EP2766192B1 - Sicherheitselement - Google Patents

Sicherheitselement Download PDF

Info

Publication number
EP2766192B1
EP2766192B1 EP12773222.0A EP12773222A EP2766192B1 EP 2766192 B1 EP2766192 B1 EP 2766192B1 EP 12773222 A EP12773222 A EP 12773222A EP 2766192 B1 EP2766192 B1 EP 2766192B1
Authority
EP
European Patent Office
Prior art keywords
grid
bars
security element
line
grid bars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12773222.0A
Other languages
English (en)
French (fr)
Other versions
EP2766192A1 (de
Inventor
Hans Lochbihler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient Currency Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47040636&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2766192(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Giesecke and Devrient Currency Technology GmbH filed Critical Giesecke and Devrient Currency Technology GmbH
Publication of EP2766192A1 publication Critical patent/EP2766192A1/de
Application granted granted Critical
Publication of EP2766192B1 publication Critical patent/EP2766192B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • B42D2035/16
    • B42D2035/24
    • B42D2035/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/391Special inks absorbing or reflecting polarised light

Definitions

  • the invention relates to a security element for the production of value documents, such as banknotes, checks or the like, which has a line grid structure.
  • Security elements of value documents with periodic line grids are known, for example from the DE 102009012299 A1 . DE 102009012300 A1 . US 2010/0307705 A1 or the DE 102009056933 A1 , which discloses a security element according to the preamble of claim 1.
  • Such color filter properties are known for both reflective and transmissive subwavelength structures. These structures have a strong polarizing influence on the reflection or the transmission of an incident light beam. The color is relatively strongly dependent on the angle in reflection or transmission of such subwavelength gratings. However, the color saturation for these gratings weakens significantly when the incident light is unpolarized.
  • a line grating with subwavelength structures which has angle-dependent, color-filtering properties.
  • the line grid has a rectangular profile made of a dielectric material. The horizontal surfaces are covered with a high refractive dielectric. Above this structure is also a dielectric material, wherein preferably the refractive indices of the grating substrate and the cover material are identical.
  • an optically active structure is formed, which consists of two gratings of the high refractive index material, which are spaced apart by the height of the original rectangular profile.
  • the the line grid forming lattice webs are for example made of ZnS.
  • the DE 102006052413 A1 discloses a security element with a grid polarizer.
  • the WO 2005/071444 A2 describes a grid pattern with several grid fields.
  • the invention is therefore based on the object to provide a security element that shows a good color also when viewed, which changes preferably when tilting.
  • the security element for producing value documents such as banknotes, checks or the like comprises a dielectric substrate, a first grid structure embedded in the substrate of a plurality of longitudinally extending and arranged in a plane first grid bars of metal or semiconductor and a in the substrate embedded second line grid structure of longitudinally extending second metal or semiconductor grid bars located above the first line grid structure with respect to the plane.
  • the first grid bars have each have a width and are adjacent to each other at a distance, so that extending between the first grid bars along the longitudinal direction extending first grid column with the distance corresponding width.
  • the second line lattice structure is inverted to the first line lattice structure, wherein in plan view of the plane the second lattice webs over the first lattice columns and second lattice gaps, which exist between the second lattice webs, lie over the first lattice webs, and the width of the first lattice webs and the second lattice gaps the width of the second grid bars and the first grid column is below 300 nm.
  • These grids are at a distance from each other, so that there is no closed half or half metal film.
  • the thickness of the grid webs may be below 300 nm.
  • phase shift corresponds to half a period.
  • a double-line grating which consists of two superimposed complementary to one another, ie mutually shifted line grating structures.
  • a phase shift of 90 ° is the ideal value, which of course can be seen in the context of manufacturing accuracy.
  • 90 ° phase shift arise, since usually a rectangular profile is not perfect, but can be approximated only by a trapezoidal profile whose upper parallel edge is shorter than the lower parallel edge.
  • the line grid structures are made of metal or semiconductor or of a multilayer structure.
  • the layer thickness of the lattice webs is less than the modulation depth, that is, the spacing of the lattice planes of the line lattice structures.
  • the security element according to the invention can be produced by a layer construction by first providing a base layer on which the first line grid structure is formed. Then, a dielectric intermediate layer is applied, which covers the first line grid structure and is thicker than the grid bars of the first line grid structure. The displaced second line grid structure can then be formed thereon, and a dielectric cover layer forms the termination of the substrate embedding the line grid structure.
  • a particularly good color effect is obtained when the distance between the first and the second lattice webs, ie the modulation depth of the structure, is between 50 nm and 500 nm, preferably between 100 nm and 300 nm.
  • the distance is to be dimensioned by respective equivalent surfaces of the first and second line grid structure, i. for example, from the bottom of the first grid webs to the bottom of the second grid bars or from the top of the first grid bars to the top of the second grid bars.
  • the distance is of course to measure perpendicular to the plane, so called the height difference between the rectified surfaces of the grid bars.
  • Suitable materials for the grid bars metals come into question, for example, aluminum, silver, copper, gold, chromium, platinum and alloys of these materials.
  • the desired color effect is also evident when using semiconductors, such as silicon or germanium.
  • the first lattice webs of the first line lattice structure and / or the second lattice webs of the second line lattice structure may be provided with a multilayer coating, e.g. as a trilayer of two superimposed metal or semiconductor coatings with an intervening dielectric layer can be constructed.
  • the security element can be configured approximately color-neutral in the reflection even at approximately vertical angle of incidence. This has the advantage that the transmitted hue is not changed by the reflection.
  • Preferred for the grid structures of the security element is a fill factor of 0.5, i. same width for the grid bars as for the grid column. Such a fill factor is not mandatory. With a deviation from this, one can make the hue of the reflection for reflection from the front different for a reflection hue, which occurs in the reflection at the back of the security element.
  • the security element with the double-line grid shows angle-dependent color filtering for reflection and transmission. This angle dependence is particularly striking when the grid lines are perpendicular to the light incidence plane.
  • Color filtering can be used to make motifs multicolored so that they change color when tilted or twisted. It is therefore preferred that, in plan view of the plane, at least two regions are provided whose longitudinal directions of the line grid structures are oblique to one another, in particular at right angles. When viewed vertically, such a motif can be designed so that it has a uniform color in transmission and no other structure. If you rotate this motif around the vertical axis, the color of one area, for example of the background, changes differently than the color of the other area, for example a motif. Turning perpendicular to the viewing direction changes the colors of the subject as well as the subject Background to a complete color change. Because the grid area, whose grid lines are parallel to the plane of incidence, hardly changes its color when tilted.
  • the lattice structure has polarizing properties in transmission.
  • polarizing properties in transmission.
  • the security element shows different polarization properties depending on the orientation of the grating structures. It is therefore preferable to provide a security element which has at least two regions whose line grid structures extend along differently extending longitudinal directions. When viewed with polarized light, these areas show large differences in contrast, which facilitates machine reading.
  • a machine readout for example with a bright field camera and a polarizing filter, provides a contrast between these two areas, which serves to authenticate the security element.
  • the line grids in the individual areas may also have different geometry parameters in terms of width and spacing. In this case, however, the subject does not disappear when viewed vertically.
  • Fig. 1 shows in sectional view a security element S, which has a embedded in a substrate 1 double-line grid.
  • a first line grid structure 2 is incorporated, which is arranged in a plane L.
  • the first line grid structure consists of first grid bars 9 with the width a, which extend along a longitudinal direction perpendicular to the plane of the drawing. Between the first grid bars 3 there are first grid gaps 4, which have a width b.
  • the thickness of the first grid bars 3 is indicated by t.
  • the second line grid structure 6 is phase-shifted with respect to the first line grid structure 2 in such a way that the second grid bars 7 come to lie as exactly as possible (within the manufacturing accuracy) over the first grid columns 4.
  • second grid gaps 8, which exist between the second grid bars 7, lie over the first grid bars 3.
  • the thickness t is smaller than the height h, so that no continuous film of the grid bars 3 and 7 is formed.
  • the thickness t of the first lattice webs 2 is equal to the thickness t of the second lattice webs 7. This is for a simpler production benefit, but is not absolutely necessary. It is essential, however, that the modulation depth h, ie the height difference between the first line grid structure 2 and the second line grid structure 6, is greater than the sum of the thicknesses of the first grid bars 3 and the second grid bars 7, since otherwise there is no separation between the two line grid structures 2 and 6 would be given.
  • the security element S of Fig. 1 Reflects incident radiation E as reflected radiation R. Further, a radiation component is transmitted as transmitted radiation T.
  • the reflection and transmission properties depend on the angle of incidence ⁇ , as will be explained below.
  • the production of the security element S can take place, for example, by first applying the first line grid structure 2 and then an intermediate layer 5 to a base layer 9.
  • the second line grid structure with the second grid webs 7 can then be introduced into the grid column 4 depicted at the top.
  • a cover layer 10 covers the security element.
  • the refractive indices of the layers 9, 5 and 10 are substantially the same and may be, for example, about 1.5, in particular 1.56.
  • the measures b, a and t are in the sub-wavelength range, i. less than 300 nm.
