EP2737497B1 - Verfahren zum herstellen eines elektrischen bauelements und elektrisches bauelement - Google Patents
Verfahren zum herstellen eines elektrischen bauelements und elektrisches bauelement Download PDFInfo
- Publication number
- EP2737497B1 EP2737497B1 EP12740158.6A EP12740158A EP2737497B1 EP 2737497 B1 EP2737497 B1 EP 2737497B1 EP 12740158 A EP12740158 A EP 12740158A EP 2737497 B1 EP2737497 B1 EP 2737497B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- base body
- layer
- electrical component
- contacts
- metallic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 34
- 239000000463 material Substances 0.000 claims description 57
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 26
- 239000000919 ceramic Substances 0.000 claims description 25
- 238000001311 chemical methods and process Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 18
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 14
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 13
- 229910052737 gold Inorganic materials 0.000 claims description 13
- 239000010931 gold Substances 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- 229910052709 silver Inorganic materials 0.000 claims description 11
- 239000004332 silver Substances 0.000 claims description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 7
- 239000011787 zinc oxide Substances 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 6
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims 2
- 238000005245 sintering Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 194
- 238000002161 passivation Methods 0.000 description 12
- 230000001419 dependent effect Effects 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 5
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/008—Thermistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/04—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
- H01C7/041—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient formed as one or more layers or coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
- H01C7/12—Overvoltage protection resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/18—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49082—Resistor making
- Y10T29/49085—Thermally variable
Definitions
- the invention relates to a method for producing an electrical component, which can be used, for example, for protection against electrostatic discharge or as a sensor, and an electrical component produced by the method.
- Electronic circuits which are generally operated at low supply and signal voltages, can be destroyed if a high voltage occurs, for example an electrostatic overvoltage, at the voltage-supplying contact connections.
- a high voltage for example an electrostatic overvoltage
- protective components for protection against electrostatic discharge can be connected to the voltage-supplying contact connections, through which high electrostatic voltages can be diverted to a reference potential, for example a ground potential.
- multilayer varistors in SMD Surface Mounted Device
- SMD Surface Mounted Device
- ESD Electro Static Discharge
- the pamphlet US 2008/0238604 A1 relates to a varistor component with a part-body determining the varistor properties and a heat-emitting part-body.
- An internal electrode is arranged in the part body which determines the varistor properties.
- Two further electrodes, which are separated from one another by an electrically insulating layer, are applied to the partial body at a distance from one another.
- a method according to the invention for producing an electrical component is specified in claim 1.
- the method for producing an electrical component comprises providing a ceramic semiconducting base body with a surface and a first side face opposite the surface, a metallic layer being contained within the base body. At least two further metallic layers are arranged separately from one another on the side surface of the base body. The arrangement made up of the base body and the further metallic layers is sintered. An electrically insulating layer is arranged on the first side surface of the base body between the at least two further metallic layers as a passivation layer. A contact layer is arranged on each of the at least two further metallic layers by means of a chemical process. Through the chemical process the material of the base body is removed starting from the surface of the base body up to at most the metallic layer arranged within the base body.
- the material of the base body which is arranged over the metallic layer contained within the base body, represents a sacrificial layer that is already etched down during the chemical process of applying the contact layers by the acids / bases involved in the chemical process.
- the metallic layer applied to the first side surface and the electrically insulating layer are uncovered, trenches are etched into the material of the base body.
- Electroless plating for example an ENIG (electroless nickel immersion gold), ENEPIG (electroless nickel, electroless palladium immersion gold) or electroplating, with the electrolyte being a corrosive acid or base, can be used as a chemical process for applying the contact layer can be used.
- the trench can be further etched and the sacrificial layer can be removed down to the metallic layer arranged within the base body.
- the metallic layer within the base body acts as an etch stop layer so that the underlying material of the base body is no longer etched. Since the metallic layer arranged within the material of the base body can be introduced into the material of the base body close to the first side surface of the base body, the method enables the production of a component with a low overall height.
- the electrically insulating layer between the contacts is a passivation layer which prevents the material of the base body arranged under the electrically insulating layer from being etched during the chemical process or during the etching process for separating the component.
- the passivation layer arranged between the contacts can, for example, have a material that contains glass, silicon nitride (Si 3 N 4 ), silicon carbide (SiC), aluminum oxide (Al 2 O 3 ) or a polymer.
- the contact layer can be designed as a single layer made of, for example, silver. As an alternative to this, the contact layer can also have several partial layers, for example different metal sequences, such as nickel, palladium, gold or tin.
- the specified embodiment of the method for producing an electrical component enables in particular the implementation of ESD protective components or ceramic sensors with component heights between a metallic layer acting as an electrode and the contact layers of less than 150 ⁇ m and typically of approximately 50 ⁇ m.
- the electrical component can be produced inexpensively and used for the production of ultra-thin individual chips as well as for arrays.
- an electrical component produced by the method comprises a ceramic semiconducting base body with a first side surface on which at least two spaced apart contacts are arranged, and a second side surface opposite the first side surface, on which a metallic layer is arranged.
- Each of the contacts has a further metallic layer, which is arranged on the first side surface of the base body, and a contact layer, which is arranged on the further metallic layer.
- the electrical component has a component height of at most 150 ⁇ m and preferably of 50 ⁇ m between including the metallic layer and including the respective contact layer of the contacts.
- FIG. 1 shows an embodiment 1 of an electrical component which can be used, for example, for protection against electrostatic discharge or as a sensor.
- the electrical component comprises a ceramic semiconducting base body 10.
- the base body 10 has a side surface S10a and a side surface S10b opposite the side surface S10a.
- a metallic layer 40 is arranged in the material of the base body between the side surfaces S10a and S10b.
- the metallic layer 40 can contain silver, for example.
- the contacts 21 and 22 each have a metallic layer 210 and a contact layer 220.
- the metallic layer 210 of the contact 21 and of the contact 22 are each arranged on the side surface S10a of the base body 10 at a distance from one another.
- the contact layers 220 of the contacts 21 and 22 are each arranged on the metallic layer 210.
- the metallic layer 210 of the contacts 21 and 22 can contain silver, for example.
- the contact layer 220 can have a material made of nickel and / or gold, for example.
- the respective contact layer 220 of the contacts 21 and 22 can have a sub-layer 221 and a sub-layer 222.
- the sub-layer 221 can be arranged on the metallic layer 210 and the sub-layer 222 can be arranged on the sub-layer 221.
- the partial layer 221 can, for example, have a material made of nickel and the partial layer 222 can, for example, have a material made of gold.
- An electrically insulating layer 30 is arranged between the contacts 21 and 22 on the side surface S10a of the base body 10.
- the electrically insulating layer 30 is embodied in such a way that it separates both the metallic layer 210 of the contact connections 21 and 22 and the contact layers 220 of the two contacts 21 and 22 from one another.
- the two contacts 21 and 22 are thus electrically isolated from one another by the layer 30.
- the electrically insulating layer 30 can contain a material made of glass, for example.
- Figure 1B shows a top view of the in Figure 1A Embodiment 1 shown of the electrical component.
- the contacts 21 and 22, in particular the respective contact layer, are shown 220 of the contacts 21 and 22, which are separated from one another by the electrically insulating layer 30 and thereby electrically isolated from one another.
- the electrical component between the metallic layer 40 and the contact surfaces 220 can have a component height H of 50 ⁇ m.
- the width B of the component can for example be 100 ⁇ m and the length L can be 250 ⁇ m.
- the contact layers 220 can each have a length L1 of 50 ⁇ m and the electrically insulating layer 30 can have a length L2 of 150 ⁇ m.
- the Figures 2A to 2F show an embodiment of a manufacturing method for manufacturing an electrical component that can be used, for example, to protect against electrostatic discharge or as a sensor.
- a ceramic semiconducting base body 10 is provided with a surface O10 and a side surface S10a opposite the surface O10, a metallic layer 40 being contained within the base body.
- the metallic layer 40 arranged within the base body 10 can be interrupted at at least two points U1, U2.
- the sections of the metallic layer 40 arranged on both sides of the locations U1 and U2 belong to other components.
- the metallic layer 40 is arranged approximately parallel to the surface O10 or the side surface S10a of the base body in the interior of the base body.
- the base body 10 with the metallic layer 40 contained therein can be designed as a wafer.
- the manufacturing step shown in the manufacturing process involves lamination, stacking and pressing of the base body 10.
- the wafer or base body 10 is structured on the side surface S10a with at least two metallic layers 210, which each form part of the contacts 21 and 22 of the electrical component.
- the metallic layers 210 are arranged separated from one another at a distance on the side surface S10a of the base body.
