EP2751308B1 - Verfahren zur kathodischen desoxygenierung von amiden und estern - Google Patents

Verfahren zur kathodischen desoxygenierung von amiden und estern Download PDF

Info

Publication number
EP2751308B1
EP2751308B1 EP12753131.7A EP12753131A EP2751308B1 EP 2751308 B1 EP2751308 B1 EP 2751308B1 EP 12753131 A EP12753131 A EP 12753131A EP 2751308 B1 EP2751308 B1 EP 2751308B1
Authority
EP
European Patent Office
Prior art keywords
alkyl
alkoxy
unsubstituted
process according
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12753131.7A
Other languages
English (en)
French (fr)
Other versions
EP2751308A2 (de
Inventor
Siegfried R. Waldvogel
Carolin EDINGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johannes Gutenberg Universitaet Mainz
Original Assignee
Johannes Gutenberg Universitaet Mainz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johannes Gutenberg Universitaet Mainz filed Critical Johannes Gutenberg Universitaet Mainz
Publication of EP2751308A2 publication Critical patent/EP2751308A2/de
Application granted granted Critical
Publication of EP2751308B1 publication Critical patent/EP2751308B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction

Definitions

  • the present invention relates to a process for the deoxygenation of carboxylic acid amides and carboxylic acid esters by cathodic reduction of a solution of these compounds.
  • (half) metal hydrides such as borohydrides, for example sodium borohydride
  • activators S.-H. Xiang, Synlett 2010, 12, 1829-1832
  • diborane HC Brown, J. Org. Chem. 1973, 38, 912-916
  • aluminum hydrides eg lithium aluminum hydride ( N. Assimomytis et al, Synlett 2009, 17, 2777-2782 ) or diisobutylaluminum hydride ( Lizakharkin, IMKhorlina, Tetrahedron Letters 1962, 14, 619-620 ).
  • the object of the present invention is to provide a widely applicable process for the preparation of amines from the corresponding carboxylic acid amides, which overcomes the disadvantages of the prior art.
  • the process should provide the corresponding amines with high selectivity and high yield.
  • This object is surprisingly achieved by a process in which subjecting a solution of a carboxylic acid amide in a solvent of a cathodic reduction, hereinafter also called cathodic deoxygenation, wherein the solution contains a salt as an additive, which is selected from quaternary ammonium and phosphonium salts ,
  • this process can be transferred to the deoxygenation of carboxylic acid esters to the corresponding ethers according to the following reaction equation:
  • the present invention thus relates to a process for the deoxygenation of carboxylic acid amides and carboxylic acid esters by cathodic reduction of a solution of the carboxamide or of the carboxylic acid ester, which is characterized in that the solution used for the cathodic reduction of the carboxylic acid amide or of the carboxylic acid ester contains a salt as an additive, which quaternary ammonium salts is selected.
  • an amide is converted to the corresponding amine or an ester in the corresponding ether.
  • the carbonyl groups of the carboxamide unit of the amide or the carbonyl group of the carboxyl unit of the ester is converted into a CH 2 group.
  • the inventive method requires no problematic or expensive reagents, as is used as a reducing agent inexpensive stream.
  • the process allows the selective deoxygenation of the amides used without significantly undesirable side reactions, such as cleavage of the amidic C-N bond occur.
  • side reactions such as cleavage of the amidic C-N bond occur.
  • the process according to the invention not only enables the preparation of primary but also secondary and tertiary amines and the preparation of symmetrical and unsymmetrical ethers.
  • the process of the invention allows the use of starting materials which have functional groups which are attacked in the known deoxygenation or lead to side reaction.
  • quaternary ammonium group an atomic group having a positively charged nitrogen atom bearing four C-bonded substituents.
  • quaternary phosphonium group an atomic group having a positively charged phosphorous atom bearing four C-bonded substituents.
  • C 1 -C 4 -alkyl denotes a saturated, linear or branched aliphatic hydrocarbon radical having 1 to 4 carbon atoms, such as, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, isobutyl or tert-butyl.
  • C 1 -C 10 -alkyl denotes a saturated, linear or branched aliphatic hydrocarbon radical having 1 to 10 carbon atoms, for example methyl, ethyl, propyl, isopropyl, n-butyl, 2-butyl, sec-butyl, tert-butyl, n-pentyl, 2-pentyl, 2-methylbutyl, 3-methylbutyl, 1,2-dimethylpropyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 2-hexyl , 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 1 , 1,2-trimethylpropyl,
  • haloalkyl refers to a saturated, linear or branched aliphatic hydrocarbon radical having 1 to 10, especially 1 to 6 or 1 to 4, carbon atoms and wherein at least one or all, e.g. 1, 2, 3, 4, 5, 6 or 7 hydrogen atoms are replaced by halogen, in particular by fluorine, chlorine or bromine, e.g. for trifluoromethyl, chloromethyl, bromomethyl, 1,1-difluoroethyl, 2,2,2-trifluoroethyl, pentafluoroethyl, hexafluoropropyl or heptafluoropropyl.
  • alkenyl refers to a linear or branched aliphatic hydrocarbon radical which is monounsaturated or polyunsaturated and which generally has 2 to 10, in particular 2 to 6 or especially 2 to 4, carbon atoms, e.g. Ethenyl, 1-propenyl, 2-propenyl, 1-buten-1-yl, 2-buten-1-yl, 3-buten-1-yl, 1-buten-2-yl, 2-methyl-1-propene 1-yl, 2-methyl-2-propen-1-yl, etc.
  • alkylene refers to a branched or unbranched, saturated, divalent aliphatic hydrocarbon radical generally having from 2 to 20, especially from 3 to 10, and especially from 3 to 6 carbon atoms, e.g. Ethane-1,2-diyl, propane-1,3-diyl, butane-1,4-diyl, 1-methylethane-1,2-diyl, 1,1-dimethylethane-1,2-diyl, 1-methylpropane 1,3-diyl, 1,1-dimethylpropane-1,3-diyl, 2,2-dimethylpropane-1,3-diyl, pentane-1,5-diyl, hexane-1,6-diyl, heptane-1, 7-diyl, octane-1,8-diyl, nonane-1,9-diyl, decane-1,10-diyl, dodecane-1,
  • alkenylene refers to a branched or unbranched, monounsaturated, divalent aliphatic hydrocarbon radical usually having 2 to 20, especially 3 to 10 and especially 3 to 6 carbon atoms, e.g. 1,2-ethenediyl, propene-1,3-diyl, 2-butene-1,4-diyl, 1-methyl-ethen-1,2-diyl, 1-methyl-1-propene-1,3-diyl, 2- Methyl 1-propen-1,3-diyl, 1-pentene-1,5-diyl, 2-pentene-1,5-diyl, 1-hexene-1,6-diyl, 2-hexene-1,6- diyl, 3-hexene-1,6-diyl, 1-heptene-1,7-diyl, 2-heptene-1,7-diyl, 3-heptene-1,7-diyl, etc.
  • alkoxy refers to a branched or unbranched, saturated alkyl radical which is linked via an oxygen atom to the remainder of the molecule.
  • C 1 -C 10 alkoxy refers to an alkyl group as previously defined below, having 1 to 10 carbon atoms.
  • C 1 -C 4 alkoxy hereinafter denotes an alkyl radical as defined above which has 1 to 4 carbon atoms, for example methoxy, ethoxy, propyloxy, isopropyloxy, n-butyloxy, 2-butyloxy, sec-butyloxy, tert.
  • C3 -C10 -cycloalkyl denotes a saturated, mono- or bicyclic hydrocarbon radical containing from 3 to 10 carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, bicyclo [2.2.1] heptyl, bicyclo [3.3.0] octyl, bicyclo [3.2.1] octyl, bicyclo [2.2.2] octyl, etc.
  • aryl denotes an aromatic or partially aromatic hydrocarbon radical which is mono- or polycyclic and usually has 6, 9, 10, 13 or 14 carbon atoms and which is preferably phenyl, naphthyl, tetrahydronaphthyl, indenyl, indanyl, fluorenyl, anthracenyl , Phenanthrenyl or naphthacenyl, more preferably phenyl or naphthyl.
  • heteroaryl refers to an aromatic or partially aromatic heterocyclic radical which is mono- or polycyclic and usually has 5 to 14 ring members which have, in addition to carbon, at least one heteroatom as the ring atom selected from N, O and S, e.g.
  • 5 to 7 membered carbocycle refers to a saturated or unsaturated hydrocarbon group having 5 to 7 carbon atoms as ring members.
  • 5 to 8 membered heterocycle denotes a monocyclic or polycyclic, saturated or unsaturated heterocyclic radical having 5 to 8 ring atoms, wherein the ring atoms in addition to carbon, at least one heteroatom, which is preferably selected from nitrogen, sulfur and oxygen, for example pyrrolidinyl , Piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, hexahydroazepinyl, etc.
  • poly (oxyethylene) denotes in a polyether radical which oxyethylene groups (OCH 2 CH 2 ) is constructed as a repeating unit and which is bonded via an oxygen atom.
  • alkanol denotes an aliphatic, saturated or unsaturated alcohol which has one or more, for example 1, 2 or 3, in particular a hydroxyl group (s) and which generally has 1 to 10 carbon atoms. Accordingly, an alkanol having from 1 to 10 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, tert-butanol, pentanol, hexanol, heptanol, octanol is meant by C 1 -C 10 -alkanol , Nonanol and decanol, wherein the last mentioned alkanols may be linear or branched, furthermore glycol, propanediol, butanediol and glycerol.
  • alkylene carbonate refers to cyclic carbonates of the corresponding alkylene glycols such as ethylene carbonate (1,3-dioxolan-2-one) and propylene carbonate (4-methyl-1,3-dioxolan-2-one).
  • alkyl phosphate refers to an anion of the formula R-OP (O) O 2 2 - wherein R is alkyl, eg, methyl phosphate.
  • alkylphosphonate refers to an anion of the formula RP (O) O 2 2 - wherein R is alkyl, for example methylphosphonate.
  • aryl sulfate denotes an anion of the formula R-OS (O) 2 O- in which R is aryl which optionally carries 1 to 3 alkyl groups, for example phenyl sulfate, toluene sulfate, mesitylene sulfate.
  • arylsulfonate denotes an anion of the formula RS (O) 2 O- in which R is aryl which optionally carries 1 to 3 alkyl groups, for example phenylsulfonate, toluenesulfonate, mesitylene sulfonate.
  • carboxylate refers to the anion of an aliphatic or aromatic carboxylic acid, such as formate, acetate, propionate or benzoate.
  • haloalkylsulfonate refers to an anion of the formula RS (O) 2 O- wherein R is haloalkyl, eg trifluoromethyl.
  • imide refers to anions of cyclic or acyclic carboxylic imides or sulfonic imides in which the imide nitrogen carries a negative charge.
  • cyanide for example, the following anions: cyanide (CN), azide (N 3 -), cyanate (OCN), isocyanate (NCO), fulminate (CNO), thiocyanate (SCN) and isothiocyanate (NCS).
  • the quaternary ammonium salts used as additives have at least 2, e.g. 2 to 100, preferably 2 to 10 and especially 2 or 3 quaternary ammonium groups.
  • variable k preferably stands for an integer in a range from 1 to 9, in particular for 1, 2, 3 or 4 and especially for 1 or 2.
  • variable Z is preferably a linear alkylene group having 2 to 12, especially 2 to 6, especially 2 to 4 carbon atoms.
  • R 1 , R 2 , R 3 and R 4 are each, independently of each other, preferably C 1 -C 6 -alkyl, each of which is unsubstituted or substituted by 1 or 2 substituents selected from hydroxy, alkoxy and poly (oxyethylene) can, and in particular are C 1 -C 3 alkyl, which is in each case unsubstituted or may be substituted by 1 or 2 substituents selected from hydroxy, alkoxy and poly (oxyethylene).
  • R 5 and R 6 are each independently preferably C 1 -C 6 -alkyl, each of which is unsubstituted or may be substituted by 1 or 2 substituents selected from hydroxy, alkoxy and poly (oxyethylene), and is preferably unsubstituted, and in particular C 1 -C 3 alkyl, each of which is unsubstituted or substituted with 1 or 2 substituents selected from hydroxy, alkoxy, and poly (oxyethylene), may be substituted and is preferably unsubstituted.
  • R 2 , R 3 , R 5 and R 6 are methyl.
  • R 1 and R 4 are C 1 -C 4 -alkyl and in particular methyl or ethyl.
  • the type of anion of the salt used as an additive is of minor importance to the process according to the invention. However, it is preferably not necessarily selected from electrochemically inert anions.
  • suitable anions of the salt used as an additive are sulfate, hydrogensulfate, alkylsulfate, arylsulfate, arylsulfonate, haloalkylsulfonate, halide, pseudohalides such as CN, SCN, OCN and N 3 , carboxylate, carbonate, imide such as bis (trifluoromethylsulfonyl) imide, phosphate , Alkyl phosphate, nitrate, tetrafluoroborate, hexafluorophosphate and perchlorate.
  • salts are used whose cations of the formula I obey, wherein A is nitrogen and the variables k, Z, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 have the meanings described in each case in a row of Table 1.
  • Compounds in which A is phosphorus are not within the scope of the present invention.
  • Particularly preferred salts are N, N, N, N, N ', N', N'-hexamethyl-1,3-propanediammonium salts, N, N'-diethyl, N, N ', N', N'-tetramethyl-1, 3-propanediammonium salts, N, N, N, N ', N', N'-hexamethyl-1,6-hexanediammonium salts, N, N'-diethyl, N, N ', N', N'-tetramethyl-1, 6-hexanediammonium salts, N, N'-diethyl, N, N ', N', N'-tetramethyl-1,9-nonanediammonium salts and N, N'-diethyl, N, N ', N', N'- tetramethyl-1,12-dodecane-diammonium salts especially the methosulfates and ethyl sulf
  • the solution of the carboxylic acid amide or the carboxylic acid ester generally contains the quaternary ammonium salt in a concentration in the range of 0.001 to 1000 mmol / l, often in the range of 0.1 to 500 mmol / l, preferably in the range of 1 to 100 mmol / l, in particular in the range of 25 to 75 mmol / l.
  • ammonium and phosphonium salts described are known and sometimes commercially available or can be prepared in a conventional manner, starting from the corresponding tertiary amines or the tertiary phosphines.
  • Tertiary amines if not commercially available, are available, for example, by reacting primary amines with formaldehyde and formic acid (Eschweiler-Clark reaction).
  • Tertiary phosphines in turn can be prepared by reaction of phosphorus trichloride with alkyl Grignard reagents or by conversion of phosphine with alkyl halides.
  • the tertiary amines and / or the tertiary phosphines can be converted with alkylating agents such as dimethyl sulfate, diethyl sulfate or trimethyl phosphate into the corresponding quaternary ammonium or phosphonium salts.
  • alkylating agents such as dimethyl sulfate, diethyl sulfate or trimethyl phosphate into the corresponding quaternary ammonium or phosphonium salts.
  • the counterions of the salts thus obtainable are derived from the alkylating agents used. If an anion other than counterion is desired, it may easily be added e.g. be replaced by inorganic metathesis.