  • the modulation depth is preferably between 50 nm and 500 nm.
  • Fig. 2b Analog shows the reflection and the Fig. 2c the absorption of the security element.
  • the angle of incidence ⁇ is in Fig. 1 Are defined.
  • the structure of the underlying security element essentially corresponds to that of Fig. 1 however, the first and second line grating structures are not made of metal but of ZnS with a layer thickness of 70 nm. As can be seen, no spectrally selective absorptions occur. The color properties in transmission are significantly worse. The chroma is only about a quarter and the brightness is also modulated with respect to the angle of incidence. Therefore, the color contrast in transmission is drastically deteriorated with a variation of the incident angle. Such a grating can at best be used in reflective operation, ie on a black background layer.
  • Fig. 3 and 4 show how the modulation depth ( Fig. 3 ) or the layer thickness ( Fig. 4 ) on the color properties of the security element of Fig. 1 or 2.
  • the representation takes place in the LCh color space.
  • the top line shows the brightness L *, the middle line the chroma C *, and the bottom line the hue h °.
  • the material for the line grid structure is aluminum, the substrate, and regions 4 and 5 of FIG Fig. 1 have a refractive index of 1.56. This value corresponds approximately to the refractive index of PET films and UV varnishes.
  • the brightness and the chroma in transmission increase with increasing modulation depth h.
  • a well-perceived color contrast is given in transmission when the transmitted brightness and chroma are higher than the reflected brightness and chroma. This is the case at modulation depths between 150 nm and 280 nm. It shows a much improved color property in transmission over the security element with ZnS grid bars.
  • Fig. 4 shows the influence of the layer thickness.
  • the material is again aluminum, and the geometric parameters d, b, h correspond to those of Fig. 2 , It turns out that a layer thickness in the range of 20 nm and 30 nm produces favorable color properties in transmission.
  • the brightness of the transmission is in the same order of magnitude of the brightness in reflection.
  • the chroma in transmission is significantly higher.
  • the angle-dependent color effect in transmission is not limited to only a line grid structure having a single metal layer or semiconductor layer in the grid bars.
  • the effects described are also obtained for double-line gratings whose lattice webs consist of several layers.
  • the total thickness of the layers is always smaller than the modulation depth h.
  • At least one of the layers consists of a metal or a semiconductor. Trilayers are particularly preferred for the layer structure. A larger number of layers hardly improves the angle-dependent color effect, but increases the manufacturing cost.
  • Fig. 6 shows by way of example a security element, in which the first and second lattice webs 3 and 7 are each realized by a trilayer coating. They have a metallic layer 11, a dielectric intermediate layer 12 and a further metallic layer 13. Preferably, but not necessarily, the thickness of the two metal layers is identical.
  • Fig. 7 shows the color values in the LCh color space for the security element S with the layer structure according to FIG Fig. 6 wherein the metal layers 11 and 13 are each 10 nm thick aluminum layers and the dielectric layer 12 is a silicon dioxide layer.
  • Fig. 7 shows the color effect as a function of the thickness of the silicon dioxide layer.
  • the substrate 1 and the regions 4 and 5 have, as in other embodiments, a refractive index of 1.56.
  • the security element shows a slightly lower brightness in transmission, but a higher chroma than in reflection. Silicon dioxide layer thicknesses above 60 nm cause a strong hue in transmission when tilted. In reflection, the security element appears green. At 70 nm layer thickness of silicon dioxide, the security element is approximately neutral in reflection at approximately vertical angles of incidence. This has the advantage that the transmitted hue is not changed by the reflection.
  • angle-dependent color filtering of the security elements described can now be used to make multi-colored motifs that change their color when tilted or twisted.
  • the simple embodiment of a multicolor motif with a double-line grid is an arrangement in which different areas are formed whose longitudinal direction of the line grid structures is rotated relative to one another, preferably by 90 °.
  • the spectral transmission or reflection characteristics hardly changes.
  • Fig. 8a and 8b show a security element in which areas of a background 14 of a motif 15 with vertically extending longitudinal direction and the motif 15 are formed with a horizontally extending longitudinal direction. In the presentation of the Fig. 8b you can see these line directions indicated schematically.
  • the motif 15 shows a butterfly and two numerical values.
  • Fig. 8a shows the motif 15 schematically in white on a black background.
  • the motif 15 as the background 14 are exemplary with the parameters of the embodiment according to Fig. 1 designed.
  • the Fig. 9a and 9b show different lighting conditions when the security element S the Fig. 8 in front of a backlight 16 is viewed in transmitted light.
  • the security element When viewed vertically (upper part of the figure Fig. 9a ), the security element appears uniform yellow in transmission. Now when the security element is rotated about the vertical axis, the color of the background 14 changes from yellow to blue. If tilted around the horizontal axis instead, the motif 15 will appear blue (lower illustration of the Fig. 9a ).
  • the situation for different azimuth angles shows the Fig. 9b , Here, the colors of the motif 15 and the background 14 change to a complete inversion.
  • the security element S also has polarization-filtering properties in transmission.
  • Fig. 10 shows the color behavior of a security element S with a line grid structure whose grid bars are made of aluminum, as a function of the modulation depth h in reflection (left column) and in transmission (right column) for TE and TM polarization at a normal angle of incidence.
  • the application otherwise corresponds to that of Fig. 3 ,
  • the security element has a good brightness contrast for the two polarization directions in transmission at a modulation depth above 150 nm. Furthermore, the change in chroma is particularly large for modulation depths between 200 nm and 260 nm. The color change has a maximum at a modulation depth of 270 nm.
  • Fig. 11 shows the influence of the layer thickness t for the grid of Fig. 10 at a modulation depth of 250 nm.
  • the security element has good polarization filter properties in transmission at layer thicknesses above 20 nm.
  • the chroma and the color contrast are particularly high at layer thicknesses between 20 nm and 30 nm.
  • a color change from blue to yellow is observed as the polarization of the illumination changes from TM polarization to TE polarization.
  • d 360 nm
  • b 180 nm
  • h 300 nm
  • Fig. 13 shows the color behavior when crystalline silicon is used instead of amorphous silicon. Otherwise the parameters correspond to those of the Fig. 12 ,
  • This security element shows clear brightness differences even for layer thicknesses above 40 nm.
  • the layer thickness of 100 nm is particularly well suited as a polarizing filter.
  • the orange / blue color contrast is strongest for a silicon layer thickness of 120 nm.
  • the line grid structure of the security element has polarization-filtering (so-called polarizing) properties in transmission.
  • Fig. 15 shows the color values in the LCh color space of a lattice damped with aluminum as a function the modulation depth h in reflection and in transmission for TM and TE polarization at normal angle of incidence. In the left column of the Fig. 15 are the color values in reflection, in the right column in transmission.
  • the structure of the grid corresponds to that of Fig.
  • Fig. 16 shows a representation similar to the Fig. 3 for a grid in which the grid bars 3.7 consist of a 40 nm copper layer. Otherwise, the parameters correspond to those of the security element of the Fig. 15 , Here, too, results in a modulation depth of 260 nm, a significant difference in color, which is approximately the basis of Fig. 15 corresponds described. If the layer thickness of the copper of the grid bars 3,7 is varied, the recognizable colors can be adjusted slightly differently.
  • the plot is made here as a function of the illumination wavelength in the near infrared.
  • the solid line shows the TM polarization, the dashed line the TE polarization of the illumination radiation. It can be seen clearly that for certain wavelengths a clearer Transmission and reflection difference between the two polarization directions exists.
  • Fig. 18 shows the transmission of the lattice of the Fig. 17a, b as a function of the wavelength in the visible spectral range. Again, there is a significant difference for the two polarization directions.
  • Fig. 19a shows the transmission and Fig. 19b the reflection of a grid with the parameters of the security element of the Fig. 15
  • the grid bars 3, 7 are formed here by a 100 nm thick silicon layer.
  • the solid and long dashed lines represent the TM polarization of the incident radiation.
  • the short-dashed and the dot-dash line the TE polarization.
  • the polarization filter properties of the security element allow authenticity checking by considering the transmission in linearly polarized illumination.
  • illumination is provided, for example, by LCD screens.
  • Even the blue sky is partially linearly polarized (in contrast to the cloudy sky) and may be suitable as a source of radiation for the investigation of the security element.
  • the polarization filter properties of the security element also allow a machine authenticity check by examining the contrast, for example in a specific spectral range. Contrast is to be understood as the different transmission and / or reflection in mutually orthogonal polarization directions.
  • the checking device thus illuminates the security element successively in two different polarization directions and detects the contrast between the two images obtained thereby. This procedure allows a simple machine check of the security element, which is much more expensive or not possible with other security elements.
  • Fig. 20 shows by way of example a rectangular area 16 which has ten partial areas 16.1 to 16.10 that differ with respect to the longitudinal direction of their line grid structure in such a way that the longitudinal direction changes in 10 ° steps from the vertical orientation (partial area 16.1) into a horizontal orientation (partial area 16.10) , If this structure is rotated in front of a polarized light source, the colors which are recognizable in TE or TM polarization interchange approximately continuously with increasing rotation angle over the partial regions 16.1 to 16.10 due to the polarization-filtering properties of the line grid structure.
  • the security element can serve in particular as a see-through window of banknotes or other documents. It may also be partially overprinted in color or the grid areas may be partially demetallized. Combinations with diffractive grating structures, such as holograms, are also conceivable.
  • the authenticity check of the security element can of course be made without tools. With the help of a polarizer, additional authentication can be performed without additional devices.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Credit Cards Or The Like (AREA)
  • Polarising Elements (AREA)