- a thin layer of a material made of silver can be applied to sections of the side surface S10a that are spaced apart from one another.
- the at least two metallic layers 210 are arranged on the side surface S10a of the base body 10 such that an area B1 and an area B2 of the side surface S10a of the base body 10 are uncovered by the at least two further metallic layers.
- the areas B1 and B2 are arranged in projection below the locations U1 and U2.
- metallic layers 210 are arranged, which belong to other components.
- the metallic layers 210 form a passivation layer for the underlying material of the base body.
- FIG. 11 shows a further production step which comprises the application of a passivation to a section of the side surface S10a between the metallic layers 210.
- An electrically insulating layer 30, for example made of a material made of glass, can be applied as a passivation layer between the metallic layers 210 of the contacts 21 and 22.
- the electrically insulating layer 30 can directly are arranged on a section of the side surface S10a of the base body 10 between the spaced-apart metallic layers 210.
- the passivation layer 30 can also be applied to partial sections of the metallic layer 210.
- the areas B1 and B2 remain uncovered by passivation.
- the contacts 21 and 22 are completed in that the contact layers 220 are applied to the metallic layers 210.
- a material which comprises nickel and / or gold, for example can be applied to the metallic layer 210.
- a partial layer 221 that contains nickel can first be applied, and then a partial layer 222 that contains gold can be applied to the partial layer 221.
- the application of the contact layers 220 to the metallic layers 210 can take place electrolessly by a chemical process.
- the material of the base body is etched at the non-passivated areas B1 and B2 while the contact layers 220 are being applied.
- a trench G is etched into the base body. The etching takes place, for example, anisotropically.
- the chemical process of applying the contact layers 210 removes the material of the base body down to a surface OG of the trench.
- the material of the base body 10 can be removed so far in the areas B1 and B2 that the surface of the trench between the metallic layer 210 and the metallic layer 40 lies. Etching of the material of the base body is prevented under a region B0 of the side surface S10a, which is covered by the metallic layers 210, which act as passivation layers, and the electrically insulating layer 30.
- the material of the base body is also etched on the non-passivated surface O10 in the direction of the metallic layer 40.
- the material of the base body present between the surface O10 and the metallic layer 40 represents a sacrificial layer which is removed during the chemical process of applying the contact layers starting from the surface O10 up to a surface O10 '. If the area between the original surface O10 and the metallic layer 40 represents the initial thickness of the sacrificial layer, the surface O10 ′ of the sacrificial layer can after exposure to the chemical process for applying the contact areas 220 between the original surface O10 of the sacrificial layer and the metallic layer 40 lie. The layer thickness of the base body above the metallic layer 40 thus decreases further during the chemical process for applying the contact layer 220.
- Figure 2F shows the separation of the electrical component 1 from the wafer 10 as a further production step.
- the trenches already formed in the chemical process of applying the contact surfaces 220 in the areas B1 and B2 can be further etched in a further etching process, which for example takes place anisotropically, until the material of the base body under the interruptions U1 and U2 of the metallic layer 40 has been completely removed.
- the material of the base body can now be at least to the metallic layer 40 can be removed.
- the material of the ceramic semiconducting base body which is still present above the metallic layer 40 and which forms the sacrificial layer can be etched away down to the metallic layer 40.
- the metallic layer 40 acts as an etch stop layer, so that the underlying material of the base body is no longer etched.
- the components can thus be separated from the wafer assembly. In addition to the etching, the separation can alternatively take place by breaking the individual components out of the wafer assembly.
- FIG. 3A shows a further embodiment 2 of the electrical component, which can be used, for example, for protection against electrostatic discharge or as a sensor, in a transverse view.
- the electrostatic component comprises a ceramic semiconducting base body 10, which has a surface O10 and a side surface S10a opposite the surface O10.
- a metallic layer 40 is provided in the interior of the material of the ceramic semiconducting base body 10.
- the metallic layer 40 can comprise a material made of silver, for example.
- At least two contacts 21 and 22 are arranged at a distance from one another on the side surface S10a of the ceramic semiconducting base body 10.
- Each of the contacts 21 and 22 comprises a metallic layer 210 and a contact layer 220.
- the metallic layer 210 of the respective contact is arranged directly on the side surface S10a of the base body and can contain a material made of silver, for example.
- the respective contact layer 220 of each of the contacts is arranged on the respective metallic layer 210.
- the contact layer 220 can have a material made of nickel and / or gold, for example.
- the contact layer 220 can for example have a partial layer 221 which is arranged on the metallic layer 210 of the respective contact.
- a further sub-layer 222 of the contact layer 220 can be arranged on the sub-layer 221.
- the sub-layer 221 can for example contain a material made of nickel and the sub-layer 222 can contain a material made of gold.
- An electrically insulating layer 30 is provided as passivation as shown in the variant of the electrical component shown.
- the electrically insulating layer 30 can be arranged on a section of the side surface S10a between the metallic layers 210.
- the passivation layer 30 is designed in such a way that both the metallic layer 210 and the contact layer 220 of the respective contacts 21 and 22 are electrically isolated from one another.
- Figure 3B shows a top view of the in Figure 3A The illustrated embodiment of the electrical component 2.
- the contacts 21 and 22, in particular the contact layers 220 of the respective contacts 21 and 22, are arranged on the underside of the electrical component and are electrically isolated from one another by the electrically insulating layer 30.
- the electrical component 2 shown can be implemented, for example, with a component height H of 50 ⁇ m measured between the surface O10 and the contact layers 220.
- the width B of the component can be 100 ⁇ m and the length L can be 250 ⁇ m.
- the contacts 21 and 22 can each have a length L1 of 50 ⁇ m and the electrically insulating layer 30 can have a length L2 of 150 ⁇ m.
- the component according to embodiment 2 can be produced, for example, by in the last production step the Figure 2E the sacrificial layer of the base body 10 arranged over the metallic layer 40 is not completely removed down to the metallic layer 40.
- Figure 4A shows a further embodiment 3 of the electrical component, which can be used, for example, for protection against electrostatic discharge or as a sensor, in a transverse view. Similar to the in Figure 1 In the embodiment shown, the electrical component has a ceramic semiconducting base body 10. At least two contacts are arranged at a distance from one another on a side surface S10a of the base body 10. The in Figure 4A The embodiment shown, the electrical component is designed as an array with more than two contacts. The component can have four contacts 21, 22, 23 and 24, for example. At the in Figure 4A Only the contacts 21 and 22 are visible in the transverse view shown.
- Each of the contacts 21 and 22 has a metallic layer 210, for example a layer of silver, which are arranged on the side surface S10a at a distance from one another. Furthermore, the contacts each have a contact layer 220 which is arranged on the respective metallic layer 210 of the contacts.
- the contact layer 220 can comprise a material made of nickel and / or gold.
- the contact layer 220 can have a partial layer 221 and a partial layer 222, for example.
- the partial layer 221 is arranged directly on the metallic layer 210 of the respective contact.
- the sub-layer 222 is arranged on the sub-layer 221 of the respective contact.
- the sub-layer 221 can for example contain a material made of nickel and the sub-layer 222 can contain a material made of gold.
- An electrically insulating layer 30 is arranged between the two contacts 21 and 22, by means of which the contacts 21 and 22 and thus the respective metallic layer 210 and the respective contact layer 220 of the contacts are electrically insulated from one another.
- the electrically insulating layer 30 can, for example, be arranged directly on a section of the side surface S10a of the base body 10 between the metallic layers 210.
- the electrically insulating layer represents a passivation layer and can for example comprise a material made of glass.
- Figure 4B shows the in Figure 4A Embodiment 3 of the electrical component shown in a plan view of the contacts 21, 22, 23 and 24 and the electrically insulating layer 30. As in FIG Figure 4B As shown, the contacts 21, 22, 23 and 24 are separated from one another with a high resistance or electrically insulated from one another by the electrically insulating layer 30 arranged therebetween.
- the electrical component 3 between the metallic layer 40 and the contact surfaces 220 have a component height H of 50 ⁇ m.
- embodiment 3 of the electrical component has a square base area.
- the electrical component can have a width B and a length L of 250 ⁇ m, for example.
- the contacts can each have a width B1 of 100 ⁇ m and the electrically insulating layer a width B2 of 50 ⁇ m.
- the contacts can each have a length L1 of 50 ⁇ m and the electrically insulating layer can have a length L2 of 150 ⁇ m.
- FIG. 1 shows embodiment 1 of the electrical component in the form of a passivated ceramic chip which has the base body 10, the contacts 21 and 22, the electrically insulating layer 30 arranged between them and the further metallic layer 40.
