EP2726638A2 - Verwendung einer heissgaskorrosionsbeständigen duktilen legierung - Google Patents

Verwendung einer heissgaskorrosionsbeständigen duktilen legierung

Info

Publication number
EP2726638A2
EP2726638A2 EP12723861.6A EP12723861A EP2726638A2 EP 2726638 A2 EP2726638 A2 EP 2726638A2 EP 12723861 A EP12723861 A EP 12723861A EP 2726638 A2 EP2726638 A2 EP 2726638A2
Authority
EP
European Patent Office
Prior art keywords
weight
hot gas
gas corrosion
corrosion resistant
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP12723861.6A
Other languages
English (en)
French (fr)
Inventor
Albrecht Geissinger
Simon Schmittinger
Pavlo Saltikov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2726638A2 publication Critical patent/EP2726638A2/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • F23Q2007/004Manufacturing or assembling methods

Definitions

  • the invention relates to the use of a hot gas corrosion resistant ductile alloy in components exposed to high temperatures and corrosive gases.
  • the alloy can be used as a material for the manufacture of glow plugs of glow plugs. Glow plugs are used for the cold start of
  • Diesel engines are used and are exposed to high temperatures and corrosive gases.
  • Glow plugs with a metallic glow tube typically reach annealing temperatures in the range of about 1000 ° C to 1050 ° C, with higher temperatures are possible for a short time.
  • the material used must have good creep resistance, so that the glow tube remains dimensionally stable and does not bend. The position of the glow plug to the
  • Injection jets are important for the optimal ignition of the fuel. Therefore, a deformed glow plug would result in uneven combustion with increased pollutant emissions when used in an internal combustion engine.
  • the glow plugs are exposed to corrosive gases in the combustion chamber, which can attack the material of the glow tube.
  • a corroded glow tube can no longer prevent the ingress of air, water and other substances and leads to the destruction of the resistor element contained and thus to the failure of the glow plug.
  • To withstand the high temperatures and the corrosive gases are used for the glow tubes
  • Such a glow tube is known, for example, from DE 10 2009 000 751 A1. It is made of a nickel base alloy by a forming process (deep drawing) or by extrusion of a compound from a metal powder or by metal powder injection molding. In addition to the application in glow plugs components are made
  • Exhaust gas turbochargers in protective tubes for sensors. In heating technology, these alloys are used to manufacture ignition electrodes and various sensors.
  • Nickel-base alloys are very expensive because of the high price of nickel and, depending on the composition, have adverse processing properties.
  • the alloy NiCr25FeAIY has an excellent oxidation or
  • Corrosion resistance and also a high creep resistance can be processed only to a limited extent in forming processes.
  • Components such as a glow tube can not be made of this alloy by e.g. Deep drawing can be made. There must be other, more elaborate manufacturing methods used.
  • the alloy NiCr23Fe is easy to shape. Due to their lower oxidation and
  • Such an alloy is offered under the material number 1 .4888 (X10NiCrSiLa38-22).
  • material number 1 .4888 X10NiCrSiLa38-22.
  • one or more of the elements cerium, yttrium, zirconium, hafnium, titanium can be alloyed with up to 0.5% by weight.
  • Table 1 is a comparison of the elongation at break between the nickel alloys NiCr25FeAIY, NiCr23Fe and the proposed alloy for use in glow tubes with the material number 1 .4888.
  • the data are taken from the DIN standards "DIN 17750: 2002-09" and the data sheet "Cronifer 40B Material Data Sheet No. 4051 March 2010 Edition".
  • the alloy with the material number 1 .4888 has a high elongation at break and can be processed well by forming.
  • This alloy has a high oxidation resistance and a good creep stability at the annealing temperature.
  • the alloy is ductile and can easily be transformed like NiCr23Fe.
  • the glow tube is formed from this alloy by means of a forming process. Used in the glow plug according to the invention permanent annealing temperatures of up to 1050 ° C and short-term up to 1 100 ° C are possible.
  • the alloy is resistant to the in
  • Combustion chamber of an internal combustion engine present corrosive influences and remains dimensionally stable even at high temperatures.
  • the hot gas corrosion resistance of alloy no. 1.4888 is inferior to that of NiCr23 Fe and NiCr25 FeIlY alloys.
  • the alloy with the material number 1.4888 such as temperature resistance and corrosion resistance as well as the easy formability, it is also suitable for other components that are exposed to high temperatures and corrosive gases. Conceivable further uses for the alloy arise, for example, as spark plugs for internal combustion engines, exhaust gas turbocharger, protective tubes for Sensors and in heating technology for ignition electrodes in oil burners or gas burners as well as for flame sensors.
