EP2737132B1 - Verfahren zur bodensondierung - Google Patents

Verfahren zur bodensondierung Download PDF

Info

Publication number
EP2737132B1
EP2737132B1 EP12743668.1A EP12743668A EP2737132B1 EP 2737132 B1 EP2737132 B1 EP 2737132B1 EP 12743668 A EP12743668 A EP 12743668A EP 2737132 B1 EP2737132 B1 EP 2737132B1
Authority
EP
European Patent Office
Prior art keywords
ground
vibrator
soil
arrangement
vibrator arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP12743668.1A
Other languages
English (en)
French (fr)
Other versions
EP2737132A2 (de
Inventor
Alexander Degen
Wilhelm Degen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46633969&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2737132(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of EP2737132A2 publication Critical patent/EP2737132A2/de
Application granted granted Critical
Publication of EP2737132B1 publication Critical patent/EP2737132B1/de
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/022Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil
    • E02D1/025Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil combined with sampling
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/18Placing by vibrating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/022Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/046Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil
    • E02D3/054Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil involving penetration of the soil, e.g. vibroflotation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/08Improving by compacting by inserting stones or lost bodies, e.g. compaction piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/38Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/66Mould-pipes or other moulds

Definitions

  • the present invention relates to a method for soil probing and to a method for producing material columns in the soil after soil probing.
  • the vibrator assembly For the preparation of a column (Rüttelstopfklale, Stopfklale) the vibrator assembly is held by the support device to a predetermined depth in the ground. The vibrator assembly is then progressively stepped out of the ground by the support, with a desired material, such as sand or gravel, being introduced into a cavity formed after lifting below the vibrator assembly. After each introduction of material, the vibrator arrangement is lowered at least once, but usually several times, into the material introduced in order to compact it and if necessary to drive it laterally into the ground.
  • the filler material is either introduced from the silo tube into the cavity below the vibrator or is introduced from above along an annular gap between the vibrator and the soil in the cavity below the vibrator.
  • a stuffing column made in this way is not a pile, but is an element for soil improvement. It therefore carries loads, such as a building, a dam, or the like, always only together with the surrounding soil.
  • the sectioned column is ideally made so that sections in weaker (i.e., looser or softer) bottom layers have a larger diameter than sections in denser or stiffer layers.
  • the diameter of a Stopf yarn can therefore vary over the length or depth depending on the nature of the surrounding soil.
  • the settlements are halved compared to the untreated case (the case without column), for example with a component from originally 20 cm to 10 cm and the other component from 10 cm to now 5 cm, the difference still amounts 5 cm. But if one set is reduced by 12 cm, from 20 cm to 8 cm and the other only by 2 cm from 10 cm to 8 cm, then in this case the differences are zero. In other words, maximum column diameters lead to minimal settlements but not always to minimal differences.
  • Object of the present invention is therefore to provide a method for soil probing available that requires little additional effort, especially in the production of a column of material.
  • An embodiment of the invention relates to a method for soil probing.
  • the method comprises: providing a vibrator assembly supported on a support adapted to penetrate the ground and having a vibrator motor; retracting the vibrator assembly to a predetermined depth into the ground; determining a soil profile of the soil when retracting the Studttleran onion, wherein determining the soil profile comprises measuring at least one operating parameter of the Studttleraniser when entering the ground and wherein the soil profile each comprises a soil parameter for at least two different soil depths.
  • the vibrator arrangement with which a column of material can be made in the soil, is used to probe the soil, i. used to determine a soil profile.
  • the vibrator arrangement as a soil probe, at least approximately soil layers of different density (such as for example in sanding and graveling) or different stiffness (such as, for example, in silting and cloning) can be detected and the layer boundaries between these different soil layers can be determined.
  • it is provided to produce a column of material using the vibrator assembly, depending on the soil profile.
  • the combination of determining the soil profile during retraction (drilling) the vibrator assembly into the soil and the subsequent column production depending on the soil profile results in a fully integrated manufacturing process in which each column of material is tuned to the locally variable soil properties. This is favorable with regard to the differences in a structure created later on the columns of material. Especially with stuffing columns, this can be important. Stopfklalen carry load only in conjunction with the soil, so in contrast to mortared or provided with other binder columns a real soil improvement and not a pile that bridges the loose or soft layers only.
  • the present method leads to a column strength adapted to the soil strength and thus to an optimal homogenization of the settling behavior.
  • a stronger stuffing column provides greater stiffening, while, for example, a weaker column is produced in adjacent soil layers that are already denser / more rigid prior to column production.
  • the soil profile can be determined in various ways. In one example, it is contemplated that an at least approximately constant force be applied to the vibrator assembly by the support apparatus upon insertion of the vibrator assembly into the ground and to measure as operating parameter a speed at which the vibrator assembly enters the ground.
  • the vibrator arrangement moves faster into a soil layer, the less dense or the less rigid this soil layer.
  • the entry speed can be directly a measure of the nature of the ground and can thus be suitable for the determination of the soil profile.
  • the soil profile may contain for different soil depths determined for the respective soil depth retraction speed.
  • the vibrator assembly driven by the carrying device with at least approximately constant speed into the ground and to measure as operating parameters a power consumption of the vibrating motor when the vibrator arrangement is lowered into the ground.
  • the power consumption when entering a soil layer is the lower, the less dense or the less stiff this soil layer is.
  • the power consumption can be directly a measure of the soil condition and thus may be suitable for the determination of the soil profile.
  • the soil profile may contain the power consumption determined for the respective soil depth for different soil depths.
  • the vibrator motor may be an electric motor or a hydraulic motor. In an electric motor, for example, a current consumption of the motor is representative of the power consumption of the vibrator motor, while in a hydraulic motor, a hydraulic pressure necessary for driving the motor is representative of the power consumption of the vibrator motor.
  • determining the soil profile it is envisaged to drive the vibrator assembly driven by the carrying device into the ground at at least approximately constant speed and to measure as an operating parameter a vibration amplitude of a tip of the vibrator assembly.
  • This method is particularly suitable when using a vibrator arrangement with a deep vibrator.
  • the oscillation amplitude when entering a soil layer can be higher, the less dense or the less rigid this soil layer is.
  • the vibration amplitude can be directly a measure of the soil condition and can thus be suitable for the determination of the soil profile.
  • the soil profile may contain the vibration amplitude determined for the respective soil depth for different soil depths.
  • the soil profile may be a continuous soil profile, i. for each floor depth, an associated soil parameter is determined.
  • the soil profile can also be determined so that soil parameters are determined only for predetermined soil depths, which may be evenly or non-uniformly spaced.
  • the production of the column of material is carried out depending on the soil profile such that a diameter of the column of material in a certain depth of soil depends on the soil parameters determined for this soil depth.
  • the soil parameter determined for a certain soil depth is dependent, for example, on a soil density and / or soil stiffness.
  • the material column can be made such that the diameter of the material column increases with decreasing soil density and / or decreasing soil stiffness.
  • a column profile is determined that defines which properties the column should have at which depth.
  • One property of the column may be its diameter, but may also be its strength.
  • Fabrication of the material column in one example includes making at least two segments.
  • the manufacturing of each segment hereby comprises: a) raising the vibrator arrangement by a predetermined distance, so that a cavity is created below the vibrator arrangement; b) introducing a filling material into the cavity; c) retracting the vibrator assembly into the filler material to densify the filler material; and d) repeating the method steps a) to c) n times, with n ⁇ 0.
  • the number n of repetitions in step d) can be dependent on the soil parameters determined for this soil depth .
  • the soil parameter is dependent on a soil density and / or a soil rigidity and that the number n of repetitions increases with decreasing soil density and / or decreasing soil stiffness.
  • so many repetitions will be performed until a desired column strength in the respective segment is achieved.
  • the strength of the column can be determined, for example, on the basis of the power consumption of the vibrator motor. The column, or a segment is all the tighter, the higher the power consumption of the vibrator when entering the previously introduced filling material.
  • the vibrator assembly may be configured like a conventional vibrator assembly.
  • the vibrator assembly comprises a vibrator tube having an upper and a lower end and a vibrator arranged on the vibrator tube with the vibrator motor.
  • the vibrator may be formed as a deep vibrator and attached to a lower end of the vibrator tube, but may also be designed as Aufsatzrüttler and attached to an upper end of the vibrator tube.
  • the tube can be a silo tube with a material tank having a material outlet in the region of a lower end of the vibrator arrangement, via which filling material can be introduced into a cavity produced below the vibrator arrangement.
  • the tube can also serve as a mere extension tube. In this case, filler material is introduced through a gap between the pipe and the surrounding floor in the cavity produced below the vibrator assembly.
  • the support device may comprise a support arm of an earthworks device or may comprise a mast and a carriage movable on the mast.
  • Another embodiment relates to a method for producing a column of material in the ground.
  • the method comprises providing a vibrator assembly supported on a support and adapted to penetrate the ground, retracting the vibrator assembly into the ground, and forcing the vibrator assembly in the ground between reversal points, namely, an upper reversal point and a multiple Reversal point, and introducing filler into the ground in the process of the vibrator arrangement from the lower reversal point to the upper reversal point, as well as detecting a position of the vibrator assembly in the ground.
  • the reversal points are predetermined by a controller, and movement of the vibrator assembly between the reversal points is displayed in an electronic display panel indicating a desired direction of travel of the vibrator assembly and the position of the vibrator assembly between the reversal points.
  • This method enables semi-automatic yet precise production of columns of material in the soil.
  • the method of the vibrator arrangement can be done manually by a device operator, but in accordance with the display device. This ensures that the Hinttleran Aunt is moved between predetermined by the control reversal points, these reversal points change in the course of column production. The actual location of this Turning points in the ground do not have to be displayed and are not of interest to the operator.
  • FIG. 1 schematically shows a first embodiment of an apparatus for producing columns of material in the ground.
  • This device comprises a vibrator assembly 1, which has a tube 11 with an upper and a lower end, wherein at the lower end of the material tube 11, a vibrator 12 is arranged.
  • the vibrator 12 is mounted vibration-damped in a manner not shown in detail on the material pipe 11, so that vibrations resulting from vibrating the vibrator 12 vibrations are not transmitted or at least only to a small extent on the material pipe 11.
  • the material pipe 11 is in FIG. 1 - As also explained in the following FIG. 2 - Shown in cross-section, the other components are shown in side view.
  • the tube 11 is formed in the illustrated example as a silo tube or material tube and has at its lower end an outlet to which a further tube 16 is connected, which is parallel to the vibrator 12 to a tip of the Haittlers 12 is guided and forms a material outlet 13 of the vibrator 1 in the region of the tip of the vibrator.
  • the further tube 16 may be mounted vibration-damped on the material pipe 11.
  • the material tube 11 has, for example, a cylindrical geometry.
  • the further tube 16 can be realized such that it partially surrounds the vibrator 12, and then has, for example, a crescent-shaped geometry in cross-section.
  • the vibrator 12 which is arranged at a lower end of the material tube 11 or the entire vibrator arrangement 1, is also referred to as a depth vibrator.
  • This deep vibrator 12 may be formed like a conventional deep vibrator.
  • Figure 2 shows a cross section through this deep vibrator in a sectional plane perpendicular to the in FIG. 1 shown drawing level runs.
  • the deep vibrator has an imbalance or an eccentric 21, which is mounted rotatably about a shaft 22 in a vibrator housing.
  • This eccentric 15 is during the operation of the deep vibrator by a Trottlermotor, such as a hydraulic motor or an electric motor (not shown), set in rotation, causing the Studttler rotate the Tiefenrüttlers 12 moves in a circular path.
  • FIG. 3 shows a device with a Garttleran onion, which is designed as Aufsatzrüttler and in which the vibrator 12 is arranged on top of the tube 11.
  • the vibrator 12 and the tube 11 are not decoupled in terms of vibration, so that shaking movements of the vibrator 12 are transferred to the material tube.
  • a motor (not shown), which drives the vibrator 12.
  • FIGS. 1 and 3 has the Rüttleran eleven regardless of their specific configuration as Tiefenrüttler or Aufsatzrüttler in the upper region of the material tube 11, a material supply, which in the Figures 1 and 2 is shown only schematically and in the example, a laterally arranged on the material pipe 11 material container 14 and disposed between the material container 14 and the interior of the material pipe 11 flap 15th having.
  • the flap 15 can be opened and closed, wherein with the flap open material G, such as gravel, gravel or sand, can flow from the material container 14 into the interior of the material tube 11.
  • an overpressure in the interior of the material tube 11, the in FIG. 1 is shown in cross section can be generated.
  • the production of such overpressure may be necessary, in particular, when material columns are to be produced in the ground, which reach below the groundwater level. An overpressure is required to bring material against the pressure of groundwater in the soil.
  • a material lock (not shown) with two flaps can be provided, via which the material G is introduced into the interior of the material tube 11.
  • Such a material lock can prevent a built-up in the interior of the material tube 11 overpressure escapes each time when material is re-supplied.