- an ESD component with a multilayer varistor or a component that can be used as a sensor with a multilayer NTC (Negative Temperature Coefficient) resistor can be implemented.
- Figure 5B shows a realization of the component as a varistor, so that the component can be used, for example, as an ESD protective component.
- the base body 10 of the component contains, for example, a material made of zinc oxide and praseodymium, for example ZnO (Pr).
- ZnO zinc oxide doped with praseodymium
- a material made of zinc oxide and bismuth, for example ZnO (Bi) can also be used.
- the contacts 21 and 22 each form a connection for applying a reference potential, for example the ground potential.
- the metallic layer 40 has the function of a current-carrying electrode during production during later operation of the component.
- the ceramic semiconducting base body forms a voltage-dependent resistor R1 between the current-carrying electrode 40 and the contact 21. Between the current-carrying electrode in the form of the metallic layer 40 and the contact 22, the ceramic semiconducting base body 10 forms a further voltage-dependent resistor R2.
- Figure 5C shows an equivalent circuit diagram of the component when the material of the base body is a material with a negative Temperature coefficient, for example an NTC material, is used.
- the component can be used as a ceramic sensor.
- the base body 10 forms a temperature-dependent resistor R3 and R4 between the contacts 21 and 22 and the metallic layer 40.
- the contacts 21 and 22 can be used as connections for applying a reference potential, for example the ground potential.
- the metallic layer 40 has the function of a current-carrying electrode when the component is in operation. Between the metallic layer 40 and the contact 21, the ceramic semiconducting base body 10 forms the temperature-dependent resistor R3. Between the metallic layer 40 and the contact 22, the ceramic semiconducting base body 10 forms the further temperature-dependent resistor R4.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Thermistors And Varistors (AREA)
- Details Of Resistors (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
Description
- Die Erfindung betrifft ein Verfahren zum Herstellen eines elektrischen Bauelements, das beispielsweise zu einem Schutz vor elektrostatischer Entladung oder als ein Sensor einsetzbar ist, und ein durch das Verfahren hergestelltes elektrisches Bauelement.
- Elektronische Schaltungen, die im Allgemeinen bei niedrigen Versorgungs- und Signalspannungen betrieben werden, können beim Auftreten einer hohen Spannung, beispielsweise einer elektrostatischen Überspannung, an den spannungszuführenden Kontaktanschlüssen zerstört werden. Zum Schutz der empfindlichen Schaltungskomponenten vor einer derartigen elektrischen Überspannung können Schutzbauelemente zum Schutz vor elektrostatischer Entladung an die spannungszuführenden Kontaktanschlüsse angeschlossen werden, durch die hohe elektrostatische Spannungen zu einem Bezugspotential, beispielsweise einem Massepotential abgeleitet werden können.
- Als Schutzschaltungen vor elektrostatischer Entladung können beispielsweise Vielschichtvaristoren in SMD(Surface Mounted Device)-Technik verwendet werden. Für Integrationszwecke in eine Leiterplatte oder in ein LED(Light Emitting Diode)-Gehäuse werden ESD(Electro-Static-Discharge)-Schutzbauelemente benötigt, die möglichst dünn sind. In Bezug auf die Bauteilhöhe beziehungsweise Schichtdicke stößt die Herstellung von SMD-Vielschichtvaristoren bislang allerdings auf fertigungstechnische Grenzen.
- Die Druckschrift
US 2008/0238604 A1 betrifft ein Varistor-Bauelement mit einem die Varistoreigenschaften bestimmenden Teilkörper und einem wärmeabgebenden Teilkörper. In dem die Varistoreigenschaften bestimmenden Teilkörper ist eine interne Elektrode angeordnet. Auf dem Teilkörper sind beabstandet zueinander zwei weitere Elektroden aufgebracht, die durch eine elektrisch isolierende Schicht voneinander getrennt sind. - Es ist wünschenswert, ein Verfahren zum Herstellen eines elektrischen Bauelements anzugeben, mit dem sich ein Bauelement herstellen lässt, das eine sehr geringe Bauteilhöhe aufweist. Des Weiteren soll ein mit dem Verfahren hergestelltes elektrisches Bauelement angegeben werden.
- Ein erfindungsgemäßes Verfahren zum Herstellen eines elektrischen Bauelements ist im Patentanspruch 1 angegeben.
- Gemäß einer möglichen Ausführungsform umfasst das Verfahren zum Herstellen eines elektrischen Bauelements das Bereitstellen eines keramisch halbleitenden Grundkörpers mit einer Oberfläche und einer der Oberfläche gegenüberliegenden ersten Seitenfläche, wobei innerhalb des Grundkörpers eine metallische Schicht enthalten ist. Auf der Seitenfläche des Grundkörpers werden mindestens zwei weitere metallische Schichten getrennt voneinander angeordnet. Die Anordnung aus dem Grundkörper und den weiteren metallischen Schichten wird gesintert. Eine elektrisch isolierende Schicht wird auf der ersten Seitenfläche des Grundkörpers zwischen den mindestens zwei weiteren metallischen Schichten als Passivierungsschicht angeordnet. Auf den mindestens zwei weiteren metallischen Schichten wird mittels eines chemischen Prozesses jeweils eine Kontaktschicht angeordnet. Durch den chemischen Prozess wird dabei das Material des Grundkörpers ausgehend von der Oberfläche des Grundkörpers bis höchstens zu der innerhalb des Grundkörpers angeordneten metallischen Schicht entfernt.
- Somit stellt das Material des Grundkörpers, das über der innerhalb des Grundkörpers enthaltenen metallischen Schicht angeordnet ist, eine Opferschicht dar, die bereits während dem chemischen Vorgang des Aufbringens der Kontaktschichten durch die an dem chemischen Prozess beteiligten Säuren/Basen heruntergeätzt wird. Gleichzeitig werden an den unpassivierten Bereichen der ersten Seitenfläche, die von der auf der ersten Seitenfläche aufgebrachten metallischen Schicht und der elektrisch isolierenden Schicht unbedeckt sind, Gräben in das Material des Grundköpers geätzt. Als chemischer Prozess zum Aufbringen der Kontaktschicht kann beispielsweise stromloses Galvanisieren (electroless plating), beispielsweise ein ENIG(electroless Nickel immersion gold), ENEPIG(electroless Nickel, electroless Palladium immersion gold) oder Elektro-Galvanisieren, wobei der Elektrolyth eine ätzende Säure oder Base sein kann, verwendet werden.
- Während eines nachfolgenden Ätzprozesses kann zum Vereinzeln eines Bauelements aus dem Grundkörper der Graben weiter geätzt werden und die Opferschicht bis zu der innerhalb des Grundkörpers angeordneten metallischen Schicht abgetragen werden. Die metallische Schicht innerhalb des Grundkörpers wirkt als Ätzstoppschicht, so dass das darunter liegende Material des Grundkörpers nicht weiter geätzt wird. Da die innerhalb des Materials des Grundkörpers angeordnete metallische Schicht nahe an der ersten Seitenfläche des Grundkörpers in das Material des Grundkörpers eingebracht werden kann, ermöglicht das Verfahren die Herstellung eines Bauelements mit niedriger Bauhöhe.
- Die elektrisch isolierende Schicht zwischen den Kontakten ist eine Passivierungsschicht, die verhindert, dass während dem chemischen Prozess beziehungsweise beim Ätzprozess zum Vereinzeln des Bauelements das unter der elektrisch isolierenden Schicht angeordnete Material des Grundkörpers geätzt wird. Die zwischen den Kontakten angeordnete Passivierungsschicht kann beispielsweise ein Material, das Glas, Siliziumnitrid (Si3N4), Siliziumkarbid (SiC), Aluminiumoxid (Al2O3) oder ein Polymer enthält, aufweisen. Die Kontaktschicht kann als einzelne Schicht aus beispielsweise Silber ausgebildet sein. Die Kontaktschicht kann auch alternativ dazu mehrere Teilschichten, beispielsweise verschiedene Metallabfolgen, wie zum Beispiel Nickel, Palladium, Gold oder Zinn enthalten.
- Die angegebene Ausführungsform des Verfahrens zum Herstellen eines elektrischen Bauelements ermöglicht insbesondere die Realisierung von ESD-Schutzbauelementen oder keramischen Sensoren mit Bauteilhöhen zwischen einer als Elektrode wirkenden metallischen Schicht und den Kontaktschichten von weniger als 150 µm und typischerweise von ungefähr 50 µm. Dabei kann das elektrische Bauelement kostengünstig hergestellt werden und für die Fertigung von ultradünnen Einzelchips wie auch für Arrays verwendet werden.