  • the glow tube made of the alloy with the material number 1 .4888 has a high temperature resistance up to 1 100 ° C. Without any restrictions on the service life, a maximum annealing temperature of 1 100 ° C and a high afterglow temperature of 1050 ° C can be achieved.
  • the glow tube is furthermore resistant to the corrosive influences present in the combustion chamber of an internal combustion engine. This ensures that the resistance element enclosed by the glow tube is also protected and prevents premature failure of the component.
  • the glow tube has a good resistance to deformation. This ensures a good ignition of the fuel mixture and thus a uniform combustion with low emissions when using the glow plug in an internal combustion engine.
  • NiCr25FeAIY fulfills the corrosion resistance requirements of the currently widely used nickel-based alloys, the material costs are very high due to the high nickel content. All previously used alloys have in common is the high nickel content, and thus a high material price.
  • the alloy proposed for use in a glow tube shows good
  • the alloy with the material number 1.4888 can be easily formed by forming processes such as extrusion, drawing, deep drawing and other processes.
  • the advantages mentioned can also be transferred to other uses of the alloy, such as spark plugs for internal combustion engines, exhaust gas turbochargers, protective tubes for sensors and ignition electrodes and flame sensors in heating technology.
  • Fig. 1 shows an embodiment of the glow plug according to the invention.
  • Fig. 1 the inventive use of the alloy with the material number 1 .4888 is shown as a material for the glow tube 4 of a glow plug 1 1.
  • Shunt plug 1 1 comprises the glow tube 4, which encloses a resistance element 12, a housing 5 and electrical connection devices in the form of a round plug 10.
  • the resistance element 12 enclosed by the glow tube 4 comprises a heating coil 1 on the side facing the combustion chamber of an internal combustion engine and a control coil 3 on the side facing the circular connector 10.
  • the remaining interior in the glow tube 4 is filled with an electrically insulating heat conducting powder 2 such as, for example, magnesium oxide powder ,
  • the heating coil 1 has a nearly
  • the electrical resistance of the control coil 3 is low and it can flow a large current through the heating coil 1.
  • the resistance in the control coil 3 increases and the current flow decreases.
  • the temperature in the glow tube 4 is controlled independently of external control devices. It is also conceivable, however, an embodiment without control coil 3, in which the temperature is controlled in other ways, such as with an external control device.
  • the resistance element 12 is electrically conductively connected on one side to the glow tube 4.
  • the other side is contacted by a connecting bolt 7.
  • the glow tube is partially received by the housing 5.
  • the glow tube 4 is sealed against the housing 5 by a press connection.
  • Temperature-resistant elastomer seal 6 This seal 6 hermetically seals the interior of the glow tube from the atmosphere in the engine compartment. After closing the seal 6 residual amounts of H 2 0, N 2 or 0 2 remaining in the glow tube 4 could react at high temperatures with the heating coil 1 or the control coil 3 and damage it. To bind these residues, the inside of the glow tube 4 can be coated with a getter material. This few ⁇ thick
  • Coating with, for example, aluminum or magnesium reacts during heating of the Glow tube 4 with the residual amounts of H 2 0, N 2 or 0 2 in the glow tube 4. Additionally or alternatively, the getter can also be added to the bathleitpulver 2 in small quantities.
  • the connecting bolt 7 extends through the housing and is connected at the end with the connecting device designed as a round plug 10. Between round plug 10 and the connecting device designed as a round plug 10.
  • Housing 5 is an insulating 9 arranged from a non-electrically conductive material.
  • the hot gas resistant ductile alloy can also be used in spark plugs for
  • the alloy with the material number 1.4888 is particularly suitable as an electrode material for the center electrode.
  • the hot gas resistant ductile alloy can also be used as a protective tube for various sensors. Many sensors are sensitive to high temperatures or are easily attacked by corrosive gases.
  • the protective tube made of the alloy with the material number 1.4888 envelops the sensor, for example a lambda probe or the flame sensor of an oil burner or gas burner, and protects it from the damaging environmental influences.
  • the alloy Due to its high oxidation resistance and creep resistance, the alloy is well suited as a material for ignition electrodes in heating technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)