  • any known material feeds can be used, such as, for example, those in which material is introduced via a delivery hose under pressure directly into the material tube 11.
  • the device also comprises a support device 2 to which the vibrator assembly is attached.
  • This support device 2 can be realized in different ways.
  • FIG. 4 shows an embodiment of an apparatus for producing columns of material in the ground.
  • the carrying device 2 to which the vibrator arrangement 1 is attached comprises a support arm of an earthworks device.
  • the vibrator arrangement is in this case at the top of the support member 21 is attached.
  • the support arm can be moved so that it exerts a force acting in the longitudinal direction of the tube 11 on the vibrator arrangement in order thereby to retract the vibrator arrangement 1 into the ground or to drive it out of the ground again. This will be explained below.
  • FIG. 5 shows a further embodiment of an apparatus for producing columns of material in the ground.
  • the support device 2 comprises in this device a tower or broker 25, on which a carriage 24 in the longitudinal direction of the tower 25 is movable.
  • the tower 25 can stand upright to make vertical columns in the ground.
  • the tower 25 could also be inclined to the surface to make inclined columns in the floor in this case.
  • a support member 21, which is connected to the tube 11 is fixed to the carriage 24, so that the vibrator assembly 1 by means of the carriage 24 along the mast 25 is movable.
  • the material tube 11 of the vibrator arrangement 1 runs approximately parallel to the tower 25, so that by moving the carriage 24 on the tower 25, the vibrator arrangement 1 can be moved in its longitudinal direction.
  • a cable device with a cable 23 (shown only schematically), a gear device, or the like, is present.
  • the carriage 24 is in particular movable on the mast 25 such that it exerts a force on the vibrator arrangement, which acts in the direction of movement of the carriage 24, and thus in the longitudinal direction of the tube 11, and which can cause a retraction of the vibrator arrangement into the ground.
  • This force can be exerted, for example, by pulling the carriage 24 downwards by means of the cable 23 with a defined force on the mast 25.
  • An earth-moving implement and a mast with a movable carriage are of course only examples of carrying devices which are suitable for moving the vibrator arrangement 1 in its longitudinal direction, ie in the longitudinal direction of the tube 11.
  • Any other lifting units such as lifting units with electrically driven Rope, belt or spindle arrangements can also be used.
  • FIG. 6 schematically shows a cross section of a floor 100 in which a column of material 30 from a filler material, such as gravel or sand is arranged.
  • the example in FIG. 6 shown bottom section has a plurality of different superimposed bottom layers 101, 102, 103, 104, each of which may have different soil properties, such as density or strength.
  • material column 30 has various material column sections 31, 32, 33, 34, wherein each one of these material column sections 31-34 is disposed in a bottom layer 101-104 and has a matched to the properties of the respective soil layers diameter.
  • a method for making a material column 30 adapted to the soil properties and which may have a diameter varying over its length, depending on the properties of the soil surrounding the column, is explained below.
  • This method includes providing a vibrator assembly supported on a support adapted to penetrate the ground and having a vibratory motor.
  • This vibrator arrangement 1 can, for example, according to one of the above with reference to the FIGS. 1 and 3 to 5 illustrated vibrator 1, which are held on a support device 2 may be formed.
  • the method also includes retracting the vibrator assembly 1 to a predetermined depth into the ground 100 (which is incorporated in FIGS FIGS. 1 and 3 also shown).
  • a soil profile is determined, wherein the determination of the soil profile comprises measuring at least one operating parameter of the vibrator arrangement 1 when entering the ground 100 and wherein the soil profile each has a soil parameter P for at least two different soil depths.
  • FIG. 6 Such a soil profile, which assigns a soil parameter P to different soil depths of the soil 100, is shown in FIG FIG. 6 shown schematically next to the bottom cross-section.
  • the soil parameter P is, for example, a density or strength of the soil, but may also take into account several soil properties, such as density and strength.
  • the individual layers are different, so that the soil parameter P for the individual soil layers 101-104 different.
  • two soil layers of the same property, such as two clay layers include a layer with a different property, such as a sand layer, or that between two sandy silty soil layers, a clay layer is embedded. In the latter case, for example, it may be desirable to make smaller diameter column sections in the sandy silty layers than in the clay layer.
  • the method may further include manufacturing the material column 30 using the vibrator assembly 1 depending on the determined soil profile, or depending on a pillar profile created based on the soil profile.
  • the column profile defines which properties the column should have at which depth.
  • One property of the column may be its diameter, but may also be its strength.
  • FIG. 6 schematically illustrated material column 30 is such a material column produced depending on the soil profile or the column profile.
  • the soil parameter P corresponding to the soil profile in FIG. 6 is represented, represents a density or strength of the soil.
  • the in FIG. 6 illustrated column 30 is based on a column profile in which the desired diameter of the material column 30 decreases with increasing density / strength that can be removed from the soil profile.
  • the lowest bottom layer 104 has the highest density / strength, so that the material column section 34 produced in this bottom layer 104 has the smallest diameter.
  • the second lowest density / strength has the uppermost bottom layer 101, so that the material column section 31 made there has the second smallest Diameter.
  • the third bottom layer 103 from above, ie starting from the surface 101, has the third largest density / strength, so that the material column section 33 produced there has the third smallest diameter, while the second bottom layer 102 has the smallest density / strength from above, so that the material column section 32 made there has the largest diameter.
  • the material column 30 is manufactured in several sections, whose height and position in the soil and their properties depends on the column profile, which can be generated on the basis of the soil profile.
  • the column profile may be derived from the soil profile such that the position of a boundary between columns of material columns in the column profile corresponds to the position of the boundary between two soil layers in the soil profile.
  • Such a pillar profile is in FIG. 6 shown next to the soil profile.
  • S denotes a column property to be set, with each column depth being assigned such a column property.
  • the pillar property may be, for example, a diameter or strength of the pillar at the respective position.
  • 6 1 illustrates a column of material 30 made according to such a column profile, ie a column in which each material column section 31-34 is optimally adapted to the surrounding bottom layer 101-104, so that a boundary between two columns of material columns runs at the level of a boundary between two layers of ground.
  • the column has at least approximately the same properties.
  • FIG. 7 shows an embodiment of a pillar profile, the from the soil profile according to FIG. 6 and the boundary between two columns of material columns does not coincide with the boundary between two layers of soil.
  • the material column 30 is produced in segments with a plurality of segments arranged one above the other, wherein one of the illustrated column sections 31-34 can consist of one or more segments.
  • the boundaries between individual segments are in the column profile according to FIG 7 also shown (dotted). For example, these segments may each have the same height, but the characteristics of the individual segments may differ. In this case, taking into account the desired column height, the segment height specifies the depth positions where boundaries between two segments and thus boundaries between two columns of material can pass.
  • the segment height may be, for example, a height between 1 m and 2 m.
  • Which property is assigned to a segment in the pillar profile depends, for example, on the soil layer in which the segment runs largely in accordance with the soil profile.
  • the vibrator arrangement 1 which must be introduced anyway into the ground 100 for the production of the material column 30, when entering the ground as a kind of ground probe, which allows a determination of the soil profile.
  • this method with little effort for each pillar to be produced exactly a soil profile of the soil surrounding the subsequent column can be determined, so that each column can be optimally adapted to the respective soil conditions.
  • the soil profile can be determined in various ways when retracting the vibrator arrangement 1 in the soil.
  • it is provided to drive the vibrator assembly 1 driven by the carrying device 2 with approximately constant speed in the ground 100 and thereby to measure the power consumption of the vibrator motor when retracting the vibrator assembly in the ground.
  • the vibrator motor may be an electric motor or a hydraulic motor.
  • a current consumption of the motor (at a known constant supply voltage of Rüttlermotors) is representative of the power consumption of croquttlermotors, while in a hydraulic motor hydraulic pressure, which is necessary to drive the motor, is representative of the power consumption of croquttlermotors.
  • the denser / harder the ground is when driving in at a constant speed the higher the power consumption of the vibrator motor.
  • the power consumption of the Ganttlermotors at a certain depth of soil thus provides a direct measure of the density / strength of the soil in the respective depth, and thus directly a measure of the soil parameter P is.
  • the vibrator arrangement 1 can be constructed both with the use of an earthworks implement with a support arm (such as in FIG. 4 shown) as well as using a mast 25 with a arranged on the mast 25 slide 24 (as in FIG. 5 shown) are retracted into the ground 100 at a constant speed.
  • a support arm such as in FIG. 4 shown
  • a mast 25 with a arranged on the mast 25 slide 24 (as in FIG. 5 shown) are retracted into the ground 100 at a constant speed.
  • To determine the soil profile only the power consumption of the vibrating motor is to be measured during the run-in, depending on the depth of the ground, and the measured values obtained for the power consumption are to be assigned to the respective soil depths.
  • the floor depth which is assigned to a specific power consumption, corresponds to the position of the tip 13 of the vibrator arrangement in the ground at the respective power consumption.
  • the position of the vibrator tip 13 in the bottom 100 that is, the distance between the Ganttlerspitze 13 and the surface 101 can be determined in a conventional manner.
  • a support device with a Erdbau réelle for example on the basis of a support arm and a support device with a mast, for example, based on the position of the carriage 24 on the mast 25th
  • an at least approximately constant force be applied to the vibrator assembly 1 by the carrier 2 upon insertion of the vibrator assembly 1 into the ground 100, thereby measuring a speed at which the vibrator assembly enters the ground.
  • This speed is generally pertinent to soil conditions in that at a given soil depth the velocity decreases with increasing density / strength of the soil at the particular soil depth.
  • the retraction speed can thus directly represent a measure of the density / strength of the soil and thus directly a measure of the soil parameter P.
  • determining the soil profile it is also envisaged to drive the carrier into the ground with at least approximately constant speed and thereby to measure a vibration amplitude at the tip 13 of the vibrator arrangement as an operating parameter.
  • the oscillation amplitude can decrease with increasing strength of the soil.
  • An absolute value of the soil parameter P ascertained when grounding the vibrator arrangement 1 into the soil is less relevant for the later production of the material column 30 than a change of this soil parameter P over the depth x.
  • soil depths where such a change occurs such as at the soil depths x1, x2, x3 in FIG FIG. 6
  • There is a layer boundary between two adjacent soil layers so that on the basis of the soil profile in particular the soil depths are readable at which layer boundaries between adjacent soil layers are present.
  • the individual material column sections are made dependent on the pillar profile derived from the floor profile, the pillar pillar assigning the pillar at each depth position a property such as diameter or strength.
  • the pillar profile is formed such that the column of material 30 made therefrom has a larger diameter where the bottom profile indicates a low density / strength of the bottom and has a smaller diameter where the bottom profile has a higher density / strength of the soil indicates.
  • the pillar profile is made such that the column of material 30 made according to the pillar profile has greater strength there, where the bottom profile has a low density / strength of the soil, and there has a lower strength, where the soil profile indicates a higher density / strength of the soil.
  • the production of the column of material may commence after the depth shaker to a predetermined depth, which in the example of FIG. 6 with x4 is introduced, was introduced. This maximum depth defines the bottom of the material column 30 to be produced.
  • the production of a segment of the material column can be effected in a fundamentally known manner by raising the vibrator arrangement 1 by a predetermined distance through the support device 2, so that a cavity is created below the vibrator arrangement 1 ( Step a) by introducing a filler material G into the cavity formed by lifting the vibrator assembly 1 below the vibrator assembly 1 (step b) and retracting the vibrator assembly 1 into the introduced filler material to thereby densify the filler material G or to the side into the surrounding soil (step c).
  • the vibrator arrangement can in this case be moved into the filling material in accordance with the distance by which it was previously lifted.
  • These process steps namely lifting of the vibrator arrangement, introduction of the filling material and retraction of the vibrator arrangement into the filling material can be repeated n times, with n ⁇ 0.
  • the number n of repetition steps here depends on the desired diameter of the material column section to be produced. The larger the desired diameter, the greater the number of repetitions, the greater the diameter, the lower the previously determined density / strength of the soil. This number n of repetitions can be fixed for each desired diameter of the column, ie at the beginning of the production of a segment, it is already clear how many repetitions are carried out.
  • the number n at the beginning of production is not yet established.
  • the strength of the segment is measured, and then no further repetition occurs when the desired strength is achieved.
  • the strength of the column can be determined, for example, on the basis of the power consumption of the vibrator motor. The column, or a column section is the stronger, the higher the power consumption of the vibrator when entering the previously introduced filling material.
  • FIG. 8 shows schematically the preparation of a column of material. Is shown in FIG. 7 the position of Rüttlerspitze 13 of the vibrator assembly 11 on the. The process begins at a time t0 at which the vibrator tip was placed in the ground to the depth x4. Before the time t0, the introduction of the vibrator arrangement 1 in the ground, for example, according to one of the previously explained method, in which the soil profile is determined.
  • the vibrator tip is raised at least two times to dispense filling material and then lowered back into the filling material.
  • the individual segments each have the same height, which is based on FIG. 8 It can be seen that amplitudes of an up and down movement of Trottlerspitze for the production of the individual segments are the same.