Description

  • Die Erfindung betrifft ein Sicherheitselement zur Herstellung von Wertdokumenten, wie Banknoten, Schecks oder dergleichen, das eine Liniengitterstruktur aufweist.
  • Sicherheitselemente von Wertdokumenten mit periodischen Liniengittern sind bekannt, beispielsweise aus der DE 102009012299 A1 , DE 102009012300 A1 , US 2010/0307705 A1 oder der DE 102009056933 A1 , die ein Sicherheitselement nach dem Oberbegriff des Anspruchs 1 offenbart. Sie können im Subwellenlängenbereich Farbfiltereigenschaften aufweisen, wenn das Gitterprofil so ausgelegt ist, dass Resonanzeffekte im sichtbaren Wellenlängenbereich auftreten. Solche Farbfiltereigenschaften sind sowohl für reflektierende als auch für transmittierende Subwellenlängenstrukturen bekannt. Diese Strukturen haben einen stark polarisierenden Einfluss auf die Reflexion bzw. die Transmission eines einfallenden Lichtstrahls. Die Farbe ist in Reflexion bzw. Transmission solcher Subwellenlängengitter relativ stark winkelabhängig. Jedoch schwächt sich die Farbsättigung für diese Gitter deutlich ab, wenn das einfallende Licht unpolarisiert ist.
  • Es ist ein Liniengitter mit Subwellenlängenstrukturen bekannt, welches winkelabhängige, farbfilternde Eigenschaften besitzt. Das Liniengitter besitzt ein Rechteckprofil aus einem dielektrischen Material. Die waagrechten Flächen sind mit einem hochbrechenden Dielektrikum überzogen. Oberhalb dieser Struktur befindet sich ebenfalls ein dielektrisches Material, wobei bevorzugterweise die Brechungsindizes des Gittersubstrats und des Deckmaterials identisch sind. Dadurch ist eine optisch wirksame Struktur ausgebildet, die aus zwei Gittern aus dem hochbrechenden Material besteht, welche durch die Höhe des ursprünglichen Rechteckprofils beabstandet sind. Die das Liniengitter bildenden Gitterstege sind beispielsweise aus ZnS. Man kann damit zwar einen Farbkontrast in Reflexion erzeugen, in Transmission ist eine Veränderung des Farbtons für unterschiedliche Winkel jedoch kaum wahrnehmbar. Diese Struktur bietet sich deshalb lediglich als Sicherheitsmerkmal in Reflexion an und muss dazu auf einem absorbierenden Untergrund aufgebaut werden.
  • Die bekannten zweidimensional periodischen Subwellenlängengitter mit nicht zusammenhängender Oberfläche zeigen zwar ausgeprägte Farbfiltereigenschaften. Sie sind jedoch auf eine große Winkeltoleranz optimiert. Ihr Farbton ändert sich daher beim Verkippen kaum.
  • Die DE 102006052413 A1 offenbart ein Sicherheitselement mit einem Gitterpolarisator. Die WO 2005/071444 A2 schildert ein Gitterbild mit mehreren Gitterfeldern.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Sicherheitselement anzugeben, das einen auch bei Durchsicht guten Farbeffekt zeigt, welcher sich bevorzugt beim Verkippen ändert.
  • Die Erfindung ist in den Ansprüchen 1 und 10 definiert. Das Sicherheitselement zur Herstellung von Wertdokumenten, wie Banknoten, Schecks oder dergleichen gemäß Anspruch 1 weist ein dielektrisches Substrat, eine in das Substrat eingebettete erste Liniengitterstruktur aus mehreren längs einer Längsrichtung verlaufenden und in einer Ebene angeordneten ersten Gitterstegen aus Metall oder Halbleiter und eine in das Substrat eingebettete zweite Liniengitterstruktur aus längs der Längsrichtung verlaufenden zweiten Gitterstegen aus Metall oder Halbleiter, die sich bezogen auf die Ebene über der ersten Liniengitterstruktur befindet. Die ersten Gitterstege haben jeweils eine Breite und liegen in einem Abstand nebeneinander, so dass zwischen den ersten Gitterstegen längs der Längsrichtung verlaufende erste Gitterspalte mit dem Abstand entsprechender Breite gebildet sind. Die zweite Liniengitterstruktur ist zur ersten Liniengitterstruktur invertiert, wobei in Draufsicht auf die Ebene die zweiten Gitterstege über den ersten Gitterspalten und zweite Gitterspalte, die zwischen den zweiten Gitterstegen bestehen, über den ersten Gitterstegen liegen, und die Breite der ersten Gitterstege und der zweiten Gitterspalte sowie die Breite der zweiten Gitterstege und der ersten Gitterspalte unter 300 nm ist. Diese Gitter befinden sich derart in einem Abstand zueinander, so dass kein geschlossener Halb- bzw. Halbmetallfilm vorliegt. Dabei kann optional die Dicke der Gitterstege unter 300 nm sein.
  • Bei einer periodischen Liniengitterstruktur entspricht die Phasenverschiebung einer halben Periode.
  • Erfindungsgemäß wird ein Doppel-Liniengitter verwendet, das aus zwei übereinanderliegenden komplementär zueinander aufgebauten, d.h. gegeneinander verschobenen Liniengitterstrukturen besteht. Eine Phasenverschiebung von 90° ist der Idealwert, welcher natürlich im Rahmen der Fertigungsgenauigkeit zu sehen ist. Durch Fertigungstoleranzen können hier Abweichungen von der Komplementarität, also 90° Phasenverschiebung, entstehen, da in der Regel ein Rechteckprofil nicht perfekt ausgebildet, sondern nur durch ein Trapezprofil angenähert werden kann, dessen obere Parallelkante kürzer ist als die untere Parallelkante. Die Liniengitterstrukturen sind aus Metall oder Halbleiter oder aus einem Multilayeraufbau. Die Schichtdicke der Gitterstege ist geringer als die Modulationstiefe, also als der Abstand der Gitterebenen der Liniengitterstrukturen.
  • Es zeigte sich, dass ein derart aufgebautes Gitter überraschenderweise sowohl in Reflexion als auch in Transmission reproduzierbare und gut wahrnehmbare Farbeffekte liefert.
  • Das erfindungsgemäße Sicherheitselement kann durch einen Schichtaufbau hergestellt werden, indem zuerst eine Grundschicht bereitgestellt wird, auf der die erste Liniengitterstruktur ausgebildet wird. Darauf bringt man eine dielektrische Zwischenschicht auf, die die erste Liniengitterstruktur überdeckt und dicker als die Gitterstege der ersten Liniengitterstruktur ist. Darauf kann dann die verschobene zweite Liniengitterstruktur ausgebildet werden und eine dielektrische Deckschicht bildet den Abschluss des die Liniengitterstruktur einbettenden Substrates.
  • Einen besonders guten Farbeffekt erhält man, wenn der Abstand zwischen den ersten und den zweiten Gitterstegen, also die Modulationstiefe der Struktur, zwischen 50 nm und 500 nm, bevorzugt zwischen 100 nm und 300 nm liegt. Der Abstand ist dabei von jeweils gleichweisenden Flächen der ersten und zweiten Liniengitterstruktur zu bemessen, d.h. beispielsweise von der Unterseite der ersten Gitterstege zur Unterseite der zweiten Gitterstege bzw. von der Oberseite der ersten Gitterstege zur Oberseite der zweiten Gitterstege. Der Abstand ist dabei selbstverständlich senkrecht zur Ebene zu messen, bezeichnet also den Höhenunterschied zwischen den gleichgerichteten Flächen der Gitterstege.
  • Als Material für die Gitterstege kommen Metalle infrage, beispielsweise Aluminium, Silber, Kupfer, Gold, Chrom, Platin und Legierungen von diesen Materialien. Der gewünschte Farbeffekt zeigt sich auch bei der Verwendung von Halbleitern, wie Silizium oder Germanium.
  • Um die Buntheit in Reflexion zu steigern, können die ersten Gitterstege der ersten Liniengitterstruktur und/oder die zweiten Gitterstege der zweiten Liniengitterstruktur mit eine Multilayerbeschichtung, z.B. als Trilayer aus zwei übereinanderliegenden Metall- oder Halbleiterbeschichtungen mit einer dazwischen liegenden dielektrischen Schicht, aufgebaut werden. Das Sicherheitselement kann auch bei ungefähr senkrechtem Einfallswinkel annähernd farbneutral in der Reflexion ausgestaltet werden. Dies hat den Vorteil, dass der transmittierte Farbton durch die Reflexion nicht verändert wird. Bevorzugt für die Gitterstrukturen des Sicherheitselementes ist ein Füllfaktor von 0,5, d.h. gleiche Breite für die Gitterstege wie für die Gitterspalte. Ein solcher Füllfaktor ist aber nicht zwingend. Mit einer Abweichung davon kann man den Farbton der Reflexion für eine Reflexion von der Vorderseite unterschiedlich gestalten für einen Reflexionsfarbton, der sich bei der Reflexion an der Rückseite des Sicherheitselementes einstellt.
  • Das Sicherheitselement mit dem Doppel-Liniengitter zeigt eine winkelabhängige Farbfilterung bei Reflexion und Transmission. Diese Winkelabhängigkeit ist besonders markant, wenn die Gitterlinien senkrecht zur Lichteinfallsebene stehen. Die Farbfilterung kann dazu verwendet werden, um Motive mehrfarbig so zu gestalten, dass sie beim Verkippen bzw. Verdrehen ihre Farbe ändern. Es ist deshalb bevorzugt, dass in Draufsicht auf die Ebene mindestens zwei Bereiche vorgesehen sind, deren Längsrichtungen der Liniengitterstrukturen schräg zueinander liegen, insbesondere rechtwinklig sind. Bei senkrechter Betrachtung kann ein solches Motiv so gestaltet werden, dass es in Transmission eine einheitliche Farbe und keine weitere Struktur hat. Dreht man dieses Motiv nun um die vertikale Achse, ändert sich die Farbe des einen Bereichs, beispielsweise des Hintergrundes, anders als die Farbe des anderen Bereichs, beispielsweise eines Motivs. Ein Drehen senkrecht zur Beobachtungsrichtung verändert die Farben des Motivs sowie des Hintergrundes bis hin zu einem vollständigen Farbwechsel. Denn der Gitterbereich, dessen Gitterlinien parallel zur Einfallsebene verlaufen, ändert beim Verkippen kaum seine Farbe.