Abstract

Es wird die Verwendung einer heißgaskorrosionsbeständigen duktilen Legierung, enthaltend 36 bis 39 Gew.-% Nickel, 20 bis 23 Gew.-% Chrom, 0 bis 0,12 Gew.-% Kohlenstoff, 0 bis 1 Gew.-% Mangan, 1,3 bis 2,2 Gew.-% Silizium, 0 bis 0,5 Gew.-% Aluminium, 0,03 bis 0,5 Gew.-% Lanthan, 0 bis 0,03 Gew.-% Schwefel, 0 bis 0,03 Gew.-% Phosphor, 0 bis 0,5 Gew.-% Kupfer, Rest Eisen, wobei die Summe aller Komponenten 100 Gew.-% nicht übersteigt, als Werkstoff für Glührohre von Glühstiftkerzen für Selbstzündermotoren und andere Bauteile, die hohen Temperaturen und korrosiven Gasen ausgesetzt sind, vorgeschlagen.

Description

Beschreibung Titel
Verwendung einer heißgaskorrosionsbestandigen duktilen Legierung Stand der Technik Die Erfindung bezieht sich auf die Verwendung einer heißgaskorrosionsbestandigen duktilen Legierung in Bauteilen, die hohen Temperaturen und korrosiven Gasen ausgesetzt sind. Beispielsweise kann die Legierung als Werkstoff für die Fertigung von Glührohren von Glühstiftkerzen verwendet werden. Glühstiftkerzen werden für den Kaltstart von
Dieselmotoren eingesetzt und sind dabei hohen Temperaturen und korrosiven Gasen ausgesetzt.
An Glühstiftkerzen werden hohe Anforderungen bezüglich der Aufheizgeschwindigkeit und der Glühtemperatur gestellt. Glühstiftkerzen mit einem metallischen Glührohr erreichen typischerweise Glühtemperaturen im Bereich von ca. 1000 °C bis 1050 °C, wobei kurzzeitig höhere Temperaturen möglich sind. Trotz der hohen Glühtemperaturen muss der verwendete Werkstoff eine gute Kriechbeständigkeit aufweisen, damit das Glührohr formstabil bleibt und sich nicht verbiegt. Die Position der Glühstiftkerze zu den
Einspritzstrahlen ist wichtig für die optimale Entflammung des Kraftstoffes. Eine verformte Glühstiftkerze würde deshalb bei einem Einsatz in einer Verbrennungskraftmaschine zu einer ungleichmäßigen Verbrennung mit erhöhtem Schadstoffausstoß führen. Zudem sind die Glühstiftkerzen im Brennraum korrosiven Gasen ausgesetzt, die das Material des Glührohrs angreifen können. Ein durchkorrodiertes Glührohr kann das Eindringen von Luft, Wasser und anderen Substanzen nicht mehr verhindern und führt zur Zerstörung des enthaltenen Widerstandelements und damit zum Ausfall der Glühstiftkerze. Um den hohen Temperaturen und den korrosiven Gasen stand zu halten, werden für die Glührohre
Nickelbasis-Legierungen mit sehr hohen Nickelgehalten von über 50 Gew.-% eingesetzt.
Ein solches Glührohr ist beispielsweise aus DE 10 2009 000 751 A1 bekannt. Es wird aus einer Nickelbasis-Legierung durch einen Umformprozess (Tiefziehen) oder durch Extrusion eines Compounds aus einem Metallpulver oder durch Metallpulverspritzgießen hergestellt. Neben der Anwendung in Glühstiftkerzen werden Bauteile aus
heißgaskorrosionsbeständigen Legierungen in weiteren Anwendungen eingesetzt, insbesondere im Kraftfahrzeugbereich als Zündkerzen für Verbrennungsmotoren, in
Abgasturboladern, in Schutzrohren für Sensoren. In der Heizungstechnik werden aus diesen Legierungen Zündelektroden und verschiedene Sensoren gefertigt.