  • a first segment is produced between the bottom depths x3 and x4 so that this segment corresponds to the material pillar portion 34 FIG. 6 equivalent.
  • two further segments are produced one above the other, which correspond to the material column section 33 FIG. 6 form.
  • the number of repetitions performed is greater for the segments of this material pillar portion 33 than for the material pillar portion 34, thereby making the diameter column section 33 larger in average than the material pillar portion 34.
  • Another segment which in the example corresponds to the material pillar portion 32 of FIG FIG.
  • the heights of the individual segments are determined by the distance by which the vibrator arrangement 1 is raised at the beginning of production of the respective segment with respect to the ground or with respect to the segment prepared immediately before, in order to dispense filling material.
  • the individual segments can each be manufactured with the same height. However, depending on the nature of the soil, it is also possible to produce the individual segments with different heights, in particular in order to adapt the individual material column sections to the thickness of the individual soil layers in such a way that the optimum material column section can be determined for each soil layer.
  • FIG. 8 moves the vibrator assembly in the manufacture of a segment always over the entire height (or depth) of the segment, ie the vibrator arrangement moves after applying filler through the discharged filler back to the bottom of the segment to compact it.
  • the filling material discharged in the last repetition step is then no longer compacted, but the vibrator arrangement moves to the upper end of the next segment, with the underlying cavity being filled up with filling material.
  • this filler is subsequently compacted only in the region of the newly produced segment.
  • FIG. 9 illustrates an alternative to the method of FIG. 8 by making a segment, in the example of the segment between the bottom depths x3 and x4.
  • the vibrator arrangement moves - as in the method according to FIG. 8 -
  • the stroke or up-travel distance by which the vibrator assembly is moved in this case is in FIG FIG. 9 denoted by h1.
  • the jogging arrangement no longer travels to the lower end of the segment, but starting from the upper end only by a distance or downhill distance h2, with h2 ⁇ h1, down and then back to the upper end, ie by the distance h2 upward, so that the stroke h2 in the first repetition step is smaller than the stroke h1 in the first step.
  • a stroke h3 in the next repetition step is again smaller than in the preceding step.
  • the following steps will be used to make a segment: lifting 1m, lowering 80cm, lifting 80cm, lowering 60cm, lifting 60cm, lowering 40cm, lifting 40cm, lowering 20cm, lifting to the top of the next segment.
  • the stroke difference .DELTA.h can be used to set the number of repetition steps and thus the diameter or the strength of the segment in this method. In general, the diameter increases with decreasing stroke difference ⁇ h, since in this case more repetition steps are carried out, so that more material is introduced.
  • the column profile for each segment defines its height and the stroke difference ⁇ h.
  • the column profile for each segment its height and the stroke difference Defines ⁇ h and also defines a maximum power consumption of the vibrator motor, wherein the production of a segment ends when the stroke is smaller than the predetermined minimum value, ie when all repetition steps have been passed, or when the maximum power consumption is reached.
  • the introduction of filling material in the soil takes place in the previously described vibrator arrangements, which have a silo tube or material tube 11, from the silo tube or material tube.
  • the tube 11 is formed only as an extension tube. Filling material is introduced in this vibrator assembly in the cavity below the Haittleranordung characterized in that material from above the pipe over, d. H. is brought down in an annular gap between the pipe 11 and the surrounding soil.
  • the method described above can be carried out fully automatically controlled by a computer.
  • the computer is configured to control the support device 2 and obtains information about the position of the vibrator assembly 1 by a suitable sensor and the operating parameter (such as power consumption of the vibrator motor, retraction speed or oscillation amplitude) of the vibrator arrangement.
  • the control of the support device 2 by the computer during retraction, depending on the particular method, the retraction of the vibrator assembly 1 at a constant speed or constant application of force comprise, the computer assigns the obtained values for the operating parameter to the respective soil depths during retraction, thereby the soil profile to obtain.
  • the pillar profile can be made from the soil profile, as for example in FIG. 6 is shown, automatically, ie generated for example software controlled.
  • different segments are defined in the pillar profile, each having a predetermined height and property. Examples of such pillar profiles are in the FIGS. 6 and 7 shown.
  • the individual segments can according to one of the previously based on the FIGS. 6 to 9 explained methods are produced.
  • the controlling of the carrying device 2 by the computer for the production of each segment comprises raising the vibrator assembly at least once by a predetermined distance (up-travel distance) and lowering it at least once by a predetermined distance (down-travel distance).
  • the uplink and downlink can be the same in one step, but may also differ by one stroke difference ⁇ h.
  • the height of a segment to be produced ie the distance by which the vibrator arrangement 1 is raised for the first time starting from the bottom of the recess or starting from the upper end of a previously manufactured segment, and the diameter and / or strength of the material column section are controlled by the computer depending on the previously determined , Depending on the soil profile column profile in the manner already explained.
  • the diameter and / or the strength of a segment can be set in the manner explained by the number of repetitions.
  • a device operator has in this automatic process only a control and safety function and moves the Garttleran extract 1 with the support device 2 from point to point at which a column of material to be produced.
  • the method can also be carried out as a semi-automatic method, in which the vibrator arrangement 1 is first retracted under computer control into the ground and the soil profile is determined and during the production of the material column 30, the support device 2 is controlled by a device operator, according to specifications that are displayed by the computer on a display device (display).
  • the display shows symbols that indicate to the operator, for example, in which direction the carrying device is to be moved, ie up or down, and how far the carrying device is to be moved.
  • a sequence (af) of such symbols in the manufacture of a material column section is shown in FIG FIG. 8 shown.
  • a display field for the symbols in the example includes a directional arrow as a first symbol and a displaceable bar as a second symbol.
  • the display field is shown for seven different times.
  • the directional arrow indicates to the device operator in which direction the support arm should be moved.
  • An arrow up such as in the FIGS. 8a and 8b symbolizes a movement upward, while an arrow down, as in the Figures 8d, 8e and 8f symbolizes a movement downwards.
  • the bar (shown hatched) indicates how far the carrying device 2 with the vibrator arrangement 1 should still be moved in the direction predetermined by the directional arrow. If the display field is completely filled by the bar, such as in FIG. 8c is shown, or completely empty, such as in FIG. 8c is shown, the reversal point is reached for a reversal of the direction of movement of the support device.
  • the display is controlled by the computer depending on the previously determined column profile and the current depth of penetration of the vibrator 1 and the Ganttlerspitze 13 in the ground.
  • the movement of the bar symbolizes the movement of the vibrator 1 up or down.
  • a lower end of the display field or the bar marks in the display according to FIG. 8 a lower reversal point for downward movement of the vibrator assembly and an upper end marking an upper reversal point for upward movement of the vibrator assembly.
  • Each of these reversal points represents a bottom depth, with the bottom depths represented by the top and bottom reversal point changing as the column is made.
  • the upper and lower reversal points can each remain the same in the production of a segment, or the o-bere Reversal point can remain the same and the lower reversal point can change. This is explained below for the preparation of a column segment, the column 30 according to FIG. 6 forms the lower column section 34.
  • the lower reversal point of the display field always represents the bottom depth x4 and the upper reversal point always represents the bottom depth x3.
  • the bottom depth assigned to the upper reversal point changes, ie the display panel indicates a necessary upward movement of the vibrator arrangement 1 until the vibrator arrangement has extended to a depth between x2 and x3, at which a first segment of the pillar portion 33 is made.
  • the upper reversal point always represents the bottom depth x3
  • the lower reversal point changes with each repetition step, so that, for example, the first reversal point at a first retraction the bottom depth x4- ⁇ h, at a second retraction the Bottom depth x4-2 ⁇ h, at a third retraction (in FIG. 9 not shown) x4-3 ⁇ h, etc. represented.
  • the bottom depth assigned to the upper reversal point changes, ie the display panel indicates a necessary upward movement of the vibrator arrangement 1 until the vibrator arrangement has extended to a depth between x2 and x3, at which a first segment of the pillar portion 33 is made.
  • the actual location of reversal points in the ground, the depth of the ground associated with a reversal point and the number of repetitions per segment need not be known to the operator. These are predetermined by a computer or a controller based on the previously determined column profile and assigned to the reversal points of the display field.
  • the display panel shows a first reversal point and a second reversal point, each associated with a bottom depth, and a movement of the vibrator arrangement between the two reversal points both with respect to a movement speed and with respect to a direction of movement.
  • the position of the vibrator arrangement in the ground is detected at regular or irregular intervals and displayed on the display.
  • a lower reversal point represented by a lower end of a display panel and an upper reversal point is represented by an upper end of the display panel
  • an arrow indicates the desired moving direction (target moving direction)
  • a bar illustrates the position of the vibrator arrangement between the reversal points.
  • any other symbols are suitable for displaying the desired direction of movement and the range of motion still required.
  • the column profile can also be generated manually from a soil profile, such as from a determined when retracting the Haittleran eleven in the soil soil profile or from a determined by a core hole soil profile .
  • a soil profile such as from a determined when retracting the Hinttleran eleven in the soil soil profile or from a determined by a core hole soil profile .
  • properties such as diameter or strength (which determine the process for the preparation of the individual segments) are assigned manually. This assignment can be made depending on the soil profile.
  • This procedure can be chosen in particular if the floor structure is known in principle, ie if it is known which types of floor layers are present and in which sequence these soil layers are present, but if it is not known exactly how thick the individual soil layers are.
  • the soil profile indicates, in particular, the layer boundaries, thus indicating in which depths the boundaries lie between individual layers.
  • An operator such as a ground engineer, can then assign certain properties to individual segments in the column profile knowing the position of the layer boundaries.
  • the column profile is displayed, for example, on a display.
  • the assignment of properties to individual segments can be done by means of any input tools, such as a keyboard, voice-controlled or directly on the display, if this is designed as a touchpad, such as a touchpad of a smartphone or a tablet computer.
  • a column profile provided in this way can then be used in one of the production methods explained above.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Bodensondierung und ein Verfahren zum Herstellen von Materialsäulen im Boden nach einer Bodensondierung.
  • Zur Verbesserung des Bodens ist es grundsätzlich bekannt, Materialsäulen, wie z.B. Kiessäulen im Boden herzustellen. Die Herstellung solcher Säulen erfolgt beispielsweise unter Verwendung einer Rüttleranordnung mit einem Tiefenrüttler, der am unteren Ende eines Rohres angeordnet ist. Das Rohr kann ein Silorohr zur Materialaufnahme sein, wenn die Rüttleranordnung als sogenannter Schleusenrüttler zur Herstellung von Rüttelstopfsäulen ausgebildet ist, oder das Rohr kann ein Verlängerungsrohr sein, wenn die Rüttleranordnung als "einfacher Tiefenrüttler" zur Anwendung bei der Rütteldruckverdichtung ausgebildet ist. Die Rüttleranordnung ist an einer Tragvorrichtung befestigt, die in der Lage ist die Rüttleranordnung in ihrer Längsrichtung zu verfahren und die beispielsweise einen Mäkler oder einen Tragarm eines Erdbaugeräts umfasst.
  • Für die Herstellung einer Säule (Rüttelstopfsäule, Stopfsäule) wird die Rüttleranordnung gehalten durch die Tragvorrichtung bis zu einer vorgegebenen Tiefe in den Boden eingebracht. Die Rüttleranordnung wird anschließend stufenweise durch die Tragvorrichtung aus dem Boden herausgefahren, wobei in einen nach dem Anheben unterhalb der Rüttleranordnung entstehenden Hohlraum ein gewünschtes Material, wie zum Beispiel Sand oder Kies, eingebracht wird. Nach jedem Einbringen von Material wird die Rüttleranordnung mindestens einmal, üblicherweise jedoch mehrmals, in das eingebrachte Material abgesenkt, um es zu verdichten und gegebenenfalls in seitlicher Richtung in den Boden einzutreiben. Das Füllmaterial wird entweder aus dem Silorohr in den Hohlraum unterhalb des Rüttlers eingebracht oder wird von oben entlang eines Ringspalts zwischen dem Rüttler und dem Boden in den Hohlraum unterhalb des Rüttlers eingebracht.
  • Eine so hergestellte Stopfsäule ist kein Pfahl, sondern ist ein Element zur Bodenverbesserung. Sie trägt deshalb Lasten, wie beispielsweise ein Gebäude, einen Damm, oder ähnliches, immer nur zusammen mit dem sie umgebenden Boden ab.
  • Die abschnittsweise hergestellte Säule wird idealerweise so hergestellt, dass Abschnitte in schwächeren (d.h. lockereren oder weicheren) Bodenlagen einen größeren Durchmesser aufweisen als Abschnitte in dichteren bzw. steiferen Lagen. Der Durchmesser einer Stopfsäule kann also über deren Länge bzw. Tiefe abhängig von der Beschaffenheit des umgebenden Bodens variieren.
  • Um die Säule abhängig von der Bodenbeschaffenheit geeignet dimensionieren zu können, d.h. jeden der einzelnen Abschnitte mit einem optimalen Durchmesser realisieren zu können, sind Informationen über die Bodenbeschaffenheit erforderlich. Diese können beispielsweise anhand von Bodenprofilen, die durch Kernbohrungen erhalten werden, oder durch Bodensondierungen gewonnen werden. In Gegenden mit wechselhafter Geologie, also in Gegenden, in denen die Bodenbeschaffenheit je nach örtlicher Position stark variiert, kann allerdings ein erheblicher Erkundungsaufwand notwendig sein, um für die Positionen, an denen Säulen hergestellt werden sollen, Bodeninformationen zu erhalten.
  • Dieser Aufwand kann unterbleiben und die einzelnen Säulen können vollständig für die zu erwartende schwächste Bodenschicht dimensioniert werden. Dadurch können die Säulen an vielen Stellen überdimensioniert sein, nämlich überall dort, wo der umgebende Boden stärker ist. Eine solche Überdimensionierung bedeutet allerdings nicht nur Mehrkosten im Hinblick auf die Arbeitszeit und das verbrauchte Füllmaterial sondern kann auch bezüglich der Stabilität nachteilig sein. Wenn beispielsweise zwei benachbarte Säulen in einer Bodenzone, in der kaum eine Verbesserung nötig ist, dennoch mit großem Durchmesser erstellt werden, dann sind die für das auf den Säulen erstellte Bauwerk wichtigen Differenzsetzungen (d.h. die Setzungen zwischen benachbarten Bauwerksteilen) mitunter größer als wenn die beiden Säulen mit optimalen Säulenstärken ausgeführt worden wären. Wenn beispielsweise bei zwei Bauwerksteilen die Setzungen gegenüber dem unbehandelten Fall (dem Fall ohne Säule) halbiert werden, zum Beispiel bei einem Bauteil von ursprünglich 20 cm auf 10 cm und beim anderen Bauteil von 10 cm auf nun 5 cm, so betragen die Differenzsetzungen immerhin noch 5 cm. Wenn aber die eine Setzung um 12 cm reduziert wird, von 20 cm auf 8 cm und die andere nur um 2 cm von 10 cm auf 8 cm, so betragen in diesem Fall die Differenzsetzungen Null. Mit anderen Worten: Maximale Säulendurchmesser führen zwar zu minimalen Setzungen aber nicht immer zu minimalen Differenzsetzungen.
  • Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Bodensondierung zur Verfügung zu stellen, das insbesondere bei der Herstellung einer Materialsäule, einen geringen zusätzlichen Aufwand erfordert.
  • Diese Aufgabe wird durch ein Verfahren nach Anspruch 1 gelöst. Ausgestaltungen und Weiterbildungen der Erfindung sind Gegenstand von Unteransprüchen.
  • Ein Ausführungsbeispiel der Erfindung betrifft ein Verfahren zur Bodensondierung. Das Verfahren umfasst: das Bereitstellen einer Rüttleranordnung, die an einer Tragvorrichtung gehalten ist, die dazu ausgebildet ist, in den Boden einzudringen, und die einen Rüttlermotor aufweist; das Einfahren der Rüttleranordnung bis zu einer vorbestimmten Tiefe in den Boden; das Ermitteln eines Bodenprofils des Bodens beim Einfahren der Rüttleranordnung, wobei das Ermitteln des Bodenprofils das Messen wenigstens eines Betriebsparameters der Rüttleranordnung beim Einfahren in den Boden umfasst und wobei das Bodenprofil jeweils einen Bodenparameter für wenigstens zwei unterschiedliche Bodentiefen umfasst.
  • Bei diesem Verfahren wird die Rüttleranordnung, mit der eine Materialsäule im Boden hergestellt werden kann, zur Sondierung des Bodens, d.h. zur Ermittlung eines Bodenprofils verwendet. Unter Verwendung der Rüttleranordnung als Bodensonde lassen sich zumindest annäherungsweise Bodenschichten unterschiedlicher Dichte (wie beispielsweise bei Sanden und Kiesen) bzw. unterschiedlicher Steifigkeit (wie beispielsweise bei Schluffen und Tonen) feststellen und die Schichtgrenzen zwischen diesen unterschiedlichen Bodenschichten können ermittelt werden.
  • Bei einem Ausführungsbeispiel ist vorgesehen, abhängig von dem Bodenprofil eine Materialsäule unter Verwendung der Rüttleranordnung herzustellen. Die Kombination aus Ermittlung des Bodenprofils während des Einfahrens (des Abteufens) der Rüttleranordnung in den Boden und der nachfolgenden Säulenherstellung abhängig von dem Bodenprofil führt zu einem voll integrierten Herstellungsprozess, bei dem jede Materialsäule auf die örtlich variablen Bodeneigenschaften abgestimmt ist. Dies ist günstig im Hinblick auf Differenzsetzungen eines später auf den Materialsäulen erstellten Bauwerks. Gerade bei Stopfsäulen kann dies wichtig sein. Stopfsäulen tragen Last nur im Verbund mit dem Boden ab, sind also im Gegensatz zu vermörtelten oder mit anderem Bindemittel versehenen Säulen eine echte Baugrundverbesserung und nicht ein Pfahl, der die lockeren bzw. weichen Schichten nur überbrückt. Das vorliegende Verfahren führt zu einer an die Bodenfestigkeit adaptierten Säulenstärke und somit zu einer optimalen Homogenisierung des Setzungsverhaltens. In weicheren/ lockereren Böden die sich unbehandelt mehr setzen würden sorgt eine stärkere Stopfsäule für eine größere Versteifung, während beispielsweise in benachbarten Bodenlagen die bereits vor Säulenherstellung dichter/steifer sind, eine schwächere Säule hergestellt wird.
  • Das Bodenprofil kann auf verschiedene Weise ermittelt werden. Bei einem Beispiel ist vorgesehen, eine wenigstens annäherungsweise konstante Kraft auf die Rüttleranordnung durch die Tragvorrichtung beim Einbringen der Rüttleranordnung in den Boden auszuüben und als Betriebsparameter eine Geschwindigkeit zu messen, mit der die Rüttleranordnung in den Boden einfährt. Die Rüttleranordnung fährt hierbei um so schneller in eine Bodenschicht ein, je weniger dicht bzw. je weniger steif diese Bodenschicht ist. Damit kann die Einfahrgeschwindigkeit unmittelbar ein Maß für die Bodenbeschaffenheit sein und kann damit geeignet für die Ermittlung des Bodenprofils sein. Das Bodenprofil kann hierbei für verschiedene Bodentiefen die für die jeweilige Bodentiefe ermittelte Einfahrgeschwindigkeit enthalten.
  • Bei einem weiteren Beispiel zur Ermittlung des Bodenprofils ist vorgesehen, die Rüttleranordnung getrieben durch die Tragvorrichtung mit wenigstens annäherungsweise konstanter Geschwindigkeit in den Boden einzufahren und als Betriebsparameter eine Leistungsaufnahme des Rüttlermotors beim Einfahren der Rüttleranordnung in den Boden zu messen. Die Leistungsaufnahme beim Einfahren in eine Bodenschicht ist hierbei um so geringer, je weniger dicht bzw. je weniger steif diese Bodenschicht ist. Damit kann die Leistungsaufnahme unmittelbar ein Maß für die Bodenbeschaffenheit sein und kann damit geeignet für die Ermittlung des Bodenprofils sein. Das Bodenprofil kann hierbei für verschiedene Bodentiefen die für die jeweilige Bodentiefe ermittelte Leistungsaufnahme enthalten. Der Rüttlermotor kann ein Elektromotor oder ein Hydraulikmotor sein. Bei einem Elektromotor ist beispielsweise eine Stromaufnahme des Motors repräsentativ für die Leistungsaufnahme des Rüttlermotors, während bei einem Hydraulikmotor ein hydraulischer Druck, der zu Antreiben des Motors notwendig ist, repräsentativ ist für die Leistungsaufnahme des Rüttlermotors.
  • Bei einem anderen Beispiel zur Ermittlung des Bodenprofils ist vorgesehen, die Rüttleranordnung getrieben durch die Tragvorrichtung mit wenigstens annäherungsweise konstanter Geschwindigkeit in den Boden einzufahren und als Betriebsparameter eine Schwingungsamplitude einer Spitze der Rüttleranordnung zu messen. Dieses Verfahren eignet sich insbesondere bei Verwendung einer Rüttleranordnung mit einem Tiefenrüttler. Die Schwingungsamplitude beim Einfahren in eine Bodenschicht kann hierbei um so höher sein, je weniger dicht bzw. je weniger steif diese Bodenschicht ist. Damit kann die Schwingungsamplitude unmittelbar ein Maß für die Bodenbeschaffenheit sein und kann damit geeignet für die Ermittlung des Bodenprofils sein. Das Bodenprofil kann hierbei für verschiedene Bodentiefen die für die jeweilige Bodentiefe ermittelte Schwingungsamplitude enthalten.
  • Grundsätzlich kann das Bodenprofil ein kontinuierliches Bodenprofil sein, d.h. für jede Bodentiefe wird ein zugehöriger Bodenparameter ermittelt. Das Bodenprofil kann allerdings auch so ermittelt werden, dass Bodenparameter nur für vorgegebene Bodentiefen ermittelt werden, die gleichmäßig oder ungleichmäßig beabstandet sein können.
  • Bei einem Ausführungsbeispiel erfolgt das Herstellen der Materialsäule abhängig von dem Bodenprofil derart erfolgt, dass ein Durchmesser der Materialsäule in einer bestimmten Bodentiefe abhängig ist von dem für diese Bodentiefe ermittelten Bodenparameter. Der für eine bestimmte Bodentiefe ermittelte Bodenparameter ist beispielsweise abhängig von einer Bodendichte und/oder einer Bodensteifigkeit. In diesem Fall kann die Materialsäule derart hergestellt werden, dass der Durchmesser der Materialsäule mit abnehmender Bodendichte und/oder abnehmender Bodensteifigkeit zunimmt. Anhand des Bodenprofils wird also ein Säulenprofil ermittelt, das definiert, welche Eigenschaften die Säule in welcher Bodentiefe haben soll. Eine Eigenschaft der Säule kann dabei deren Durchmesser, kann jedoch auch deren Festigkeit sein.
  • Das Herstellen der Materialsäule umfasst bei einem Beispiel das Herstellen von wenigstens zwei Segmenten. Das Herstellen jedes Segments umfasst hierbei: a) das Anheben der Rüttleranordnung um eine vorbestimmte Wegstrecke, so dass ein Hohlraum unterhalb der Rüttleranordnung entsteht; b) das Einbringen eines Füllmaterials in den Hohlraum; c) das Einfahren der Rüttleranordnung in das Füllmaterial, um das Füllmaterial zu verdichten; und d) das Wiederholen der Verfahrensschritte a) bis c) n-mal, mit n ≥ 0. Für die Herstellung eines Segments in einer vorbestimmten Bodentiefe, kann die Anzahl n der Wiederholungen im Schritt d) abhängig sein von dem für diese Bodentiefe ermittelten Bodenparameter. So ist bei einer Variante vorgesehen, dass der Bodenparameter abhängig ist von einer Bodendichte und/oder einer Bodensteifigkeit und dass die Anzahl n der Wiederholungen mit abnehmender Bodendichte und/oder abnehmender Bodensteifigkeit zunimmt. Bei einem weiteren Beispiel ist vorgesehen, dass so viele Wiederholungen durchgeführt werden, bis eine gewünschte Festigkeit der Säule in dem jeweiligen Segment erreicht ist. Die Festigkeit der Säule kann beispielsweise anhand der Leistungsaufnahme des Rüttlermotors ermittelt werden. Die Säule, bzw. ein Segment ist dabei um so fester, je höher die Leistungsaufnahme des Rüttlers beim Einfahren in das zuvor eingebrachte Füllmaterial ist.
  • Die Rüttleranordnung kann wie eine herkömmliche Rüttleranordnung ausgebildet sein. Bei einem Beispiel ist vorgesehen, dass die Rüttleranordnung ein Rüttlerrohr mit einem oberen und einem unteren Ende und einen an dem Rüttlerrohr angeordneten Rüttler mit dem Rüttlermotor aufweist. Der Rüttler kann als Tiefenrüttler ausgebildet und an einem unteren Ende des Rüttlerrohres befestigt sein, kann jedoch auch als Aufsatzrüttler ausgebildet und an einem oberen Ende des Rüttlerrohres befestigt sein.
  • Das Rohr kann ein Silorohr mit einem Materialtank sein, das im Bereich eines unteren Endes der Rüttleranordnung einen Materialauslass aufweist, über den Füllmaterial in einen unterhalb der Rüttleranordnung hergestellten Hohlraum eingebracht werden kann. Das Rohr kann allerdings auch als bloßes Verlängerungsrohr dienen. In diesem Fall wird Füllmaterial über einen Spalt zwischen dem Rohr und dem umgebenden Boden in den unterhalb der Rüttleranordnung hergestellten Hohlraum eingebracht.
  • Die Tragvorrichtung kann einen Tragarm eines Erdbaugeräts aufweisen oder kann einen Mast und einen an dem Mast verfahrbaren Schlitten aufweisen.
  • Ein weiteres Ausführungsbeispiel betrifft ein Verfahren zur Herstellung einer Materialsäule im Boden. Das Verfahren umfasst das Bereitstellen einer Rüttleranordnung, die an einer Tragvorrichtung gehalten ist und die dazu ausgebildet ist, in den Boden einzudringen, das Einfahren der Rüttleranordnung in den Boden und das mehrfache Verfahren der Rüttleranordnung in dem Boden zwischen Umkehrpunkten, nämlich einem oberen Umkehrpunkt und einem Umkehrpunkt, und Einbringen von Füllmaterial in den Boden beim Verfahren der Rüttleranordnung vom unteren Umkehrpunkt zum oberen Umkehrpunkt, sowie das Erfassen einer Position der Rüttleranordnung im Boden. Bei diesem Verfahren sind die Umkehrpunkte durch eine Steuerung vorgegeben und eine Bewegung der Rüttleranordnung zwischen den Umkehrpunkten wird in einem elektronischen Anzeigefeld dargestellt wird, das eine Soll-Bewegungsrichtung der Rüttleranordnung sowie die Position der Rüttleranordnung zwischen den Umkehrpunkten anzeigt.
  • Dieses Verfahren ermöglicht eine halbautomatische und dennoch präzise Herstellung von Materialsäulen im Boden. Das Verfahren der Rüttleranordnung kann manuell durch einen Geräteführer erfolgen, allerdings nach Maßgabe der Anzeigevorrichtung. Dadurch ist gewährleistet, dass die Rüttleranordnung zwischen durch die Steuerung vorgegebenen Umkehrpunkten verfahren wird, wobei sich diese Umkehrpunkte im Verlauf der Säulenherstellung ändern. Die tatsächliche Lage dieser Umkehrpunkte im Boden muss nicht dargestellt werden und ist für den Geräteführer auch nicht von Interesse.
  • Ausführungsbeispiele werden nachfolgend anhand von Figuren näher erläutert. Die Figuren dienen zur Veranschaulichung des Grundprinzips der vorliegenden Erfindung, so dass lediglich die zum Verständnis dieses Grundprinzips notwendigen Aspekte dargestellt sind. Die Figuren sind nicht notwendigerweise maßstabsgetreu. Gleiche Bezugszeichen bezeichnen gleiche oder äquivalente Teile mit gleicher oder äquivalenter Bedeutung.
  • Figur 1
    veranschaulicht ein Ausführungsbeispiel einer durch eine Tragvorrichtung gehaltenen Rüttleranordnung mit einem Tiefenrüttler zur Herstellung einer Materialsäule im Boden;
    Figur 2
    veranschaulicht einen Querschnitt durch den Tiefenrüttler;
    Figur 3
    veranschaulicht ein Ausführungsbeispiel einer Rüttleranordnung mit einem Aufsatzrüttler zur Herstellung einer Materialsäule im Boden;
    Figur 4
    veranschaulicht ein Ausführungsbeispiel bei dem die Tragvorrichtung einen Tragarm eines Erdbaugeräts aufweist;
    Figur 5
    veranschaulicht ein Ausführungsbeispiel bei dem die Tragvorrichtung einen Mäkler und einen an dem Mäkler geführten Schlitten aufweist;
    Figur 6
    zeigt schematisch einen Querschnitt eines Bodens mit verschiedenen Bodenschichten, ein Bodenprofil des Bodens, ein Säulenprofil und eine in dem Boden hergestellte Materialsäule mit variierendem Durchmesser;
    Figur 7
    zeigt ein weiteres Beispiel eines auf einem Bodenprofil basierenden Säulenprofils.
    Figur 8
    zeigt schematisch die Auf- und Abbewegungen des Tiefenrüttlers bei einem ersten Beispiel eines Verfahrens zur Herstellung einer Materialsäule gemäß Figur 6 mit mehreren Segmenten;
    Figur 9
    veranschaulicht ein weiteres Beispiel eines Verfahrens zur Herstellung eines Segments einer Materialsäule;
    Figur 10
    zeigt ein Beispiel einer Anzeige für einen Geräteführer bei einem halbautomatischen Verfahren zum Herstellen einer Materialsäule im Boden.
  • Zum besseren Verständnis der Erfindung werden nachfolgend zunächst verschiedene Ausführungsbeispiele von Vorrichtungen zur Herstellung von Materialsäulen im Boden erläutert, die für die Durchführung des erfindungsgemäßen Verfahrens geeignet sind. Diese Ausführungsbeispiele dienen dem besseren Verständnis und sind nicht einschränkend. Grundsätzlich eignen sich für die Durchführung des Verfahrens beliebige Vorrichtung, die zur Herstellung von Materialsäulen, insbesondere von Stopfsäulen oder Rüttelstopfsäulen im Boden geeignet sind.
  • Figur 1 zeigt schematisch ein erstes Ausführungsbeispiel einer Vorrichtung zur Herstellung von Materialsäulen im Boden. Diese Vorrichtung umfasst eine Rüttleranordnung 1, die ein Rohr 11 mit einem oberen und einem unteren Ende aufweist, wobei am unteren Ende des Materialrohrs 11 ein Rüttler 12 angeordnet ist. Der Rüttler 12 ist in einer nicht im Detail dargestellten Weise schwingungsgedämpft an dem Materialrohr 11 befestigt, so dass durch Rüttelbewegungen des Rüttlers 12 entstehende Schwingungen nicht oder zumindest nur in geringem Umfang auf das Materialrohr 11 übertragen werden. Das Materialrohr 11 ist in Figur 1 - wie auch in der nachfolgend noch erläuterten Figur 2 - im Querschnitt dargestellt, die übrigen Komponenten sind in Seitenansicht dargestellt.
  • Das Rohr 11 ist in dem dargestellten Beispiel als Silorohr bzw. Materialrohr ausgebildet und weist an seinem unteren Ende einen Auslass auf, an den ein weiteres Rohr 16 angeschlossen ist, das parallel zu dem Rüttler 12 bis an eine Spitze des Rüttlers 12 geführt ist und das im Bereich der Spitze des Rüttlers einen Materialauslass 13 der Rüttleranordnung 1 bildet. Das weitere Rohr 16 kann schwingungsgedämpft an dem Materialrohr 11 befestigt sein. Das Materialrohr 11 besitzt beispielsweise eine zylinderförmige Geometrie. Das weitere Rohr 16 kann beispielsweise so realisiert sein, dass es den Rüttler 12 teilweise umgibt, und besitzt dann im Querschnitt beispielsweise eine sichelförmige Geometrie.
  • Der Rüttler 12, der an einem unteren Ende des Materialrohrs 11 angeordnet ist bzw. die gesamte Rüttleranordnung 1, wird auch als Tiefenrüttler bezeichnet. Dieser Tiefenrüttler 12 kann wie ein herkömmlicher Tiefenrüttler ausgebildet sein. Figur 2 zeigt einen Querschnitt durch diesen Tiefenrüttler in einer Schnittebene, die senkrecht zu der in Figur 1 dargestellten Zeichenebene verläuft.
  • Bezugnehmend auf Figur 2 weist der Tiefenrüttler beispielsweise eine Unwucht bzw. einen Exzenter 21 auf, der um eine Welle 22 rotierbar in einem Rüttlergehäuse gelagert ist. Dieser Exzenter 15 wird während des Betriebes des Tiefenrüttlers durch einen Rüttlermotor, wie z.B. einen Hydraulikmotor oder einen Elektromotor (nicht dargestellt), in Drehungen versetzt, wodurch sich die Rüttlerspitze des Tiefenrüttlers 12 auf einer Kreisbahn bewegt.
  • Figur 3 zeigt eine Vorrichtung mit einer Rüttleranordnung, die als Aufsatzrüttler ausgebildet ist und bei der der Rüttler 12 oben auf dem Rohr 11 angeordnet ist. Der Rüttler 12 und das Rohr 11 sind hierbei nicht schwingungsmäßig entkoppelt, so dass Rüttelbewegungen des Rüttlers 12 auf das Materialrohr übertragen werden. Wie der Tiefenrüttler 12 gemäß Figur 1 weist auch der Rüttler 12 gemäß Figur 3 einen Motor (nicht dargestellt) auf, der den Rüttler 12 antreibt.