  • Die Gitterstruktur besitzt in Transmission polarisierende Eigenschaften. Damit ist eine maschinelle Überprüfung des Sicherheitselementes eröffnet, die ansonsten bei optischen Sicherheitselementen mit bestehender Standardsensorik nicht möglich ist. Weder Hologramme, noch Moire-Magnifier-Konstruktionen etc. lassen sich maschinell einfach überprüfen. Die Überprüfung erfordert lediglich eine Hellfeldkamera und einen Polarisationsfilter. Das Sicherheitselement zeigt je nach Orientierung der Gitterstrukturen andere Polarisationseigenschaften. Es ist deshalb bevorzugt, ein Sicherheitselement vorzusehen, das mindestens zwei Bereiche aufweist, deren Liniengitterstrukturen sich entlang unterschiedlich verlaufender Längsrichtungen erstrecken. Diese Bereiche zeigen bei der Betrachtung mit polarisiertem Licht starke Kontrastunterschiede, was die maschinelle Auslesung erleichtert. Eine maschinelle Auslesung, beispielsweise mit einer Hellfeldkamera und einem Polarisationsfilter, liefert einen Kontrast zwischen diesen beiden Bereichen, welcher zur Echtheitsüberprüfung des Sicherheitselementes dient.
  • Natürlich sind auch Anordnungen mit mehreren unterschiedlich angeordneten Bereichen denkbar. So ist beispielsweise eine Weiterbildung vorgesehen, die mehrere Bereiche im Sicherheitselement aufweist, wobei die Bereiche sich voneinander hinsichtlich der Längsrichtung, entlang der die Liniengitterstrukturen verlaufen, unterscheiden. Dadurch können Motive mit mehreren Farben in Transmission hergestellt werden. Besonders bevorzugt ist es dabei, dass zwischen mehreren solchen Bereichen, die nebeneinanderliegen, die Längsrichtung graduell von einem Bereich zum nächsten in bestimmten Winkelschritten variiert wird, beispielsweise in 5°-,10°- oder 15°-Schritten.
  • Verdreht man eine solche Struktur nebeneinanderliegender Bereiche vor einer polarisierten Lichtquelle, vertauschen sich die Farben annähernd kontinuierlich mit zunehmendem Drehwinkel der Struktur. Für einen Beobachter ergibt dies z.B. eine Art Bewegungseffekt bei einem entsprechenden Motiv. Ein Effekt wird auch beim Verkippen eines Musters vor einer unpolarisierten Lichtquelle wahrgenommen, wenn das Gitter um die horizontale Achse gekippt wird. Dann tritt eine Farbänderung in den Bereichen mit zunehmenden schräg verlaufenden Gitterlinien verzögert gegenüber den Bereichen mit den horizontaler verlaufenden Gitterlinien auf.
  • Natürlich können die Liniengitter in den einzelnen Bereichen auch unterschiedliche Geometrieparameter hinsichtlich Breite und Abstand haben. In diesem Fall verschwindet jedoch das Motiv bei senkrechter Betrachtung nicht.
  • Nachfolgend wird die Erfindung beispielshalber anhand der beigefügten Zeichnungen, die auch erfindungswesentliche Merkmale offenbaren, noch näher erläutert. Es zeigen:
  • Fig. 1
    eine Schnittdarstellung eines Sicherheitselementes mit einem Doppel-Liniengitter,
    Fig. 2a-c
    die spektrale Abhängigkeit der Transmission, Reflexion und Absorption des Sicherheitselementes der Fig. 1 in einer ersten Ausführungsform,
    Fig. 3
    Farbwerte im LCh-Farbraum für Reflexion und Transmission für das Sicherheitselement der Fig. 2 bei Variation einer Modulationstiefe,
    Fig.4
    Farbwerte im LCh-Farbraum für Reflexion und Transmission für das Sicherheitselement der Fig. 2 bei Variation einer Schichtdicke,
    Fig. 5
    Farbwerte im LCh-Farbraum für Reflexion und Transmission für ein Sicherheitselement der Fig. 1 in einer zweiten Ausführungsform bei Variation einer Schichtdicke,
    Fig. 6
    eine Schnittdarstellung ähnlich der Fig. 1 für ein Doppel-Liniengitter, dessen Gitterstege mit Trilayerbeschichtung versehen sind,
    Fig. 7
    Farbwerte im LCh-Farbraum für Reflexion und Transmission für das Sicherheitselement der Fig. 6 bei Variation einer Schichtdicke,
    Fig. 8a-b
    zwei Draufsichten auf ein Motiv, das mit dem Sicherheitselement der Fig. 1 gebildet ist,
    Fig. 9a-b
    Erläuterungen des Wechsels des optischen Eindruckes bei der Betrachtung des Motives der Fig. 8,
    Fig. 10
    Farbwerte im LCh-Farbraum für Reflexion und Transmission für das Sicherheitselement der Fig. 2, wobei die Polarisationsabhängigkeit eingetragen und die Modulationstiefe variiert ist,
    Fig. 11
    Farbwerte im LCh-Farbraum für Reflexion sowie Transmission für das Sicherheitselement der Fig. 2, wobei die Auftragung der der Fig. 10 entspricht, allerdings unter Variation einer Schichtdicke,
    Fig. 12 und 13
    Darstellungen ähnlich der Fig. 11, jedoch für unterschiedliche Materialien der Gitterstege des Doppel-Liniengitters,
    Fig. 14
    Farbwerte im LCh-Farbraum für Reflexion und Transmission für ein Sicherheitselement gemäß dem Stand der Technik,
    Fig. 15
    Farbwerte im LCh-Farbraum für Reflexion und Transmission eines Sicherheitselementes bei unterschiedlicher Polarisation der beleuchtenden Strahlung,
    Fig. 16
    eine Darstellung ähnlich der Fig. 15 für eine weitere Ausführungsform des Sicherheitselementes,
    Fig. 17a-b
    die Transmission und Reflexion für ein Sicherheitselement bei unterschiedlichen Polarisationsrichtungen der Beleuchtung als Funktion der Beleuchtungswellenlänge im nahen Infrarotbereich,
    Fig. 18
    die Transmission des Gitters der Fig. 17 bei unterschiedlichen Polarisationen im sichtbaren Spektralbereich,
    Fig. 19a-b
    Transmission und Reflexion einer weiteren Ausführungsform eines Sicherheitselementes für zwei Polarisationsrichtungen als Funktion der Wellenlänge im sichtbaren Spektralbereich für zwei Ausführungsformen des Sicherheitselementes, und
    Fig. 20
    eine Schemadarstellung eines Sicherheitselementes, bei dem sich die Längserstreckung der Liniengitterstruktur in nebeneinanderliegenden Bereichen graduell ändert, um einen Bewegungseffekt beim Kippen des Sicherheitselementes zu bewirken.
  • Fig. 1 zeigt in Schnittdarstellung ein Sicherheitselement S, das ein in ein Substrat 1 eingebettetes Doppel-Liniengitter aufweist. In das Substrat 1 ist eine erste Liniengitterstruktur 2 eingearbeitet, die in einer Ebene L angeordnet ist. Die erste Liniengitterstruktur besteht aus ersten Gitterstegen 9 mit der Breite a, die sich längs einer senkrecht zur Zeichenebene liegenden Längsrichtung erstrecken. Zwischen den ersten Gitterstegen 3 befinden sich erste Gitterspalte 4, die eine Breite b haben. Die Dicke der ersten Gitterstege 3 (gemessen senkrecht zur Ebene L) ist mit t angegeben. In einer Höhe h über den ersten Gitterstegen 3 befindet sich eine zweite Liniengitterstruktur 6 mit zweiten Gitterstegen 7. Diese haben die Breite b. Die zweite Liniengitterstruktur 6 ist so gegenüber der ersten Liniengitterstruktur 2 phasenverschoben, dass die zweiten Gitterstege 7 möglichst exakt (im Rahmen der Fertigungsgenauigkeit) über den ersten Gitterspalten 4 zu liegen kommen. Gleichzeitig liegen zweite Gitterspalte 8, die zwischen den zweiten Gitterstegen 7 bestehen, über den ersten Gitterstegen 3.
  • Die Dicke t ist kleiner als die Höhe h, so dass kein zusammenhängender Film aus den Gitterstegen 3 und 7 gebildet ist.
  • In der schematischen Schnittdarstellung der Fig. 1 ist die Breite a der ersten Gitterstege 3 gleich der Breite b der zweiten Gitterstege 7. Bezogen auf eine Periode d beträgt somit in jeder Liniengitterstruktur der Füllfaktor 50%. Dies ist jedoch nicht zwingend. Gemäß der Formel b + a = d kann eine beliebige Variation erfolgen.
  • Auch ist in der schematischen Schnittdarstellung der Fig. 1 die Dicke t der ersten Gitterstege 2 gleich der Dicke t der zweiten Gitterstege 7. Dies kommt einer einfacheren Herstellung zugute, ist jedoch nicht zwingend erforderlich. Wesentlich ist jedoch, dass die Modulationstiefe h, d.h. der Höhenunterschied zwischen der ersten Liniengitterstruktur 2 und der zweiten Liniengitterstruktur 6 größer ist als die Summe der Dicken der ersten Gitterstege 3 und der zweiten Gitterstege 7, da ansonsten keine Trennung zwischen den beiden Liniengitterstrukturen 2 und 6 gegeben wäre.
  • Das Sicherheitselement S der Fig. 1 reflektiert einfallende Strahlung E als reflektierte Strahlung R. Weiter wird ein Strahlungsanteil als transmittierte Strahlung T durchgelassen. Die Reflexions- und Transmissionseigenschaften hängen vom Einfallswinkel θ ab, wie nachfolgend noch erläutert wird.
  • Die Herstellung des Sicherheitselementes S kann beispielsweise dadurch erfolgen, dass auf eine Grundschicht 9 zuerst die erste Liniengitterstruktur 2 und darauf eine Zwischenschicht 5 aufgebracht wird. In die dabei nach oben abgebildete Gitterspalte 4 kann dann die zweite Liniengitterstruktur mit den zweiten Gitterstegen 7 eingebracht werden. Eine Deckschicht 10 deckt das Sicherheitselement ab. Die Brechzahlen der Schichten 9,5 und 10 sind im Wesentlichen gleich und können beispielsweise etwa 1,5, insbesondere 1,56 betragen.
  • Die Maße b, a und t sind im Subwellenlängenbereich, d.h. kleiner als 300 nm. Die Modulationstiefe beträgt bevorzugt zwischen 50 nm und 500 nm.
  • Die Fig. 2a bis 2c zeigen exemplarisch die spektralen Eigenschaften eine Sicherheitselementes S, dessen Doppel-Liniengitter folgende Profilparameter hat d = 360 nm, b = 180 nm, h = 200 nm, das Material der Gitterstege ist Aluminium, t = 30 nm, das Dielektrikum hat eine Brechzahl von 1,56. Fig. 2a zeigt auf der y-Achse die Transmission als Funktion der auf der x-Achse aufgetragenen Wellenlänge für verschiedene Einfallswinkel, nämlich 0°, 15°, 30° und 45°. Fig. 2b zeigt analog die Reflexion und die Fig. 2c die Absorption des Sicherheitselementes. Der Einfallswinkel Θ ist in Fig. 1 definiert.