  • the substrate used is a carboxylic acid amide or a carboxylic acid ester of the formula II
  • variables X, Y, R 7 , R 8 and R 9 in the formulas II and III independently and in combination with one another have the following meanings.
  • Y is preferably a chemical bond or an alkylene group having 1 to 6 carbon atoms and in particular a chemical bond
  • X is preferably NR 9
  • R 7 is preferably selected from C 3 -C 10 cycloalkyl, aryl and hetaryl, where the ring is unsubstituted in the three groups or may be substituted with up to 6 substituents selected from halo, hydroxy, C 1 -C 4 alkyl and C 1 -C 4 -alkoxy are selected, and in particular selected from aryl, which is unsubstituted or may be substituted by up to 6 substituents which are selected from halogen, hydroxy, C 1 -C 4 -alkyl and C 1 -C 4 - Alkoxy are selected.
  • R 8 is preferably selected from C 1 -C 10 -alkyl which is unsubstituted or has 1 or 2 substituents selected from hydroxy, C 1 -C 4 -alkoxy and aryl, C 1 -C 10 -haloalkyl, C 3 C 10 -cycloalkyl, aryl and hetaryl, wherein the ring in the last three groups is unsubstituted or may be substituted by up to 6 substituents which are halogen, hydroxy, C 1 -C 4 -alkyl and C 1 -C 4 - Alkoxy are selected, and in particular is selected from C 1 -C 10 alkyl, which is unsubstituted or having 1 or 2 substituents selected from hydroxy, C 1 -C 4 alkoxy and aryl, and aryl, which is unsubstituted or may be substituted with up to 6 substituents selected from halo, hydroxy, C 1 -C 4 alkyl and C 1 -
  • R 7 and R 8 may preferably together also be C 3 -C 20 -alkylene.
  • the substrate used is a secondary or tertiary carboxylic acid amide, ie a compound of the formula I in which X is a group NR 9 , where R 8 and optionally R 9 have a meaning other than hydrogen.
  • the substrate used is a secondary carboxylic acid amide, ie a compound of the formula II in which X is a group NR 9 , where either R 8 has a meaning other than hydrogen and R 9 is hydrogen.
  • the substrate used is a tertiary carboxylic acid amide used, ie a compound of the formula II, wherein X is a group NR 9 , wherein R 8 and R 9 each have a meaning other than hydrogen.
  • the process according to the invention can be carried out in all electrolysis cells known to the person skilled in the art.
  • the process according to the invention is preferably carried out in a divided electrolysis cell.
  • a divided electrolytic cell is understood to mean a cell arrangement in which the cathode space and the anode space and thus the solution (catholyte) contained in the cathode space are separated from the solution (anolyte) contained in the anode space in a manner which does not transfer charge but does not transfer organic charge Substances between catholyte and anolyte allowed.
  • the separation of cathode space and anode space can be achieved in a conventional manner by suitable separation media.
  • separation media can ion exchange membranes, microporous membranes, diaphragms, filter fabric of non-electron-conducting materials, glass frits, and porous ceramics are used.
  • ion exchange membranes in particular cation exchange membranes, are used.
  • These conductive membranes are commercially available for example under the trade name Nafion ® (Fa. ET. DuPont de Nemours and Company) and Gore Select ® (Messrs. WL Gore & Associates, Inc.).
  • the cathodic reduction of the carboxylic acid amide or carboxylic ester solution is conducted in a divided flow cell.
  • Divided cells in particular divided flow cells, which have a plane-parallel electrode arrangement, are preferably used.
  • the substrate is cathodically reduced, i. the solution containing the carboxylic acid amide or the carboxylic acid ester is added to the cathode half-space in a divided electrolytic cell when the electrolysis is carried out.
  • the carboxylic acid amide or the carboxylic acid ester are then dissolved in the catholyte.
  • a solution of the carboxylic acid amide or of the carboxylic acid ester is subjected to a cathodic reduction, ie the substrate is present in dissolved form in an organic solvent.
  • Suitable solvents are in principle all inert organic solvents customary for electrochemical reactions and mixtures thereof with water.
  • solvents are, in particular, alkanols, for example the abovementioned C 1 -C 4 -alkanols, alkylene carbonates, such as ethylene carbonate or propylene carbonate, cyclic and acyclic ethers, for example diethyl ether, diisopropyl ether, methyl tert-butyl ether, ethyl tert-butyl ether, Tetrahydrofuran, methyltetrahydrofuran, dioxane or pyran, alkylglycols, dialkylglycols, alkyldiglycols and Dialkyl diglycols such as methyl glycol, ethyl glycol, dimethyl glycol, diethyl glycol, methyl diglycol or ethyl diglycol, polyethers such as triethylene glycol or higher polyethylene glycols and their alkyl ethers, and nitriles, such as acetonitrile or
  • the solution used for cathodic reduction may also contain mixtures of said organic solvents with water or with C 5 -C 7 hydrocarbons.
  • suitable solvents are described in Kosuke Izutsu, "Electrochemistry in Nonaqueous Solutions", published by Wiley-VCH 2002, chap. 1 .
  • the catholyte contains inert solvent chosen from C 1 -C 4 -alkanols, dimethyl carbonate, propylene carbonate, tetrahydrofuran, dimethoxyethane, acetonitrile, mixtures thereof and mixtures thereof with water, mixtures of these inert solvent or mixtures of these inert solvent with C 5 -C 7 - hydrocarbons.
  • C 1 -C 4 -alkanols Particularly preferred are C 1 -C 4 -alkanols, tetrahydrofuran, dimethoxyethane or mixtures thereof and mixtures with water. This can form a single- or multi-phase system.
  • C 1 -C 4 -alkanols which are optionally used in mixtures with one another and / or water.
  • C 1 -C 4 alkanols include monools such as methanol, ethanol, n-propanol, i-propanol, n-butanol, sec-butanol, tert-butanol, diols such as glycol and triols such as glycerol.
  • the solvent is methanol.
  • the catholyte and the anolyte may contain the same or different solvents.
  • the solution of the carboxylic acid amide or of the carboxylic acid ester usually contains a mineral acid or an inert conductive salt, mineral acids being preferred.
  • mineral acids are hydrochloric acid, sulfuric acid or phosphoric acid, in particular sulfuric acid.
  • the catholyte and the anolyte can contain the same or different electrolyte salts or mineral acids.
  • the catholyte and the anolyte preferably contain, independently of one another, a mineral acid, such as hydrochloric acid, sulfuric acid or phosphoric acid, in particular sulfuric acid.
  • the cathodes used are preferably electrodes in which the cathode surface is formed from a material with a high hydrogen overvoltage.
  • cathodes are used in which the cathode surface consists of a material which is selected from lead, zinc, tin, nickel, mercury, cadmium, copper, an alloy of these metals or glassy carbon, graphite or diamond.
  • the cathode surface consists of lead.
  • the cathode is polarized prior to its use.
  • anodes in principle, all conventional anode materials come into consideration. Preference is given to anodes whose surface consists of platinum, lead, zinc, tin, nickel, mercury, cadmium, copper, alloys of these metals, glassy carbon, graphite or diamond. If the anolyte contains a mineral acid, platinum, diamond, glassy carbon or graphite anodes and in particular platinum are preferably used. If the anolyte is basic, preference is given to using nickel and, in particular, platinum.
  • Each of the anode and the cathode may each consist entirely of the previously written materials or may consist of a carrier material coated with the described cathode material.
  • Suitable support materials for such coated electrodes are electrically conductive materials such as niobium, silicon, tungsten, titanium, silicon carbide, tantalum, copper, gold, nickel, iron, graphite, ceramic supports such as titanium suboxide or silver-containing alloys.
  • Preferred supports are metals, in particular metals with a lower standard potential such as, for example, iron, copper, nickel or niobium.
  • electrodes in the form of expanded metals, nets or sheets, the electrodes in particular containing the aforementioned materials.
  • a polarized lead sheet as the cathode.
  • the anodic reaction depends in a manner known per se on the composition of the anolyte.
  • the solvent used is oxidized.
  • methanol for example, methyl formate, formaldehyde dimethyl acetal and / or dimethyl carbonate is formed.
  • N-dimethylformamide for example N-methoxymethyl-N-methylformamide is formed.
  • an amount of charge of 4 to 12 F / mol, preferably 6 to 10 F / mol, in particular 7 to 9 F / mol is generally transferred.
  • the current densities at which the process is carried out are generally from 1 to 1000 mA / cm 2 , preferably from 10 to 100 mA / cm 2 and in particular from 25 to 75 mA / cm 2 .
  • the electrolysis according to the process of the invention is usually carried out at a temperature in a range of 0 to 100 ° C, preferably above 20 ° C, e.g. in the range of 25 to 100 ° C, in particular in the range of 25 to 80 ° C or preferably in the range of 15 to 100 ° C, in particular in the range of 15 to 80 ° C or in the range of 15 to 55 ° C, especially in Range of 25 to 55 ° C, worked.
  • the total duration of the electrolysis naturally depends on the electrolysis cell, the substrate, the optionally added solvent, the electrodes used and the current density.
  • An optimum duration can be determined by the skilled person by routine tests, e.g. by sampling during electrolysis.
  • the contents of the electrolytic cell is mixed.
  • any mechanical stirrer known to those skilled in the art can be used.
  • the use of other mixing methods such as the use of dynamic mixers such as Ultraturrax or liquid pumps, ultrasound or jet nozzles is also preferred.
  • the electrolyte solution can be worked up after completion of the reaction (batch process) or continuously during the electrolysis by general separation methods.
  • the catholyte can first be distilled and the individual compounds can be obtained separately in the form of different fractions.
  • Suitable distillation processes are processes known to the person skilled in the art, such as direct-current distillation, countercurrent distillation, short-path distillation or steam distillation.
  • the product obtained can also be obtained by continuous or discontinuous extraction from the catholyte.
  • discontinuous extraction it is advantageous to work at pHs where the recovered amine is present as an uncharged species.
  • pH values ⁇ 9, preferably pH values ⁇ 11, are preferred for the extraction.
  • Particularly suitable extractants are organic solvents known to the person skilled in the art which are immiscible with water, for example hydrocarbons having 5 to 12 carbon atoms, such as hexane or octane Hydrocarbons having 1 to 10 carbon atoms such as dichloromethane or chloroform, aliphatic ethers having 2 to 10 carbon atoms such as diethyl ether or diisopropyl ether, cyclic ethers such as tetrahydrofuran or aliphatic esters such as ethyl acetate or butyl acetate. Further purification after the extraction can be carried out, for example, by crystallization, distillation or by chromatography.
  • hydrocarbons having 5 to 12 carbon atoms such as hexane or octane
  • Hydrocarbons having 1 to 10 carbon atoms such as dichloromethane or chloroform
  • aliphatic ethers having 2 to 10 carbon atoms such as diethyl
  • the process according to the invention can be carried out both on a laboratory scale and on an industrial scale. Furthermore, it is possible to carry out the process continuously or discontinuously. Corresponding electrolysis cells are known to the person skilled in the art. All embodiments of this invention relate to both the laboratory and industrial scale.
  • ammonium salts listed below under 1.2 to 1.20 were prepared in analogy to the method described in 1.1.
  • N- (2-ethylhexyl) benzoic acid amide was deoxygenated analogously to Example 1 in the presence of the salts described in Table A to give N-benzyl-N- (2-ethylhexyl) amine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Desoxygenierung von Carbonsäureamiden und Carbonsäureestern durch kathodische Reduktion einer Lösung dieser Verbindungen.
  • Die Reduktion von Carbonsäureamiden zu den entsprechenden Aminen gemäß der im folgenden schematisch dargestellten Reaktionsgleichung, im Folgenden auch als Desoxygenierung von Amiden bezeichnet, ist eine seit längerem bekannte, aber nicht immer einfach zu beherrschende Umsetzung:
    Figure imgb0001
  • Dem Fachmann sind grundsätzlich verschiedene Methoden zur Desoxygenierung von Amiden bekannt. In der Regel werden zu diesem Zweck (Halb)-Metallhydride wie Borhydride, z.B. Natriumborhydrid in Gegenwart von Aktivatoren (S.-H.Xiang, Synlett 2010, 12, 1829-1832) oder Diboran (H.C.Brown, J.Org.Chem. 1973, 38, 912-916), und Aluminiumhydride, z.B. Lithiumaluminiumhydrid (N. Assimomytis et al, Synlett 2009, 17, 2777-2782) oder Diisobutylaluminiumhydrid (L.I.Zakharkin, I.M.Khorlina, Tetrahedron Letters 1962, 14, 619-620), eingesetzt. Auch wenn diese Verfahren die Amine in der Regel in hohen Ausbeuten liefern, ist der Umgang mit (Halb)-Metallhydriden aufgrund ihrer Eigenschaft in Gegenwart acider Protonen in exothermer Reaktion Wasserstoff zu bilden, nicht unproblematisch und es bedarf daher in der Regel umfangreicher Sicherheitsvorkehrungen. Zudem fallen bei der Aufarbeitung Oxide bzw. Hydroxide an, deren Abtrennung vom Wertprodukt in der Regel aufwändig ist und die entsorgt werden müssen. Diese Nachteile stehen einer Nutzung dieser Reaktionen in großtechnischem Maßstab entgegen, so dass diese Reaktionen bislang in erster Linie bei der Herstellung komplexer Wirkstoffmoleküle oder in Naturstoffsynthesen Anwendung gefunden haben.
  • Verschiedentlich wurde über die katalytische Hydrierung von Fettsäureamiden zu den entsprechenden Fettaminen and Katalysatoren vom Kupferchromit-Typ berichtet - siehe US 5,840,985 und US 2007/0191642 . WO 2005/066112 beschreibt die katalytische Hydrierung von Amiden zu Aminen, z.B. die Hydrierung von 1-Acetylpyrrolidin zu 1-Ethylpyrrolidin, an bimetallischen oder trimetallischen Übergangsmetallkontakten. Diese Verfahren bleiben jedoch üblicherweise auf flüchtige Amide beschränkt.