  • Bezugnehmend auf die Figuren 1 und 3 weist die Rüttleranordnung unabhängig von ihrer konkreten Ausgestaltung als Tiefenrüttler oder als Aufsatzrüttler im oberen Bereich des Materialrohrs 11 eine Materialzuführung auf, die in den Figuren 1 und 2 lediglich schematisch dargestellt ist und die in dem Beispiel einen seitlich an dem Materialrohr 11 angeordneten Materialbehälter 14 und eine zwischen dem Materialbehälter 14 und dem Inneren des Materialrohrs 11 angeordnete Klappe 15 aufweist. Die Klappe 15 kann geöffnet und geschlossen werden, wobei bei geöffneter Klappe Material G, wie zum Beispiel Kies, Schotter oder Sand, aus dem Materialbehälter 14 in das Innere des Materialrohrs 11 fließen kann. Bei einem Ausführungsbeispiel ist vorgesehen, dass bei geschlossener Klappe 15 mittels seiner nicht näher dargestellten Druckvorrichtung ein Überdruck im Inneren des Materialrohrs 11, das in Figur 1 im Querschnitt dargestellt ist, erzeugt werden kann. Die Herstellung eines solchen Überdrucks kann insbesondere dann erforderlich sein, wenn Materialsäulen im Boden hergestellt werden sollen, die bis unter den Grundwasserspiegel reichen. Ein Überdruck ist dabei erforderlich, um Material gegen den Druck des Grundwassers in den Boden einzubringen.
  • Anstelle einer einfachen Klappe 15 zwischen dem Materialbehälter 14 und im Inneren des Materialrohrs 11 kann auch eine Materialschleuse (nicht dargestellt) mit zwei Klappen vorgesehen werden, über welche das Material G in das Innere des Materialrohrs 11 eingebracht wird. Eine solche Materialschleuse kann verhindern, dass ein im Inneren des Materialrohrs 11 aufgebauter Überdruck jedes Mal dann entweicht, wenn Material neu zugeführt wird.
  • Grundsätzlich können beliebige bekannte Materialzuführungen verwendet werden, wie beispielsweise auch solche, bei denen Material über einen Förderschlauch unter Druck direkt in das Materialrohr 11 eingebracht werden.
  • Die in den Figuren 1 und 2 dargestellten Rüttleranordnungen 1 dient lediglich zur Veranschaulichung des Grundprinzips von Rüttleranordnungen. Es sei darauf hingewiesen, dass im Zusammenhang mit der vorliegenden Erfindung beliebige Rüttleranordnungen, wie Tiefenrüttler oder Aufsatzrüttler, eingesetzt werden können, insbesondere auch Rüttleranordnungen mit einer anderen Art der Materialzurührung oder mit einer anderen Art der Anordnung von Materialrohr 11 und Rüttler 12.
  • Bezugnehmend auf die Figuren 1 und 2 umfasst die Vorrichtung umfasst außerdem eine Tragvorrichtung 2, an der die Rüttleranordnung befestigt ist. Diese Tragvorrichtung 2 kann auf unterschiedliche Weise realisiert sein.
  • Figur 4 zeigt ein Ausführungsbeispiel einer Vorrichtung zur Herstellung von Materialsäulen im Boden. Bei dieser Vorrichtung umfasst die Tragvorrichtung 2, an der die Rüttleranordnung 1 befestigt ist, einen Tragarm eines Erdbaugeräts. Die Rüttleranordnung ist hierbei an der Spitze das Tragelement 21 befestigt ist. Der Tragarm kann insbesondere so bewegt werden, dass er auf die Rüttleranordnung eine in Längsrichtung des Rohres 11 wirkende Kraft ausübt, um die Rüttleranordnung 1 dadurch in den Boden einzufahren oder wieder aus dem Boden auszufahren. Dies wird nachfolgend noch erläutert.
  • Figur 5 zeigt ein weiteres Ausführungsbeispiel einer Vorrichtung zur Herstellung von Materialsäulen im Boden. Die Tragvorrichtung 2 umfasst bei dieser Vorrichtung einen Turm oder Mäkler 25, an dem ein Schlitten 24 in Längsrichtung des Turms 25 verfahrbar ist. Der Turm 25 kann senkrecht stehen, um senkrechte Säulen im Boden herzustellen. Der Turm 25 könnte jedoch auch gegenüber der Oberfläche geneigt sein, um in diesem Fall schräg verlaufende Säulen im Boden herzustellen. Ein Tragelement 21, das mit dem Rohr 11 verbunden ist, ist an dem Schlitten 24 befestigt, so dass die Rüttleranordnung 1 mit Hilfe des Schlittens 24 entlang des Mastes 25 verfahrbar ist. Das Materialrohr 11 der Rüttleranordnung 1 verläuft in etwa parallel zu dem Turm 25, so dass durch Verfahren des Schlittens 24 an dem Turm 25 die Rüttleranordnung 1 in ihrer Längsrichtung verfahren werden kann. Zum Verfahren des Schlittens 24 ist beispielsweise eine Seilvorrichtung mit einem Seil 23 (nur schematisch dargestellt), eine Zahnradvorrichtung, oder ähnliches, vorhanden. Der Schlitten 24 ist insbesondere so an dem Mast 25 verfahrbar, dass er eine Kraft auf die Rüttleranordnung ausübt, die in der Bewegungsrichtung des Schlittens 24, und damit in Längsrichtung des Rohres 11 wirkt, und die ein Einfahren der Rüttleranordnung in den Boden bewirken kann. Diese Kraft kann beispielsweise dadurch ausgeübt werden, dass der Schlitten 24 mittels das Seils 23 mit einer definierten Kraft an dem Mast 25 nach unten gezogen wird.
  • Ein Erdbaugerät und ein Mast mit einem verfahrbaren Schlitten sind selbstverständlich nur Beispiele für Tragvorrichtungen, die geeignet sind, die Rüttleranordnung 1 in ihrer Längsrichtung, d.h. in Längsrichtung des Rohres 11 zu verfahren. Beliebige andere Hubeinheiten, wie z.B. Hubeinheiten mit elektrisch angetriebenen Seil-, Riemen- oder Spindelanordnungen können ebenso verwendet werden.
  • Figur 6 zeigt schematisch einen Querschnitt eines Bodens 100 in dem eine Materialsäule 30 aus einem Füllmaterial, wie beispielsweise Kies oder Sand angeordnet ist. Der beispielhaft in Figur 6 dargestellte Bodenausschnitt weist mehrere verschiedene übereinander liegende Bodenschichten 101, 102, 103, 104 auf, die jeweils unterschiedliche Bodeneigenschaften, wie beispielsweise Dichte oder Festigkeit, aufweisen können. Aus den eingangs erläuterten Gründen ist es wünschenswert, die Materialsäule 30 derart an die Bodeneigenschaften anzupassen, dass die Materialsäule 30 im Idealfall in jeder der einzelnen Bodenschichten 101-104 einen an die Eigenschaften der jeweiligen Bodenschicht 101-104 angepassten Durchmesser aufweist. Die in Figur 6 dargestellte Materialsäule 30 weist verschiedene Materialsäulenabschnitte 31, 32, 33, 34 auf, wobei jeweils einer dieser Materialsäulenabschnitte 31-34 in einer Bodenschicht 101-104 angeordnet ist und einen an die Eigenschaften der jeweiligen Bodenschichten angepassten Durchmesser aufweist.
  • Ein Verfahren zur Herstellung einer Materialsäule 30, die an die Bodeneigenschaften angepasst ist, und die einen über ihre Länge variierenden Durchmesser aufweisen kann, und zwar abhängig von den Eigenschaften des die Säule umgebenden Bodens wird nachfolgend erläutert.
  • Dieses Verfahren umfasst das Bereitstellen einer Rüttleranordnung, die an einer Tragvorrichtung gehalten ist, die dazu ausgebildet ist, in den Boden einzudringen und die einen Rüttlermotor aufweist. Diese Rüttleranordnung 1 kann beispielsweise entsprechend einer der zuvor anhand der Figuren 1 und 3 bis 5 erläuterten Rüttleranordnungen 1, die an einer Tragvorrichtung 2 gehalten sind, ausgebildet sein. Das Verfahren umfasst außerdem das Einfahren der Rüttleranordnung 1 bis zu einer vorbestimmten Tiefe in den Boden 100 (der in den Figuren 1 und 3 ebenfalls dargestellt ist). Beim Einfahren der Rüttleranordnung in den Boden wird ein Bodenprofil ermittelt, wobei das Ermitteln des Bodenprofils das Messen wenigstens eines Betriebsparameters der Rüttleranordnung 1 beim Einfahren in den Boden 100 umfasst und wobei das Bodenprofil jeweils einen Bodenparameter P für wenigstens zwei unterschiedliche Bodentiefen umfasst. Ein solches Bodenprofil, das unterschiedliche Bodentiefen des Bodens 100 einen Bodenparameter P zuordnet, ist in Figur 6 schematisch neben dem Bodenquerschnitt dargestellt. Der Bodenparameter P ist beispielsweise eine Dichte oder eine Festigkeit des Bodens, kann jedoch auch mehrere Bodeneigenschaften, wie beispielsweise Dichte und Festigkeit, berücksichtigen. Bei dem in Figur 6 dargestellten Ausführungsbeispiel sind die einzelnen Schichten unterschiedlich, so dass der Bodenparameter P für die einzelnen Bodenschichten 101-104 unterschiedlich. Dies ist selbstverständlich nur ein Beispiel. Es ist selbstverständlich auch möglich, dass zwei Bodenschichten gleicher Eigenschaft, wie beispielsweise zwei Tonschichten, eine Schicht mit einer anderen Eigenschaft, wie beispielsweise eine Sandschicht, einschließen, oder dass zwischen zwei sandigen schluffigen Bodenschichten eine Tonschicht eingelagert ist. In dem zuletzt genannten Fall kann es beispielsweise wünschenswert sein, in den sandigen schluffigen Schichten Säulenabschnitte mit geringerem Durchmesser als in der Tonschicht herzustellen.
  • Das Verfahren kann außerdem das Herstellen der Materialsäule 30 unter Verwendung der Rüttleranordnung 1 abhängig von dem ermittelten Bodenprofil umfassen bzw. abhängig von einem Säulenprofil, das auf Basis des Bodenprofils erzeugt wird, umfassen. Das Säulenprofil definiert, welche Eigenschaften die Säule in welcher Bodentiefe haben soll. Eine Eigenschaft der Säule kann dabei deren Durchmesser, kann jedoch auch deren Festigkeit sein. Die in Figur 6 schematisch dargestellte Materialsäule 30 ist eine solche abhängig von dem Bodenprofil bzw. dem Säulenprofil hergestellte Materialsäule. Zu Zwecken der Erläuterung sei beispielsweise angenommen, dass der Bodenparameter P, der in dem Bodenprofil gemäß Figur 6 dargestellt ist, eine Dichte bzw. Festigkeit des Bodens repräsentiert. Der in Figur 6 dargestellten Säule 30 liegt ein Säulenprofil zugrunde, bei dem der gewünschte Durchmesser der Materialsäule 30 mit zunehmender Dichte/Festigkeit, die dem Bodenprofil entnommen werden kann, abnimmt. Hierbei weist die unterste Bodenschicht 104 die höchste Dichte/Festigkeit auf, so dass der in dieser Bodenschicht 104 hergestellte Materialsäulenabschnitt 34 den geringsten Durchmesser aufweist. Die zweitniedrigste Dichte/Festigkeit weist die oberste Bodenschicht 101 auf, so dass der dort hergestellte Materialsäulenabschnitt 31 den zweitkleinsten Durchmesser aufweist. Die dritte Bodenschicht 103 von oben, d. h. ausgehend von der Oberfläche 101, weist die drittgrößte Dichte/Festigkeit auf, so dass der dort hergestellte Materialsäulenabschnitt 33 den drittkleinsten Durchmesser aufweist, während die zweite Bodenschicht 102 von oben die kleinste Dichte/Festigkeit aufweist, so dass der dort hergestellte Materialsäulenabschnitt 32 den größten Durchmesser aufweist.
  • Wie erläutert, wird die Materialsäule 30 in mehreren Abschnitten hergestellt, deren Höhe und Position im Boden und deren Eigenschaften von dem Säulenprofil abhängig ist, das anhand des Bodenprofils erzeugt werden kann. Das Säulenprofil kann beispielsweise so aus dem Bodenprofil abgeleitet werden, dass die Position einer Grenze zwischen Materialsäulenabschnitten im Säulenprofil der Position der Grenze zwischen zwei Bodenschichten im Bodenprofil entspricht. Ein solches Säulenprofil ist in Figur 6 neben dem Bodenprofil dargestellt. In dem Säulenprofil bezeichnet S eine einzustellende Säuleneigenschaft, wobei jeder Bodentiefe eine solche Säuleneigenschaft zugeordnet ist. Die Säuleneigenschaft kann beispielsweise ein Durchmesser oder eine Festigkeit der Säule an der jeweiligen Position sein. Figur 6 veranschaulicht eine nach einem solchen Säulenprofil hergestellte Materialsäule 30, also eine Säule bei der jeder Materialsäulenabschnitt 31-34 optimal an die umgebende Bodenschicht 101-104 angepasst ist, so dass eine Grenze zwischen zwei Materialsäulenabschnitten auf Höhe einer Grenze zwischen zwei Bodenschichten verläuft. Innerhalb eines Materialsäulenabschnittes hat die Säule dabei wenigstens annähernd dieselben Eigenschaften.
  • Die Grenze zwischen zwei Säulenabschnitten im Säulenprofil muss allerdings nicht notwendigerweise mit der Grenze zwischen zwei Bodenschichten im Bodenprofil übereinstimmen. Figur 7 zeigt ein Ausführungsbeispiel eines Säulenprofils, das aus dem Bodenprofil gemäß Figur 6 abgeleitet ist, und bei dem die Grenze zwischen zwei Materialsäulenabschnitten nicht mit der Grenze zwischen zwei Bodenschichten übereinstimmt. Die Materialsäule 30 wird segmentweise mit mehreren übereinander angeordneten Segmenten hergestellt, wobei einer der erläuterten Säulenabschnitte 31-34 aus einem oder mehreren Segmenten bestehen kann. Die Grenzen zwischen einzelnen Segmenten sind in dem Säulenprofil gemäß Figur 7 ebenfalls (gepunktet) dargestellt. Diese Segmente können beispielsweise jeweils die gleiche Höhe aufweisen, wobei die Eigenschaften der einzelnen Segmente sich allerdings unterscheiden können. In diesem Fall gibt unter Berücksichtigung der gewünschten Säulenhöhe, die Segmenthöhe die Tiefenpositionen vor, an denen Grenzen zwischen zwei Segmenten und damit Grenzen zwischen zwei Materialsäulen verlaufen können. Die Segmenthöhe kann beispielsweise eine Höhe zwischen 1 m und 2m sein. Welche Eigenschaft einem Segment in dem Säulenprofil zugeordnet ist, ist beispielsweise davon abhängig, in welcher Bodenschicht das Segment entsprechend dem Bodenprofil größtenteils verläuft. Bei dem erläuterten Verfahren dient die Rüttleranordnung 1, die zur Herstellung der Materialsäule 30 ohnehin in den Boden 100 eingebracht werden muss, beim Einfahren in den Boden wie eine Art Bodensonde, die eine Ermittlung des Bodenprofils ermöglicht. Bei diesem Verfahren kann mit geringem Aufwand für jede herzustellende Säule exakt ein Bodenprofil des die spätere Säule umgebenden Bodens ermittelt werden, so dass jede Säule optimal an die jeweiligen Bodenverhältnisse angepasst hergestellt werden kann.
  • Das Bodenprofil kann auf verschieden Weise beim Einfahren der Rüttleranordnung 1 in dem Boden ermittelt werden. Bei einem Ausführungsbeispiel ist vorgesehen, die Rüttleranordnung 1 getrieben durch die Tragvorrichtung 2 mit annäherungsweise konstanter Geschwindigkeit in den Boden 100 einzufahren und dabei die Leistungsaufnahme des Rüttlermotors beim Einfahren der Rüttleranordnung in den Boden zu messen. Der Rüttlermotor kann ein Elektromotor oder ein Hydraulikmotor sein. Bei einem Elektromotor ist beispielsweise eine Stromaufnahme des Motors (bei bekannter konstanter Versorgungsspannung des Rüttlermotors) repräsentativ für die Leistungsaufnahme des Rüttlermotors, während bei einem Hydraulikmotor ein hydraulischer Druck, der zu Antreiben des Motors notwendig ist, repräsentativ ist für die Leistungsaufnahme des Rüttlermotors. Allgemein gilt, dass die Leistungsaufnahme des Rüttlermotors umso höher ist, je dichter/fester der Boden beim Einfahren mit konstanter Geschwindigkeit ist. Die Leistungsaufnahme des Rüttlermotors bei einer bestimmten Bodentiefe stellt also unmittelbar ein Maß für die Dichte/Festigkeit des Bodens in der jeweiligen Tiefe, und damit unmittelbar ein Maß für den Bodenparameter P dar.
  • Die Rüttleranordnung 1 kann sowohl unter Verwendung eines Erdbaugeräts mit einem Tragarm (wie beispielsweise in Figur 4 dargestellt ist) als auch unter Verwendung eines Masts 25 mit einem an den Mast 25 angeordneten Schlitten 24 (wie in Figur 5 dargestellt) mit konstanter Geschwindigkeit in den Boden 100 eingefahren werden. Zur Ermittlung des Bodenprofils ist während des Einfahrens lediglich die Leistungsaufnahme des Rüttlermotors abhängig von der Bodentiefe zu messen und die für die Leistungsaufnahme erhaltenen Messwerte sind den jeweiligen Bodentiefen zuzuordnen. Die Bodentiefe, die einer bestimmten Leistungsaufnahme zuzuordnen ist, entspricht dabei der Position der Spitze 13 der Rüttleranordnung in dem Boden bei der jeweiligen Leistungsaufnahme. Die Position der Rüttlerspitze 13 im Boden 100, d. h. der Abstand zwischen der Rüttlerspitze 13 und der Oberfläche 101 kann in herkömmlicher Weise ermittelt werden. Bei Verwendung einer Tragvorrichtung mit einem Erdbaugerät, beispielsweise anhand eines Tragarms und bei einer Tragvorrichtung mit einem Mast, beispielsweise anhand der Position des Schlittens 24 an dem Mast 25.
  • Bei einem weiteren Beispiel zur Ermittlung des Bodenprofils ist vorgesehen, eine wenigstens annäherungsweise konstante Kraft auf die Rüttleranordnung 1 durch die Tragvorrichtung 2 beim Einbringen der Rüttleranordnung 1 in den Boden 100 aufzubringen und dabei eine Geschwindigkeit zu messen, mit der die Rüttleranordnung in den Boden einfährt. Diese Geschwindigkeit ist allgemein dahingehend von der Bodenbeschaffenheit anhängig, da bei einer bestimmten Bodentiefe die Geschwindigkeit mit zunehmender Dichte/Festigkeit des Bodens an der jeweiligen Bodentiefe abnimmt. Die Einfahrgeschwindigkeit kann also unmittelbar ein Maß für die Dichte/Festigkeit des Bodens und damit unmittelbar ein Maß für den Bodenparameter P darstellen. Sowohl mittels eines Tragarms eines Erdbaugeräts als auch mittels eines an einem Mast verfahrbaren Schlittens kann eine konstante Kraft, die in Längsrichtung der Rüttleranordnung 1 wirkt, auf die Rüttleranordnung 1 beim Einfahren in den Boden aufgebracht werden. Die Geschwindigkeit kann beispielsweise dadurch gemessen werden, dass in regelmäßigen Abständen, beispielsweise alle 0,5 Sekunden, die Eindringtiefe der Rüttleranordnung gemessen wird und dass aus der Differenz der Eindringtiefe (Wegdifferenz) zwischen zwei Messzeitpunkten in Kenntnis der Zeitdauer zwischen zwei Messpunkten (Zeitdifferenz) auf die Geschwindigkeit geschlossen wird, d.h. v = Δx / Δt ,
    Figure imgb0001