- Erfindungsgemäße, mit dem Verfahren hergestellte elektrische Bauelemente sind in den Patentansprüchen 9 und 10 angegeben.
- Gemäß der Erfindung umfasst ein mit dem Verfahren hergestelltes elektrisches Bauelement einen keramisch halbleitenden Grundkörper mit einer ersten Seitenfläche, auf der mindestens zwei voneinander beabstandete Kontakte angeordnet sind, und einer der ersten Seitenfläche gegenüberliegende zweiten Seitenfläche, auf der eine metallische Schicht angeordnet ist. Jeder der Kontakte weist eine weitere metallische Schicht, die auf der ersten Seitenfläche des Grundkörpers angeordnet ist, und eine Kontaktschicht, die auf der weiteren metallischen Schicht angeordnet ist, auf. Zwischen den mindestens zwei Kontakten ist eine elektrisch isolierende Schicht, durch die die mindestens zwei Kontakte voneinander elektrisch isoliert sind, angeordnet. Das elektrische Bauelement weist zwischen einschließlich der metallischen Schicht und einschließlich der jeweiligen Kontaktschicht der Kontakte eine Bauteilhöhe von höchstens 150 µm und vorzugsweise von 50 µm auf.
- Ausführungsformen des Verfahrens zum Herstellen des elektrischen Bauelements sowie Ausführungsformen von mit dem Verfahren herstellbaren elektrischen Bauelementen werden anhand von Figuren nachfolgend beispielhaft erläutert. Es zeigen:
- Figur 1A
- eine Queransicht einer Ausführungsform eines elektrischen Bauelements,
- Figur 1B
- eine Draufsicht auf die Ausführungsform des elektrischen Bauelements,
- Figur 2A
- einen Fertigungsschritt einer Ausführungsform eines Herstellungsverfahrens für ein elektrisches Bauelement,
- Figur 2B
- einen weiteren Fertigungsschritt der Ausführungsform des Herstellungsverfahrens für das elektrische Bauelement,
- Figur 2C
- einen weiteren Fertigungsschritt der Ausführungsform des Herstellungsverfahrens für das elektrische Bauelement,
- Figur 2D
- einen weiteren Fertigungsschritt der Ausführungsform des Herstellungsverfahrens für das elektrische Bauelement,
- Figur 2E
- einen weiteren Fertigungsschritt der Ausführungsform des Herstellungsverfahrens für das elektrische Bauelement,
- Figur 2F
- einen weiteren Fertigungsschritt der Ausführungsform des Herstellungsverfahrens für das elektrische Bauelement,
- Figur 3A
- eine Queransicht einer weiteren Ausführungsform eines elektrischen Bauelements,
- Figur 3B
- eine Draufsicht auf die weitere Ausführungsform des elektrischen Bauelements,
- Figur 4A
- eine Queransicht einer weiteren Ausführungsform des elektrischen Bauelements,
- Figur 4B
- eine Draufsicht auf eine weitere Ausführungsform eines elektrischen Bauelements,
- Figur 5A
- eine Ausführungsform eines elektrischen Bauelements zum Schutz vor elektrostatischer Entladung oder als keramischer Sensor,
- Figur 5B
- eine Ersatzschaltung einer Ausführungsform eines elektrischen Bauelements zum Schutz vor elektrostatischer Entladung,
- Figur 5C
- eine Ersatzschaltung einer Ausführungsform eines elektrischen Bauelements als keramischer Sensor.
-
Figur 1A zeigt eine Ausführungsform 1 eines elektrischen Bauelements, das beispielsweise zum Schutz vor elektrostatischer Entladung oder als Sensor einsetzbar ist. Das elektrische Bauelement umfasst einen keramisch halbleitenden Grundkörper 10. Der Grundkörper 10 weist eine Seitenfläche S10a und eine der Seitenfläche S10a gegenüberliegende Seitenfläche S10b auf. Im Material des Grundkörpers ist zwischen den Seitenflächen S10a und S10b eine metallische Schicht 40 angeordnet. Die metallische Schicht 40 kann beispielsweise Silber enthalten. Auf der Seitenfläche S10a sind mindestens zwei voneinander beabstandete Kontakte 21 und 22 angeordnet. Die Kontakte 21 und 22 weisen jeweils eine metallische Schicht 210 und eine Kontaktschicht 220 auf. Die metallische Schicht 210 des Kontakts 21 und des Kontakts 22 sind jeweils auf der Seitenfläche S10a des Grundkörpers 10 in einem Abstand zueinander angeordnet. Die Kontaktschichten 220 der Kontakte 21 und 22 sind jeweils auf der metallischen Schicht 210 angeordnet. - Die metallische Schicht 210 der Kontakte 21 und 22 kann beispielsweise Silber enthalten. Die Kontaktschicht 220 kann beispielsweise ein Material aus Nickel und/oder Gold aufweisen. Beispielsweise kann die jeweilige Kontaktschicht 220 der Kontakte 21 und 22 eine Teilschicht 221 und eine Teilschicht 222 aufweisen. Die Teilschicht 221 kann auf der metallischen Schicht 210 angeordnet sein und die Teilschicht 222 kann auf der Teilschicht 221 angeordnet sein. Die Teilschicht 221 kann beispielsweise ein Material aus Nickel und die Teilschicht 222 kann beispielsweise ein Material aus Gold aufweisen.
- Zwischen den Kontakten 21 und 22 ist auf der Seitenfläche S10a des Grundkörpers 10 eine elektrisch isolierende Schicht 30 angeordnet. Die elektrisch isolierende Schicht 30 ist derart ausgebildet, dass sie sowohl die metallische Schicht 210 der Kontaktanschlüsse 21 und 22 als auch die Kontaktschichten 220 der beiden Kontakte 21 und 22 voneinander trennt. Durch die Schicht 30 sind somit die beiden Kontakte 21 und 22 elektrisch voneinander isoliert. Die elektrisch isolierende Schicht 30 kann beispielsweise ein Material aus Glas enthalten.
-
Figur 1B zeigt eine Draufsicht auf die inFigur 1A gezeigte Ausführungsform 1 des elektrischen Bauelements. Dargestellt sind die Kontakte 21 und 22, insbesondere die jeweilige Kontaktschicht 220 der Kontakte 21 und 22, die durch die elektrisch isolierende Schicht 30 voneinander getrennt und dadurch elektrisch voneinander isoliert sind. - Bei der in den
Figuren 1A und 1B gezeigten Ausführungsform 1 kann das elektrische Bauelement zwischen der metallischen Schicht 40 und den Kontaktflächen 220 eine Bauteilhöhe H von 50 µm aufweisen. Die Breite B des Bauelements kann beispielsweise 100 µm und die Länge L kann 250 µm betragen. Dabei können die Kontaktschichten 220 jeweils eine Länge L1 von 50 µm und die elektrisch isolierende Schicht 30 eine Länge L2 von 150 µm aufweisen. - Die
Figuren 2A bis 2F zeigen eine Ausführungsform für ein Herstellungsverfahren zur Herstellung eines elektrischen Bauelements, das beispielsweise zum Schutz vor elektrostatischer Entladung oder als Sensor einsetzbar ist. Es wird ein keramisch halbleitender Grundkörper 10 mit einer Oberfläche O10 und einer der Oberfläche O10 gegenüberliegenden Seitenfläche S10a bereitgestellt, wobei innerhalb des Grundkörpers eine metallische Schicht 40 enthalten ist. Die innerhalb des Grundkörpers 10 angeordnete metallische Schicht 40 kann an mindestens zwei Stellen U1, U2 unterbrochen sein. Die zu beiden Seiten der Stellen U1 und U2 angeordneten Abschnitte der metallischen Schicht 40 gehören zu anderen Bauelementen. Die metallische Schicht 40 ist annährend parallel zu der Oberfläche O10 beziehungsweise der Seitenfläche S10a des Grundkörpers im Inneren des Grundkörpers angeordnet. Der Grundkörper 10 mit der darin enthaltenen metallischen Schicht 40 kann als ein Wafer ausgebildet sein. In dem ersten inFigur 2A gezeigten Fertigungsschritt des Herstellungsverfahrens erfolgt das Laminieren, Verstapeln und Verpressen des Grundkörpers 10. - In einem weiteren in