  • Verschiedentlich wurden elektrochemische Verfahren zur Herstellung von Aminen beschrieben. Die WO 2008/003620 und die WO 2006/005531 beschreiben beispielsweise die Herstellung von Amine durch kathodische Reduktion von Oximderivaten. Nachteilig bei diesen Verfahren ist es, dass zuerst die entsprechenden Oximderivate erzeugt werden müssen und dass weiterhin nur primäre Amine und keine sekundären oder tertiären Amine auf diese Weise zugänglich sind.
  • Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines breit anwendbaren Verfahrens zur Herstellung von Aminen aus den entsprechenden Carbonsäureamiden, welches die Nachteile des Standes der Technik überwindet. Das Verfahren sollte die entsprechenden Amine mit hoher Selektivität und hoher Ausbeute liefern.
  • Diese Aufgabe wird überraschend durch ein Verfahren gelöst, bei dem man eine Lösung eines Carbonsäureamids in einem Lösungsmittel einer kathodischen Reduktion, im folgenden auch kathodische Desoxygenierung genannt, unterwirft, wobei die Lösung ein Salz als Additiv enthält, das unter quaternären Ammonium- und Phosphoniumsalzen ausgewählt ist. Überraschenderweise lässt sich dieses Verfahren auf die Desoxygenierung von Carbonsäureestern zu den entsprechenden Ethern gemäß der folgenden Reaktionsgleichung übertragen:
    Figure imgb0002
  • Die vorliegende Erfindung betrifft somit ein Verfahren zur Desoxygenierung von Carbonsäureamiden und Carbonsäureestern durch kathodische Reduktion einer Lösung des Carbonsäureamids oder des Carbonsäureesters, welches dadurch gekennzeichnet ist, dass die zur kathodischen Reduktion verwendete Lösung des Carbonsäureamids bzw. des Carbonsäureesters ein Salz als Additiv enthält, das unter quaternären Ammoniumsalzen ausgewählt ist.
  • Im erfindungsgemäßen Verfahren wird ein Amid zu dem entsprechenden Amin bzw. ein Ester in den entsprechenden Ether überführt. Hierbei wird die Carbonylgrupper der Carboxamideinheit des Amids bzw. die Carbonylgruppe der Carboxyleinheit des Esters in eine CH2-Gruppe umgewandelt.
  • Das erfindungsgemäße Verfahren benötigt keine problematischen oder teuren Reagenzien, da als Reduktionsmittel preiswerter Strom eingesetzt wird. Das Verfahren ermöglicht die selektive Desoxygenierung der eingesetzten Amide, ohne dass in signifikanter Weise unerwünschte Nebenreaktionen, wie beispielsweise eine Spaltung der amidischen C-N-Bindung auftreten. Anders als bei der Reduktion mit (Halb)Metallhydriden fallen keine oxidischen bzw. hydroxidischen Nebenprodukte, die aus dem Reaktionsgemisch entfernt und entsorgt werden müssten. Zudem ermöglicht das erfindungsgemäße Verfahren nicht nur die Herstellung primärer sondern auch sekundärer und tertiärer Amine sowie die Herstellung symmetrischer wie unsymmetrischer Ether. Zudem erlaubt das erfindungsgemäße Verfahren den Einsatz von Edukten, die funktionelle Gruppen aufweisen, welche bei den bekannten Desoxygenierungsverfahren angegriffen werden oder zu Nebenreaktion führen.
  • Im Rahmen der vorliegenden Erfindung weisen die folgenden Begriffe folgende Bedeutungen auf, soweit Sie für den Fachmann keinen klaren Bedeutungsinhalt haben.
  • Unter einer quaternären Ammoniumgruppe versteht man eine Atomgruppe, die ein positiv geladenes Stickstoff-Atom aufweist, welches vier, über C-Atome gebundene Substituenten trägt.
  • Unter einer quaternären Phosphoniumgruppe versteht man eine Atomgruppe, die ein positiv geladenes Phospor-Atom aufweist, welches vier, über C-Atome gebundene Substituenten trägt.
  • Das in Verbindung mit organischen Resten und organischen Verbindungen verwendete Präfix Cn-Cm gibt die mögliche Anzahl von Kohlenstoffatomen an, die der jeweilige Rest bzw. die jeweilige Verbindung aufweisen kann.
  • Der Begriff "C1-C4-Alkyl" bezeichnet einen gesättigten, linearen oder verzweigten aliphatischen Kohlenwasserstoffrest, der 1 bis 4 Kohlenstoffatome aufweist, wie beispielsweise Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, 2-Butyl, Isobutyl oder tert.-Butyl.
  • Der Begriff "C1-C10-Alkyl" bezeichnet einen gesättigten, linearen oder verzweigten aliphatischen Kohlenwasserstoffrest, der 1 bis 10 Kohlenstoffatome aufweist, z.B. Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, 2-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, 2-Pentyl, 2-Methylbutyl, 3-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 2-Hexyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethyl-propyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl- 2-methylpropyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 2-Ethylpentyl, 1-Propylbutyl, n-Octyl, 2-Ethylhexyl, 2-Propylheptyl, Nonyl, Decyl.
  • Der Begriff "Haloalkyl" bezeichnet einen gesättigten, linearen oder verzweigten aliphatischen Kohlenwasserstoffrest, der 1 bis 10, insbesondere 1 bis 6 oder 1 bis 4 Kohlenstoffatome aufweist und worin wenigstens ein oder alle, z.B. 1, 2, 3, 4, 5, 6 oder 7 Wasserstoffatome durch Halogen, insbesondere durch Fluor, Chlor oder Brom ersetzt sind, z.B. für Trifluormethyl, Chlormethyl, Brommethyl, 1,1-Difluorethyl, 2,2,2-Trifluorethyl, Pentafluorethyl, Hexafluorpropyl oder Heptafluorpropyl.
  • Der Begriff " Alkenyl" bezeichnet einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest, der einfach oder mehrfach ungesättigt ist und der in der Regel 2 bis 10, insbesondere 2 bis 6 oder speziell 2 bis 4 Kohlenstoffatome aufweist, z.B. Ethenyl, 1-Propenyl, 2-Propenyl, 1-Buten-1-yl, 2-Buten-1-yl, 3-Buten-1-yl, 1-Buten-2-yl, 2-Methyl-1-propen-1-yl, 2-Methyl-2-propen-1-yl, etc.
  • Der Begriff "Alkylen" bezeichnet einen verzweigten oder unverzweigten, gesättigten, bivalenten aliphatischen Kohlenwasserstoffrest, der in der Regel 2 bis 20, insbesondere 3 bis 10 und speziell 3 bis 6 Kohlenstoffatome aufweist, z.B. Ethan-1,2-diyl, Propan-1,3-diyl, Butan-1,4-diyl, 1-Methylethan-1,2-diyl, 1,1-Dimethylethan-1,2-diyl,1-Methylpropan-1,3-diyl, 1,1-Dimethylpropan-1,3-diyl, 2,2-Dimethylpropan-1,3-diyl, Pentan-1,5-diyl, Hexan-1,6-diyl, Heptan-1,7-diyl, Octan-1,8-diyl, Nonan-1,9-diyl, Decan-1,10-diyl, Dodecan-1,12-diyl, etc..
  • Der Begriff "Alkenylen" bezeichnet einen verzweigten oder unverzweigten, einfach gesättigten, bivalenten aliphatischen Kohlenwasserstoffrest, der in der Regel 2 bis 20, insbesondere 3 bis 10 und speziell 3 bis 6 Kohlenstoffatome aufweist, z.B. 1,2-Ethendiyl, Propen-1,3-diyl, 2-Buten-1,4-diyl, 1-Methylethen-1,2-diyl, 1-Methyl-1-propen-1,3-diyl, 2-Methyl-1-propen-1,3-diyl, 1-Penten-1,5-diyl, 2-Penten-1,5-diyl, 1-Hexen-1,6-diyl, 2-Hexen-1,6-diyl, 3-Hexen-1,6-diyl, 1-Hepten-1,7-diyl, 2-Hepten-1,7-diyl, 3-Hepten-1,7-diyl, etc..
  • Der Begriff "Alkoxy" bezeichnet einen verzweigten oder unverzweigten, gesättigten Alkylrest, der über ein Sauerstoffatom mit dem restlichen Molekül verbunden ist. Der Begriff "C1-C10 Alkoxy" bezeichnet im Folgenden einen Alkylrest wie zuvor definiert, der 1 bis 10 Kohlenstoffatome aufweist. Der Begriff "C1-C4 Alkoxy" bezeichnet im Folgenden einen Alkylrest wie zuvor definiert, der 1 bis 4 Kohlenstoffatome aufweist, z.B. Methoxy, Ethoxy, Propyloxy, Isopropyloxy, n-Butyloxy, 2-Butyloxy, sec.-Butyloxy, tert.-Butyloxy, n-Pentyloxy, 2-Pentyloxy, 2-Methylbutyloxy, 3-Methylbutyloxy, 1,2-Dimethylpropyloxy, 1,1-Dimethylpropyloxy, 2,2-Dimethylpropyloxy, 1-Ethylpropyloxy, n-Hexyloxy, 2-Hexyloxy, 2-Methylpentyloxy, 3-Methylpentyloxy, 4-Methylpentyloxy, 1,2-Dimethylbutyloxy, 1,3-Dimethylbutyloxy, 2,3-Dimethylbutyloxy, 1,1-Dimethylbutyloxy, 2,2-Dimethylbutyloxy, 3,3-Dimethylbutyloxy, 1,1,2-Trimethylpropyloxy, 1,2,2-Trimethyl-propyloxy, 1-Ethylbutyloxy, 2-Ethylbutyloxy, 1-Ethyl- 2-methylpropyloxy, n-Heptyloxy, 2-Heptyloxy, 3-Heptyloxy, 2-Ethylpentyloxy, 1-Propylbutyloxy, n-Octyloxy, 2-Ethylhexyloxy, 2-Propylheptyloxy, Nonyl, Decyloxy.
  • Der Begriff "C3-C10-Cycloalkyl" bezeichnet einen gesättigten, mono- oder bicyclischen Kohlenwasserstoffrest, der 3 bis 10 Kohlenstoffatome, z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cylcooctyl, Cyclononyl, Cyclodecyl, Bicyclo[2.2.1]heptyl, Bicyclo[3.3.0]octyl, Bicyclo[3.2.1]octyl, Bicyclo[2.2.2]octyl etc.
  • Der Ausdruck "Aryl" bezeichnet einen aromatischen oder teilaromatischen Kohlenwasserstoffrest, der mono- oder polycyclisch ist und üblicherweise 6, 9, 10, 13 oder 14 C-Atome aufweist und der vorzugsweise für Phenyl, Naphthyl, Tetrahydronaphthyl, Indenyl, Indanyl, Fluorenyl, Anthracenyl, Phenanthrenyl oder Naphthacenyl, besonders bevorzugt für Phenyl oder Naphthyl steht.
  • Der Ausdruck "Hetaryl" bezeichnet einen aromatischen oder teilaromatischen heterocyclischen Rest, der mono- oder polycyclisch ist und üblicherweise 5 bis 14 Ringglieder aufweist, die neben Kohlenstoff wenigstens ein Heteroatom als Ringatom aufweisen, das ausgewählt ist unter N, O und S, z.B. 1 bis 4 N-Atome oder 1 unter O und S ausgewähltes Atom und ggf. 1, 2 oder 3 weitere N-Atome, aufweist und der vorzugsweise die Gruppen Pyridyl, Chinolinyl, Acridinyl, Pyridazinyl, Pyrimidinyl, Pyrazinyl, Triazinyl, Tetrazinyl, Pyrrolyl, Pyrazolyl, Isoxazolyl, Imidazolyl, Oxazolyl, Thiazolyl, Thienyl, Furyl.
  • Der Begriff "5 bis 7 gliedriger Carbocyclus" bezeichnet einen gesättigten oder ungesättigten Kohlenwasserstoffrest, der 5 bis 7 Kohlenstoffatome als Ringglieder aufweist.
  • Der Begriff "5 bis 8 gliedriger Heterocyclus" bezeichnet einen monocyclischen oder polycyclischen, gesättigten oder ungesättigten heterocyclischen Rest mit 5 bis 8 Ringatomen, worin die Ringatome neben Kohlenstoff, wenigstens ein Heteroatom aufweisen, das vorzugsweise unter Stickstoff, Schwefel und Sauerstoff ausgewählt ist, z.B. Pyrrolidinyl, Piperidinyl, Morpholinyl, Thiomorpholinyl, Piperazinyl, Hexahydroazepinyl, etc..
  • Der Begriff "Poly(oxyethylen)" bezeichnet im einen Polyetherrest, welches Oxyethylengruppen (OCH2CH2) als Wiederholungseinheit aufgebaut ist, und der über ein Sauerstoffatom gebunden ist.
  • Der Begriff "Alkanol" bezeichnet einen aliphatischen, gesättigten oder ungesättigten Alkohol, der eine oder mehrere, z.B. 1, 2 oder 3, insbesondere eine Hydroxylgruppe(n) aufweist und der in der Regel 1 bis 10 C-Atome besitzt. Dementsprechend versteht man unter C1-C10-Alkanol ein Alkanol mit 1 bis 10 C-Atomen wie beispielsweise Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, Isobutanol, tert.-Butanol, Pentanol, Hexanol, Heptanol, Octanol, Nonanol und Decanol, wobei die 6 zuletzt genannten Alkanole linear oder verzweigt sein können, weiterhin Glykol, Propandiol, Butandiol und Glycerin.
  • Der Begriff "Alkylencarbonat" bezeichnet cyclische Carbonate der entsprechenden Alkylenglykole wie Ethylencarbonat (1,3-Dioxolan-2-on) und Propylencarbonat (4-Methyl-1,3-dioxolan-2-on).
  • Der Begriff "Alkylphosphat" bezeichnet ein Anion der Formel R-OP(O)O2 2- worin R für Alkyl steht, z.B. Methylphosphat.
  • Der Begriff "Alkylphosphonat" bezeichnet ein Anion der Formel R-P(O)O2 2- worin R für Alkyl steht, z.B. Methylphosphonat.
  • Der Begriff "Alkylsulfat" bezeichnet ein Anion der Formel R-OS(O)2O- worin R für Alkyl steht, z.B. Methylsulfat (= Methosulfat) oder Ethylsulfat.
  • Der Begriff "Arylsulfat" bezeichnet ein Anion der Formel R-OS(O)2O- worin R für Aryl steht, das ggf. 1 bis 3 Alkylgruppen trägt, z.B. Phenylsulfat, Toluolsulfat, Mesitylensulfat.
  • Der Begriff "Arylsulfonat" bezeichnet ein Anion der Formel R-S(O)2O- worin R für Aryl steht, das ggf. 1 bis 3 Alkylgruppen trägt, z.B. Phenylsulfonat, Toluolsulfonat, Mesitylensulfonat.
  • Der Begriff "Carboxylat" bezeichnet das Anion einer aliphatischen oder aromatischen Carbonsäure, wie beispielsweise Formiat, Acetat, Propionat oder Benzoat.
  • Der Begriff "Haloalkylsulfonat" bezeichnet ein Anion der Formel R-S(O)2O- worin R für Haloalkyl, z.B. Trifluormethyl steht.
  • Der Begriff "Imid" bezeichnet Anionen von cyclischen oder acyclischen Carbonsäureimiden oder Sulfonsäureimiden, in denen der Imid-Stickstoff eine negative Ladung trägt.
  • Unter dem Begriff "Pseudohalogenid" beispielsweise die folgenden Anionen: Cyanid (CN-), Azid (N3-), Cyanat (OCN-), Isocyanat (NCO-), Fulminat (CNO-), Thiocyanat (SCN-), und Isothiocyanat (NCS-).
  • Die als Additive verwendeten quaternären Ammoniumsalze weisen wenigstens 2, z.B. 2 bis 100, bevorzugt 2 bis 10 und speziell 2 oder 3 quaternäre Ammoniumgruppen auf.
  • Als Additive werden im erfindungsgemäßen Verfahren Salze eingesetzt, deren Kation die Formel I auf aufweist:
    Figure imgb0003
    worin
  • k
    für eine ganze Zahl im Bereich von 1 bis 99, vorzugsweise im Bereich von 1 bis 9, insbesondere für 1, 2, 3 oder 4 und speziell für 1 oder 2 steht,
    A
    für Stickstoff steht,
    Z
    für eine C2-C12-Alkylengruppe steht, worin gegebenenfalls 1, 2 oder 3 CH2-Gruppen, welche von den Stickstoffatomen A und voneinander durch wenigstens 2 C-Atome getrennt sind, durch Sauerstoffatome ersetzt sein können, bevorzugt für eine Alkylengruppe mit 2 bis 6 Kohlenstoffatomen, worin gegebenenfalls 1 oder 2 CH2-Gruppen, welche von den Stickstoffatomen und voneinander durch wenigstens 2 C-Atome getrennt sind, durch Sauerstoffatome ersetzt sein können, insbesondere für eine Alkylengruppe mit 2 bis 4 Kohlenstoffatomen, worin gegebenenfalls 1 CH2-Gruppe, welche von den Stickstoffatomen durch wenigstens 2 C-Atome getrennt ist, durch ein Sauerstoffatom ersetzt sein kann;
    R1, R2, R3 und R4
    jeweils unabhängig von einander für C1-C10-Alkyl stehen, welches jeweils unsubstituiert ist oder mit 1 oder 2 Substituenten, ausgewählt unter Hydroxy, Alkoxy und Poly(oxyethylen), substituiert sein kann, bevorzugt für C1-C6-Alkyl stehen, welches jeweils unsubstituiert ist oder mit 1 oder 2 Substituenten, ausgewählt unter Hydroxy, Alkoxy und Poly(oxyethylen), substituiert sein kann, insbesondere für C1-C3-Alkyl stehen, welches jeweils unsubstituiert ist oder mit 1 oder 2 Substituenten, ausgewählt unter Hydroxy, Alkoxy und Poly(oxyethylen), substituiert sein kann, oder
    R1 und R2
    zusammen mit dem Stickstoff, an den sie gebunden sind, auch für einen 5 bis 8-gliedrigen Heterocyclus stehen können, der im Ring 1 N-Atom enthält und unsubstituiert ist oder mit 1 bis 4 Substituenten, ausgewählt unter Hydroxy, C1-C4-Alkoxy und C1-C4-Alkyl, substituiert sein kann,
    R5 und R6
    jeweils unabhängig von einander für C1-C10-Alkyl stehen, welches jeweils unsubstituiert ist oder mit 1 oder 2 Substituenten, ausgewählt unter Hydroxy, Alkoxy und Poly(oxyethylen), substituiert sein kann, bevorzugt für C1-C6-Alkyl stehen, welches jeweils unsubstituiert ist oder mit 1 oder 2 Substituenten, ausgewählt unter Hydroxy, Alkoxy und Poly(oxyethylen), insbesondere für C1-C3-Alkyl stehen, welches jeweils unsubstituiert ist oder mit 1 oder 2 Substituenten, ausgewählt unter Hydroxy, Alkoxy und Poly(oxyethylen), substituiert sein kann.
