814A1 (fr) * 2017-03-23 2018-09-27 Dso National Laboratories Matériau de protection
WO2020120458A1 (fr) 2018-12-14 2020-06-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procédé pour fabriquer des pièces céramiques transparentes minces et pièces céramiques transparentes minces
CN113185301B (zh) * 2021-04-23 2022-11-18 北京科技大学 一种AlON透明陶瓷的快速制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2112127A1 (fr) * 2007-01-23 2009-10-28 World Lab. Co., Ltd. Céramiques transparentes de type spinelles, leur procédé de fabrication et matériau optique utilisant les céramiques transparentes de type spinelles

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285732A (en) * 1980-03-11 1981-08-25 General Electric Company Alumina ceramic
US4686070A (en) * 1981-08-31 1987-08-11 Raytheon Company Method of producing aluminum oxynitride having improved optical characteristics
US4983555A (en) 1987-05-06 1991-01-08 Coors Porcelain Company Application of transparent polycrystalline body with high ultraviolet transmittance
US5001093A (en) 1987-05-06 1991-03-19 Coors Porcelain Company Transparent polycrystalline body with high ultraviolet transmittance
JPH07115917B2 (ja) * 1988-01-13 1995-12-13 新光電気工業株式会社 ムライトセラミック組成物
JPH0323269A (ja) * 1989-06-16 1991-01-31 Sumitomo Electric Ind Ltd 透光性酸窒化アルミニウム焼結体及びその製造方法
JP2001064075A (ja) * 1999-08-30 2001-03-13 Sumitomo Chem Co Ltd 透光性アルミナ焼結体およびその製造方法
US8211356B1 (en) * 2000-07-18 2012-07-03 Surmet Corporation Method of making aluminum oxynitride
US20040266605A1 (en) 2003-06-24 2004-12-30 Villalobos Guillermo R. Spinel and process for making same
DE102004004259B3 (de) 2004-01-23 2005-11-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transparente polykristalline Sinterkeramik kubischer Kristallstruktur
JP2006273679A (ja) * 2005-03-30 2006-10-12 Sumitomo Electric Ind Ltd スピネル焼結体、光透過窓および光透過レンズ
JP5000934B2 (ja) * 2006-06-22 2012-08-15 神島化学工業株式会社 透光性希土類ガリウムガーネット焼結体及びその製造方法と光学デバイス
US20080283522A1 (en) * 2007-05-14 2008-11-20 Shuyl Qin Translucent polycrystalline alumina ceramic
DE102010007359A1 (de) * 2009-08-31 2011-03-17 Ceramtec-Etec Gmbh Hochfeste transparente Keramik
US8278233B2 (en) * 2009-09-09 2012-10-02 Ngk Insulators, Ltd. Translucent polycrystalline sintered body, method for producing the same, and arc tube for high-intensity discharge lamp
KR20120098118A (ko) * 2011-02-28 2012-09-05 영남대학교 산학협력단 투명도가 향상된 다결정 산질화알루미늄의 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2112127A1 (fr) * 2007-01-23 2009-10-28 World Lab. Co., Ltd. Céramiques transparentes de type spinelles, leur procédé de fabrication et matériau optique utilisant les céramiques transparentes de type spinelles

Also Published As

Publication number Publication date
US20140360345A1 (en) 2014-12-11
IL232465A0 (en) 2014-06-30
DE102012220257A1 (de) 2013-05-08
AR088684A1 (es) 2014-06-25
RU2014123066A (ru) 2015-12-20
KR20140103111A (ko) 2014-08-25
JP6195838B2 (ja) 2017-09-13
IN2014CN04116A (fr) 2015-07-10
BR112014010888A8 (pt) 2017-06-20
CN104024179A (zh) 2014-09-03
WO2013068418A1 (fr) 2013-05-16
JP2014532615A (ja) 2014-12-08
BR112014010888A2 (pt) 2017-06-13

Similar Documents

Publication Publication Date Title
EP2776379A1 (fr) Céramique transparente
DE60036323T2 (de) Transluzente polykristalline Keramik und Verfahren zu ihrer Herstellung
EP0756586B1 (fr) Produit fritte d'al2o3, son procede de production et son utilisation
EP1863745B1 (fr) Produit calcine en ceramique refractaire
EP2819973B1 (fr) Procédé de fabrication d'un corps moulé fritté céramique composé d'oxyde de zircon stabilisé par y2o3
EP1557402A2 (fr) Céramique frittée polycristalline transparente avec une structure cristalline cubique
DE102011087147B4 (de) Titanoxidhaltige Aluminiumoxidpartikel auf Basis von im elektrischen Lichtbogenofen aus kalzinierter Tonerde geschmolzenem Korund sowie ein Verfahren zu deren Herstellung und ihre Verwendung
DE112015000214B4 (de) Gesinterter Cordieritkörper, Verfahren für dessen Herstellung und dessen Verwendung
DE102009030951A1 (de) Transparente Keramik und deren Herstellverfahren sowie die transparente Keramik anwendende optische Elemente
EP3029006B1 (fr) Produit refractaire, mélange de fabrication du produit, procédé de fabrication du produit ainsi qu'utilisation du produit.
EP3555023B1 (fr) Composite transparent
EP2739934B1 (fr) Vitre composite transparente pour applications de sécurité
DE102012220518A1 (de) Verfahren zur Herstellung transparenter Keramikgegenstände
DE102013226579A1 (de) Keramikwerkstoff
EP2157065B1 (fr) Procédé de fabrication d'une céramique transparente poly-cristalline
EP3310740B1 (fr) Céramique transparente en tant que constituant pour des éléments optiques incassables
EP2949633B1 (fr) Céramiques de Spinelle transparentes et leur procédé de fabrication
EP3490957B1 (fr) Procédé de renforcement de céramiques transparentes ainsi que céramique
EP3339258B1 (fr) Procédé de fabrication de verre de quartz opaque et ébauche en verre de quartz opaque
DE102015005778B3 (de) Hochspannungskondensator, Dielektrika mit definierter Oberflächenrauhigkeit für Hochleistungskondensatoren, sowie Verfahren zur Herstellung eines Dielektrikums
DE102010007359A1 (de) Hochfeste transparente Keramik
WO2001021547A1 (fr) NANO-GRAINS ABRASIFS COMPOSITES DE SiC-A12O3/SiC, LEUR PROCEDE DE PRODUCTION ET LEUR UTILISATION
Morital et al. SPARK PLASMA SINTERING (SPS) PROCESSSING OF HIGH STRENGTH TRANSPARENT MgAIZO4 SPINEL POLYCRYSTALS
WO2015181066A1 (fr) Céramiques à base de spinelle, transparentes, et leur procédé de fabrication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160706

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20190524