    wobei v die Geschwindigkeit, Δx die Wegdifferenz und Δt die Zeitdifferenz ist.
  • Bei einem weiteren Beispiel zu Ermittlung des Bodenprofils ist ebenfalls vorgesehen, die Tragvorrichtung mit wenigstens annäherungsweise konstanter Geschwindigkeit in den Boden einzufahren und dabei eine Schwingungsamplitude an der Spitze 13 der Rüttleranordung als Betriebsparameter zu messen. Die Schwingungsamplitude kann hierbei mit zunehmender Festigkeit des Bodens abnehmen.
  • Ein Absolutwert des beim Einfahren der Rüttleranordnung 1 in den Boden ermittelten Bodenparameters P ist für die spätere Herstellung der Materialsäule 30 weniger relevant als eine Änderung dieses Bodenparameters P über der Tiefe x. Bei Bodentiefen, bei denen eine solche Änderung auftritt, wie beispielsweise bei den Bodentiefen x1, x2, x3 gemäß Figur 6 liegt eine Schichtgrenze zwischen zwei benachbarten Bodenschichten vor, so dass anhand des Bodenprofils insbesondere die Bodentiefen ablesbar sind, an denen Schichtgrenzen zwischen benachbarten Bodenschichten vorhanden sind.
  • Bezugnehmend auf die vorangehende Erläuterung werden die einzelnen Materialsäulenabschnitte abhängig von dem Säulenprofil hergestellt, das aus dem Bodenprofil abgeleitet wird, wobei das Säulenprofil der Säule an jeder Tiefenposition eine Eigenschaft, wie beispielsweise Durchmesser oder Festigkeit zuordnet. Das Säulenprofil wird beispielsweise so erzeugt, dass die entsprechend dem Säulenprofil hergestellte Materialsäule 30 dort einen größeren Durchmesser aufweist, wo das Bodenprofil auf eine geringe Dichte/Festigkeit des Bodens hinweist, und dort einen geringeren Durchmesser aufweist, wo das Bodenprofil auf eine höhere Dichte/Festigkeit des Bodens hinweist. Alternativ wird das Säulenprofil beispielsweise so erzeugt, dass die entsprechend dem Säulenprofil hergestellte Materialsäule 30 dort eine größere Festigkeit aufweist, wo das Bodenprofil auf eine geringe Dichte/Festigkeit des Bodens hinweist, und dort eine geringere Festigkeit aufweist, wo das Bodenprofil auf eine höhere Dichte/Festigkeit des Bodens hinweist.
  • Das Herstellen der Materialsäule kann beginnen, nachdem der Tiefenrüttler bis zu einer vorbestimmten Tiefe, die bei dem Beispiel gemäß Figur 6 mit x4 bezeichnet ist, eingebracht wurde. Diese maximale Tiefe definiert den Boden der herzustellenden Materialsäule 30. Das Herstellen eines Segments der Materialsäule kann in grundsätzlich bekannter Weise dadurch erfolgen, dass die Rüttleranordnung 1 um eine vorbestimmte Wegstrecke durch die Tragvorrichtung 2 angehoben wird, so dass ein Hohlraum unterhalb der Rüttleranordnung 1 entsteht (Schritt a), indem ein Füllmaterial G in den durch Anheben der Rüttleranordnung 1 unterhalb der Rüttleranordnung 1 entstehenden Hohlraum eingebracht wird (Schritt b) und indem die Rüttleranordnung 1 in das eingebrachte Füllmaterial eingefahren wird, um dadurch das Füllmaterial G zu verdichten bzw. zur Seite hin in den umgebenden Boden zu drängen (Schritt c). Die Rüttleranordnung kann hierbei entsprechend der Wegstrecke, um die sie zuvor angehoben wurde, in das Füllmaterial eingefahren werden. Diese Verfahrensschritte, nämlich Anheben der Rüttleranordnung, Einbringen des Füllmaterials und Einfahren der Rüttleranordnung in das Füllmaterial können n-mal wiederholt werden, mit n≥0. Die Anzahl n der Wiederholschritte ist hierbei abhängig von dem gewünschten Durchmesser des herzustellenden Materialsäulenabschnitts. Die Anzahl der Wiederholungen ist dabei umso größer, je größer der gewünschte Durchmesser ist, wobei der Durchmesser umso größer ist, je niedriger die zuvor ermittelte Dichte/Festigkeit des Bodens ist. Diese Anzahl n der Wiederholungen kann für jeden gewünschten Säulendurchmesser fest vorgegeben sein, d.h. zu Begin der Herstellung eines Segments steht bereits fest, wie viele Wiederholungen durchgeführt werden.
  • Wenn es beispielsweise gilt, ein Säulensegment mit einer bestimmten Festigkeit herzustellen, steht die Anzahl n zu Beginn der Herstellung noch nicht fest. In diesem Fall wird bei jeder Wiederholung die Festigkeit des Segments gemessen und es findet dann keine weitere Wiederholung statt, wenn die gewünschte Festigkeit erreicht ist. Die Festigkeit der Säule kann beispielsweise anhand der Leistungsaufnahme des Rüttlermotors ermittelt werden. Die Säule, bzw. ein Säulenabschnitt ist dabei um so fester, je höher die Leistungsaufnahme des Rüttlers beim Einfahren in das zuvor eingebrachte Füllmaterial ist.
  • Figur 8 zeigt schematisch die Herstellung einer Materialsäule. Dargestellt ist in Figur 7 die Position der Rüttlerspitze 13 der Rüttleranordnung 11 über der. Das Verfahren beginnt zu einem Zeitpunkt t0, zu dem die Rüttlerspitze bis auf die Tiefe x4 in den Boden eingebracht wurde. Vor dem Zeitpunkt t0 erfolgt das Einbringen der Rüttleranordnung 1 in den Boden, beispielsweise entsprechend einem der zuvor erläuterten Verfahren, bei dem das Bodenprofil ermittelt wird.
  • Bei dem anhand von Figur 8 erläuterten Verfahren, werden sechs Segmente der Materialsäule 30 hergestellt, wobei in dem Beispiel zur Herstellung jedes dieser Segmente, die Rüttlerspitze wenigstens zwei Mal angehoben wird, um Füllmaterial auszubringen und anschließend wieder in das Füllmaterial abgesenkt wird. Die einzelnen Segmente besitzen jeweils die gleiche Höhe, was anhand von Figur 8 dadurch ersichtlich ist, dass Amplituden einer Auf- und Abbewegung der Rüttlerspitze für die Herstellung der einzelnen Segmente jeweils gleich sind.
  • Gemäß Figur 8 wird ein erstes Segment zwischen den Bodentiefen x3 und x4 hergestellt, so dass dieses Segment dem Materialsäulenabschnitt 34 gemäß Figur 6 entspricht. Zwischen den Bodentiefen x2 und x3 werden übereinander liegend zwei weitere Segmente hergestellt, die den Materialsäulenabschnitt 33 gemäß Figur 6 bilden. Die Anzahl der durchgeführten Wiederholungen ist für die Segmente dieses Materialsäulenabschnitts 33 größer als für den Materialsäulenabschnitt 34, um dadurch den Maetrialsäulenabschnitt 33 mit einem größeren Durchschnitt als den Materialsäulenabschnitt 34 herzustellen. Ein weiteres Segment, das in dem Beispiel dem Materialsäulenabschnitt 32 gemäß Figur 6 entspricht, wird zwischen den Bodentiefen x1 und x2 hergestellt, wobei für diesen Materialsäulenabschnitt 32 die Anzahl der Wiederholungen noch größer als für den Materialsäulenabschnitt 33 ist, um diesen Materialsäulenabschnitt 32 mit einem noch größeren Durchmesser herzustellen, da der diesen Abschnitt 32 umgebende Boden die niedrigste Dichte/Festigkeit aufweist. Schließlich werden zwei weitere Segmente übereinander zwischen den Bodentiefen x0 (die dem Niveau der Oberfläche 110 entspricht) und x1 hergestellt. Diese beiden Segmente bilden den Materialsäulenabschnitt 31 gemäß Figur 6, der eine kleineren Durchmesser als die Materialsäulenabschnitte 32, 33, jedoch einen größeren Durchmesser als der Materialsäulenabschnitt 34 aufweist.
  • Die Höhen der einzelnen Segmente ist bestimmt durch die Wegstrecke, um die die Rüttleranordnung 1 zu Beginn Herstellung des jeweiligen Segments gegenüber dem Boden oder gegenüber dem unmittelbar zuvor hergestellten Segments angehoben wird, um Füllmaterial auszubringen. Die einzelnen Segmente können jeweils mit der gleichen Höhe hergestellt werden. Es ist, abhängig von der Bodenbeschaffenheit jedoch auch möglich, die einzelnen Segmente mit unterschiedlichen Höhen herzustellen, insbesondere um die einzelnen Materialsäulenabschnitte derart an die Dicke der einzelnen Bodenschichten anzupassen, dass für jede Bodenschicht der optimale Materialsäulenabschnitt ermittelt werden kann.
  • Bei dem anhand von Figur 8 erläuterten Verfahren, verfährt die Rüttleranordnung bei der Herstellung eines Segments stets über die gesamte Höhe (oder Tiefe) des Segments, d.h. die Rüttleranordnung verfährt nach Ausbringen von Füllmaterial durch das ausgebrachte Füllmaterial wieder bis zum Boden des Segments, um es zu verdichten. Das im letzten Wiederholschritt ausgebrachte Füllmaterial wird dann allerdings nicht mehr verdichtet, sondern die Rüttleranordnung fährt bis an das obere Ende des nächsten Segments, wobei der darunter liegende Hohlraum mit Füllmaterial aufgefüllt wird. Dieses Füllmaterial wird nachfolgend allerdings nur noch im Bereich des neu herzustellenden Segments verdichtet.
  • Figur 9 veranschaulicht eine Alternative zu dem Verfahren nach Figur 8 anhand der Herstellung eines Segments, in dem Beispiel des Segments zwischen den Bodentiefen x3 und x4. Bei diesem Verfahren fährt die Rüttleranordnung - wie auch bei dem Verfahren gemäß Figur 8 - zu Beginn der Herstellung des Segments von dessen unterem Ende (an der Position x4) zu dessen oberem Ende (an der Position x3), wobei der dadurch entstehende Hohlraum zwischen x4 und x3 mit Füllmaterial aufgefüllt wird. Der Hub bzw. die Aufwärts-Wegstrecke, um den die Rüttleranordnung in diesem Fall bewegt wird, ist in Figur 9 mit h1 bezeichnet. Anschließend fährt die Rüttleranordnung allerdings nicht mehr bis zum unteren Ende des Segments, sondern ausgehend von dem oberen Ende nur noch um eine Distanz bzw. Abwärts-Wegstrecke h2, mit h2<h1, nach unten und anschließend wieder bis zum oberen Ende, d.h. um die Distanz h2 nach oben, so dass der Hub h2 im ersten Wiederholschritt kleiner als der Hub h1 im ersten Schritt ist. Ein Hub h3 im nächsten Wiederholschritt ist erneut kleiner als im vorangehenden Schritt. Nach diesem Wiederholschritt endet in dem Beispiel die Herstellung dieses Segments und die Herstellung eines neuen Segments beginnt, in dem die Rüttleranordnung bis an das obere Ende des nachfolgenden Segments verfährt (bzw. verfahren wird).
  • Der erste Hub h1 definiert die Höhe des Segments. Dieser Hub beträgt beispielsweise 1 m und allgemein zwischen 1 m und 2m. Bei einem Beispiel ist vorgesehen, dass eine Differenz Δh des Hubs (Hubdifferenz) zwischen zwei Schritten jeweils gleich ist. Bezugnehmend auf das Beispiel gemäß Figur 9 gilt dann: h1=h2+Δh und h2=h3+Δh. Bei einem Beispiel ist vorgesehen, die Rüttleranordnung so lange anzuheben (und dabei Füllmaterial auszubringen) und mit verringertem Hub wieder abzusenken (um das Füllmaterial zu verdichten), bis der Hub kleiner oder gleich einem vorgegebenen Wert ist. Dieser Wert entspricht beispielsweise der Differenz Δh. Gilt beispielsweise h1=1m und Δh=20cm, so werden folgende Schritte für die Herstellung eines Segments durchgeführt: Anheben 1m, Absenken 80cm, Anheben 80cm, Absenken 60cm, Anheben 60cm, Absenken 40cm, Anheben 40cm, Absenken 20cm, Anheben bis zum oberen Ende des nächsten Segments. Über die Hubdifferenz Δh kann bei diesem Verfahren die Anzahl der Wiederholungsschritte und damit der Durchmesser bzw. die Festigkeit des Segments eingestellt werden. Allgemein nimmt der Durchmesser mit kleiner werdender Hub-differenz Δh zu, da in diesem Fall mehr Wiederholschritte durchgeführt werden, so dass mehr Material eingebracht wird.
  • Bei einem Verfahren ist vorgesehen, dass das Säulenprofil für jedes Segment dessen Höhe und die Hubdifferenz Δh definiert. Bei einem weiteren Verfahren ist vorgesehen, dass das Säulenprofil für jedes Segment dessen Höhe und die Hub-differenz Δh definiert und außerdem eine maximale Leistungsaufnahme des Rüttlermotors definiert, wobei die Herstellung eines Segments endet, wenn der Hub kleiner als der vorgegebene Minimalwert ist, wenn also alle Wiederholungsschritte durchlaufen wurden, oder wenn die maximale Leistungsaufnahme erreicht ist. Das Einbringen von Füllmaterial in den Boden erfolgt bei den zuvor erläuterten Rüttleranordnungen, die ein Silorohr oder Materialrohr 11 aufweisen, aus dem Silorohr oder Materialrohr. Die Abmessungen, d.h. insbesondere der Durchmesser der Säule, ergibt sich rechnerisch aus dem Integral der bei der Summe aller Aufwärtsbewegungen in den Boden abgegebenen Füllmaterialmenge, welche sich durch den bekannten Querschnitt von Rüttler und Materialrohr und durch Aufwärts-Wegstrecke leicht berechnen lässt. Beträgt der Rüttlerquerschnitt beispielsweise 0,2 m2 Querschnitt, so wird, an einer Stelle, an der der Rüttler beispielsweise 5-mal auf und abfährt dort rechnerisch einen Säulenquerschnitt mit einer Fläche von 5 x 0,2 = 1,0 m2 erzeugt.
  • Bei einem weiteren Ausführungsbeispiel einer Rüttleranordnung (nicht dargestellt) ist das Rohr 11 lediglich als Verlängerungsrohr ausgebildet. Füllmaterial wird bei dieser Rüttleranordnung in den Hohlraum unterhalb der Rüttleranordung dadurch eingebracht, dass Material von oben an dem Rohr vorbei, d. h. in einem Ringspalt zwischen dem Rohr 11 und dem umgebenden Boden nach unten gebracht wird.
  • Das zuvor erläuterte Verfahren kann vollautomatisch durch einen Rechner gesteuert durchgeführt werden. Der Rechner ist dazu ausgebildet, die Tragvorrichtung 2 zu steuern und erhält Informationen über die Position der Rüttleranordnung 1 durch einen geeigneten Sensor und den Betriebsparameter (wie beispielsweise Leistungsaufnahme des Rüttlermotors, Einfahrgeschwindigkeit oder Schwingungsamplitude) der Rüttleranordnung. Die Steuerung der Tragvorrichtung 2 durch den Rechner kann beim Einfahren, je nach speziellem Verfahren, das Einfahren der Rüttleranordnung 1 mit konstanter Geschwindigkeit oder konstanter Kraftbeaufschlagung umfassen, wobei der Rechner beim Einfahren die erhaltenen Werte für den Betriebsparameter den jeweiligen Bodentiefen zuordnet, um dadurch das Bodenprofil zu erhalten.
  • Das Säulenprofil kann aus dem Bodenprofil, wie es beispielsweise in Figur 6 dargestellt ist, automatisch, d.h. beispielsweise softwaregesteuert erzeugt werden. Wie erläutert sind in dem Säulenprofil verschiedene Segmente definiert, die jeweils eine vorgegebene Höhe und Eigenschaft aufweisen. Beispiele solcher Säulenprofile sind in den Figuren 6 und 7 dargestellt. Die einzelnen Segmente können entsprechend einem der zuvor anhand der Figuren 6 bis 9 erläuterten Verfahren hergestellt werden.
  • Das Steuern der Tragvorrichtung 2 durch den Rechner für die Herstellung jedes Segments umfasst, die Rüttleranordnung wenigstens einmal um eine vorgegebene Wegstrecke (Aufwärts-Wegstrecke) anzuheben und wenigstens einmal um eine vorgegebene Wegstrecke (Abwärts-Wegstrecke) wieder abzusenken. Wie erläutert können Aufwärts-Wegstrecke und Abwärts-Wegstrecke in einem Schritt gleich sein, können sich aber auch um eine Hub-Differenz Δh unterscheiden. Sowohl bei Verwendung eines Aufsatzrüttlers mit einem Silorohr als auch bei Verwendung eines Tiefenrüttlers mit Silorohr fließt Füllmaterial beim jedem Anheben der Rüttleranordnung automatisch in den Hohlraum unterhalb der Rüttleranordnung 1, so dass lediglich sicherzustellen ist, dass stets ausreichend Füllmaterial in dem Silorohr vorhanden ist. Die Höhe eines herzustellenden Segments, also die Wegstrecke um die die Rüttleranordnung 1 ausgehend vom Grund der Aussparung oder ausgehend vom oberen Ende eines zuvor hergestellten Segments erstmals angehoben wird, und den Durchmesser und/oder die Festigkeit des Materialsäulenabschnitts steuert der Rechner abhängig von dem zuvor ermittelten, von dem Bodenprofil abhängigen Säulenprofil in bereits erläuterter Weise. Der Durchmesser und/oder die Festigkeit eines Segments wird kann in erläuterter Weise durch die Anzahl der Wiederholungen eingestellt werden. Ein Geräteführer hat bei diesem automatischen Verfahren nur noch eine Kontroll- und Sicherheitsfunktion und fährt die Rüttleranordnung 1 mit dem Traggerät 2 von Punkt zu Punkt, an dem eine Materialsäule hergestellt werden soll.
  • Das Verfahren kann auch als halbautomatisches Verfahren durchgeführt werden, bei dem die Rüttleranordnung 1 zunächst rechnergesteuert in den Boden eingefahren und das Bodenprofil ermittelt wird und bei dem bei Herstellung der Materialsäule 30 die Tragvorrichtung 2 durch einen Geräteführer gesteuert wird, und zwar nach Vorgaben, die vom Rechner auf einem Anzeigegerät (Display) angezeigt werden. Das Display zeigt dabei Symbole, die dem Geräteführer beispielsweise anzeigen, in welcher Richtung die Tragvorrichtung bewegt werden soll, d.h. nach oben oder nach unten, und wie weit die Tragvorrichtung noch bewegt werden soll. Eine Sequenz (a-f) solcher Symbole bei der Herstellung eines Materialsäulenabschnitts ist in Figur 8 dargestellt. Ein Anzeigefeld für die Symbole umfasst in dem Beispiel einen Richtungspfeil als erstes Symbol und einen verschiebbaren Balken als zweites Symbol. In Figur 8 ist das Anzeigefeld für sieben verschiedene Zeitpunkte dargestellt. Der Richtungspfeil zeigt dem Geräteführer an, in welcher Richtung der Tragarm bewegt werden soll. Ein Pfeil nach oben, wie beispielsweise in den Figuren 8a und 8b symbolisiert eine Bewegung nach oben, während ein Pfeil nach unten, wie in den Figuren 8d, 8e und 8f eine Bewegung nach unten symbolisiert. Der Balken (schraffiert dargestellt) zeigt an, wie weit die Tragvorrichtung 2 mit der Rüttleranordnung 1 noch in der durch den Richtungspfeil vorgegebenen Richtung bewegt werden soll. Ist das Anzeigefeld vollständig durch den Balken ausgefüllt ist, wie beispielsweise in Figur 8c dargestellt ist, oder vollständig leer, wie beispielsweise in Figur 8c dargestellt ist, so ist der Umkehrpunkt für eine Umkehr der Bewegungsrichtung der Tragvorrichtung erreicht.
  • Die Anzeige wird durch den Rechner abhängig von dem zuvor ermittelten Säulenprofil und von der aktuellen Eindringtiefe der Rüttleranordnung 1 bzw. der Rüttlerspitze 13 im Boden gesteuert. Die Bewegung des Balkens symbolisiert dabei die Bewegung der Rüttleranordnung 1 nach oben oder nach unten. Ein unteres Ende des Anzeigefeldes bzw. des Balkens markiert bei der Anzeige gemäß Figur 8 einen unteren Umkehrpunkt für eine Abwärtsbewegung der Rüttleranordnung und ein oberes Ende markiert einen oberen Umkehrpunkt für eine Aufwärtsbewegung der Rüttleranordnung. Jeder dieser Umkehrpunkte repräsentiert eine Bodentiefe, wobei die durch den oberen und unteren Umkehrpunkt repräsentierten Bodentiefen sich im Verlauf der Säulenherstellung ändern.
  • Je nach Art des Herstellungsverfahrens können der obere und der untere Umkehrpunkt bei der Herstellung eines Segments jeweils gleich bleiben, oder der o-bere Umkehrpunkt kann gleich bleiben und der untere Umkehrpunkt kann sich ändern. Dies ist nachfolgend für die Herstellung eines Säulensegments erläutert, das bei der Säule 30 gemäß Figur 6 den unteren Säulenabschnitt 34 bildet.
  • Bei einem Verfahren gemäß Figur 8, bei dem die Rüttleranordnung während der einzelnen Wiederholschritte stets über die gesamte Höhe des Segments verfahren wird, repräsentiert der untere Umkehrpunkt des Anzeigefelds stets die Bodentiefe x4 und der obere Umkehrpunkt stets die Bodentiefe x3. Nach Herstellung des untersten Säulenabschnitts bzw. Segments 34 ändert sich die dem oberen Umkehrpunkt zugeordnete Bodentiefe, d.h. das Anzeigefeld zeigt so lange eine notwendige Aufwärtsbewegung der Rüttleranordnung 1 an, bis die Rüttleranordnung auf eine Bodentiefe zwischen x2 und x3 ausgefahren ist, an der ein erstes Segment des Säulenabschnitts 33 hergestellt wird.
  • Bei einem Verfahren gemäß Figur 9, bei dem sich der Hub mit jedem Wiederholungsschritt ändert, repräsentiert der obere Umkehrpunkt stets die Bodentiefe x3, der untere Umkehrpunkt ändert sich mit jedem Wiederholungsschritt, so dass beispielsweise der erste Umkehrpunkt bei einem ersten Einfahren die Bodentiefe x4-Δh, bei einem zweiten Einfahren die Bodentiefe x4-2Δh, bei einem dritten Einfahren (in Figur 9 nicht dargestellt) x4-3Δh, usw. repräsentiert. Nach Herstellung des untersten Säulenabschnitts bzw. Segments 34 ändert sich die dem oberen Umkehrpunkt zugeordnete Bodentiefe, d.h. das Anzeigefeld zeigt so lange eine notwendige Aufwärtsbewegung der Rüttleranordnung 1 an, bis die Rüttleranordnung auf eine Bodentiefe zwischen x2 und x3 ausgefahren ist, an der ein erstes Segment des Säulenabschnitts 33 hergestellt wird.
  • Die tatsächliche Lage der Umkehrpunkte im Boden, die die Bodentiefe, die einem Umkehrpunkt zugeordnet ist, und auch die Anzahl der Wiederholungsschritte pro Segment müssen dem Geräteführer nicht bekannt sein. Diese werden durch einen Rechner bzw. eine Steuerung basierend auf dem zuvor ermittelten Säulenprofil vorgegeben und den Umkehrpunkten des Anzeigefelds zugeordnet.
  • Das Anzeigefeld zeigt einen ersten Umkehrpunkt und einen zweiten Umkehrpunkt, denen jeweils eine Bodentiefe zugeordnet ist, sowie eine Bewegung der Rüttleranordnung zwischen den beiden Umkehrpunkten sowohl bezüglich einer Bewegungsgeschwindigkeit als auch bezüglich einer Bewegungsrichtung. Hierzu wird in regelmäßigen oder unregelmäßigen Zeitabständen die Position der Rüttleranordnung im Boden (zwischen den zwei Umkehrpunkten) erfasst und auf die Anzeige abgebildet. Bei dem Beispiel gemäß Figur 10 ist ein unterer Umkehrpunkt durch ein unteres Ende eines Anzeigefeldes repräsentierte und ein oberer Umkehrpunkt ist durch ein oberes Ende des Anzeigefeldes repräsentiert, ein Pfeil zeigt die gewünschte Bewegungsrichtung (Soll-Bewegungsrichtung) und ein Balken veranschaulicht die Position der Rüttleranordnung zwischen den Umkehrpunkten. Außer einem Balken und einem Pfeil eignen sich selbstverständlich beliebige weitere Symbole zur Anzeige der gewünschten Bewegungsrichtung und des noch erforderlichen Bewegungsumfangs.
  • Die zuvor erläuterten automatischen oder halbautomatischen Verfahren, bei denen eine Materialsäule 30 im Boden mit mehreren Segmenten abhängig von einem Säulenprofil hergestellt wird, is unabhängig von der Art der Ermittlung des Säulenprofils. Dieses Säulenprofil kann, wie erläutert, automatisch aus einem Bodenprofil erzeugt werden, das beim Einfahren der Rüttleranordnung in den Boden ermittelt wird.
  • Das Säulenprofil kann allerdings auch manuell aus einem Bodenprofil erzeugt werden, wie beispielsweise aus einem beim Einfahren der Rüttleranordnung in den Boden ermittelten Bodenprofil oder auch aus einem mittels einer Kernlochbohrung ermittelten Bodenprofils.. So kann beispielsweise zunächst nur die Anzahl und die Lage der einzelnen Segmente in dem Säulenprofil vorgegeben werden, wobei den einzelnen Segmenten dann Eigenschaften, wie beispielsweise Durchmesser oder Festigkeit (die das Verfahren zur Herstellung der einzelnen Segmente bestimmen) manuell zugeordnet werden. Diese Zuordnung kann abhängig von dem Bodenprofil erfolgen. Dieses Vorgehen kann insbesondere dann gewählt werden, wenn der Bodenaufbau grundsätzlich bekannt ist, wenn also bekannt ist, welche Arten von Bodenschichten vorhanden sind und in welcher Abfolge diese Bodenschichten vorhanden sind, wenn jedoch nicht genau bekannt ist, wie dick die einzelnen Bodenschichten sind. Das Bodenprofil zeigt in diesem Fall insbesondere die Schichtgrenzen an, zeigt also an, in welchen Tiefen die Grenzen zwischen einzelnen Schichten liegen. Eine Bedienperson, wie beispielsweise ein Bodeningenieur, kann dann in Kenntnis der Lage der Schichtgrenzen einzelnen Segmenten in dem Säulenprofil bestimmte Eigenschaften zuordnen. Das Säulenprofil wird beispielsweise an einem Display angezeigt. Die Zuordnung von Eigenschaften zu einzelnen Segmenten kann mittels beliebiger Eingabewerkzeuge erfolgen, wie einer Tastatur, sprachgesteuert oder direkt an dem Display, wenn dieses als Touchpad, wie beispielsweise als Touchpad eines Smartphones oder eines Tablet-Computers, ausgebildet ist. Ein so bereitgestelltes Säulenprofil kann dann bei einem der zuvor erläuterten Herstellungsverfahren verwendet werden.
  • Merkmale, die zuvor im Zusammenhang mit einem Ausführungsbeispiel erläutert wurden, können selbstverständlich auch mit Merkmalen anderer Ausführungsbeispiele kombiniert werden, auch wenn dies zuvor nicht explizit erwähnt wurde, sofern sich diese Merkmale nicht gegenseitig ausschließen.