  • Die in der Formel I auftretenden Variablen k, A, R1, R2, R3, R4, R5 und R6 weisen unabhängig von einander oder vorzugsweise in Kombination miteinander die folgenden Bedeutungen auf.
  • Die Variable k steht vorzugsweise für eine ganze Zahl in einem Bereich von 1 bis 9, insbesondere für 1, 2, 3 oder 4 und speziell für 1 oder 2.
  • Die Variable Z steht vorzugsweise für eine lineare Alkylengruppe mit 2 bis 12, insbesondere mit 2 bis 6, speziell 2 bis 4 Kohlenstoffatomen.
  • R1, R2, R3 und R4 stehen jeweils unabhängig von einander vorzugsweise für C1-C6-Alkyl, welches jeweils unsubstituiert ist oder mit 1 oder 2 Substituenten, ausgewählt unter Hydroxy, Alkoxy und Poly(oxyethylen), substituiert sein kann, und insbesondere für C1-C3-Alkyl stehen, welches jeweils unsubstituiert ist oder mit 1 oder 2 Substituenten, ausgewählt unter Hydroxy, Alkoxy und Poly(oxyethylen), substituiert sein kann.
  • R5 und R6 stehen jeweils unabhängig von einander vorzugsweise für C1-C6-Alkyl, welches jeweils unsubstituiert ist oder mit 1 oder 2 Substituenten, ausgewählt unter Hydroxy, Alkoxy und Poly(oxyethylen), substituiert sein kann und vorzugsweise unsubstituiert ist, und insbesondere für C1-C3-Alkyl, welches jeweils unsubstituiert ist oder mit 1 oder 2 Substituenten, ausgewählt unter Hydroxy, Alkoxy und Poly(oxyethylen), substituiert sein kann und vorzugsweise unsubstituiert ist.
  • Insbesondere stehen R2, R3, R5 und R6 für Methyl.
  • Insbesondere stehen R1 und R4 für C1-C4-Alkyl und insbesondere für Methyl oder Ethyl.
  • Besonders bevorzugt sind Kationen der Formel I, worin
  • k
    für eine ganze Zahl in einem Bereich von 1 bis 9, vorzugsweise 1, 2, 3 oder 4 und insbesondere 1 oder 2 steht,
    A
    für Stickstoff steht,
    Z
    für eine lineare Alkylengruppe mit 2 bis 12, vorzugsweise mit 2 bis 6, insbesondere 2 bis 4 Kohlenstoffatomen steht;
    R1, R2, R3 und R4
    jeweils unabhängig von einander für C1-C6-Alkyl stehen, welches jeweils unsubstituiert ist oder mit 1 oder 2 Substituenten, ausgewählt unter Hydroxy, Alkoxy und Poly(oxyethylen), substituiert sein kann, vorzugsweise für C1-C3-Alkyl stehen, welches jeweils unsubstituiert ist oder mit 1 oder 2 Substituenten, ausgewählt unter Hydroxy, Alkoxy und Poly(oxyethylen), substituiert sein kann oder
    R5 und R6
    jeweils unabhängig von einander für C1-C6-Alkyl und vorzugsweise für C1-C4-Alkyl stehen, welches jeweils unsubstituiert ist oder mit 1 oder 2 Substituenten, ausgewählt unter Hydroxy, Alkoxy und Poly(oxyethylen), substituiert sein kann und vorzugsweise unsubstituiert ist.
  • Insbesondere bevorzugt ist das Kation der Formel I, worin
  • k
    für 1 bis 9, vorzugsweise 1, 2, 3 oder 4 und insbesondere 1 oder 2 steht,
    A
    für Stickstoff steht,
    Z
    für eine lineare Alkylengruppe mit 2 bis 12 Kohlenstoffatomen, vorzugsweise mit 2 bis 6 Kohlenstoffatomen, insbesondere 2 bis 4 Kohlenstoffatomen steht,
    R1 und R4
    jeweils unabhängig von einander für C1-C4-Alkyl, vorzugsweise Methyl und Ethyl, stehen, und
    R2, R3, R5 und R6
    für Methyl stehen.
  • Die Art des Anions des als Additiv verwendeten Salzes ist für das erfindungsgemäße Verfahren von untergeordneter Bedeutung. Es ist vorzugsweise jedoch nicht notwendiger Weise unter elektrochemisch inerten Anionen ausgewählt. Beispiele für geeignete Anionen des als Additiv verwendeten Salzes sind Sulfat, Hydrogensulfat, Alkylsulfat, Arylsulfat, Arylsulfonat, Haloalkylsulfonat, Halogenid, Pseudohalogenid wie z.B. CN, SCN, OCN und N3, Carboxylat, Carbonat, Imid wie z.B. Bis(trifluormethylsulfonyl)imid, Phosphat, Alkylphosphat, Nitrat, Tetrafluoroborat, Hexafluorophosphat und Perchlorat. Bevorzugt sind Hydrogensulfat, Alkylsulfat, Arylsulfat, Arylsulfonat, Haloalkylsulfonat, Arylsulfonat, insbesondere Sulfat und Alkylsulfat wie z.B. Ethylsulfat oder Methylsulfat.
  • In bevorzugten Ausführungsformen der Erfindung werden Salze eingesetzt, deren Kationen der Formel I gehorchen, worin A Stickstoff ist und die Variablen k, Z, R1, R2, R3, R4, R5 und R6
    die in jeweils einer Reihe der Tabelle 1 beschriebenen Bedeutungen aufweisen. Verbindungen, in den A für Phosphor steht, fallen nicht unter den Umfang der vorliegenden Erfindung. Tabelle 1:
    Verbindung A k Z R1, R3, R5 R6 R2, R4
    1 N 1 Ethandiyl Methyl Methyl
    2 N 1 Ethandiyl Methyl Ethyl
    3 N 2 Ethandiyl Methyl Methyl
    4 N 2 Ethandiyl Methyl Ethyl
    5 N 3 Ethandiyl Methyl Methyl
    6 N 3 Ethandiyl Methyl Ethyl
    7 N 1 Propandiyl Methyl Methyl
    8 N 1 Propandiyl Methyl Ethyl
    9 N 2 Propandiyl Methyl Methyl
    10 N 2 Propandiyl Methyl Ethyl
    11 N 1 Butandiyl Methyl Methyl
    12 N 1 Butandiyl Methyl Ethyl
    Verbindung A k Z R1, R3, R5, R6 R2, R4
    13 N 1 Pentandiyl Methyl Methyl
    14 N 1 Pentandiyl Methyl Ethyl
    15 N 1 Hexandiyl Methyl Methyl
    16 N 1 Hexandiyl Methyl Ethyl
    17 N 1 Heptandiyl Methyl Methyl
    18 N 1 Heptandiyl Methyl Ethyl
    19 N 1 Hexandiyl Methyl Methyl
    20 N 1 Octandiyl Methyl Ethyl
    21 N 1 Nonandiyl Methyl Methyl
    22 N 1 Nonandiyl Methyl Ethyl
    23 N 1 Decandiyl Methyl Methyl
    24 N 1 Decandiyl Methyl Ethyl
    25 N 1 Dodecandiyl Methyl Methyl
    26 N 1 Dodecandiyl Methyl Ethyl
    27 P 1 Ethandiyl Methyl Methyl
    28 P 1 Ethandiyl Methyl Ethyl
    29 P 2 Ethandiyl Methyl Methyl
    30 P 2 Ethandiyl Methyl Ethyl
    31 P 3 Ethandiyl Methyl Methyl
    32 P 3 Ethandiyl Methyl Ethyl
    33 P 1 Propandiyl Methyl Methyl
    34 P 1 Propandiyl Methyl Ethyl
    35 P 2 Propandiyl Methyl Methyl
    36 P 2 Propandiyl Methyl Ethyl
    37 P 1 Butandiyl Methyl Methyl
    38 P 1 Butandiyl Methyl Ethyl
    39 P 1 Pentandiyl Methyl Methyl
    40 P 1 Pentandiyl Methyl Ethyl
    41 P 1 Hexandiyl Methyl Methyl
    42 P 1 Hexandiyl Methyl Ethyl
    43 P 1 Heptandiyl Methyl Methyl
    44 P 1 Heptandiyl Methyl Ethyl
    45 P 1 Hexandiyl Methyl Methyl
    46 P 1 Octandiyl Methyl Ethyl
    47 P 1 Nonandiyl Methyl Methyl
    48 P 1 Nonandiyl Methyl Ethyl
    49 P 1 Decandiyl Methyl Methyl
    50 P 1 Decandiyl Methyl Ethyl
    51 P 1 Dodecandiyl Methyl Methyl
    52 P 1 Dodecandiyl Methyl Ethyl
  • Besonders bevorzugte Salze sind N,N,N,N',N',N'-Hexamethyl-1,3-propandiammoniumsalze, N,N'-Diethyl-,N,N',N',N'-tetramethyl-1,3-propandiammoniumsalze, N,N,N,N',N',N'-Hexamethyl-1,6-hexandiammoniumsalze, N,N'-Diethyl-,N,N',N',N'-tetramethyl-1,6-hexandiammoniumsalze, N,N'-Diethyl-,N,N',N',N'-tetramethyl-1,9-nonandiammoniumsalze und N,N'-Diethyl-,N,N',N',N'-tetramethyl-1,12-dodecan-diammoniumsalze speziell die Methosulfate und Ethylsulfate der vorgenannten Salze.
  • Die Lösung des Carbonsäureamids oder des Carbonsäureesters enthält das quarternäre Ammoniumsalz im Allgemeinen in einer Konzentration im Bereich von 0,001 bis 1000 mmol/l, häufig im Bereich von 0,1 bis 500 mmol/l, vorzugsweise im Bereich von 1 bis 100 mmol/l, insbesondere im Bereich von 25 bis 75 mmol/l.
  • Die beschriebenen Ammonium- und Phosphoniumsalze sind bekannt und teilweise kommerziell erhältlich oder können in an sich bekannter Weise, ausgehend von den entsprechenden tertiären Aminen bzw. den tertiären Phosphanen hergestellt werden. Tertiäre Amine, soweit nicht kommerziell verfügbar, sind beispielweise zugänglich, indem primäre Amine mit Formaldehyd und Ameisensäure umgesetzt werden (Eschweiler-Clark-Reaktion). Tertiäre Phosphane wiederum können durch Reaktion von Phosphortrichlorid mit Alkyl-Grignard-Reagenzien oder durch Umsatz von Phosphan mit Alkylhalogeniden hergestellt werden werden. Die tertiären Amine und bzw. die tertiären Phosphane können mit Alkylierungsmitteln wie Dimethylsulfat, Diethylsulfat oder Trimethylphosphat in die entsprechenden quaternären Ammonium- bzw. Phosphoniumsalze überführt werden. Die Gegenionen der so erhältlichen Salze leiten sich aus den verwendeten Alkylierungsmittel ab. Falls ein anderes Anion als Gegenion erwünscht ist, kann dieses leicht z.B. durch anorganische Metathese ausgetauscht werden.
  • Erfindungsgemäss wird als Substrat ein Carbonsäureamid oder ein Carbonsäureester der Formel II eingesetzt
    Figure imgb0004
    Figure imgb0005
  • In den Formeln II und III haben die Variablen X, Y, R7 und R8 die folgenden Bedeutungen:
  • Y
    steht für eine chemische Bindung oder eine Alkylengruppe mit 1 bis 6 Kohlenstoffatomen,
    X
    steht für Sauerstoff oder N-R9,
    R7
    ist ausgewählt ist unter C1-C10-Alkyl, C2-C10-Alkenyl, C1-C10-Alkoxy, C1-C10-Haloalkyl, C1-C10-Haloalkoxy, C3-C10-Cycloalkyl, Aryl und Hetaryl, wobei der Ring in den drei letztgenannten Gruppen unsubstituiert ist oder mit bis zu 6 Substituenten substituiert sein kann, die unter Halogen, Hydroxy, C1-C4-Alkyl und C1-C4-Alkoxy ausgewählt sind, und
    R8
    ausgewählt ist unter Wasserstoff, C1-C10-Alkyl, das unsubstituiert ist oder 1 oder 2 Substituenten aufweist, die unter Hydroxy, C1-C4-Alkoxy und Aryl ausgewählt sind, C2-C10-Alkenyl, C1-C10-Haloalkyl, C1-C10-Haloalkoxy, C3-C10-Cycloalkyl, Aryl und Hetaryl, wobei der Ring in den drei letztgenannten Gruppen unsubstituiert ist oder mit bis zu 6 Substituenten substituiert sein kann, die unter Halogen, Hydroxy, C1-C4-Alkyl und C1-C4-Alkoxy ausgewählt sind,
    wobei R8 von Wasserstoff verschieden ist, wenn X für O steht,
    R7 und R8
    können zusammen für C3-C20-Alkylen oder C3-C20-Alkenylen stehen, welches unsubstituiert ist oder mit bis zu 6 Substituenten substituiert ist, die unter Hydroxy, C1-C4-Alkyl und C1-C4-Alkoxy ausgewählt sind, wobei 2 an benachbarte C-Atome gebundene Substituenten zusammen mit den C-Atomen, an die sie gebunden sind, auch einen 5 bis 7-gliedrigen Carbocyclus bilden können; und
    R9
    für Wasserstoff oder C1-C10-Alkyl steht, das unsubstituiert ist oder 1 oder 2 Substituenten aufweist, die unter Hydroxy, C1-C4-Alkoxy und Aryl ausgewählt sind.
  • Bevorzugt weisen die Variablen X, Y, R7, R8 und R9 in den Formeln II und III unabhängig und in Kombination miteinander die folgenden Bedeutungen auf.
  • Y steht vorzugsweise für eine chemische Bindung oder eine Alkylengruppe mit 1 bis 6 Kohlenstoffatomen und insbesondere für eine chemische Bindung,
    X steht vorzugsweise für N-R9,
    R7 ist vorzugsweise ausgewählt unter C3-C10-Cycloalkyl, Aryl und Hetaryl, wobei der Ring in den drei Gruppen unsubstituiert ist oder mit bis zu 6 Substituenten substituiert sein kann, die unter Halogen, Hydroxy, C1-C4-Alkyl und C1-C4-Alkoxy ausgewählt sind, und insbesondere ausgewählt unter Aryl, das unsubstituiert ist oder mit bis zu 6 Substituenten substituiert sein kann, die unter Halogen, Hydroxy, C1-C4-Alkyl und C1-C4-Alkoxy ausgewählt sind.
  • R8 ist vorzugsweise ausgewählt unter C1-C10-Alkyl, das unsubstituiert ist oder 1 oder 2 Substituenten aufweist, die unter Hydroxy, C1-C4-Alkoxy und Aryl ausgewählt sind, C1-C10-Haloalkyl, C3-C10-Cycloalkyl, Aryl und Hetaryl, wobei der Ring in den drei letztgenannten Gruppen unsubstituiert ist oder mit bis zu 6 Substituenten substituiert sein kann, die unter Halogen, Hydroxy, C1-C4-Alkyl und C1-C4-Alkoxy ausgewählt sind, und insbesondere ausgewählt ist unter C1-C10-Alkyl, das unsubstituiert ist oder 1 oder 2 Substituenten aufweist, die unter Hydroxy, C1-C4-Alkoxy und Aryl ausgewählt sind, und Aryl, das unsubstituiert ist oder mit bis zu 6 Substituenten substituiert sein kann, die unter Halogen, Hydroxy, C1-C4-Alkyl und C1-C4-Alkoxy ausgewählt sind.
  • R7 und R8 können vorzugsweise auch zusammen für C3-C20-Alkylen stehen.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird ein Carboxamid der Formel II eingesetzt, worin
  • Y
    für eine chemische Bindung oder eine Alkylengruppe mit 1 bis 6 Kohlenstoffatomen steht,
    X
    für N-R9 steht,
    R7
    ausgewählt ist unter C3-C10-Cycloalkyl, Aryl und Hetaryl, wobei der Ring in den drei Gruppen unsubstituiert ist oder mit bis zu 6 Substituenten substituiert sein kann, die unter Halogen, Hydroxy, C1-C4-Alkyl und C1-C4-Alkoxy ausgewählt sind, und
    R8
    ausgewählt ist unter C1-C10-Alkyl, das unsubstituiert ist oder 1 oder 2 Substituenten aufweist, die unter Hydroxy, C1-C4-Alkoxy und Aryl ausgewählt sind, C1-C10-Haloalkyl, C3-C10-Cycloalkyl, Aryl und Hetaryl, wobei der Ring in den drei letztgenannten Gruppen unsubstituiert ist oder mit bis zu 6 Substituenten substituiert sein kann, die unter Halogen, Hydroxy, C1-C4-Alkyl und C1-C4-Alkoxy ausgewählt sind,
    oder
    R7 und R8
    zusammen für C3-C20-Alkylen stehen; und
    R9
    für Wasserstoff oder C1-C10-Alkyl steht.
  • In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird ein Substrat gemäß der Formel II eingesetzt, worin
  • Y
    für eine chemische Bindung steht,
    X
    für eine Gruppe N-R9 steht,
    R7
    ausgewählt ist unter Aryl, das unsubstituiert ist oder mit bis zu 6 Substituenten substituiert sein kann, die unter Halogen, Hydroxy, C1-C4-Alkyl und C1-C4-Alkoxy ausgewählt sind, und
    R8
    ausgewählt ist unter C1-C10-Alkyl, das unsubstituiert ist oder 1 oder 2 Substituenten aufweist, die unter Hydroxy, C1-C4-Alkoxy und Aryl ausgewählt sind, und Aryl, das unsubstituiert ist oder mit bis zu 6 Substituenten substituiert sein kann, die unter Halogen, Hydroxy, C1-C4-Alkyl und C1-C4-Alkoxy ausgewählt sind;
    R9
    für Wasserstoff oder C1-C10-Alkyl steht.
  • In bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens wird als Substrat ein sekundäres oder tertiäres Carbonsäureamid eingesetzt, d.h. eine Verbindung der der Formel I worin X für eine Gruppe N-R9 steht, wobei R8 und gegebenenfalls R9 eine von Wasserstoff verschiedene Bedeutung aufweisen. In einer speziellen Ausführungsformen des erfindungsgemäßen Verfahrens wird als Substrat ein sekundäres Carbonsäureamid eingesetzt, d.h. eine Verbindung der der Formel II, worin X für eine Gruppe N-R9 steht, wobei entweder R8 eine von Wasserstoff verschiedene Bedeutung aufweist und R9 Wasserstoff bedeutet. In einer anderen speziellen Ausführungsformen des erfindungsgemäßen Verfahrens wird als Substrat ein tertiäres Carbonsäureamid eingesetzt, d.h. eine Verbindung der der Formel II, worin X für eine Gruppe N-R9 steht, wobei R8 und R9 jeweils eine von Wasserstoff verschiedene Bedeutung aufweisen.