Figur 2B dargestellten Fertigungsschritt wird der Wafer beziehungsweise Grundkörper 10 an der Seitenfläche S10a mit mindestens zwei metallischen Schichten 210, die jeweils einen Teil der Kontakte 21 und 22 des elektrischen Bauelements bilden, strukturiert. Die metallischen Schichten 210 werden dabei in einem Abstand getrennt voneinander auf der Seitenfläche S10a des Grundkörpers angeordnet. Dazu kann beispielsweise eine dünne Schicht aus einem Material aus Silber auf Abschnitte der Seitenfläche S10a, die voneinander beabstandet sind, angebracht werden. Die mindestens zwei metallischen Schichten 210 werden auf der Seitenfläche S10a des Grundkörpers 10 derart angeordnet, dass ein Bereich B1 und ein Bereich B2 der Seitenfläche S10a des Grundkörpers 10 von den mindestens zwei weiteren metallischen Schichten unbedeckt ist. Die Bereiche B1 und B2 sind in Projektion unter den Stellen U1 und U2 angeordnet. Neben den Bereichen B1 und B2 sind metallische Schichten 210 angeordnet, die zu anderen Bauelementen gehören. Die metallischen Schichten 210 bilden für das darunter liegenden Material des Grundkörpers eine Passivierungsschicht. - In einem weiteren Fertigungsschritt, der in
Figur 2C gezeigt ist, wird die Anordnung aus dem Grundkörper 10 mit den darauf angebrachten strukturierten metallischen Schichten 210 gesintert. -
Figur 2D zeigt einen weiteren Fertigungsschritt, der das Aufbringen einer Passivierung auf einen Abschnitt der Seitenfläche S10a zwischen den metallischen Schichten 210 umfasst. Als Passivierungsschicht kann zwischen den metallischen Schichten 210 der Kontakte 21 und 22 eine elektrisch isolierende Schicht 30, beispielsweise aus einem Material aus Glas, angebracht werden. Die elektrisch isolierende Schicht 30 kann unmittelbar auf einem Abschnitt der Seitenfläche S10a des Grundkörpers 10 zwischen den beabstandeten metallischen Schichten 210 angeordnet werden. Dabei kann die Passivierungsschicht 30 auch auf Teilabschnitte der metallischen Schicht 210 aufgebracht werden. Die Bereiche B1 und B2 bleiben weiterhin von einer Passivierung unbedeckt. - In dem in
Figur 2E gezeigten weiteren Fertigungsschritt werden die Kontakte 21 und 22 fertig gestellt, indem auf die metallischen Schichten 210 jeweils die Kontaktschichten 220 aufgebracht werden. Dazu kann auf der metallischen Schicht 210 ein Material, das beispielsweise Nickel und/oder Gold aufweist, aufgebracht werden. Beispielsweise kann auf jeder der metallischen Schichten 210 zunächst eine Teilschicht 221, die Nickel enthält, und auf die Teilschicht 221 nachfolgend eine Teilschicht 222, die Gold enthält, aufgebracht werden. Das Aufbringen der Kontaktschichten 220 auf die metallischen Schichten 210 kann durch einen chemischen Prozess stromlos erfolgen. - Durch den chemischen Prozess zum Aufbringen der Kontaktschichten 220, an dem Säuren beziehungsweise Basen beteiligt sind, wird während des Aufbringens der Kontaktschichten 220 das Material des Grundkörpers an den nicht passivierten Bereichen B1 und B2 geätzt. Dabei wird ausgehend von den nicht passivierten Bereichen B1, B2 an der Seitenfläche S10a des Grundkörpers ein Graben G in den Grundkörper geätzt. Das Ätzen erfolgt beispielsweise anisotrop. Durch den chemischen Prozess des Aufbringens der Kontaktschichten 210 wird das Material des Grundkörpers bis zu einer Oberfläche OG des Grabens entfernt. Das Material des Grundkörpers 10 kann an den Bereichen B1 und B2 so weit entfernt werden, dass die Oberfläche des Grabens zwischen der metallischen Schicht 210 und der metallischen Schicht 40 liegt. Unter einem Bereich B0 der Seitenfläche S10a, der von den als Passivierungsschichten wirkenden metallischen Schichten 210 und der elektrische isolierenden Schicht 30 bedeckt ist, ist das Ätzen des Materials des Grundkörpers verhindert.
- Des Weiteren wird auch das Material des Grundkörpers an der nicht passivierten Oberfläche O10 in Richtung auf die metallische Schicht 40 geätzt. Das zwischen der Oberfläche O10 und der metallischen Schicht 40 vorhandene Material des Grundkörpers stellt eine Opferschicht dar, die während des chemischen Prozesses des Aufbringens der Kontaktschichten ausgehend von der Oberfläche O10 bis zu einer Oberfläche O10' entfernt wird. Wenn der Bereich zwischen der ursprünglichen Oberfläche O10 und der metallischen Schicht 40 die anfängliche Dicke der Opferschicht darstellt, kann die Oberfläche O10' der Opferschicht nach dem Einwirken des chemischen Prozesses zum Aufbringen der Kontaktflächen 220 zwischen der ursprünglichen Oberfläche O10 der Opferschicht und der metallischen Schicht 40 liegen. Somit nimmt die Schichtdicke des Grundkörpers oberhalb der metallischen Schicht 40 während des chemischen Prozesses zum Aufbringen der Kontaktschicht 220 weiter ab.
-
Figur 2F zeigt als weiteren Fertigungsschritt das Vereinzeln des elektrischen Bauelemente 1 aus dem Wafer 10. Dazu können in einem weiteren Ätzprozess, der beispielsweise anisotrop erfolgt, die bereits bei dem chemischen Prozess des Aufbringens der Kontaktflächen 220 ausgebildeten Gräben an den Bereichen B1 und B2 weiter geätzt werden, bis das Material des Grundkörpers unter den Unterbrechungen U1 und U2 der metallischen Schicht 40 komplett entfernt ist. Ausgehend von der Oberfläche OG des während des chemischen Prozesses vorgeätzten Grabens kann das Material des Grundkörpers nun bis mindestens zu der metallischen Schicht 40 entfernt werden. Des Weiteren kann das noch über der metallischen Schicht 40 vorhandene Material des keramisch halbleitenden Grundkörpers, das die Opferschicht bildet, bis auf die metallische Schicht 40 weggeätzt werden. Die metallische Schicht 40 wirkt als eine Ätzstoppschicht, so dass das darunter liegende Material des Grundkörpers nicht weiter geätzt wird. Somit können die Bauelemente aus dem Waferverbund vereinzelt werden. Neben dem Ätzen kann das Vereinzeln alternativ durch ein Ausbrechen der einzelnen Bauelemente aus dem Waferverbund erfolgen. -
Figur 3A zeigt eine weitere Ausführungsform 2 des elektrischen Bauelements, das beispielsweise zum Schutz vor elektrostatischer Entladung oder als Sensor einsetzbar ist, in einer Queransicht. Das elektrostatische Bauelement umfasst einen keramisch halbleitenden Grundkörper 10, der eine Oberfläche O10 und eine der Oberfläche O10 gegenüberliegende Seitenfläche S10a aufweist. Im Inneren des Materials des keramisch halbleitenden Grundkörpers 10 ist eine metallische Schicht 40 vorgesehen. Die metallische Schicht 40 kann beispielsweise ein Material aus Silber aufweisen. Auf der Seitenfläche S10a des keramisch halbleitenden Grundkörpers 10 sind voneinander beabstandet mindestens zwei Kontakte 21 und 22 angeordnet. Jeder der Kontakte 21 und 22 umfasst eine metallische Schicht 210 und eine Kontaktschicht 220. Die metallische Schicht 210 des jeweiligen Kontakts ist unmittelbar auf der Seitenfläche S10a des Grundkörpers angeordnet und kann beispielsweise ein Material aus Silber enthalten. - Die jeweilige Kontaktschicht 220 eines jeden der Kontakte ist auf der jeweiligen metallischen Schicht 210 angeordnet. Die Kontaktschicht 220 kann beispielsweise ein Material aus Nickel und/oder Gold aufweisen. Die Kontaktschicht 220 kann beispielsweise eine Teilschicht 221 aufweisen, die auf der metallischen Schicht 210 des jeweiligen Kontakts angeordnet ist. Eine weitere Teilschicht 222 der Kontaktschicht 220 kann auf der Teilschicht 221 angeordnet sein. Die Teilschicht 221 kann beispielsweise ein Material aus Nickel und die Teilschicht 222 kann ein Material aus Gold enthalten.