Claims (27)

  1. Verfahren, das aufweist:
    Bereitstellen einer Rüttleranordnung (1), die an einer Tragvorrichtung (2) gehalten ist, die dazu ausgebildet ist, in den Boden (100) einzudringen, und die einen Rüttlermotor aufweist;
    Einfahren der Rüttleranordnung (1) bis zu einer vorbestimmten Tiefe in den Boden (100);
    Ermitteln eines Bodenprofils des Bodens (100) beim Einfahren der Rüttleranordnung (1), wobei das Ermitteln des Bodenprofils das Messen wenigstens eines Betriebsparameters der Rüttleranordnung (1) beim Einfahren in den Boden (100) umfasst und wobei das Bodenprofil jeweils einen Bodenparameter (P) für wenigstens zwei unterschiedliche Bodentiefen umfasst.
  2. Verfahren nach Anspruch 1, das weiterhin aufweist:
    Herstellen einer Materialsäule (30) unter Verwendung der Rüttleranordnung (1) abhängig von dem Bodenprofil in dem Boden.
  3. Verfahren nach Anspruch 1, das weiterhin aufweist:
    Einfahren der Rüttleranordnung (1) getrieben durch die Tragvorrichtung (2) mit wenigstens annäherungsweise konstanter Geschwindigkeit in den Boden;
    Messen einer Leistungsaufnahme des Rüttlermotors als Betriebsparameter beim Einfahren der Rüttleranordnung in den Boden (100).
  4. Verfahren nach Anspruch 1, das weiterhin aufweist:
    Ausüben einer wenigstens annäherungsweise konstanten Kraft auf die Rüttleranordnung (1) durch die Tragvorrichtung (2) beim Einbringen der Rüttleranordnung (1) in den Boden (100);
    Messen einer Geschwindigkeit, mit der die Rüttleranordnung in den Boden einfährt, als Betriebsparameter.
  5. Verfahren nach Anspruch 1, das weiterhin aufweist:
    Einfahren der Rüttleranordnung (1) getrieben durch die Tragvorrichtung (2) mit wenigstens annäherungsweise konstanter Geschwindigkeit in den Boden;
    Messen einer Schwingungsamplitude einer Spitze der Rüttleranordnung (1) als Betriebsparameter beim Einfahren der Rüttleranordnung in den Boden (100).
  6. Verfahren nach einem der vorangehenden Ansprüche,
    bei dem das Herstellen der Materialsäule (30) abhängig von dem Bodenprofil derart erfolgt, dass ein Durchmesser der Materialsäule (30) in einer bestimmten Bodentiefe abhängig ist von dem für diese Bodentiefe ermittelten Bodenparameter.
  7. Verfahren nach Anspruch 6,
    bei dem der für eine bestimmte Bodentiefe ermittelte Bodenparameter abhängig ist von einer Bodendichte und/oder einer Bodensteifigkeit, und
    bei dem die Materialsäule derart hergestellt wird, dass der Durchmesser der Materialsäule mit abnehmender Bodendichte und/oder abnehmender Bodensteifigkeit zunimmt.
  8. Verfahren nach einem der vorangehenden Ansprüche, bei dem das Herstellen der Materialsäule (30) das Herstellen von wenigstens zwei Segmenten aufweist, wobei das Herstellen jedes Segments aufweist:
    a) Anheben der Rüttleranordnung (1) um eine vorbestimmte Aufwärts-Wegstrecke, so dass ein Hohlraum unterhalb der Rüttleranordnung (1) entsteht;
    b) Einbringen eines Füllmaterials (G) in den Hohlraum;
    c) Einfahren der Rüttleranordnung (1) um eine vorbestimmte Abwärts-Wegstrecke in das Füllmaterial;
    d) Wiederholen der Verfahrensschritte a) bis c) n-mal, mit n ≥ 0.
  9. Verfahren nach Anspruch 8, bei dem die Aufwärts-Wegstrecke und die Abwärts-Wegstrecke in den Schritten a) und b) jeweils gleich sind.
  10. Verfahren nach Anspruch 8, bei dem die Abwärts-Wegstrecke im Schritt b) um eine Wegdifferenz (Δh) kleiner als die Aufwärts-Wegstrecke im unmittelbar vorangehenden Schritt a) ist und bei dem bei jeder Wiederholung die Aufwärts-Wegstrecke im Schritt a) gleich der Abwärts-Wegstrecke im unmittelbar vorangehenden Schritt b) ist.
  11. Verfahren nach Anspruch 10, bei dem die Wegdifferenz (Δh) bei allen Wiederholungen gleich ist.
  12. Verfahren nach einem der Ansprüche 8 bis 11, bei dem für die Herstellung eines Materialsäulenabschnitts in einer vorbestimmten Bodentiefe, die Anzahl n der Wiederholungen im Schritt d) abhängig ist von dem für diese Bodentiefe ermittelten Bodenparameter.
  13. Verfahren nach Anspruch 12,
    bei dem der Bodenparameter abhängig ist von einer Bodendichte und/oder einer Bodensteifigkeit, und
    bei dem die Anzahl n der Wiederholungen mit abnehmender Bodendichte und/oder abnehmender Bodensteifigkeit zunimmt.
  14. Verfahren nach einem der Ansprüche 8 bis 11, bei dem die Festigkeit des Segments während der Herstellung gemessen wird und bei dem die Anzahl n der Wiederholungen von der gemessenen Festigkeit abhängig ist.
  15. Verfahren nach einem der vorangehenden Ansprüche, bei dem die Rüttleranordnung aufweist:
    ein Rüttlerrohr (11) mit einem oberen und einem unteren Ende;
    einen an dem Rüttlerrohr (11) angeordneten Rüttler (12) mit dem Rüttler-motor.
  16. Verfahren nach Anspruch 15, bei dem der Rüttler (12) als Tiefenrüttler ausgebildet und an einem unteren Ende des Rüttlerrohres (11) befestigt ist.
  17. Verfahren nach Anspruch 15, bei dem der Rüttler (12) als Aufsatzrüttler ausgebildet und an einem oberen Ende des Rüttlerrohres (11) befestigt ist.
  18. Verfahren nach Anspruch 15, bei dem das Rohr als Silorohr ausgebildet ist.
  19. Verfahren nach einem der vorangehenden Ansprüche, bei dem die Tragvorrichtung (2) einen Tragarm eines Erdbaugeräts aufweist.
  20. Verfahren nach einem der Ansprüche 1 bis 18, bei dem die Tragvorrichtung einen Mast (25) und einen an dem Mast verfahrbaren Schlitten (24) aufweist.
  21. Verfahren zur Herstellung einer Materialsäule (30) im Boden (100), wobei das Verfahren aufweist:
    Bereitstellen einer Rüttleranordnung (1), die an einer Tragvorrichtung (2) gehalten ist und die dazu ausgebildet ist, in den Boden (100) einzudringen;
    Einfahren der Rüttleranordnung in den Boden (100);
    Mehrfaches Verfahren der Rüttleranordnung in dem Boden zwischen Umkehrpunkten, nämlich einem oberen Umkehrpunkt und einem unteren Umkehrpunkt, und Einbringen von Füllmaterial in den Boden beim Verfahren der Rüttleranordnung vom unteren Umkehrpunkt zum oberen Umkehrpunkt; und
    Erfassen einer Position der Rüttleranordnung im Boden;
    wobei die Umkehrpunkte durch eine Steuerung vorgegeben werden, und
    wobei eine Bewegung der Rüttleranordnung zwischen den Umkehrpunkten, in einem elektronischen Anzeigefeld dargestellt wird, das eine Soll-Bewegungsrichtung der Rüttleranordnung sowie die Position der Rüttleranordnung zwischen den Umkehrpunkten anzeigt.
  22. Verfahren nach Anspruch 21, das das Herstellen von wenigstens zwei Segmenten der Materialsäule umfasst, wobei das Herstellen eines Segments aufweist:
    a) Anheben der Rüttleranordnung (1) um eine vorbestimmte Aufwärts-Wegstrecke bis zu einem oberen Umkehrpunkt, so dass ein Hohlraum unterhalb der Rüttleranordnung (1) entsteht;
    b) Einbringen eines Füllmaterials (G) in den Hohlraum;
    c) Einfahren der Rüttleranordnung (1) um eine vorbestimmte Abwärts-Wegstrecke in das Füllmaterial bis zu einem unteren Umkehrpunkt;
    d) Wiederholen der Verfahrensschritte a) bis c) n-mal, mit n ≥ 0.
  23. Verfahren nach Anspruch 22, bei dem die oberen Umkehrpunkte bei jeder Wiederholung gleich sind und bei dem die unteren Umkehrpunkte bei jeder Wiederholung gleich sind.
  24. Verfahren nach Anspruch 8, bei dem die Abwärts-Wegstrecke im Schritt b) um eine Wegdifferenz (Δh) kleiner als die Aufwärts-Wegstrecke im unmittelbar vorangehenden Schritt a) ist und bei dem bei jeder Wiederholung die Aufwärts-Wegstrecke im Schritt a) gleich der Abwärts-Wegstrecke im unmittelbar vorangehenden Schritt b) ist.
  25. Verfahren nach Anspruch 10, bei dem die Wegdifferenz (Δh) bei allen Wiederholungen gleich ist.
  26. Verfahren nach einem der Ansprüche 21 bis 25,
    bei dem das Anzeigefeld ein unteres Ende aufweist, das einen unteren Umkehrpunkt repräsentiert, und ein oberes Ende aufweist, das einen oberen Umkehrpunkt repräsentiert,
    und bei dem ein zwischen dem oberen und dem unteren Ende angeordneter Balken die Position der Rüttleranordnung zwischen den Umkehrpunkten anzeigt.
  27. Verfahren nach Anspruch 16, bei dem ein Richtungspfeil in oder neben dem Anzeigefeld die Soll-Bewegungsrichtung der Rüttleranordnung anzeigt.
EP12743668.1A 2011-06-15 2012-06-15 Verfahren zur bodensondierung Revoked EP2737132B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011077574 2011-06-15
PCT/DE2012/200043 WO2012171527A2 (de) 2011-06-15 2012-06-15 Verfahren zur bodensondierung