  • Wie man sieht, tritt eine spektralselektive Absorption auf, das Sicherheitselement entwickelt also eine Farbeigenschaft in Transmission. Ein deutlicher Einfluss auf die Farbeigenschaften in Transmission, d.h. für die transmittierte Strahlung T, wird durch den Richtungswechsel des Peaks bei etwa 550 nm für den Einfallswinkel 0° in eine Absenkung für nicht-senkrechten Betrachtungswinkel (θ > 0°) hervorgerufen. In Reflexion zeigt sich das umgekehrte Phänomen.
  • Dies bewirkt letztendlich einen Farbumschlag in Transmission von Gelb nach Blau beim Verkippen von senkrechter Betrachtung um einen Winkel von 30°.
  • Zur Verdeutlichung des vorteilhaften Farbeffektes des Sicherheitselementes S sei als Vergleich auf die Fig. 14 hingewiesen, die für ein bekanntes Sicherheitselement eine Darstellung ähnlich der Fig. 3 zeigt. Die Struktur des dort zugrunde liegenden Sicherheitselementes entspricht im Wesentlichen der der Fig. 1, jedoch sind die erste und die zweite Liniengitterstruktur nicht aus Metall, sondern aus ZnS mit einer Schichtdicke von 70 nm. Wie man sieht, treten keine spektralselektiven Absorptionen auf. Die Farbeigenschaften in Transmission sind deutlich schlechter. Die Buntheit beträgt etwa nur ein Viertel und die Helligkeit ist zudem hinsichtlich des Einfallswinkels moduliert. Daher ist der Farbkontrast in Transmission bei einer Variation des Einfallswinkels drastisch verschlechtert. Ein solches Gitter kann allenfalls im reflektiven Betrieb, d.h. auf einer schwarzen Untergrundschicht eingesetzt werden.
  • Die nachfolgenden Fig. 3 und 4 zeigen, wie sich die Modulationstiefe (Fig. 3) bzw. die Schichtdicke (Fig. 4) auf die Farbeigenschaften des Sicherheitselementes der Fig. 1 bzw. 2 auswirken. Dabei ist jeweils in der linken Spalte der Figuren die Reflexion, in der rechten Spalte die Transmission dargestellt. Die Darstellung erfolgt im LCh-Farbraum. Die oberste Zeile zeigt die Helligkeit L*, die mittlere Zeile die Buntheit C*, und die untere Zeile den Farbton h°. Die geometrischen Parameter des Doppel-Liniengitters sind d = 360 nm, b = 180 nm. Das Material für die Liniengitterstruktur ist Aluminium, das Substrat und die Bereiche 4 und 5 von Fig. 1 haben eine Brechzahl von 1,56. Dieser Wert entspricht etwa dem Brechungsindex von PET-Folien und UV-Lacken.
  • Es ist zu erkennen, dass die Helligkeit und die Buntheit in Transmission mit zunehmender Modulationstiefe h ansteigt. Ein gut wahrnehmbarer Farbkontrast ist in Transmission gegeben, wenn die transmittierte Helligkeit und Buntheit höher als die reflektierte Helligkeit und Buntheit sind. Dies ist bei Modulationstiefen zwischen 150 nm und 280 nm der Fall. Es zeigt sich eine wesentlich verbesserte Farbeigenschaft in Transmission gegenüber dem Sicherheitselement mit ZnS-Gitterstegen. Die Helligkeit ist zudem hinsichtlich des Einfallswinkels moduliert. Daher ist der Farbkontrast in Transmission bei einer Variation des Einfallswinkels drastisch erhöht. Bei einer Liniengitterstruktur mit einer Modulationstiefe von h = 200 nm bewirkt bereits ein Verkippen um 15° eine deutliche Veränderung des Farbtons und der Helligkeit in Transmission.
  • Fig. 4 zeigt den Einfluss der Schichtdicke. Das Material ist wiederum Aluminium, und die geometrischen Parameter d, b, h entsprechen denen der Fig. 2. Es zeigt sich, dass eine Schichtdicke im Bereich von 20 nm und 30 nm günstige Farbeigenschaften in Transmission bewirkt. Die Helligkeit der Transmission liegt in derselben Größenordnung der Helligkeit in Reflexion. Die Buntheit in Transmission ist dagegen deutlich höher.
  • Ähnliche Farbeigenschaften zeigen sich für eine Gitterstruktur, welche der der Fig. 4 entspricht, jedoch als Material für die Gitterstege Silizium verwendet. Dieses Gitter hat, wie Fig. 5 zeigt, eine größere Helligkeit in Transmission als in Reflexion. Mit zunehmender Schichtdicke t steigt die Buntheit in Transmission an und für einen Einblickwinkel von 30° und eine Schichtdicke größer 70 nm ist die Transmissions-Buntheit auch größer als die Buntheit in Reflexion. Ein Gitter mit einer 100 nm dicken Siliziumschicht erscheint in Reflexion rot, seine Buntheit nimmt bei zunehmenden Einfallswinkeln ab. In Transmission geht hingegen der Farbton von einem schwachen Grün in einen kräftigen gelben Farbton über.
  • Der winkelabhängige Farbeffekt in Transmission ist jedoch nicht nur auf eine Liniengitterstruktur beschränkt, welche eine einzige Metallschicht oder Halbleiterschicht in den Gitterstegen aufweist. Die beschriebenen Effekte werden auch für Doppel-Liniengitter erhalten, deren Gitterstege aus mehreren Schichten bestehen. Dabei ist jedoch stets die Gesamtdicke der Schichten kleiner als die Modulationstiefe h. Mindestens eine der Schichten besteht aus einem Metall oder einem Halbleiter. Trilayer eignen sich besonders bevorzugt für die Schichtstruktur. Eine größere Anzahl an Schichten verbessert den winkelabhängigen Farbeffekt kaum, erhöht jedoch die Herstellungskosten.
  • Fig. 6 zeigt exemplarisch ein Sicherheitselement, bei dem die ersten und zweiten Gitterstege 3 und 7 jeweils durch eine Trilayerbeschichtung realisiert sind. Sie weisen eine metallische Schicht 11, eine dielektrische Zwischenschicht 12 und eine weitere metallische Schicht 13 auf. Bevorzugt, jedoch nicht zwingend, ist die Dicke der beiden Metallschichten identisch.
  • Fig. 7 zeigt die Farbwerte im LCh-Farbraum für das Sicherheitselement S mit dem Schichtaufbau gemäß Fig. 6, wobei die Metallschichten 11 und 13 jeweils 10 nm dicke Aluminiumschichten sind und die dielektrische Schicht 12 eine Siliziumdioxidschicht ist. Fig. 7 zeigt die Farbwirkung als Funktion der Dicke der Siliziumdioxidschicht. Die weiteren Parameter sind d = 360 nm, b = 180 nm und h = 200 nm. Das Substrat 1 und die Bereiche 4 und 5 haben, wie in anderen Ausführungsformen, eine Brechzahl von 1,56.
  • Das Sicherheitselement zeigt eine etwas geringere Helligkeit in Transmission, jedoch eine höhere Buntheit als in Reflexion. Siliziumdioxidschichtdicken über 60 nm bewirken beim Verkippen einen kräftigen Farbton in Transmission. In Reflexion erscheint das Sicherheitselement dagegen grün. Bei 70 nm Schichtdicke von Siliziumdioxid ist das Sicherheitselement bei ungefähr senkrechten Einfallswinkel annähernd farbneutral in Reflexion. Dies hat den Vorteil, dass der transmittierte Farbton nicht durch die Reflexion verändert wird.
  • Die obigen Ausführungen beziehen sich stets auf Gitterprofile mit einem Tastverhältnis b:a = 1:1 (Füllfaktor 0,5). Dieser Wert ist bevorzugt, aber nicht zwingend. Mit einer Abweichung von diesem Wert kann man erreichen, dass der Farbton der Reflexion der Struktur für die Vorder- und die Rückseite unterschiedlich ist.
  • Die winkelabhängige Farbfilterung der beschriebenen Sicherheitselemente kann nun dazu benutzt werden, um Motive mehrfarbig zu gestalten, die beim Verkippen bzw. Verdrehen ihre Farbe ändern.
  • Die einfache Ausgestaltung eines mehrfarbigen Motivs mit Doppel-Liniengitter ist eine Anordnung, bei der unterschiedliche Bereiche gebildet werden, deren Längsrichtung der Liniengitterstrukturen gegeneinander verdreht ist, vorzugsweise um 90°. Denn bei einer Verkippung eines Gitters, bei dem die Gitterlinien parallel zur Einfallsebene verlaufen, ändert sich die spektrale Transmissions- bzw. Reflexionscharakteristik kaum.
  • Die Fig. 8a und 8b zeigen ein Sicherheitselement, in dem Bereiche eines Hintergrundes 14 eines Motives 15 mit vertikal verlaufender Längsrichtung und das Motiv 15 mit horizontal verlaufender Längsrichtung ausgebildet sind. In der Darstellung der Fig. 8b sieht man diese Linienrichtungen schematisch angedeutet. Das Motiv 15 zeigt einen Schmetterling sowie zwei Zahlenwerte. Fig. 8a zeigt das Motiv 15 schematisch in Weiß auf schwarzem Hintergrund. Das Motiv 15 wie der Hintergrund 14 sind exemplarisch mit den Parametern der Ausführungsform gemäß Fig. 1 ausgestaltet.
  • Die Fig. 9a und 9b zeigen unterschiedliche Beleuchtungszustände, wenn das Sicherheitselement S der Fig. 8 vor einer Hintergrundbeleuchtung 16 im Durchlicht betrachtet wird. Bei senkrechter Betrachtung (obere Teilfigur der Fig. 9a) erscheint das Sicherheitselement einheitlich gelb in Transmission. Wenn das Sicherheitselement nun um die vertikale Achse gedreht wird, ändert sich die Farbe des Hintergrundes 14 von Gelb zu Blau. Wenn stattdessen um die horizontale Achse gekippt wird, erscheint das Motiv 15 blau (untere Darstellung der Fig. 9a). Die Situation für unterschiedliche Azimutwinkel zeigt die Fig. 9b. Hier verändern sich die Farben des Motives 15 und des Hintergrundes 14 bis hin zu einer vollständigen Inversion.
  • Es sind natürlich auch Anordnungen mit Gittern unterschiedlicher Orientierung in mehreren Motivbereichen denkbar, wie im allgemeinen Teil der Beschreibung bereits erläutert. Dies wird später noch anhand der Fig. 20 erläutert werden.
  • Das Sicherheitselement S besitzt ferner polarisierungsfilternde Eigenschaften in Transmission. Fig. 10 zeigt das Farbverhalten eines Sicherheitselementes S mit einer Liniengitterstruktur, dessen Gitterstege aus Aluminium bestehen, als Funktion der Modulationstiefe h in Reflexion (linke Spalte) sowie in Transmission (rechte Spalte) für TE- und TM-Polarisation bei senkrechtem Einfallswinkel. Die Auftragung entspricht ansonsten der der Fig. 3. Die Parameter des Sicherheitselementes sind d = 360 nm, b = 180 nm, t = 30 nm. Die Brechzahl des Substrats 1 beträgt n = 1,56.