- Zwischen den Kontakten 21 und 22 ist wie bei der in
Figur 1A und 1B gezeigten Variante des elektrischen Bauelements eine elektrisch isolierende Schicht 30 als Passivierung vorgesehen. Die elektrisch isolierende Schicht 30 kann auf einem Abschnitt der Seitenfläche S10a zwischen den metallischen Schichten 210 angeordnet sein. Die Passivierungsschicht 30 ist derart ausgebildet, dass sowohl die metallische Schicht 210 als auch die Kontaktschicht 220 der jeweiligen Kontakte 21 und 22 voneinander elektrisch isoliert sind. -
Figur 3B zeigt eine Draufsicht auf die inFigur 3A gezeigte Ausführungsform des elektrischen Bauelements 2. Auf der Unterseite des elektrischen Bauelements sind die Kontakte 21 und 22, insbesondere die Kontaktschichten 220 der jeweiligen Kontakte 21 und 22, angeordnet, die durch die elektrisch isolierende Schicht 30 elektrisch voneinander isoliert sind. - Das in den
Figuren 3A und 3B gezeigte elektrische Bauelement 2 lässt sich beispielsweise mit einer Bauteilhöhe H von 50 µm gemessen zwischen der Oberfläche O10 und den Kontaktschichten 220 realisieren. Die Breite B des Bauelements kann 100 µm und die Länge L kann 250 µm betragen. Dabei können die Kontakte 21 und 22 jeweils eine Länge L1 von 50 µm und die elektrisch isolierende Schicht 30 eine Länge L2 von 150 µm aufweisen. Das Bauelement gemäß der Ausführungsform 2 kann beispielsweise dadurch hergestellt werden, indem im letzten Fertigungsschritt derFigur 2E die über der metallischen Schicht 40 angeordnete Opferschicht des Grundkörpers 10 nicht vollständig bis auf die metallische Schicht 40 entfernt wird. -
Figur 4A zeigt eine weitere Ausführungsform 3 des elektrischen Bauelements, das beispielsweise zum Schutz vor elektrostatischer Entladung oder als Sensor einsetzbar ist, in einer Queransicht. Ähnlich der inFigur 1 gezeigten Ausführungsform weist das elektrische Bauelement einen keramisch halbleitenden Grundkörper 10 auf. Auf einer Seitenfläche S10a des Grundkörpers 10 sind voneinander beabstandet mindestens zwei Kontakte angeordnet. Bei dem inFigur 4A gezeigten Ausführungsbeispiel ist das elektrische Bauelement als ein Array mit mehr als zwei Kontakten ausgebildet. Das Bauelement kann beispielsweise vier Kontakte 21, 22, 23 und 24 aufweisen. Bei der inFigur 4A gezeigten Queransicht sind lediglich die Kontakte 21 und 22 sichtbar. - Jeder der Kontakte 21 und 22 weist eine metallische Schicht 210, beispielsweise eine Schicht aus Silber, auf, die auf der Seitenfläche S10a beabstandet zueinander angeordnet sind. Des Weiteren weisen die Kontakte jeweils eine Kontaktschicht 220 auf, die auf der jeweiligen metallischen Schicht 210 der Kontakte angeordnet ist. Die Kontaktschicht 220 kann ein Material aus Nickel und/oder Gold aufweisen. Die Kontaktschicht 220 kann beispielsweise eine Teilschicht 221 und eine Teilschicht 222 aufweisen. Die Teilschicht 221 ist unmittelbar auf der metallischen Schicht 210 des jeweiligen Kontakts angeordnet. Die Teilschicht 222 ist auf der Teilschicht 221 des jeweiligen Kontakts angeordnet. Die Teilschicht 221 kann beispielsweise ein Material aus Nickel und die Teilschicht 222 kann ein Material aus Gold enthalten.
- Zwischen den beiden Kontakten 21 und 22 ist eine elektrisch isolierende Schicht 30 angeordnet, durch die die Kontakte 21 und 22 und somit die jeweilige metallische Schicht 210 und die jeweilige Kontaktschicht 220 der Kontakte elektrisch voneinander isoliert sind. Die elektrisch isolierende Schicht 30 kann beispielsweise unmittelbar auf einem Abschnitt der Seitenfläche S10a des Grundkörpers 10 zwischen den metallischen Schichten 210 angeordnet sein. Die elektrisch isolierende Schicht stellt eine Passivierungsschicht dar und kann beispielsweise ein Material aus Glas aufweisen.
-
Figur 4B zeigt die inFigur 4A gezeigte Ausführungsform 3 des elektrischen Bauelements in Draufsicht auf die Kontakte 21, 22, 23 und 24 und die elektrisch isolierende Schicht 30. Wie inFigur 4B dargestellt, sind die Kontakte 21, 22, 23 und 24 durch die dazwischen angeordnete elektrisch isolierende Schicht 30 hochohmig voneinander getrennt beziehungsweise voneinander elektrisch isoliert. - Bei der in den
Figuren 4A und 4B gezeigten Ausführungsform kann das elektrische Bauelement 3 zwischen der metallischen Schicht 40 und den Kontaktflächen 220 eine Bauteilhöhe H von 50 µm aufweisen. Im Unterschied zu den Ausführungsformen 1 und 2 des elektrischen Bauelements weist die Ausführungsform 3 des elektrischen Bauelements eine quadratische Grundfläche auf. Das elektrische Bauelement kann beispielsweise eine Breite B und eine Länge L von 250 µm aufweisen. Dabei können die Kontakte jeweils eine Breite B1 von 100 µm und die elektrisch isolierende Schicht eine Breite B2 von 50 µm aufweisen. Die Kontakte können jeweils eine Länge L1 von 50 µm und die elektrisch isolierende Schicht kann eine Länge L2 von 150 µm aufweisen. -
Figur 5A zeigt die Ausführungsform 1 des elektrischen Bauelements in Form eines passivierten Keramikchips, der den Grundkörper 10, die Kontakte 21 und 22, die dazwischen angeordnete elektrisch isolierende Schicht 30 und die weitere metallische Schicht 40 aufweist. Mit einer derartigen Struktur lässt sich beispielsweise ein ESD-Bauelement mit einem Multilagenvaristor beziehungsweise ein als Sensor einsetzbares Bauelement mit einem Multilagen-NTC(Negative Temperature Coefficient)-Widerstand realisieren. -
Figur 5B zeigt eine Realisierung des Bauelements als Varistor, so dass das Bauelement beispielsweise als ESD-Schutzbauelement einsetzbar ist. Bei der Ausführungsform als Multilagenvaristor enthält der Grundkörper 10 des Bauelements beispielsweise ein Material aus Zinkoxid und Praseodym, beispielsweise ZnO(Pr). Beispielsweise kann mit Praseodym dotiertes Zinkoxid als Material des Grundkörpers 10 vorgesehen werden. Es kann auch alternativ dazu ein Material aus Zinkoxid und Bismut, beispielsweise ZnO(Bi) verwendet werden. Die Kontakte 21 und 22 bilden jeweils einen Anschluss zum Anlegen eines Bezugspotentials, beispielsweise des Massepotentials. Die metallische Schicht 40 hat neben der Funktion als Ätzstopplayer während der Herstellung im späteren Betrieb des Bauelements die Funktion einer stromtragenden Elektrode. Zwischen der stromtragenden Elektrode 40 und dem Kontakt 21 bildet der keramisch halbleitende Grundkörper einen spannungsabhängigen Widerstand R1 aus. Zwischen der stromtragenden Elektrode in Form der metallischen Schicht 40 und dem Kontakt 22 bildet der keramisch halbleitende Grundkörper 10 einen weiteren spannungsabhängigen Widerstand R2 aus. -
Figur 5C zeigt ein Ersatzschaltbild des Bauelements, wenn als Material des Grundkörpers ein Material mit einem negativen Temperaturkoeffizienten, beispielsweise ein NTC-Material verwendet wird. In diesem Fall kann das Bauelement als ein keramischer Sensor verwendet werden. Der Grundkörper 10 bildet zwischen den Kontakten 21 und 22 und der metallischen Schicht 40 jeweils einen temperaturabhängigen Widerstand R3 und R4 aus. Die Kontakte 21 und 22 können als Anschlüsse zum Anlegen eines Bezugspotentials, beispielsweise des Massepotentials, verwendet werden. Die metallische Schicht 40 hat im Betrieb des Bauelements die Funktion einer stromtragenden Elektrode. Zwischen der metallischen Schicht 40 und dem Kontakt 21 bildet der keramisch halbleitende Grundkörper 10 den temperaturabhängigen Widerstand R3. Zwischen der metallischen Schicht 40 und dem Kontakt 22 bildet der keramisch halbleitende Grundkörper 10 den weiteren temperaturabhängigen Widerstand R4 aus. -
- 1, 2, 3
- Ausführungsformen des elektrischen Bauelements
- 10
- keramisch halbleitender Grundkörper
- 21, 22
- Kontakte
- 30
- elektrisch isolierende Schicht
- 40
- metallische Schicht
- 210
- metallische Schicht
- 220
- Kontaktschicht
- 221, 222
- Teilschichten der Kontaktschicht
- R1, R2
- spannungsabhängige Widerstände
- R3, R4
- temperaturabhängige Widerstände
Claims (15)
- Verfahren zum Herstellen eines elektrischen Bauelements (1), umfassend:- Bereitstellen eines keramisch halbleitenden Grundkörpers (10) mit einer Oberfläche (O10) und einer der Oberfläche (O10) gegenüberliegenden ersten Seitenfläche (S10a), wobei innerhalb des Grundkörpers eine metallische Schicht (40) enthalten ist,- Anordnen von mindestens zwei weiteren metallischen Schichten (210) getrennt voneinander auf der Seitenfläche (SlOa) des Grundkörpers,- Sintern der Anordnung aus dem Grundkörper (10) und den weiteren metallischen Schichten (210),- Anordnen einer elektrisch isolierenden Schicht (30) auf der ersten Seitenfläche (SlOa) zwischen den mindestens zwei weiteren metallischen Schichten (210),- Anordnen von jeweils einer Kontaktschicht (220) auf den mindestens zwei weiteren metallischen Schichten (210) mittels eines chemischen Prozesses, dadurch gekennzeichnet, dass während des Anordnens der Kontaktschichten (220) das Material des Grundkörpers (10) durch den chemischen Prozess ausgehend von der Oberfläche (O10) des Grundkörpers (10) entfernt wird, und zwar bis höchstens zu der innerhalb des Grundkörpers angeordneten metallischen Schicht (40).