  • Das erfindungsgemäße Verfahren kann in allen dem Fachmann bekannten Elektrolysezellen durchgeführt werden. Bevorzugt wird das erfindungsgemäße Verfahren in einer geteilten Elektrolysezelle durchgeführt. Unter einer geteilten Elektrolysezelle versteht man eine Zellanordnung, in der der Kathodenraum und der Anodenraum und damit die im Kathodenraum enthaltene Lösung (Katholyt) von der im Anodenraum enthaltenen Lösung (Anolyt), in einer weise getrennt sind, die einen Ladungstransport aber keinen Austausch von organischen Substanzen zwischen Katholyt und Anolyt erlaubt. Die Trennung von Kathodenraum und Anodenraum kann in an sich bekannter weise durch geeignete Trennmedien erreicht werden. Als Trennmedien können lonenaustauschermembranen, mikroporöse Membranen, Diaphragmen, Filtergewebe aus nichtelektronenleitenden Materialien, Glasfritten, sowie poröse Keramiken eingesetzt werden. Vorzugsweise werden Ionenaustauschermembranen, insbesondere Kationaustauschermembranen verwendet. Diese leitfähigen Membranen sind handelsüblich z.B. unter dem Handelsnamen Nafion® (Fa. ET. DuPont de Nemours and Company) und Gore Select® (Fa. W. L. Gore & Associates, Inc.) erhältlich.
  • Vorzugsweise wird die kathodische Reduktion der Lösung des Carbonsäureamids oder des Carbonsäureesters in einer geteilten Durchflusszelle durchgeführt. Geteilte Zellen, insbesondere geteilte Durchflusszellen, die eine planparallele Elektrodenanordnung, aufweisen, kommen bevorzugt zum Einsatz.
  • In dem erfindungsgemäßen Verfahren wird das Substrat kathodisch reduziert, d.h. die Lösung, die das Carbonsäureamid oder den Carbonsäureester enthält, wird bei Durchführung der Elektrolyse in einer geteilten Elektrolysezelle in den Kathodenhalbraum gegeben. Das Carbonsäureamid oder der Carbonsäureester liegen dann im Katholyt gelöst vor.
  • Erfindungsgemäß wird eine Lösung des Carbonsäureamids bzw. des Carbonsäureesters einer kathodischen Reduktion unterworfen, d. h. das Substrat liegt in einem organischen Lösungsmittel in gelöster Form vor. Als Lösungsmittel kommen grundsätzlich alle für elektrochemische Reaktionen üblichen inerten organischen Lösungsmittel und deren Mischungen mit Wasser in Betracht. Beispiele für Lösungsmittel sind vor allem Alkanole, z.B. die zuvor genannten C1-C4-Alkanole, Alkylencarbonate wie Ethylencarbonat oder Propylencarbonat, cyclische und acyclische Ether, z.B. Diethylether, Diisopropylether, Methyl-tert.-butylether, Ethyl-tert.-butylether, Tetrahydrofuran, Methyltetrahydrofuran, Dioxan oder Pyran, Alkylglykole, Dialkylglykole, Alkyldiglykole und Dialkyldiglykole wie Methylglykol, Ethylglykol, Dimethylglykol, Diethylglykol, Methyldiglykol oder Ethyldiglykol, Polyether wie Triethylenglykol oder höhere Polyethylenglykole und deren Alkylether, sowie Nitrile, z.B. Acetonitril oder Propionitril und Gemische dieser Lösungsmittel. Die zur kathodischen Reduktion eingesetzte Lösung kann ebenfalls Mischungen der genannten organischen Lösungsmittel mit Wasser oder mit C5-C7-Kohlenwasserstoffen enthalten. Weitere geeignete Lösungsmittel sind beschrieben in Kosuke Izutsu, "Electrochemistry in Nonaqueous Solutions", Verlag Wiley-VCH 2002, Kap. 1. Bevorzugt enthält der Katholyt inerte Lösungsmittel ausgewählt unter C1-C4-Alkanolen, Dimethylcarbonat, Propylencarbonat, Tetrahydrofuran, Dimethoxyethan, Acetonitril, Gemischen davon und Mischungen davon mit Wasser, Mischungen dieser inerten Lösungsmittel oder Mischungen dieser inerten Lösungsmittel mit C5-C7-Kohlenwasserstoffen.
  • Insbesondere bevorzugt sind C1-C4-Alkanole, Tetrahydrofuran, Dimethoxyethan oder Mischungen davon sowie Mischungen mit Wasser. Hierbei kann sich ein ein- oder mehrphasiges System ausbilden.
  • Ganz besonders bevorzugt sind C1-C4-Alkanole, die gegebenenfalls in Mischungen miteinander und/oder Wasser verwendet werden. C1-C4-Alkanole umfassen Monoole wie Methanol, Ethanol, n-Propanol, i-Propanol, n-Butanol, sec-Butanol, tert.-Butanol, Diole wie Glykol und Triole wie Glycerin. Speziell bevorzugt als Lösungsmittel ist Methanol.
  • Bei einer Durchführung des erfindungsgemäßen Verfahrens in einer geteilten Elektrolysezelle können Katholyt und dem Anolyt die gleichen oder unterschiedliche Lösungsmittel enthalten.
  • Zur Gewährleistung einer hinreichenden Leitfähigkeit enthält die Lösung des Carbonsäureamids bzw. des Carbonsäureesters üblicherweise eine Mineralsäure oder ein inertes Leitsalz, wobei Mineralsäuren bevorzugt sind. Bevorzugte Mineralsäuren sind Salzsäure, Schwefelsäure oder Phosphorsäure, insbesondere Schwefelsäure. Bei einer Durchführung des erfindungsgemäßen Verfahrens in einer geteilten Elektrolysezelle können Katholyt und dem Anolyt die gleichen oder unterschiedliche Leitsalze bzw. Mineralsäuren enthalten. Bevorzugt enthalten der Katholyt und der Anolyt unabhängig von einander eine Mineralsäure wie Salzsäure, Schwefelsäure oder Phosphorsäure, insbesondere Schwefelsäure.
  • Vorzugsweise enthält die Lösung des Carbonsäureamids bzw. des Carbonsäureesters (bzw. enthalten der Katholyt und der Anolyt unabhängig voneinander) das Leitsalz oder die Mineralsäure in einer Konzentration im Bereich von 0,05 bis 5 M (= mol/l), bevorzugt im Bereich von 0,075 bis 1 M, insbesondere im Bereich von 0,1 bis 0,5 M.
  • Als Kathoden werden vorzugsweise Elektroden verwendet, bei denen die Kathodenoberfläche aus einem Material mit hoher Wasserstoffüberspannung gebildet ist. Insbesondere werden Kathoden verwendet, bei denen die Kathodenoberfläche aus einem Material besteht, welches ausgewählt ist unter Blei, Zink, Zinn, Nickel, Quecksilber, Cadmium, Kupfer, einer Legierungen dieser Metalle oder Glassy Carbon, Graphit oder Diamant. Besonders bevorzugt sind Kathoden, bei denen die Kathodenoberfläche aus Blei besteht. Vorzugweise wird die Kathode vor ihrem Einsatz polarisiert.
  • Als Anoden kommen grundsätzlich alle üblichen Anodenmaterialien in Betracht. Bevorzugt sind Anoden, deren Oberfläche aus Platin, Blei, Zink, Zinn, Nickel, Quecksilber, Cadmium, Kupfer, Legierungen dieser Metalle, Glassy Carbon, Graphit oder Diamant besteht. Sofern der Anolyt eine Mineralsäure enthalt, werden bevorzugt Platin-, Diamant-, Glassy Carbon oder Graphitanoden und insbesondere Platin eingesetzt. Ist der Anolyt basisch, wird bevorzugt Nickel und insbesondere Platin verwendet.
  • Sowohl die Anode als auch die Kathode kann jeweils vollständig aus den zuvor geschriebenen Materialien bestehen oder aus einem Träger-Material bestehen, das mit dem beschriebenen Kathodenmaterial beschichtet ist. Als Trägermaterialien für derartige mit beschichtete Elektroden eignen sich elektrisch leitfähige Materialien wie Niob, Silizium, Wolfram, Titan, Siliziumcarbid, Tantal, Kupfer, Gold, Nickel, Eisen, Graphit, keramische Träger wie Titansuboxid oder silberhaltige Legierungen. Als Träger bevorzugt sind Metalle, insbesondere Metalle mit einem geringeren Standardpotential wie beispielsweise Eisen, Kupfer, Nickel oder Niob.
  • Bevorzugt ist es, Elektroden in Form von Streckmetallen, Netzen oder Blechen einzusetzen, wobei die Elektroden insbesondere die zuvor genannten Materialien enthalten. Insbesondere ist es bevorzugt als Kathode ein polarisiertes Bleiblech einzusetzen.
  • Die Anodenreaktion hängt in an sich bekannter Weise von der Zusammensetzung des Anolyten ab. In der Regel wird das eingesetzte Lösungsmittel oxidiert. Bei der Verwendung von Methanol als Lösungsmittel wird beispielsweise Methylformiat, Formaldehyd-Dimethylacetal und/oder Dimethylcarbonat gebildet. Bei der Verwendung von Gemischen aus Methanol und N,N-Dimethylformamid als Lösungsmittel wird beispielsweise N-Methoxymethyl-N-Methylformamid gebildet.
  • Während des erfindungsgemäßen Desoxygenierungsverfahrens wird im Allgemeinen eine Ladungsmenge von 4 bis 12 F/mol, vorzugsweise 6 bis 10 F/mol, insbesondere 7 bis 9 F/mol übertragen.
  • Die Stromdichten, bei denen man das Verfahren durchführt, betragen im Allgemeinen 1 bis 1000 mA/cm2, bevorzugt 10 bis 100 mA/cm2 und insbesondere 25 bis 75 mA/cm2.
  • Die Elektrolyse wird gemäß dem erfindungsgemäßen Verfahren in der Regel bei einer Temperatur in einem Bereich von 0 bis 100 °C, vorzugsweise oberhalb 20°C, z.B. im Bereich von 25 bis 100°C, insbesondere im Bereich von 25 bis 80°C oder bevorzugt im Bereich von 15 bis 100°C, insbesondere im Bereich von 15 bis 80°C oder im Bereich von 15 bis 55 °C, speziell im Bereich von 25 bis 55°C, gearbeitet.
  • Im Allgemeinen wird bei Normaldruck gearbeitet. Höhere Drücke werden bevorzugt dann angewandt, wenn bei höheren Temperaturen gearbeitet werden soll, um eine Sieden der Ausgangsverbindungen bzw. Lösungsmittel zu vermeiden.
  • Die Gesamtdauer der Elektrolyse hängt naturgemäß von der Elektrolysezelle, dem Substrat, dem gegebenenfalls zugesetzten Lösungsmittel, den verwendeten Elektroden und der Stromdichte ab. Eine optimale Dauer kann der Fachmann durch Routineversuche, z.B. durch Probennahme während der Elektrolyse ermitteln.
  • In einer bevorzugten Ausführungsform der Erfindung wird der Inhalt der Elektrolysezelle durchmischt. Für diese Durchmischung des Zelleninhalts können jegliche dem Fachmann bekannte, mechanische Rührer eingesetzt werden. Die Verwendung von anderen Durchmischungsmethoden wie der Einsatz von dynamischen Mischern wie Ultraturrax oder Flüssigkeitspumpen, Ultraschall oder Einstrahldüsen ist ebenfalls bevorzugt.
  • Die Elektrolytlösung kann nach Beendigung der Reaktion (diskontinuierliches Verfahren) oder kontinuierlich während der Elektrolyse nach allgemeinen Trennmethoden aufgearbeitet werden. Der Katholyt kann zunächst destilliert und die einzelnen Verbindungen in Form von unterschiedlichen Fraktionen getrennt gewonnen werden. Als Destillationsverfahren eignen sich dem Fachmann bekannte Verfahren wie Gleichstromdestillation, Gegenstromdestillation, Kurzwegdestillation oder Wasserdampfdestillation.
  • Alternativ kann das erhaltene Produkt auch durch kontinuierliche oder diskontinuierliche Extraktion aus dem Katholyt gewonnen werden. Bei der diskontinuierlichen Extraktion ist es vorteilhaft bei pH-Werten zu arbeiten, bei denen das gewonnene Amin als ungeladene Spezies vorliegt. Bevorzugt für die Extraktion sind somit pH-Werte ≥ 9, bevorzugt pH-Werte ≥ 11. Besonders geeignet als Extraktionsmittel sind dem Fachmann bekannte organische Lösungsmittel, die mit Wasser nicht mischbar sind wie z.B. Kohlenwasserstoffe mit 5 bis 12 Kohlenstoffatomen wie Hexan oder Octan, chlorierte Kohlenwasserstoffe mit 1 bis 10 Kohlenstoffatomen wie Dichlormethan oder Chloroform, aliphatische Ether mit 2 bis 10 Kohlenstoffatomen wie Diethylether oder Diisopropylether, cyclische Ether wie Tetrahydrofuran oder aliphatische Ester wie Essigsäureethylester oder Essigsäurebutylester. Eine weitere Reinigung nach der Extraktion kann beispielsweise durch Kristallisation, Destillation oder chromatographisch erfolgen.
  • Neben den durch kathodische Reduktion erzeugten Produkten kann auch nicht umgesetztes Substrat nach Beendigung der Reaktion abgetrennt werden. Dieses reisolierte Substrat kann in einem neuen Elektrolysezyklus wieder eingesetzt werden. Vorteilhaft an dieser wiederholten Verwendung ist, dass wiederholt Amine bzw. Ether gewonnen werden können. Somit wird die Ausbeute bezogen auf die ursprünglich eingesetzte Substratmenge deutlich gesteigert und somit die Wirtschaftlichkeit des Gesamtverfahrens erhöht. Weiterhin kann durch die wiederholte Verwendung des reisolierten Substrates die Konzentration eventuell empfindlicher Produkte im Elektrolyten pro Reduktionsvorgang so gering gehalten werden, dass die unerwünschten Nebenreaktionen wirkungsvoll zurückgedrängt werden können, während die Gesamtausbeute über den Gesamtprozess (mehrere Elektrolysezyklen) zunimmt.
  • Das erfindungsgemäße Verfahren kann sowohl im Labormaßstab als auch im industriellen Maßstab durchgeführt werden. Weiterhin ist es möglich das Verfahren kontinuierlich oder diskontinuierlich durchzuführen. Entsprechende Elektrolysezellen sind dem Fachmann bekannt. Alle Ausführungen dieser Erfindung beziehen sich sowohl auf den Labor- wie auf den industriellen Maßstab.
  • Im industriellen Maßstab ist es bevorzugt das Verfahren kontinuierlich durchzuführen.
  • Die nachfolgenden Beispiele beschreiben die Erfindung näher und sind nicht einschränkend zu verstehen.
  • Beispiele I. Herstellung der Ausgangsmaterialien 1. Herstellung von quaternären Ammoniumsalzen 1.1 Herstellung von N,N,N,N',N',N'-Hexamethyl-1,3-propandiammonium di(methylsulfat) (1) 1.1.1 Herstellung von N,N,N',N'-Tetramethyl-1,3-propandiamin
  • 15,02 g (0,20 mol) 1,3-Propandiamin wurden tropfenweise unter Rühren zu 45,0 ml 90%iger Ameisensäure zugegeben. Anschließend wurden 24,8 ml 37%ige Formalin-Lösung zugeführt. Nach Abklingen der CO2-Entwicklung wurde die Reaktionslösung bis zum vollständigen Umsatz unter Rückfluss erhitzt. In der Siedehitze wurde anschließend das Reaktionsgemisch mit konzentrierter Schwefelsäure vermischt. Überschüssiges Wasser, Formaldehyd und Ameisensäure wurden nach der Schwefelsäurezugabe destillativ entfernt. Der Rückstand wurde mit 50%iger Natronlauge auf einen pH-Wert von ≥ 9 gebracht. Danach wurde die Lösung dreimal mit 60 ml tert.-Butylmethylether extrahiert. Die vereinigten organischen Phasen wurden unter vermindertem Druck vom Lösungsmittel befreit und dann über NaOH getrocknet.
    Ausbeute 21,83 g (0,17 mol, 83%)
    1H-NMR (300 MHz, D2O)
    δ (ppm): 1,49 - 1,60 (m, 2 H, 2-H); 2,13 (s, 12 H, NCH3); 2,17 - 2,22 (m, 4 H, 1-H).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 26,1 (C-2); 45,5 (NCH3); 57,9 (C-1).
    MS (ESI+)
    m/z(Int.)= 131,7 (100), [M+H]+,
  • 1.1.2 Quaternisierung von N,N,N',N'-Tetramethyl-1,3-propandiamin
  • 2,00 g (0,02 mol) N,N,N',N'-Tetramethyl-1,3-propandiamin wurden in 20 ml Dichlormethan gelöst. Bei 0°C wurden 4,4 ml (0,05 mol) Dimethylsulfat unter Rühren zugetropft. Das Reaktionsgemisch wurde nach Vollendung der Zugabe für 4 Stunden bei Raumtemperatur gerührt. Nicht umgesetzte Edukte sowie Lösungsmittel wurden anschließend unter vermindertem Druck entfernt. Das erhaltene Rohprodukt wurde mit Methanol und Ethylacetat umkristallisiert.
    Ausbeute 3,93 g (0,01 mol, 69%)
    1H-NMR (300 MHz, D2O)
    δ (ppm): 2,31 - 2,42 (m, 2 H, 2-H); 3,19 (s, 18 H, NCH3); 3,39 - 3,45 (m, 4 H, 1-H); 3,74 (s, 6 H, OCH3).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 17,1 (C-2); 52,9 (NCH3); 55,2 (OCH3); 62,2 (C-1).
    MS (ESI+)
  • m/z(Int.)=
    271,20 (13), [C10H27N2O4S]+/[Kation+Anion]+, 653,38 (100), [C21H57N4O12S3]+/[2xKation+3xAnion]+.
  • Die im Folgenden unter 1.2 bis 1.20 aufgeführten Ammoniumsalze wurden in Analogie zu dem unter 1.1 beschriebenen Verfahren hergestellt.
  • 1.2 N,N'-Diethyl-N,N,N',N'-tetramethyl-1,3-propandiammonium di(methylsulfat) (2)
  • Figure imgb0006
    1H-NMR (300 MHz, D2O)
    δ (ppm): 1,37 (t, 6 H, 2'-H, 3J=7.3 Hz)); 2,20 - 2,35 (m, 2 H, 2-H); 3,10 (s, 12 H, NCH3), 3,34 - 3,40 (m, 4 H, 1-H); 3,45 (q, 4-H, 1'-H, 3J=7.4 Hz); 3,73 (s, 5 H, OCH3).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 7,2 (C-2'); 16.2 (C-2), 49,8 (NCH3); 55,2 (OCH3); 59,2 (C-1'); 60,2 (C-1).
    MS (ESI+)
  • m/z(Int.)=