  • Es zeigt sich, dass das Sicherheitselement bei einer Modulationstiefe oberhalb 150 nm einen guten Helligkeitskontrast für die beiden Polarisationsrichtungen in Transmission aufweist. Ferner ist die Änderung in der Buntheit für Modulationstiefen zwischen 200 nm und 260 nm besonders groß. Die Farbänderung hat ein Maximum bei einer Modulationstiefe von 270 nm.
  • Fig. 11 zeigt den Einfluss der Schichtdicke t für das Gitter der Fig. 10 bei einer Modulationstiefe von 250 nm. Das Sicherheitselement hat bei Schichtdicken oberhalb von 20 nm gute Polarisationsfiltereigenschaften in Transmission. Die Buntheit und der Farbkontrast sind bei Schichtdicken zwischen 20 nm und 30 nm besonders hoch. Hier beobachtet man einen Farbumschlag von Blau nach Gelb, wenn sich die Polarisation der Beleuchtung von TM-Polarisation in TE-Polarisation ändert.
  • Sicherheitselemente, deren Liniengitterstukturen Silizium in den Gitterstegen aufweisen, haben ebenfalls Polarisationsfilterwirkung in Transmission. Fig. 12 zeigt die LCh-Farbwerte eines Sicherheitselementes mit den Gitterparametern d = 360 nm, b = 180 nm und h = 300 nm, dessen Gitterstege aus einer Bedampfung mit amorphen Silizium erzeugt wurden. Sie bestehen also aus amorphen Silizium. Es sind deutliche Helligkeitsunterschiede in Transmission für Siliziumschichtdicken oberhalb 100 nm zu beobachten. Für eine Siliziumschichtdicke von etwa 140 nm ist die Änderung in der Buntheit besonders groß. Die Transmission erscheint für TM-Polarisation orange, für TE-Polarisation violett.
  • Fig. 13 zeigt das Farbverhalten, wenn statt amorphem Silizium kristallines Silizium verwendet wird. Ansonsten entsprechen die Parameter denen der Fig. 12. Dieses Sicherheitselement zeigt bereits für Schichtdicken oberhalb von 40 nm deutliche Helligkeitsunterschiede. Die Schichtdicke von 100 nm eignet sich besonders gut als Polarisationsfilter. Der Farbkontrast Orange/ Blau ist für eine Siliziumschichtdicke von 120 nm am stärksten.
  • Die Liniengitterstruktur des Sicherheitselementes hat polarisationsfilternde (sog. polarisierende) Eigenschaften in Transmission. Fig. 15 zeigt die Farbwerte im LCh-Farbraum eines mit Aluminium gedampften Gitters als Funktion der Modulationstiefe h in Reflexion sowie in Transmission für TM- und TE-Polarisation bei senkrechtem Einfallswinkel. In der linken Spalte der Fig. 15 sind die Farbwerte in Reflexion, in der rechten Spalte in Transmission dargestellt. Die Parameter des Sicherheitselementes sind d = 360 nm, b = 180 nm, t = 30 nm. Die Brechzahl des Substrats 1 beträgt n = 1,52 und die Gitterstege 3,7 sind aus Aluminium. Der Aufbau des Gitters entspricht dem der Fig. 1. Die Wirkung des Sicherheitselements bei TM-Polarisation ist durch durchgezogene Linien dargestellt, bei TE-Polarisation durch eine gestrichelte Linie. Es zeigt sich, dass bei einer Modulationstiefe von h = 260 nm für die beiden Polarisationsrichtungen der maximale Unterschied, somit Kontrast, festzustellen ist. Bei TE-Polarisation ergibt sich dann ein dunkelblauer, hochgestättigter Farbton, der sich deutlich von der hellgelben, blassen Farbe unterscheidet, die bei TM-Polarisation zu sehen ist.
  • Fig. 16 zeigt eine Darstellung ähnlich der Fig. 3 für ein Gitter, bei dem die Gitterstege 3,7 aus einer 40 nm Kupferschicht bestehen. Ansonsten entsprechen die Parameter denen des Sicherheitselementes der Fig. 15. Auch hier ergibt sich bei einer Modulationstiefe von 260 nm ein deutlicher Farbunterschied, der in etwa dem anhand Fig. 15 beschriebenen entspricht. Variiert man die Schichtdicke des Kupfers der Gitterstege 3,7 können die erkennbaren Farben leicht anders eingestellt werden.
  • Die Fig. 17a und b zeigen die Transmission und die Reflexion eines Gitters mit der Modulationstiefe h = 200 nm, das ansonsten den Parametern der Fig. 15 entspricht. Die Auftragung ist hier als Funktion der Beleuchtungswellenlänge im nahen Infraroten vorgenommen. Die durchgezogene Linie zeigt die TM-Polarisation, die gestrichelte Linie die TE-Polarisation der Beleuchtungsstrahlung. Deutlich zu sehen ist, dass für bestimmte Wellenlängen ein klarer Transmissions- und Reflexionsunterschied zwischen den beiden Polarisationsrichtungen besteht.
  • Fig. 18 zeigt die Transmission des Gitters der Fig. 17a, b als Funktion der Wellenlänge im sichtbaren Spektralbereich. Auch hier besteht ein deutlicher Unterschied für die beiden Polarisationsrichtungen.
  • Fig. 19a zeigt die Transmission und Fig. 19b die Reflexion eines Gitters mit den Parametern des Sicherheitselementes der Fig. 15, wobei allerdings die Gitterstege 3, 7 hier durch eine 100 nm-dicke Siliziumschicht gebildet sind. Die durchgezogene sowie die kurzgestrichelte Linie betreffen eine Gitterstruktur mit einer Modulationshöhe von h = 200 nm, die strichpunktierte und langgestrichelte Linie ein Gitter mit der Modulationstiefe von h = 250 nm. Die durchgezogene und die langgestrichelte Linie stellen die TM-Polarisation der einfallenden Strahlung dar, die kurzgestrichelte sowie die strichpunktierte Linie die TE-Polarisation. Deutlich zu erkennen ist das unterschiedliche Transmissions- und Reflexionsverhalten für die unterschiedlichen Polarisationen.
  • Es lässt sich somit einfach für das Sicherheitselement eine Modulationstiefe wählen, die deutlich erkennbare Unterschiede in den Polarisationsrichtungen von Beleuchtungsstrahlungen zur Folge hat.
  • Die Polarisationsfiltereigenschaften des Sicherheitselementes erlaubt eine Echtheitsüberprüfung durch Betrachtung der Transmission bei linear polarisierter Beleuchtung. Eine solche Beleuchtung wird beispielsweise von LCD-Bildschirmen bereitgestellt. Sogar der blaue Himmel ist teilweise linear polarisiert (im Gegensatz zum bewölkten Himmel) und kann sich als Strahlungsquelle für die Untersuchung des Sicherheitselementes eignen.
  • Die Polarisationsfiltereigenschaften des Sicherheitselementes erlauben auch eine maschinelle Echtheitsüberprüfung, indem der Kontrast, beispielsweise in einem bestimmten Spektralbereich untersucht wird. Unter Kontrast ist dabei die unterschiedliche Transmission und/oder Reflexion bei orthogonal zueinander liegenden Polarisationsrichtungen zu verstehen. Die Überprüfungsvorrichtung beleuchtet somit das Sicherheitselement nacheinander bei zwei verschiedenen Polarisationsrichtungen und erfasst den Kontrast zwischen den dabei erhaltenen zwei Bildern. Dieses Vorgehen ermöglicht eine einfache maschinelle Überprüfung des Sicherheitselementes, die bei anderen Sicherheitselementen sehr viel aufwendiger oder gar nicht möglich ist.
  • Die Anordnung der Längsrichtung des Sicherheitselementes ist nicht auf eine zueinander rechtwinklige Lage in verschiedenen Bereichen beschränkt, wie sie anhand der Fig. 8a, b erläutert wurde. Es ist auch eine Ausgestaltung möglich, bei der sich die Längsrichtung zwischen Bereichen in Abstufungen ändert. Fig. 20 zeigt exemplarisch eine rechteckige Fläche 16, die zehn Teilbereiche 16.1 bis 16.10 aufweist, die sich hinsichtlich der Längsrichtung ihrer Liniengitterstruktur so unterscheiden, dass die Längsrichtung in 10°-Schritten von der senkrechten Ausrichtung (Teilbereich 16.1) in eine horizontale Ausrichtung (Teilbereich 16.10) übergeht. Wird diese Struktur vor einer polarisierten Lichtquelle verdreht, vertauschen sich die Farben, die bei TE- bzw. TM-Polarisation erkennbar sind, aufgrund der polarisationsfilternden Eigenschaften der Liniengitterstruktur annähernd kontinuierlich mit zunehmendem Drehwinkel über die Teilbereiche 16.1 bis 16.10 hinweg. Der Beobachter nimmt daher eine Art Bewegungseffekt wahr. Dies kann selbstverständlich bei der Ausgestaltung von Motiven Anwendung finden. Ein solcher Effekt tritt auch bei unpolarisierter Beleuchtung auf, wenn das Sicherheitselement um eine horizontale Achse bezogen auf Fig. 20 gekippt wird. Dann tritt eine Farbänderung in den Bereichen mit zunehmend schräg verlaufenden Gitterlinien verzögert gegenüber den Bereichen mit horizontaler verlaufenden Gitterlinien auf.
  • Das Sicherheitselement kann insbesondere als Durchsichtsfenster von Banknoten oder anderen Dokumenten dienen. Es kann auch teilweise farblich überdruckt sein bzw. die Gitterbereiche können bereichsweise demetallisiert sein. Es sind auch Kombinationen mit diffraktiven Gitterstrukturen, wie Hologrammen, denkbar.
  • Die Echtheitsüberprüfung des Sicherheitselementes kann natürlich auch ohne Hilfsmittel vorgenommen werden. Mithilfe eines Polarisators kann eine zusätzliche Authentifizierung ohne weitere Geräte erfolgen.
  • Bezugszeichenliste
  • 1
    Substrat
    2
    erste Liniengitterstruktur
    3
    erster Gittersteg
    4
    erster Gitterspalt
    5
    Zwischenschicht
    6
    zweite Liniengitterstruktur
    7
    zweiter Gittersteg
    8
    zweiter Gitterspalt
    9
    Grundschicht
    10
    Deckschicht
    11, 13
    Metallschicht
    12
    dielektrische Zwischenschicht
    14
    Hintergrund
    15
    Motiv
    16
    Fläche
    16.1-16.10
    Bereich
    17
    Hintergrundbeleuchtung
    h
    Modulationstiefe
    t, t1, t2
    Beschichtungsdicke
    b
    Linienbreite
    a
    Spaltenbreite
    d
    Periode
    S
    Sicherheitselement
    L
    Ebene
    E
    einfallende Strahlung
    R
    reflektierte Strahlung
    T
    transmittierte Strahlung
    Θ
    Einfallswinkel