- Verfahren nach Anspruch 1,- wobei die innerhalb des Grundkörpers (10) angeordnete metallische Schicht (40) an mindestens zwei Stellen (U1, U2) unterbrochen ist,- wobei die mindestens zwei weiteren metallischen Schichten (210) auf der ersten Seitenfläche (SlOa) des Grundkörpers (10) derart angeordnet sind, dass ein erster und zweiter Bereich (B1, B2) der ersten Seitenfläche (SlOa) des Grundkörpers von den mindestens zwei weiteren metallischen Schichten (210) unbedeckt ist,- wobei durch den chemischen Prozess das Material des Grundkörpers (10) an den Bereichen (B1, B2) der ersten Seitenfläche (SlOa) des Grundkörpers (10) geätzt wird.
- Verfahren nach Anspruch 2,
wobei ein Vereinzeln des elektrischen Bauelements (1, 2, 3) aus dem Material des Grundkörpers (10) durch einen auf den chemischen Prozess nachfolgenden Ätzprozess erfolgt. - Verfahren nach einem der Ansprüche 1 bis 3,
wobei ein Ätzen des Materials des Grundkörpers an einem Bereich (B0) des Grundkörpers (10), der von den mindestens zwei weiteren metallischen Schichten (210) und von der elektrisch isolierenden Schicht (30) bedeckt ist, verhindert wird. - Verfahren nach Anspruch 4,
wobei die metallische Schicht (40) innerhalb des Grundkörpers derart angeordnet ist, dass das elektrische Bauteil (1, 2, 3) zwischen der innerhalb des Grundkörpers (10) angeordneten metallischen Schicht (40) und den Kontaktschichten (220) eine Dicke von höchstens 150 µm und vorzugsweise von 50 µm aufweist. - Verfahren nach einem der Ansprüche 1 bis 5,
wobei der keramisch halbleitende Grundkörper (10) ein Material aus Zinkoxid und Praseodym oder ein Material mit einem negativen Temperaturkoeffizienten enthält. - Verfahren nach einem der Ansprüche 1 bis 6,
wobei die elektrisch isolierende Schicht (30) ein Material aus Glas oder Siliziumnitrid oder Siliziumkarbid oder Aluminiumoxid oder ein Polymer enthält und die metallische Schicht (40) und die weiteren metallischen Schichten (210) ein Material aus Silber enthalten. - Verfahren nach einem der Ansprüche 1 bis 7,
wobei die Kontaktschicht (220) ein Material aus Nickel und/oder Gold und/oder Palladium und/oder Zinn und/oder Silber enthält. - Elektrisches Bauelement (1,3), umfassend:- einen keramisch halbleitenden Grundkörper (10) mit einer ersten Seitenfläche (S10a), auf der mindestens zwei voneinander beabstandete Kontakte (21, 22) angeordnet sind, und einer der ersten Seitenfläche (SlOa) gegenüberliegende zweite Seitenfläche (S10b), auf der eine metallische Schicht (40) angeordnet ist,- wobei jeder der Kontakte (21, 22) eine weitere metallische Schicht (210), die auf der ersten Seitenfläche (SlOa) des Grundkörpers angeordnet ist, und eine Kontaktschicht (220), die auf der weiteren metallischen Schicht (210) angeordnet ist, aufweist,- wobei zwischen den mindestens zwei Kontakten (21, 22) eine elektrisch isolierende Schicht (30), durch die die mindestens zwei Kontakte (21, 22) voneinander elektrisch isoliert sind, angeordnet ist,- wobei die metallische Schicht (40) dünner als der keramisch halbleitende Grundkörper (10) ist,- dadurch gekennzeichnet, dass das elektrische Bauelement zwischen einschließlich der metallischen Schicht (40) und einschließlich der jeweiligen Kontaktschicht (220) der Kontakte (21, 22) eine Bauteilhöhe (H) von höchstens 150 µm und vorzugsweise von 50 µm aufweist.
- Elektrisches : Bauelement (2), umfassend:- einen keramisch halbleitenden Grundkörper (10) mit einer Oberfläche (O10) und einer der Oberfläche (O10) gegenüberliegenden ersten Seitenfläche (S10a), auf der mindestens zwei voneinander beabstandete Kontakte (21, 22) angeordnet sind,- wobei innerhalb des Grundkörpers (10) eine metallische Schicht (40) angeordnet ist,- wobei jeder der Kontakte (21, 22) eine weitere metallische Schicht (210), die auf der ersten Seitenfläche (SlOa) des Grundkörpers angeordnet ist, und eine Kontaktschicht (220), die auf der weiteren metallischen Schicht (210) angeordnet ist, aufweist,- wobei zwischen den mindestens zwei Kontakten (21, 22) eine elektrisch isolierende Schicht (30), durch die die mindestens zwei Kontakte (21, 22) voneinander elektrisch isoliert sind, angeordnet ist,- dadurch gekennzeichnet, dass das elektrische Bauelement zwischen der Oberfläche (O10) und einschließlich der jeweiligen Kontaktschicht (220) der Kontakte (21, 22) eine Bauteilhöhe (H) von höchstens 150 µm und vorzugsweise von 50 µm aufweist.