    299,23 (37), [C12H31N2O4S]+/[Kation+Anion]+, 709,45 (100), [C25H65N4O12S3]+/[2xKation+3xAnion]+.
    1.3 N,N,N,N',N',N'-Hexamethyl-1,4-butandiammonium di(methylsulfat) (3)
  • 1H-NMR (300 MHz, D2O)
    δ (ppm): 1,84 - 1,92 (m, 4 H, 2-H); 3,13 (s, 18 H, NCH3); 3,36 - 3,45 (m, 4 H, 1-H); 3,73 (s, 6 H, OCH3).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 19,2 (C-2); 52,7 (NCH3); 55,2 (OCH3); 65,2 (C-1).
    MS (ESI+)
    m/z(Int.)= 681,41 (100), [C23H61N4O12S3]+/[2xKation+3xAnion]+.
  • 1.4 N,N'-Diethyl-N,N,N',N'-tetramethyl-1,4-butandiammonum di(ethylsulfat) (4)
  • Figure imgb0007
    1H-NMR (300 MHz, D2O)
    δ (ppm): 1,30 - 1,36 (m, 6 H, 2'-H); 1,78 - 1,90 (m, 4 H, 2-H); 3,04 (s, 12 H, NCH3); 3,27 - 3,44 (m, 8 H, 1-H, 1'-H); 3,74 (s, 4 H, OCH3).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 7,2 (C-2); 18,8 (C-2); 49,7 (NCH3); 55,2 (OCH3); 59,6 (C-1'); 62,1 (C-1).
    MS (ESI+)
    m/z(Int.)= 313,22 (53), [C13H33N2O4S]+/[Kation+Anion]+,
    737,47 (100), [C27H69N4O12S3]+/[2xKation+3xAnion]+.
  • 1.5 N,N,N,N',N',N'-Hexamethyl-1,5-pentandiammonium di(methylsulfat) (5)
  • 1H-NMR (300 MHz, D2O)
    δ (ppm): 1,36 - 1,46 (m, 2 H, 3-H); 1,82 - 1,85 (m, 4 H, 2-H); 3,09 (s, 18 H, NCH3); 3,29 - 3,35 (m, 4 H, 1-H); 3,72 (s, 3 H, OCH3).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 21,8 (C-3): 22,2 (C-2); 52,6 (NCH3); 55,2 (OCH3); 65,9 (C-1).
    MS (ESI+)
    m/z(Int.)= 299,21 (100), [C12H31N2O4S]+/[Kation+Anion]+,
    709,45 (8), [C25H65N4O12S3]+/[2xKation+3xAnion]+.
  • 1.6 N,N'-Diethyl-N,N,N',N'-tetramethyl-1,5-pentandiammonium di(ethylsulfat) (6)
  • Figure imgb0008
    1H-NMR (300 MHz, D2O)
    δ (ppm): 1,32 - 1,37 (m, 6 H, 2'-H); 1,42 - 1,45 (m, 2 H, 3-H); 1,81 - 1,86 (m, 4 H, 2-H); 3,03 (s, 12 H, NCH3); 3,25 - 3,32 (m, 4 H, 1-H); 3,37 (q, 4-H, 1'-H, 3J=7,3 Hz).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 7,2 (C-2'); 14,0 (C-2"); 21,36 (C-3); 22,3 (C-2); 49,7 (NCH3); 59,5 (C-1'); 62,7 (C-1 "); 65,5 (C-1).
    MS (ESI+)
  • m/z(Int.)=
    341,27 (100) [C12H31N2O4S]+/[Kation+Anion]+, 709,45 (8), [C32H79N4O12S3]+/[2xKation+3xAnion]+.
    1.7 N,N,N,N',N',N'-Hexamethyl-1,6-hexandiammonium di(methylsulfat) (7)
  • 1H-NMR (300 MHz, D2O)
    δ (ppm): 1,43 - 1,52 (m, 4 H, 3-H); 1,78 - 1,91 (m, 4 H, 2-H); 3,14 (s, 18 H, NCH3); 3,31 - 3,39 (m, 4 H, 1-H); 3,75 (s, 6 H, OCH3).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 21,9 (C-1); 24,8 (C-2); 52,6 (NCH3); 55,2 (OCH3); 66,2 (C-3).
    MS (ESI+)
  • m/z(Int.)=
    313,22 (100), [C13H33N2O4S]+/[Kation+Anion]+, 737,47 (99), [C27H69N4O12S3]+/[2xKation+3xAnion]+.
    1.8 N,N'-Diethyl-N,N,N',N'-tetramethyl-1,6-hexandiammonium di(ethylsulfat) (8)
  • Figure imgb0009
    1H-NMR (300 MHz, D2O)
    δ (ppm): 1,31 - 1,36 (m, 6 H, 2'-H); 1,37 - 1,47 (m, 4 H, 3-H); 1,72 - 1,83 (m, 4 H, 2-H); 3,02 (s, 12 H, NCH3); 3,21 - 3,31 (m, 4 H, 1-H); 3,32 - 3,43 (m, 4 H, 1'-H).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 7,2 (C-2'), 14,0 (C-2"); 22,0 (C-3); 25,0 (C-2), 50,0 (NCH3); 59,4 (C-1'); 63,0 (C-1 "); 65,5 (C-5).
    HRMS (ESI+)
    m/z für C16H39N2O4S+: berechnet: 355,2631
    gefunden: 355,2628
    Elementaranalyse
    % für C18H44N2O8S2 (480,68 g/mol):
    Berechnet: C 44,98 H 9,32 N 5,83 S 13,34
    Gefunden: C 44,67 H 8,77 N 5,86 S 12,93.
  • 1.9 N,N,N,N',N',N'-Hexamethyl-1,7-heptandiammonium di(methylsulfat) (9)
  • 1H-NMR (300 MHz, D2O)
    δ (ppm): 1,33 - 1,35 (m, 6 H, 3-H, 4-H); 1,70 - 1,86 (m, 4 H, 2-H); 3,08 (s, 18 H, NCH3); 3,25 - 3,34 (m, 4 H, 1-H); 3,72 (s, 3 H, OCH3).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 21,9 (C-4); 25,0 (C-3), 27,5 (C-2), 52,5 (NCH3); 66,4 (C-1).
    HRMS (ESI+)
    m/z für C14H35N2O4S+: berechnet: 327,2318
    gefunden: 327,2332
  • 1.10 N,N'-Diethyl-N,N,N',N'-tetramethyl-1,7-heptandiammonium di(methylsulfat) (10)
  • 1H-NMR (300 MHz, D2O)
    δ (ppm): 1,31 - 1,41 (m, 12 H, 2'-H, 3-H, 4-H); 1,66 - 1,82 (m, 4 H, 2-H); 3,01 (s, 12 H, NCH3); 3,21 - 3,30 (m, 4 H, 1-H); 3,36 (q, 4 H, 1'-H, 3J=7,3 Hz).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 7,2 (C-2'), 21,5 (C-4); 25,1 (C-3); 27,5 (C-2), 49,6 (NCH3); 55,2 (OCH3); 59,3 (C-1'); 63,2 (C-1).
    HRMS (ESI+)
    m/z für C16H39N2O4S+: berechnet: 355,2631
    gefunden: 355,2619
    Elementaranalyse
    % für C18H44N2O8S2 (480,68 g/mol):
    Berechnet: C 43,75 H 9,07 N 5,83 S 13,34
    Gefunden: C 43,25 H 8,79 N 6,22 S 13,46.
  • 1.11 N,N,N,N',N',N'-Hexamethyl-1,8-octandiammonium di(methylsulfat) (11)
  • 1H-NMR (300 MHz, D2O)
    δ (ppm): 1,31 - 1,38 (m, 8 H, 4-H, 3-H); 1,71 - 1,82 (m, 4 H, 2-H); 3,08 (s, 18 H, NCH3); 3,25 - 3,32 (m, 4 H, 1-H); 3,72 (s, 3 H, OCH3).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 22,0 (C-4); 25,1 (C-3); 27,7 (C-2); 52,5 (NCH3); 55,2 (OCH3); 66,5 (C-1).
    HRMS (ESI+)
    m/z für C15H37N2O4S+: berechnet: 341,2474
    gefunden: 341,2472
    Elementaranalyse
    % für C16H40N2O8S2 (452,63 g/mol):
    Berechnet: C 42,46 H 8,91 N 6,19 S 14,17
    Gefunden: C 42,22 H 8,48 N 5,95 S 14,46.
  • 1.12 N,N'-Diethyl-N,N,N',N',-tetramethyl-1,8-octandiammonium di(methylsulfat) (12)
  • Figure imgb0010
    1H-NMR (300 MHz, D2O)
    δ (ppm): 1,30 - 1,40 (m, 14 H, 2'-H, 4-H, 3-H); 1,67 - 1,79 (m, 4 H, 2-H); 3,00 (s, 12 H, NCH3); 3,19 - 3,27 (m, 4 H, 1-H); 3,34 (q, 4 H, 1'-H, 3J=7,3 Hz); 3,72 (s, 3 H, OCH3).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 7,2 (C-2'); 21,5 (C-4); 24,1 (C-3); 27,7 (C-2); 49,6 (NCH3); 59,3 (OCH3); 63,2 (C-1).
    HRMS (ESI+)
    m/z für C14H35N2O4S+: berechnet: 383,2944
    gefunden: 383,2946
  • 1.13 N,N,N,N',N',N'-Hexamethyl-1,9-nonandiammonium di(methylsulfat) (13)
  • 1H-NMR (300 MHz, D2O)
    δ (ppm): 1,31 - 1,40 (m, 10 H, 5-H, 4-H, 3-H); 1,72 - 1,85 (m, 4 H, 2-H); 3,09 (s, 18 H, NCH3); 3,24 - 3,33 (m, 4 H, 1-H); 3,74 (s, 6 H, OCH3).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 22,0 (C-5); 25,2 (C-4); 27,8 (C-3); 27,9 (C-2); 52,5 (NCH3); 55,2 (OCH3); 66,5 (C-1).
    HRMS (ESI+)
    m/z für C16H39N2O4S+: berechnet: 355,2631
    gefunden: 355,2619
    Elementaranalyse
    % für C16H39N2O8S2 (451,63 g/mol):
    Berechnet: C 43,75 H 9,07 N 6,00 S 13,74
    Gefunden: C 43,68 H 9,05 N 6,06 S 14,04.
  • 1.14 N,N'-Diethyl-N,N,N',N'-tetramethyl-1,9-nonandiammonium di(sulfat) (14)
  • Figure imgb0011
    1H-NMR (300 MHz, D2O)
    δ (ppm): 1,30 - 1,41 (m, 16 H, 2'-H, 5-H, 4-H, 3-H); 1,67 - 1,79 (m, 4 H, 2-H); 3,01 (s, 12 H, NCH3); 3,20 - 3,28 (m, 4 H, 1-H); 3,35 (q, 4 H, 1'-H, 3J=7,3 Hz); 3,73 (s, 6 H, OCH3).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 7,2 (C-2'), 21,5 (C-5); 25,2 (C-4); 27,8 (C-3); 28,0 (C-2); 49,6 (NCH3); 55,2 (OCH3); 59,2 (1'-C); 63,3 (C-1).
    HRMS (ESI+)
    m/z für C18H43N2O4S+: berechnet: 383,2944
    gefunden: 383,2936
    Elementaranalyse
    % für C19H46N2O8S2 (494,72 g/mol):
    Berechnet: C 46,13 H 9,37 N 5,66 S 12,96
    Gefunden: C 45,68 H 9,05 N 5,64 S 12,84.
  • 1.15 N,N,N,N',N',N'-Hexamethyl-1,10-decandiammonium di(methylsulfat) (15)
  • 1H-NMR (300 MHz, D2O)
    δ (ppm): 1,29 - 1,37 (m, 12 H, 5-H, 4-H, 3-H); 1,71 - 1,82 (m, 4 H, 2-H); 3,08 (s, 18 H, NCH3); 3,23 - 3,34 (m, 4 H, 1-H).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 22,0 (C-5); 25,2 (C-4); 27,9 (C-3); 28,0 (C-2); 52,5 (NCH3); 55,2 (OCH3); 66,5 (C-1).
    HRMS (ESI+)
    m/z für C17H41N2O4S+: berechnet: 369,2787
    gefunden: 369,2800
    Elementaranalyse
    % für C17H41N2O8S2 (465,65 g/mol):
    Berechnet: C 44,98 H 9,23 N 5,83 S 13,34
    Gefunden: C 45,32 H 9,18 N 5,67 S 12,97.
  • 1.16 N,N'-Diethyl-N,N,N',N'-tetramethyl-1,10-decandiammonium di(ethylsulfat) (16)
  • Figure imgb0012
    1H-NMR (300 MHz, D2O)
    δ (ppm): 1,28 - 1,40 (m, 18 H, 2'-H, 5-H, 4-H, 3-H); 1,66 - 1,78 (m, 4 H, 2-H); 2,99 (s, 12 H, NCH3); 3,18 - 3,26 (m, 4 H, 1-H); 3,33 (q, 4 H, 1'-H, 3J=7,3 Hz).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 7,2 (C-2'); 21,5 (C-5); 25,2 (C-4); 27,9 (C-3); 28,1 (C-2); 49,6 (NCH3); 55,1 (OCH3); 59,2 (C-1'); 63,3 (C-1).
    HRMS (ESI+)
    m/z für C20H47N2O4S+: berechnet: 411,3257
    gefunden: 411,3269
    Elementaranalyse
    % für C21H50N2O8S2 (522,77 g/mol):
    Berechnet: C 48,25 H 9,64 N 5,36 S 12,27
    Gefunden: C 47,98 H 9,34 N 5,30 S 12,24.
  • 1.17 N,N,N,N',N',N'-Hexamethyl-1,12-dodecandiammonium di(methylsulfat) (17)
  • 1H-NMR (300 MHz, D2O)
    δ (ppm): 1,28 - 1,39 (m, 16 H, 6-H, 5-H, 4-H, 3-H); 1,72 - 1,84 (m, 4 H, 2-H); 3,10 (s, 18 H, NCH3); 3,25 - 3,34 (m, 4 H, 1-H); 3,74 (s, 6 H, OCH3).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 22,0 (C-6); 25,2 (C-5); 27,9 (C-4); 28,2 (C-3); 28,4 (C-2); 52,5 (NCH3); 55,2 (OCH3); 66,6 (C-1).
    HRMS (ESI+)
    m/z für C19H45N2O4S+: berechnet: 397,3100
    gefunden: 397,3087
    Elementaranalyse
    % für C20H48N2O8S2 (508,73 g/mol):
    Berechnet: C 48,25 H 9,64 N 5,36 S 12,27
    Gefunden: C 47,98 H 9,34 N 5,30 S 12,24.
  • 1.18 N,N'-Diethyl-N,N,N',N'-tetramethyl-1,12-dodecandiammonium di(ethylsulfat) (18)
  • Figure imgb0013
    1H-NMR (300 MHz, D2O)
    δ (ppm): 1,29 - 1,40 (m, 22 H, 2'-H, 6-H, 5-H, 4-H, 3-H); 1,66 - 1,79 (m, 4 H, 2-H); 3,00 (s, 12 H, NCH3); 3,20 - 3,28 (m, 4 H, 1-H); 3,35 (q, 4 H, 1'-H2, 3J=7,3 Hz).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 7,2 (C-2'); 14,0 (C-2"); 21,5 (C-6); 25,3 (C-5); 28,0 (C-4); 28,2 (C-3); 28,4 (C-2); 49,7 (NCH3); 59,2 (C-1'); 63,3 (C-1"); 65,5 (C-1).
    HRMS (ESI+)
    m/z für C20H47N2O4S+: berechnet: 439,3570
    gefunden: 411,3572.
  • 1.19 N,N,N,N',N',N",N",N"-Octamethyl (diethylentriammonium) tri(methylsulfat) (19)
  • Figure imgb0014
    1H-NMR (300 MHz, D2O)
    δ (ppm): 3,28 (s, 18 H, 1'-H); 3,34 (s, 6 H, 2'-H); 3,70 (s, 9 H, OCH3); 4,07 (m, 8 H, 2-H, 1-H).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 51,1 (C-2'); 53,7 (C-1'); 55,2 (OCH3); 57,1 (C-2); 57,9 (C-1).
    HRMS (ESI+)
    m/z (Int.)= 440,22 (100) [C14H38N3O8S2]+/[Kation+2xAnion]+
  • 1.20 N,N',N"-Triethyl-N,N,N',N",N"-pentamethyl(diethylen) tri(ethylsulfat) (20)
  • Figure imgb0015
    1H-NMR (300 MHz, D2O)
    δ (ppm): 1,29 - 1,52 (m, 18 H, 2'-H, 2"-H, 2"'-H); 3,03 - 3,09 (m, 4 H, 1'-H); 3,11 (s, 12 H, 3'-H); 3,23 (s, 6 H, 1"'-H); 3,35 (m, 2 H, 1"-H); 3,40 - 3,57 (m, 11 H, 3"-H, 2-H, 1-H).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 7,3 (C-2'); 7,4 (C-2"); 14,0 (C-2"'); 45,3 (C-3"); 50,1 (C-3'); 54,5 (C-1"); 59,1 (C-1'); 60,3 (C-2); 61,4 (C-1); 65,5 (C-1'").
    HRMS (ESI+)
  • m/z (Int.)=
    510,33 (15) [C19H48N3O8S2]+/[Kation+2xAnion]+
    2. Herstellung von N-(2-Ethylhexyl)benzoesäureamid
  • 52,4 ml (0,32 mol) 2-Ethylhexylamin und 82,8 ml (0,64 mol) Triethylamin wurden in 320 ml Dichlormethan gelöst. Anschließend wurden bei 0°C tropfenweise 37,2 ml (0,32 mol) Benzoylchlorid gelöst in 320 ml Dichlormethan zugegeben. Das Reaktionsgemisch wurde 12 h bei Raumtemperatur gerührt und im Anschluss mit gesättigter Natriumhydrogencarbonatlösung (2 x 80 ml) sowie mit gesättigter Kochsalzlösung (2 x 80 ml) gewaschen. Überschüssiges Lösungsmittel wurde unter vermindertem Druck entfernt. Das reine Produkt wurde durch Kurzwegdestillation (9,7 x 10-3 mbar, 142 °C) erhalten.
    Ausbeute: 68,17 g (0,29 mol, 91%)
    1-H-NMR (300 MHz, D2O)
    δ (ppm): 0,87 (t, 3 H, 6-H, 3J=7,5 Hz); 0,91 (t, 3 H, 8-H, 3J=6,8 Hz); 1,22 - 1,41 (m, 8 H, 7-H, 5-H, 4-H, 3-H, 2-H); 1,49 - 1,52 (m, 2 H, 2-H); 3,28 - 3,46 (m, 2 H, 1-H); 6,10 (s, 1 H, NH); 7,35 - 7,52 (m, 3 H, 4'-H, 5'-H); 7,68 - 7,80 (m, 2 H, 3'-H).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 10,9 (C-6); 14,0 (C-8); 23,0 (C-5); 24,4 (C-4); 28,9 (C-3); 31,1 (C-7); 39,5 (C-2); 42,9 (C-1); 126,8 (C-5'); 128,5 (C-4'); 131,3 (C-3'); 135,0 (C-2'); 167,6 (C-1').
    MS (ESI(+))
  • m/z (Int.)=
    256,16 (100) [M+ Na]+.
    II Kathodische Desoxygenierung von N-(2-Ethylhexyl)benzoesäureamid zum N-Benzyl-N-(2-ethylhexyl)amin Beispiel 1: Elektrochemische Reduktion von N-(2-Ethylhexyl)benzoesäureamid in Gegenwart von N,N,N,N',N',N'-Hexamethyl-1,3-propandiammonium di(methylsulfat) (1)
  • Der Kathoden- und der Anodenhalbraum einer durch eine Nafion 324®-Membran geteilten Elektrolysezellen wurden jeweils mit 50 ml einer 2 gew.-%igen methanolischen Schwefelsäurelösung befüllt. Im Kathodenhalbraum wurden 397 mg (1,70 mmol) N-(2-Ethylhexyl)benzoesäureamid gelöst und es wurden 325 mg (0,85 mmol) N,N,N,N',N',N'-Hexamethyl-1,3-propandiammonium-Di(methylsulfat) hinzugefügt. Als Kathode diente eine Bleifolie, welche vor dem Eintauchen polarisiert wurde, und als Anode diente ein Platinblech. Bei 45 °C erfolgte die Elektrolyse galvanostatisch mit einer Stromdichte von 55,55 mA/cm2. Nach erfolgreicher Übertragung einer Ladungsmenge von 1312 C (8 F) wurde die Reaktionslösung aus dem Kathodenraum entfernt und dieser mit Methanol (40 ml) gespült. Das zum Spülen verwendete Methanol wurde mit der Reaktionslösung vereinigt und das so erhaltene Gemisch (Kathodenausgang) wurde mit 1 N NaOH auf pH ≥ 11 gebracht und mit Diethylether (3 x 65 ml) extrahiert. Die vereinigten organischen Phasen wurden zur Gewinnung des Produkts mit 10 %iger HCl extrahiert (3 x 50 ml). Um nicht umgesetztes Edukt zu reisolieren, wurde die organische Phase über Na2SO4 getrocknet und unter vermindertem Druck vom Lösungsmittel befreit. Zur Gewinnung des Produktes wurde die HCl-Phase mit wässriger NaOH auf pH≥ 11 gebracht und das Amin mit Diethylether (3 x 60 ml) extrahiert. Die vereinigten organischen Phasen wurden über MgSO4 getrocknet, das Lösungsmittel im Vakuum entfernt.
    Ausbeute: 205 mg (0,93 mmol, 55%);
    Stromausbeute: 23%;
    Reisoliertes Edukt: 70 mg (0,30 mol, 18%);
    1-H-NMR (300 MHz, D2O)
    δ (ppm): 0,83 (t, 3 H, 6-H, 3J=7,3 Hz); 0,87 (t, 3 H, 8-H, 3J=6,6 Hz); 1,07 - 1,45 (m, 11 H, 7-H, 5-H, 4-H, 3-H, 2-H, NH); 2,50 (d, 2 H, 1-H, 3J=6,0 Hz); 3,76 (s, 2 H, 9-H); 7,13 - 7,48 (m, 5 H, 11-H, 12-H, 13-H).
    13C-NMR (75 MHz, D2O)
    δ (ppm): 11,0 (C-6); 14,3 (C-8); 23,3 (C-5); 24,6 (C-4); 29,1 (C-3); 31,4 (C-7); 39,3 (C-2); 42,4 (C-1); 54,2 (C-9); 127,3 (C-11); 128,6 (C-12); 140,0 (C-13); 140,8 (C-10).
    MS (ESI(+))
  • m/z(Int.)=
    220,21 (100)[M + H]+.
    Beispiele 2 bis 7:
  • N-(2-Ethylhexyl)benzoesäureamid wurde analog Beispiel 1 in Gegenwart der in Tabelle A beschriebenen Salze zum N-Benzyl-N-(2-ethylhexyl)amin desoxigeniert. Die Elektrolysebedingungen waren wie folgt: Elektrolyt: 50 ml 2%ige H2SO4 in Methanol, Q = 8 F/mol, T = 45 °C, n(Additiv) = 1,7 mmol, j = 44,1 mA/cm2 Tabelle A:
    Beispiel Salz Ausbeute [%]1) Stromausbeute [%]2) Reisoliertes Edukt [%]1)
    V1 kein Salzzusatz 24 12 49
    1 1 55 27 18
    2 2 38 19 30
    3 7 40 20 26
    4 14 40 20 22
    6 18 32 16 10
    1) bezogen auf eingesetztes Edukt
    2) bezogen auf die eingesetzte Ladungsmenge