Claims (10)

  1. Sicherheitselement zur Herstellung von Wertdokumenten, wie Banknoten, Schecks oder dergleichen, das aufweist:
    - ein dielektrisches Substrat (1),
    - eine in das Substrat (1) eingebettete erste Liniengitterstruktur (2), bestehend aus mehreren längs einer Längsrichtung verlaufenden und in einer Ebene (L) angeordneten ersten Gitterstegen (3), und eine in das Substrat (1) eingebettete zweite Liniengitterstruktur (6), bestehend aus längs der Längsrichtung verlaufenden zweiten Gitterstegen (7), wobei
    - die ersten Gitterstege (3) jeweils eine Breite haben und in einem Abstand nebeneinanderliegen, so dass zwischen den ersten Gitterstegen (3) längs der Längsrichtung verlaufende erste Gitterspalte (4) mit dem Abstand entsprechender Breite gebildet sind,
    - die zweite Liniengitterstruktur (6) zur ersten Liniengitterstruktur (2) invertiert ist, wobei in Draufsicht auf die Ebene die zweiten Gitterstege (7) über den ersten Gitterspalten (4) und zweite Gitterspalte (8), die zwischen den zweiten Gitterstegen (7) bestehen, über den ersten Gitterstegen (3) liegen, und
    - die Breite der ersten Gitterstege (3) und der zweiten Gitterspalte (8), die Breite der zweiten Gitterstege (7) und der ersten Gitterspalte (4) und eine Dicke (t) der ersten Gitterstege (3) und der zweiten Gitterstege (7) jeweils unter 300 nm ist,
    - die ersten und zweiten Gitterstege (3, 7) jeweils entweder aus Metall oder Halbleiter oder aus einer Multilayerbeschichtung bestehen und
    - die zweiten Gitterstege (7) sich bezogen auf die Ebene (L) vollständig oberhalb der ersten Gitterstege (3) befinden, so dass die ersten und zweiten Liniengitterstrukturen (2, 6) keinen zusammenhängenden Film bilden, wobei die Liniengitterstrukturen (2, 6) einbettende dielektrische Substrat (1) eine Grundschicht (9), eine dielektrische Zwischenschicht (5) und eine dielektrische Deckschicht (10) aufweist, und wobei
    - auf der Grundschicht (9) die erste Liniengitterstruktur (2) ausgebildet ist,
    - darauf die dielektrische Zwischenschicht (5) aufgebracht ist, die sowohl die ersten Gitterstege (3) als auch die ersten Gitterspalte (4) überdeckt und dicker als die ersten Gitterstege (3) ist,
    - darauf die zweite Liniengitterstruktur (6) ausgebildet ist und
    - die dielektrische Deckschicht (10) über der zweiten Liniengitterstruktur (6) angeordnet ist,
    dadurch gekennzeichnet, dass
    die Zwischenschicht(5), die Deckschicht (10)und die Grundschicht (9) im Wesentlichen die gleiche Brechzahl haben.
  2. Sicherheitselement nach Anspruch 1, wobei die Brechzahl 1,5 oder 1,52 oder 1,56 beträgt.
  3. Sicherheitselement nach einem der obigen Ansprüche, wobei zwischen den ersten Gitterstegen (3) und den zweiten Gitterstegen (7) senkrecht zur Ebene gemessen ein Abstand (h) besteht, der zwischen 50 nm und 500 nm, bevorzugt zwischen 100 nm und 300 nm liegt.
  4. Sicherheitselement nach einem der obigen Ansprüche, wobei die ersten Gitterstege (3) und die zweiten Gitterstege (7) eine Beschichtung aus einem oder mehreren der folgenden Materialien aufweist: Al, Ag, Cu, Au, Cr, Pt, Si, Ge und Legierungen von diesen Materialien.
  5. Sicherheitselement nach einem der obigen Ansprüche, wobei die ersten und/oder die zweiten Gitterstege (3, 7) eine Trilayerbeschichtung aus zwei übereinanderliegenden Metall- oder Halbleiterbeschichtungen (11,13) mit einer dazwischen liegenden dielektrischen Schicht (12) aufweisen.
  6. Sicherheitselement nach einem der obigen Ansprüche, bei dem die Breite (a) gleich dem Abstand (b) ist.
  7. Sicherheitselement nach einem der obigen Ansprüche, das in Draufsicht auf die Ebene (L) mindestens zwei Bereiche (14, 15; 16.1 -16.10) aufweist, deren Längsrichtungen schräg zueinander liegen, insbesondere rechtwinklig.
  8. Sicherheitselement nach Anspruch 7, wobei die Längsrichtungen der zwei Bereiche (16.1, 16.10) einen Winkel zueinander einschließen, und das Sicherheitselement mindestens einen dritten Bereich (16.2 -16.9) aufweist, dessen Längsrichtung(en) innerhalb dieses Winkels liegt(liegen).
  9. Sicherheitselement nach Anspruch 8, wobei mehrere dritte Bereiche (16.2 - 16.9) vorhanden sind, die in einem Muster (16) angeordnet sind und deren Längsrichtungen sich unterscheiden.
  10. Verfahren zur Herstellung eines Sicherheitselementes zur Herstellung von Wertdokumenten, wie Banknoten, Schecks oder dergleichen, das aufweist:
    - ein dielektrisches Substrat (1),
    - eine in das Substrat (1) eingebettete erste Liniengitterstruktur (2), bestehend aus mehreren längs einer Längsrichtung verlaufenden und in einer Ebene (L) angeordneten ersten Gitterstegen (3), und eine in das Substrat (1) eingebettete zweite Liniengitterstruktur (6), bestehend aus längs der Längsrichtung verlaufenden zweiten Gitterstegen (7), wobei
    - die ersten Gitterstege (3) jeweils eine Breite haben und in einem Abstand nebeneinanderliegen, so dass zwischen den ersten Gitterstegen (3) längs der Längsrichtung verlaufende erste Gitterspalte (4) mit dem Abstand entsprechender Breite gebildet sind,
    - die zweite Liniengitterstruktur (6) zur ersten Liniengitterstruktur (2) invertiert ist, wobei in Draufsicht auf die Ebene die zweiten Gitterstege (7) über den ersten Gitterspalten (4) und zweite Gitterspalte (8), die zwischen den zweiten Gitterstegen (7) bestehen, über den ersten Gitterstegen (3) liegen, und
    - die Breite der ersten Gitterstege (3) und der zweiten Gitterspalte (8), die Breite der zweiten Gitterstege (7) und der ersten Gitterspalte (4) und eine Dicke (t) der ersten Gitterstege (3) und der zweiten Gitterstege (7) jeweils unter 300 nm ist,
    - die ersten und zweiten Gitterstege (3, 7) jeweils entweder aus Metall oder Halbleiter oder aus einer Multilayerbeschichtung bestehen und
    - die zweiten Gitterstege (7) sich bezogen auf die Ebene (L) vollständig oberhalb der ersten Gitterstege (3) befinden, so dass die ersten und zweiten Liniengitterstrukturen (2, 6) keinen zusammenhängenden Film bilden,
    dadurch gekennzeichnet, dass
    ein Schichtaufbau hergestellt wird, indem zuerst eine Grundschicht (9) bereitgestellt wird, auf der die erste Liniengitterstruktur (2) ausgebildet wird, darauf eine dielektrische Zwischenschicht (5) aufgebracht wird, die die erste Liniengitterstruktur (2) überdeckt und dicker als die ersten Gitterstege (3) der ersten Liniengitterstruktur (2) ist, darauf dann die zweite Liniengitterstruktur (6) ausgebildet wird und eine dielektrische Deckschicht (10) aufgebracht wird, die den Abschluss des die Liniengitterstrukturen (2, 6) einbettenden Substrates (1) bildet, wobei die Zwischenschicht (5), die Deckschicht (10) und die Deckschicht (9) die gleiche Brechzahl haben.
EP12773222.0A 2011-10-11 2012-09-26 Sicherheitselement Active EP2766192B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011115589A DE102011115589A1 (de) 2011-10-11 2011-10-11 Sicherheitselement
PCT/EP2012/004032 WO2013053435A1 (de) 2011-10-11 2012-09-26 Sicherheitselement