- Elektrisches Bauelement nach einem der Ansprüche 9 oder 10,
wobei der keramisch halbleitende Grundkörper (10) ein Material aus Zinkoxid und Praseodym oder ein Material mit einem negativen Temperaturkoeffizienten enthält. - Elektrisches Bauelement nach einem der Ansprüche 9 bis 11,
wobei die elektrisch isolierende Schicht (30) auf der ersten Seitenfläche (SlOa) des Grundkörpers (10) angeordnet ist. - Elektrisches Bauelement nach einem der Ansprüche 9 bis 12,
wobei die elektrisch isolierende Schicht (30) ein Material aus Glas oder Siliziumnitrid oder Siliziumkarbid oder Aluminiumoxid oder ein Polymer enthält. - Elektrisches Bauelement nach einem der Ansprüche 9 bis 13,
wobei mindestens eine der metallischen und der weiteren metallischen Schichten (40, 210) ein Material aus Silber enthält. - Elektrisches Bauelement nach einem der Ansprüche 9 bis 14,
wobei die Kontaktschicht (220) ein Material aus Nickel und/oder Gold und/oder Palladium und/oder Zinn und/oder Silber enthält.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011109007A DE102011109007A1 (de) | 2011-07-29 | 2011-07-29 | Verfahren zum Herstellen eines elektrischen Bauelements und elektrisches Bauelement |
PCT/EP2012/064726 WO2013017531A1 (de) | 2011-07-29 | 2012-07-26 | Verfahren zum herstellen eines elektrischen bauelements und elektrisches bauelement |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2737497A1 EP2737497A1 (de) | 2014-06-04 |
EP2737497B1 true EP2737497B1 (de) | 2020-12-23 |
Family
ID=46581984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12740158.6A Active EP2737497B1 (de) | 2011-07-29 | 2012-07-26 | Verfahren zum herstellen eines elektrischen bauelements und elektrisches bauelement |
Country Status (6)
Country | Link |
---|---|
US (1) | US9230719B2 (de) |
EP (1) | EP2737497B1 (de) |
JP (1) | JP5813227B2 (de) |
DE (1) | DE102011109007A1 (de) |
TW (1) | TWI562294B (de) |
WO (1) | WO2013017531A1 (de) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104198079A (zh) * | 2014-07-30 | 2014-12-10 | 肇庆爱晟电子科技有限公司 | 一种高精度高可靠快速响应热敏芯片及其制作方法 |
DE102014219913A1 (de) * | 2014-10-01 | 2016-04-07 | Phoenix Contact Gmbh & Co. Kg | Überspannungsschutzvorrichtung mit Überwachungsfunktion |
USD778847S1 (en) * | 2014-12-15 | 2017-02-14 | Kingbright Electronics Co. Ltd. | LED component |
USD778846S1 (en) * | 2014-12-15 | 2017-02-14 | Kingbright Electronics Co. Ltd. | LED component |
WO2017036511A1 (en) * | 2015-08-31 | 2017-03-09 | Epcos Ag | Electric multilayer component for surface-mount technology and method of producing an electric multilayer component |
WO2018216452A1 (ja) | 2017-05-23 | 2018-11-29 | 株式会社村田製作所 | 電子部品、及び、電子部品の製造方法 |
DE102017111415A1 (de) * | 2017-05-24 | 2018-11-29 | Epcos Ag | Elektrisches Bauteil mit Sicherungselement |
EP3769327A1 (de) | 2018-03-19 | 2021-01-27 | Ricoh Company, Ltd. | Fotoelektrische umwandlungsvorrichtung, prozesskartusche und bilderzeugungsvorrichtung |
DE112019003625T5 (de) | 2018-07-18 | 2021-04-22 | Avx Corporation | Varistor-Passivierungsschicht und Verfahren zu ihrer Herstellung |
CN116741482A (zh) * | 2022-03-01 | 2023-09-12 | 国巨电子(中国)有限公司 | 电流感测电阻及其制造方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1551999A (de) * | 1967-10-20 | 1969-01-03 | ||
US4200970A (en) * | 1977-04-14 | 1980-05-06 | Milton Schonberger | Method of adjusting resistance of a thermistor |
JPH06302406A (ja) * | 1993-04-19 | 1994-10-28 | Mitsubishi Materials Corp | チップ型サーミスタ及びその製造方法 |
AU2659995A (en) * | 1994-06-09 | 1996-01-04 | Chipscale, Inc. | Resistor fabrication |
DE19646441A1 (de) | 1996-11-11 | 1998-05-14 | Heusler Isabellenhuette | Elektrischer Widerstand und Verfahren zu seiner Herstellung |
JPH10335114A (ja) * | 1997-04-04 | 1998-12-18 | Murata Mfg Co Ltd | サーミスタ素子 |
JPH1154301A (ja) * | 1997-08-07 | 1999-02-26 | Murata Mfg Co Ltd | チップ型サーミスタ |
JPH11283803A (ja) * | 1998-03-31 | 1999-10-15 | Murata Mfg Co Ltd | チップ抵抗器 |
JP2001167908A (ja) * | 1999-12-03 | 2001-06-22 | Tdk Corp | 半導体電子部品 |
JP4548110B2 (ja) * | 2004-12-13 | 2010-09-22 | パナソニック株式会社 | チップ部品の製造方法 |
US7932806B2 (en) * | 2007-03-30 | 2011-04-26 | Tdk Corporation | Varistor and light emitting device |
CN102483978B (zh) * | 2009-08-28 | 2015-03-11 | 株式会社村田制作所 | 热敏电阻及其制造方法 |
WO2012070336A1 (ja) * | 2010-11-22 | 2012-05-31 | Tdk株式会社 | チップサーミスタ及びサーミスタ集合基板 |
CN103380492B (zh) * | 2011-02-24 | 2016-04-27 | 株式会社村田制作所 | 电子元器件的安装结构 |
-
2011
- 2011-07-29 DE DE102011109007A patent/DE102011109007A1/de not_active Ceased
-
2012
- 2012-07-25 TW TW101126747A patent/TWI562294B/zh active
- 2012-07-26 EP EP12740158.6A patent/EP2737497B1/de active Active
- 2012-07-26 JP JP2014522103A patent/JP5813227B2/ja active Active
- 2012-07-26 WO PCT/EP2012/064726 patent/WO2013017531A1/de active Application Filing
- 2012-07-26 US US14/235,776 patent/US9230719B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2737497A1 (de) | 2014-06-04 |
TW201308528A (zh) | 2013-02-16 |
DE102011109007A1 (de) | 2013-01-31 |
US9230719B2 (en) | 2016-01-05 |
TWI562294B (en) | 2016-12-11 |
WO2013017531A1 (de) | 2013-02-07 |
JP5813227B2 (ja) | 2015-11-17 |
US20140225710A1 (en) | 2014-08-14 |
JP2014524154A (ja) | 2014-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2737497B1 (de) | Verfahren zum herstellen eines elektrischen bauelements und elektrisches bauelement | |
DE4341271B4 (de) | Beschleunigungssensor aus kristallinem Material und Verfahren zur Herstellung dieses Beschleunigungssensors | |
DE2554965C2 (de) | ||
DE102013214483B4 (de) | Feldemissionsvorrichtungen und Verfahren zu ihrer Herstellung | |
DE102004033057A1 (de) | Wafer-Level-Package-Struktur vom Fan-Out-Typ und Verfahren zur Herstellung derselben | |
DE102014019944B3 (de) | Sensor-Gehäuse für die direkte Montage | |
DE112018001784T5 (de) | Stromerfassungswiderstand | |
DE102004039906A1 (de) | Verfahren zur Herstellung eines elektronischen Bauelements sowie ein elektronisches Bauelement mit mindestens zwei integrierten Bausteinen | |
EP1837908B1 (de) | Leistungshalbleiterbauelement mit Sekundärpassivierungsschicht und zugehöriges Herstellungsverfahren | |
EP3994710B1 (de) | Ntc-dünnschichtthermistor und verfahren zur herstellung eines ntc-dünnschichtthermistors | |
DE112015002024T5 (de) | Halbleitervorrichtung | |
DE102012105287B4 (de) | Verfahren zur Herstellung eines elektrischen Bauelements und Elektrisches Bauelement | |
DE102013202910A1 (de) | Optoelektronisches Bauelement und Verfahren zu seiner Herstellung | |
DE102012101606A1 (de) | ESD-Schutzbauelement und Bauelement mit einem ESD-Schutzbauelement und einer LED | |
DE102013217801B4 (de) | Halbleiteranordnung, verfahren zur herstellung einer anzahl von chipbaugruppen, verfahren zur herstellung einer halbleiteranordnung und verfahren zum betrieb einer halbleiteranordnung | |
DE102017117165B4 (de) | Elektronisches Bauteil und Verfahren zur Herstellung eines elektronischen Bauteils | |
WO2007093279A2 (de) | Verfahren zur herstellung von elektronischen bauelementen und drucksensor | |
DE102004058413B4 (de) | Verfahren zur Herstellung einer Chipgroßen Packungsstruktur | |
EP1184335A2 (de) | Bauelement für Sensoren mit intergrierter Elektronik und Verfahren zu seiner Herstellung, sowie Sensor mit intergrierter Elektronik | |
EP2191483B1 (de) | Elektrisches vielschichtbauelement | |
DE102017125276A1 (de) | Verfahren zur Herstellung mehrere Halbleiterchips und Halbleiterchip | |
EP4045882B1 (de) | Sensorelement und verfahren zur herstellung eines sensorelements | |
DE102017126268A1 (de) | Träger, Anordnung mit einem Substrat und einem Träger und Verfahren zum Herstellen eines Trägers | |
DE102014202825B4 (de) | Mikromechanisches Bauteil mit hermetischer Durchkontaktierung und Verfahren zur Herstellung eines mikromechanischen Bauteils mit einer hermetischen Durchkontaktierung | |
EP2857832A1 (de) | Schichtsystem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140114 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20171004 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EPCOS AG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TDK ELECTRONICS AG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200915 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012016551 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1348518 Country of ref document: AT Kind code of ref document: T Effective date: 20210115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210324 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210323 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210323 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210423 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012016551 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
26N | No opposition filed |
Effective date: 20210924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210726 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210423 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210726 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210726 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1348518 Country of ref document: AT Kind code of ref document: T Effective date: 20210726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120726 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230521 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240722 Year of fee payment: 13 |