Claims (12)

  1. Verfahren zur Desoxygenierung von Carbonsäureamiden und Carbonsäureestern durch kathodische Reduktion einer Lösung des Carbonsäureamids oder des Carbonsäureesters, dadurch gekennzeichnet, dass die Lösung ein Salz als Additiv enthält, das unter quaternären Ammoniumsalzen ausgewählt ist und das Kation des Salzes die Formel I aufweist,
    Figure imgb0016
    worin
    k für eine ganze Zahl in einem Bereich von 1 bis 99 und insbesondere für 1 oder 2 steht,
    A für Stickstoff steht,
    Z für eine Alkylengruppe mit 2 bis 12 Kohlenstoffatomen steht, worin gegebenenfalls 1, 2 oder 3 CH2-Gruppen, welche von den Stickstoffatomen A und voneinander durch wenigstens 2 C-Atome getrennt sind, durch Sauerstoffatome ersetzt sein können,
    R1, R2, R3 und R4 jeweils unabhängig von einander für C1-C10-Alkyl stehen, welches jeweils unsubstituiert ist oder mit 1 oder 2 Substituenten, ausgewählt unter Hydroxy, Alkoxy und Poly(oxyethylen), substituiert sein kann, oder
    R1 und R2 zusammen mit dem Stickstoff, an den sie gebunden sind, auch für einen 5 bis 8-gliedrigen Heterozyklus stehen können, der im Ring 1 N-Atom enthält und unsubstituiert ist oder mit 1 bis 4 Substituenten, ausgewählt unter Hydroxy, C1-C4-Alkoxy und C1-C4-Alkyl, substituiert sein kann,
    R5 und R6 jeweils unabhängig von einander für C1-C10-Alkyl stehen, welches jeweils unsubstituiert ist oder mit 1 oder 2 Substituenten, ausgewählt unter Hydroxy, Alkoxy und Poly(oxyethylen), substituiert sein kann, und
    ein Carbonsäureamid oder ein Carbonsäureester der Formel II eingesetzt wird,
    Figure imgb0017
    worin
    Y für eine chemische Bindung oder eine Alkylengruppe mit 1 bis 6 Kohlenstoffatomen steht,
    X für Sauerstoff oder N-R9 steht,
    R7 ausgewählt ist unter C1-C10-Alkyl, C2-C10-Alkenyl, C1-C10-Alkoxy, C1-C10-Haloalkyl, C1-C10-Haloalkoxy, C3-C10-Cycloalkyl, Aryl und Hetaryl, wobei der Ring in den drei letztgenannten Gruppen unsubstituiert ist oder mit bis zu 6 Substituenten substituiert sein kann, die unter Halogen, Hydroxy, C1-C4-Alkyl und C1-C4-Alkoxy ausgewählt sind, und
    R8 ausgewählt ist unter Wasserstoff, C1-C10-Alkyl, das unsubstituiert ist oder 1 oder 2 Substituenten aufweist, die unter Hydroxy, C1-C4-Alkoxy und Aryl ausgewählt sind,
    C2-C10-Alkenyl, C1-C10-Haloalkyl, C1-C10-Haloalkoxy, C3-C10-Cycloalkyl, Aryl und Hetaryl, wobei der Ring in den drei letztgenannten Gruppen unsubstituiert ist oder mit bis zu 6 Substituenten substituiert sein kann, die unter Halogen, Hydroxy, C1-C4-Alkyl und C1-C4-Alkoxy ausgewählt sind,
    wobei R8 von Wasserstoff verschieden ist, wenn X für O steht,
    R7 und R8 können zusammen für C3-C20-Alkylen oder C3-C20-Alkenylen stehen, welches unsubstituiert ist oder mit bis zu 6 Substituenten substituiert ist, die unter Hydroxy, C1-C4-Alkyl und C1-C4-Alkoxy ausgewählt sind, wobei 2 an benachbarte C-Atome gebundene Substituenten zusammen mit den C-Atomen, an die sie gebunden sind, auch einen 5 bis 7-gliedrigen Carbocyclus bilden können; und
    R9 für Wasserstoff oder C1-C10-Alkyl steht, das unsubstituiert ist oder 1 oder 2 Substituenten aufweist, die unter Hydroxy, C1-C4-Alkoxy und Aryl ausgewählt sind.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Anionen des Salzes ausgewählt sind unter Sulfat, Hydrogensulfat, Alkylsulfat, Arylsulfat, Arylsulfonat, Haloalkylsulfonat, Halogenid, Pseudohalogenid, Carboxylat, Carbonat, Imid, Phosphat, Alkylphosphat, Nitrat, Tetrafluoroborat, Hexafluorophosphat und Perchlorat.
  3. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lösung des Carbonsäureamids oder des Carbonsäureesters das Salz in einer Konzentration in einem Bereich von 0,001 bis 1000 mmol/l, insbesondere im Bereich von 0,1 bis 500 mmol/l enthalten.
  4. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Substrat ein sekundäres oder tertiäres Carbonsäureamid eingesetzt wird,
  5. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die kathodische Reduktion einer Lösung des Carbonsäureamids oder des Carbonsäureesters in einer geteilten Durchflusszelle durchgeführt wird.
  6. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man die kathodische Reduktion der Lösung des Carbonsäureamids oder des Carbonsäureesters in einem inerten Lösungsmittel durchführt, das ausgewählt ist unter C1-C4-Alkanolen, Dimethylcarbonat, Propylencarbonat, Tetrahydrofuran, Dimethoxyethan, Acetonitril und Wasser, Mischungen dieser inerten Lösungsmittel oder Mischungen dieser inerten Lösungsmittel mit C5-C7-Kohlenwasserstoffen.
  7. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lösung des Carbonsäureamids oder des Carbonsäureesters eine Mineralsäure enthält.
  8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass die Lösung des Carbonsäureamids oder des Carbonsäureesters die Mineralsäure in einer Konzentration in einem Bereich von 0,05 bis 5 mol/l enthält.
  9. Verfahren gemäß einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass man die kathodische Reduktion der Lösung des Carbonsäureamids oder des Carbonsäureesters in einem unter C1-C4-Alkanolen oder Mischungen von C1-C4-Alkanolen ausgewählten inerten Lösungsmittel davon durchführt, welches eine Mineralsäure, insbesondere Schwefelsäure, enthält.
  10. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Kathode eine Elektrode eingesetzt wird, deren Oberfläche aus Blei besteht.
  11. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Anode eine Elektrode eingesetzt wird, deren Oberfläche aus Platin, Blei, Zink, Zinn, Nickel, Quecksilber, Cadmium, Kupfer, Legierungen dieser Metalle, Glassy Carbon, Graphit oder Diamant besteht.
  12. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man die Elektrolyse bei einer Temperatur im Bereich von 25 bis 100 °C durchführt.
EP12753131.7A 2011-09-01 2012-08-31 Verfahren zur kathodischen desoxygenierung von amiden und estern Not-in-force EP2751308B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011112063 2011-09-01
PCT/EP2012/066929 WO2013030316A2 (de) 2011-09-01 2012-08-31 Verfahren zur kathodischen desoxygenierung von amiden und estern