Publications (2)

Publication Number Publication Date
EP2737132A2 EP2737132A2 (de) 2014-06-04
EP2737132B1 true EP2737132B1 (de) 2016-03-02

Family

ID=46633969

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12743668.1A Revoked EP2737132B1 (de) 2011-06-15 2012-06-15 Verfahren zur bodensondierung

Country Status (5)

Country Link
US (1) US20140219726A1 (de)
EP (1) EP2737132B1 (de)
DE (1) DE112012002459A5 (de)
HK (1) HK1192596A1 (de)
WO (1) WO2012171527A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016120382A1 (de) * 2016-10-26 2018-04-26 Gmb Gmbh Methode, Prinzip, Steuerung und Ausrüstung zur Durchführung der selbsttätigen Verdichtung von mehrphasigen Korngemischen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015008015A1 (de) 2015-06-22 2016-12-22 Liebherr-Werk Nenzing Gmbh Verfahren zum Steuern einer Vibrationsramme
EP3517687B1 (de) 2018-01-26 2020-08-05 Keller Holding GmbH Verfahren zur verdichtungserfassung und -steuerung beim verdichten eines bodens mittels tiefenrüttler
EP3533932B1 (de) * 2018-03-01 2020-07-15 BAUER Spezialtiefbau GmbH Verfahren und system zum erstellen eines gründungselementes im boden

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3772892A (en) 1971-09-18 1973-11-20 M Ogawa Process of installing compacted sand columns in the ground
US5663649A (en) 1995-06-02 1997-09-02 Her Majesty The Queen In Right Of Canada, As Represented By Agriculture And Agri-Food Canada Soil penetrometer
DE19814021A1 (de) 1998-03-30 1999-10-14 Degen Wilhelm Gerät zum Einbringen eines Fremdstoffes in Böden oder zur Verdichtung des Bodens
DE19928692C1 (de) 1999-06-23 2000-11-30 Bauer Spezialtiefbau Online-Verdichtungskontrolle
DE4130339C2 (de) 1991-09-12 2000-12-14 Keller Grundbau Gmbh Verfahren zur Verbesserung eines Baugrundes
DE10146342B4 (de) 2001-09-20 2005-12-08 Keller Grundbau Gmbh Verfahren zur Ermittlung der Lagerungsdichte

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946968B1 (de) * 1971-05-25 1974-12-13
NL7301924A (de) * 1973-02-09 1974-08-13
US4594899A (en) * 1984-03-06 1986-06-17 Robert Henke Method and apparatus for testing soil
DE69003530T2 (de) * 1990-05-28 1994-04-28 Caterpillar Paving Prod Einrichtung und Verfahren zur Überwachung der Schwingungsfrequenz einer Verdichtungsmaschine.
US5109702A (en) * 1990-06-27 1992-05-05 The United States Of America As Represented By The Secretary Of The Air Force Method for determining liquefaction potential of cohesionless soils
US5797705A (en) * 1990-12-12 1998-08-25 Willibald Kellner Method for manufacturing a tubular foundation in the ground
DE4228542C1 (de) * 1992-08-27 1994-05-11 Keller Grundbau Gmbh Verfahren und Vorrichtung zum Verdichten von Deponien mittels des Tiefenrüttelns
US5771985A (en) * 1996-10-08 1998-06-30 Jaworski; Bill L. Earth penetrating apparatus for obtaining sediment samples, driving instrument probes, pilings, or sheet pilings
DE10053427C2 (de) * 2000-10-27 2003-04-30 Vibroflotation B V Vorrichtung und Verfahren zur Erzeugung von Materialsäulen im Boden von Gewässern
GB0028645D0 (en) * 2000-11-24 2001-01-10 Univ Cranfield A handheld measurement device for the determination of racecourse going

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3772892A (en) 1971-09-18 1973-11-20 M Ogawa Process of installing compacted sand columns in the ground
DE4130339C2 (de) 1991-09-12 2000-12-14 Keller Grundbau Gmbh Verfahren zur Verbesserung eines Baugrundes
US5663649A (en) 1995-06-02 1997-09-02 Her Majesty The Queen In Right Of Canada, As Represented By Agriculture And Agri-Food Canada Soil penetrometer
DE19814021A1 (de) 1998-03-30 1999-10-14 Degen Wilhelm Gerät zum Einbringen eines Fremdstoffes in Böden oder zur Verdichtung des Bodens
US6588987B1 (en) 1998-03-30 2003-07-08 Vibroflotation B.V. Device for inserting foreign matter into the soil or for compacting the soil
DE19928692C1 (de) 1999-06-23 2000-11-30 Bauer Spezialtiefbau Online-Verdichtungskontrolle
DE10146342B4 (de) 2001-09-20 2005-12-08 Keller Grundbau Gmbh Verfahren zur Ermittlung der Lagerungsdichte

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Deep Vibro Techniques", KELLER GRUNDBAU BROSCHÜRE 10-02E, 2006, Retrieved from the Internet <URL:http://www.kellerholding.com/keller-publications-dvd.html>
"Ground Improvement", ISBN: 0-7514-0073-4, article M. P. MOSELEY, pages: 14-15,204
"Ground Improvement", ISBN: 084937717x, article M. P. MOSELEY ET AL., XP055330140
"VibroScan Visualisation of Vibro pro- ducts", KELLER GRUNDBAU BROSCHÜRE, vol. 1013, pages 10 - 05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016120382A1 (de) * 2016-10-26 2018-04-26 Gmb Gmbh Methode, Prinzip, Steuerung und Ausrüstung zur Durchführung der selbsttätigen Verdichtung von mehrphasigen Korngemischen

Also Published As

Publication number Publication date
EP2737132A2 (de) 2014-06-04
HK1192596A1 (zh) 2014-08-22
US20140219726A1 (en) 2014-08-07
WO2012171527A2 (de) 2012-12-20
DE112012002459A5 (de) 2014-02-27
WO2012171527A3 (de) 2013-08-01

Similar Documents

Publication Publication Date Title
EP3081737B1 (de) Bohrgerät zum erstellen einer verrohrten bohrung und verfahren zum betreiben eines bohrgerätes
DE10308538C5 (de) Verfahren zum Herstellen einer Schlitzwand im Boden, Schlitzwandfräse und Schlitzwandfräsvorrichtung
DE69606647T3 (de) Verfahren zum erzeugen eines pfahles durch schneckenbohren
DE2229282B2 (de) Verfahren zum Herstellen von Säulen aus verdichtetem Sand im Baugrund
EP2737132B1 (de) Verfahren zur bodensondierung
WO2018036713A1 (de) Arbeitsmaschine und verfahren zum bearbeiten eines bodens
EP0580098A1 (de) Verfahren und Vorrichtung zur Pfahlgründung
EP2534310A2 (de) Verfahren zur herstellung von materialsäulen und rüttlervorrichtung mit einer hubeinheit
DE4130339C2 (de) Verfahren zur Verbesserung eines Baugrundes
EP1069244B1 (de) Verfahren zur Steuerung eines Tiefenrüttlers
DE102021128776A1 (de) Rüttelvorrichtung und Verfahren zur Bodenverdichtung
EP0481079B1 (de) Verfahren und Werkzeug zur Herstellung eines Pfahls
EP1108818B1 (de) Aktive Gründung
DE102016107899A1 (de) Verfahren zum Herstellen einer Rohrspundwand und Tragrohr
DE60302313T2 (de) Verfahren und Einrichtung zum Messen der Tragfähigkeit eines in den Boden durch Schwingung eingeführten Objektes
DE102012109332A1 (de) Verfahren und Vorrichtung zum Herstellen von im Boden eingelassenen Ortbetonstrukturen
DE3218995A1 (de) Werkzeug zur herstellung von bohrloechern in lockeren zusammendrueckbaren boeden und verfahren zum herstellen von bohrloechern unter verwendung eines solchen werkzeugs
DE202010017629U1 (de) Verbaueinrichtung
EP3684981A1 (de) Verfahren zur installation eines pfahls und pfahl
DE19746731A1 (de) C-Profil-Pfahl und Verfahren zum Einbringen von C-Profil-Pfählen
DE10216952B4 (de) Verfahren zum Herstellen eines Mix-Pfahles in einem Untergrund
DE10354624B3 (de) Verfahren und Vorrichtung zur Stabilisierung von weichem Boden
DE102010024607A1 (de) Gründungspfahl sowie Verfahren zu seiner Herstellung
EP3272946B1 (de) Führungsvorrichtung und verfahren zum erstellen eines schlitzes
EP2697437B1 (de) Rüttleranordnung mit einer in den boden eindringenden seilaufhängung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140212

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1192596

Country of ref document: HK

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012006151

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: E02D0001020000

Ipc: E02D0007180000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: E02D 1/02 20060101ALI20150330BHEP

Ipc: E02D 7/18 20060101AFI20150330BHEP

INTG Intention to grant announced

Effective date: 20150417

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151021

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 778164

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012006151

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160302

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160603

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160704

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502012006151

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: KELLER HOLDING GMBH

Effective date: 20161202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20161013

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1192596

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160602

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502012006151

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502012006151

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160615

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180625

Year of fee payment: 7

Ref country code: AT

Payment date: 20180620

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180626

Year of fee payment: 7

Ref country code: DE

Payment date: 20180727

Year of fee payment: 7

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20180618

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20180618

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 778164

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180618