Publications (2)

Publication Number Publication Date
EP2766192A1 EP2766192A1 (de) 2014-08-20
EP2766192B1 true EP2766192B1 (de) 2017-12-13

Family

ID=47040636

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12773222.0A Active EP2766192B1 (de) 2011-10-11 2012-09-26 Sicherheitselement

Country Status (4)

Country Link
EP (1) EP2766192B1 (de)
CN (1) CN103874585B (de)
DE (1) DE102011115589A1 (de)
WO (1) WO2013053435A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11198314B2 (en) 2013-05-10 2021-12-14 Nanotech Security Corp. Nanostructure array diffractive optics for RGB and CMYK color displays
DE102013105246B4 (de) 2013-05-22 2017-03-23 Leonhard Kurz Stiftung & Co. Kg Optisch variables Element
DE102014010751A1 (de) 2014-07-21 2016-01-21 Giesecke & Devrient Gmbh Sicherheitselement mit Subwellenlängengitter
DE102014011425A1 (de) * 2014-07-31 2016-02-04 Giesecke & Devrient Gmbh Sicherheitselement zur Herstellung von Wertdokumenten
DE102014018551A1 (de) 2014-12-15 2016-06-16 Giesecke & Devrient Gmbh Wertdokument
CN106324716B (zh) * 2015-07-08 2021-06-29 昇印光电(昆山)股份有限公司 双面结构光学薄膜及其制作方法
US11143794B2 (en) 2015-07-08 2021-10-12 Shine Optoelectronics (Kunshan) Co., Ltd Optical film
WO2017005206A1 (zh) 2015-07-08 2017-01-12 昇印光电(昆山)股份有限公司 光学薄膜
DE102015009584A1 (de) 2015-07-23 2017-02-09 Giesecke & Devrient Gmbh Sicherheitselement und Verfahren zu dessen Herstellung
DE102015010191A1 (de) * 2015-08-06 2017-02-09 Giesecke & Devrient Gmbh Sicherheitselement mit Subwellenlängengitter
CN105618355A (zh) * 2015-12-31 2016-06-01 深圳市天兴诚科技有限公司 一种防伪标识的制备方法及装置
JP7024221B2 (ja) * 2016-06-24 2022-02-24 凸版印刷株式会社 表示体、表示体付きデバイス、および、表示体の製造方法
DE102016013690A1 (de) * 2016-11-16 2018-05-17 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Subwellenlängengitter
DE102016013683A1 (de) * 2016-11-16 2018-05-17 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Subwellenlängengitter
DE102016015335A1 (de) 2016-12-21 2018-06-21 Giesecke+Devrient Currency Technology Gmbh Holographisches Sicherheitselement und Verfahren zu dessen Herstellung
DE102017003281A1 (de) * 2017-04-04 2018-10-04 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Reliefstruktur und Herstellungsverfahren hierfür
DE102017003532A1 (de) 2017-04-11 2018-10-11 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement und Herstellungsverfahren hierfür
CN107364252B (zh) * 2017-08-26 2019-06-04 上海速元信息技术有限公司 一种金融防伪票据
CN109291685B (zh) * 2017-09-09 2020-06-23 擎雷(上海)防伪科技有限公司 一种金融防伪票据
DE102017130588A1 (de) 2017-12-19 2019-06-19 Giesecke+Devrient Currency Technology Gmbh Wertdokument
DE102018005872A1 (de) * 2018-07-25 2020-01-30 Giesecke+Devrient Currency Technology Gmbh Verwendung einer durch Strahlung härtbaren Lackzusammensetzung, Verfahren zur Herstellung von mikrooptischen Strukturen, mikrooptische Struktur und Datenträger
DE102018132516A1 (de) * 2018-12-17 2020-06-18 Giesecke+Devrient Currency Technology Gmbh Im THz-Bereich wirkendes Sicherheitselement und Verfahren zu dessen Herstellung
CN111221065A (zh) * 2020-01-16 2020-06-02 集美大学 一种基于双层不对称金属微纳光栅的双波长滤波器
AT523690B1 (de) * 2020-03-16 2022-03-15 Hueck Folien Gmbh Flächiges Sicherheitselement mit optischen Sicherheitsmerkmalen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004003984A1 (de) * 2004-01-26 2005-08-11 Giesecke & Devrient Gmbh Gitterbild mit einem oder mehreren Gitterfeldern
DE102005007749A1 (de) * 2005-02-18 2006-08-31 Giesecke & Devrient Gmbh Sicherheitselement und Verfahren zu seiner Herstellung
DE102006052413A1 (de) * 2006-11-07 2008-05-08 Giesecke & Devrient Gmbh Sicherheitsfolie
DE102007029203A1 (de) * 2007-06-25 2009-01-08 Giesecke & Devrient Gmbh Sicherheitselement
DE102007061979A1 (de) * 2007-12-21 2009-06-25 Giesecke & Devrient Gmbh Sicherheitselement
DE102009012300A1 (de) 2009-03-11 2010-09-16 Giesecke & Devrient Gmbh Sicherheitselement mit mehrfarbigem Bild
DE102009012299A1 (de) 2009-03-11 2010-09-16 Giesecke & Devrient Gmbh Sicherheitselement
DE102009056933A1 (de) 2009-12-04 2011-06-09 Giesecke & Devrient Gmbh Sicherheitselement mit Farbfilter, Wertdokument mit so einem solchen Sicherheitselement sowie Herstellungsverfahren eines solchen Sicherheitselementes

Also Published As

Publication number Publication date
WO2013053435A1 (de) 2013-04-18
EP2766192A1 (de) 2014-08-20
DE102011115589A1 (de) 2013-04-11
CN103874585A (zh) 2014-06-18
CN103874585B (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
EP2766192B1 (de) Sicherheitselement
EP2882598B1 (de) Sicherheitselement mit farbeffekterzeugender struktur
EP3172601A1 (de) Sicherheitselement mit subwellenlängengitter
EP2710416B1 (de) Zweidimensional periodisches, farbfilterndes gitter
EP1465780B1 (de) Diffraktives sicherheitselement mit integriertem optischen wellenleiter
EP3233512B1 (de) Optisch variables durchsichtssicherheitselement
EP3331709B1 (de) Sicherheitselement mit subwellenlängengitter
EP2228671B1 (de) Sicherheitselement
DE102009012300A1 (de) Sicherheitselement mit mehrfarbigem Bild
EP3317111B1 (de) Sicherheitselement mit farbfilterndem gitter
WO2018114034A1 (de) Holographisches sicherheitselement und verfahren zu dessen herstellung
EP3727870B1 (de) Sicherheitselement mit zweidimensionaler nanostruktur und herstellverfahren für dieses sicherheitselement
EP3541630A1 (de) Sicherheitselement mit subwellenlängengitter
EP3609718B1 (de) Sicherheitselement und herstellungsverfahren hierfür
EP3898248B1 (de) Im thz-bereich wirkendes sicherheitselement und verfahren zu dessen herstellung
WO2018091134A1 (de) Sicherheitselement mit subwellenlängengitter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150914

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170627

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 953983

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012011833

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171213

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180413

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502012011833

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

26 Opposition filed

Opponent name: SURYS

Effective date: 20180911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120926

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171213

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502012011833

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230921

Year of fee payment: 12

Ref country code: AT

Payment date: 20230915

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230919

Year of fee payment: 12

Ref country code: DE

Payment date: 20230930

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 12

Ref country code: CH

Payment date: 20231001

Year of fee payment: 12