Publications (2)

Publication Number Publication Date
EP2751308A2 EP2751308A2 (de) 2014-07-09
EP2751308B1 true EP2751308B1 (de) 2017-03-22

Family

ID=46758765

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12753131.7A Not-in-force EP2751308B1 (de) 2011-09-01 2012-08-31 Verfahren zur kathodischen desoxygenierung von amiden und estern

Country Status (2)

Country Link
EP (1) EP2751308B1 (de)
WO (1) WO2013030316A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105647500A (zh) * 2016-02-24 2016-06-08 李�诚 分子沉积膜驱油剂及其制备方法和应用
CN108276295A (zh) * 2018-02-08 2018-07-13 李�诚 己二胺驱油剂及其制备方法和其在提高原油采收率上的应用
CN113897627B (zh) * 2020-07-06 2023-03-03 万华化学集团股份有限公司 一种电化学制备五元杂环二烷氧基化合物的方法
CN116535320A (zh) * 2023-05-06 2023-08-04 中国石油大学(北京) 一种一步法绿色合成多季铵盐的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1493665A1 (de) * 1964-07-16 1969-02-06 Hoechst Ag Verfahren zur Spaltung von aromatischen Carbonsaeureamiden
FR2208876B2 (de) * 1972-12-01 1976-06-04 Rhone Poulenc Ind
JPS5939512B2 (ja) * 1981-09-30 1984-09-25 旭化成株式会社 4−ブタノリド類の製造方法
US5840985A (en) 1996-07-18 1998-11-24 Stepan Company Process for the conversion of fatty amides to amines
GB0116505D0 (en) * 2001-07-06 2001-08-29 Univ Belfast Electrosynthesis of organic compounds
WO2005066112A1 (en) 2004-01-09 2005-07-21 Avantium International B.V. Method for the catalytic reduction of amides
DE102004033718A1 (de) 2004-07-13 2006-02-16 Basf Ag Verfahren zur Herstellung von primären Aminen mit einer an ein aliphatisches oder cycloaliphatisches C-Atom gebunden primären Aminogruppe und einer Cyclopropyl-Einheit
US7504540B2 (en) 2005-06-21 2009-03-17 Taminco N.V. Process for obtaining amines by reduction of amides
CA2655862C (en) 2006-07-04 2014-09-02 Basf Se Electrochemical production of sterically hindered amines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2751308A2 (de) 2014-07-09
WO2013030316A2 (de) 2013-03-07
WO2013030316A3 (de) 2013-05-30

Similar Documents

Publication Publication Date Title
EP3497081B1 (de) Verfahren zur herstellung von 4-ammonium-2,2,6,6,-tetraalkylpiperidinylsalzen
RU2715226C2 (ru) Способ получения (4s)-4-(4-циано-2-метоксифенил)-5-этокси-2,8-диметил-1,4-дигидро-1,6-нафтиридин-3-карбоксамида и выделения (4s)-4-(4-циано-2-метоксифенил)-5-этокси-2,8-диметил-1,4-дигидро-1,6-нафтиридин-3-карбоксамида посредством электрохимических методов
CN110629246B (zh) 凡德他尼及其类似物中间体电还原制备方法
EP2751308B1 (de) Verfahren zur kathodischen desoxygenierung von amiden und estern
CN101443482A (zh) 基于吡咯和吡啶酮的多孔金属有机骨架
EP2748353B1 (de) Verfahren zur elektrochemischen darstellung von gamma-hydroxycarbonsäureestern und gamma-lactonen
CN110284149B (zh) 中环内酰胺类化合物的合成方法
CN111206260B (zh) 一种吡啶并[1,2-a]苯并咪唑类化合物的电化学合成方法
CN111041516B (zh) 抗高血压药替米沙坦中间体制备新方法
CH623459A5 (de)
US11198669B2 (en) Method for preparing primary diamines by Kolbe electrolysis coupling reaction
EP2041336B1 (de) Elektrochemische herstellung sterisch gehinderter amine
WO2006100289A1 (de) Verfahren zur herstellung von alkoxylierten 2,5-dihydrofuran- oder tetra-1,1,4,4-alkoxylierten but-2-enderivaten
DE4333697A1 (de) Verfahren zur Herstellung von 3-Aminopyridinen aus 3-Nitropyridinen
Liu et al. Anodic cyanation of 1-arylpyrrolidines
EP3164527B1 (de) Synthese und verwendung von biobasierten imidazolcarboxylaten
PL122665B1 (en) Process for preparing novel dienones of narvedine type and their derivatives
EP1769103A1 (de) Verfahren zur herstellung von prim[ren aminen mit einer an ein aliphatisches oder cycloaliphatisches c-atom gebunden prim[ren aminogruppe und einer cyclopropyl-einheit
EP1430165B1 (de) Verfahren zur herstellung von orthocarbonsäuretrialkylestern
EP1913178A1 (de) Verfahren zur herstellung von 1,1,4,4-tetraalkoxy-but-2-enderivaten
EP0009697A2 (de) Verfahren zur Herstellung von N-(Alpha-Methoxy-alkyl)-urethanen und neue N-(Alpha-methoxy-alkyl)-urethane
CN117210831A (zh) 一种咪唑并吡啶-3-二甲基氨基二硫酸酯类化合物的制备方法
JP2632832B2 (ja) ポリフルオロベンジルアルコールの製造方法
US3218245A (en) Reductive coupling process for pyridine derivatives
RU2351602C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ГЕТЕРОМЕТАЛЛИЧЕСКОГО МАЛАТА Fe (III) И Nd (III)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140228

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160916

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20170209

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 877867

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012009863

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170623

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012009863

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

26N No opposition filed

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 877867

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012009863

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25B0003040000

Ipc: C25B0003250000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220824

Year of fee payment: 11

Ref country code: DE

Payment date: 20220831

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220822

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012009863

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240301