Nickelbasis-Legierungen sind aufgrund des hohen Preises für Nickel sehr teuer und weisen je nach Zusammensetzung nachteilige Eigenschaften bei der Verarbeitung auf.
Beispielsweise weist die Legierung NiCr25FeAIY eine hervorragende Oxidations- bzw.
Korrosionsbeständigkeit und auch eine hohe Kriechbeständigkeit auf, kann jedoch nur eingeschränkt in Umformprozessen verarbeitet werden. Bauteile, wie beispielsweise ein Glührohr, können aus dieser Legierung nicht durch z.B. Tiefziehen hergestellt werden. Es müssen andere, aufwändigere Fertigungsmethoden eingesetzt werden. Die Legierung NiCr23Fe hingegen lässt sich gut umformen. Durch deren geringere Oxidations- und
Kriechbeständigkeit sind aus dieser Legierung gefertigte Teile jedoch nicht für alle
Anwendungen in Verbindung mit korrosiven Gasen und sehr hohen Temperaturen geeignet.
Aus EP 21 15179 B1 ist eine Nickel-Chrom-Silizium-Legierung mit verringertem Nickel Gehalt von unter 42 Gew.-% bekannt, die eine hohe Oxidationsbeständigkeit und
Kriechbeständigkeit aufweist.
Offenbarung der Erfindung Erfindungsgemäß wird die Verwendung einer heißgaskorrosionsbeständigen duktilen
Legierung, enthaltend 36 bis 39 Gew.-% Nickel, 20 bis 23 Gew.-% Chrom, 0 bis 0,12 Gew.- % Kohlenstoff, 0 bis 1 Gew.-% Mangan, 1 ,3 bis 2,2 Gew.-% Silizium, 0 bis 0,5 Gew.-% Aluminium, 0,03 bis 0,5 Gew.-% Lanthan, 0 bis 0,03 Gew.-% Schwefel, 0 bis 0,03 Gew.-% Phosphor, 0 bis 0,5 Gew.-% Kupfer, Rest Eisen, wobei die Summe aller Komponenten 100 Gew.-% nicht übersteigt, als Werkstoff für Glührohre von Glühstiftkerzen für
Selbstzündermotoren und andere Bauteile, die hohen Temperaturen und korrosiven Gasen ausgesetzt sind, vorgeschlagen. Eine solche Legierung wird unter der Werkstoffnummer 1 .4888 (X10NiCrSiLa38-22) angeboten. Zur Verbesserung der Langzeiteigenschaften des Werkstoffs können jeweils eins oder mehrere der Elemente Cer, Yttrium, Zirkonium, Hafnium, Titan mit bis zu 0,5 Gew.-% zulegiert werden.
Tabelle 1
In der Tabelle 1 ist ein Vergleich der Bruchdehnung zwischen den Nickellegierungen NiCr25FeAIY, NiCr23Fe sowie der für den Einsatz in Glührohren vorgeschlagenen Legierung mit der Werkstoffnummer 1 .4888. Die Daten sind den DIN Normen„DIN 17750:2002-09" sowie dem Datenblatt„Cronifer 40B Material Data Sheet No. 4051 March 2010 Edition" entnommen. Die Legierung mit der Werkstoffnummer 1 .4888 weist trotz des verringerten Nickelgehalts eine hohe Bruchdehnung auf und lässt sich durch Umformen gut verarbeiten.
Diese Legierung weist eine hohe Oxidationsbeständigkeit und eine gute Kriechstabilität bei der Glühtemperatur auf. Die Legierung ist duktil und kann wie NiCr23Fe leicht umgeformt werden.
Das Glührohr wird aus dieser Legierung mittels eines Umformprozesses geformt. Eingesetzt in der erfindungsgemäßen Glühstiftkerze sind dauerhafte Glühtemperaturen von bis zu 1050 °C und kurzfristig bis zu 1 100 °C möglich. Die Legierung ist beständig gegen die im
Brennraum einer Verbrennungskraftmaschine vorhanden korrosiven Einflüsse und bleibt auch bei den hohen Temperaturen formstabil.
Die Heißgaskorrosionsbeständigkeit der Legierung Nr. 1.4888 liegt zwischen der der Legierungen NiCr23Fe und NiCr25FeAIY.
Durch die vorteilhaften Eigenschaften der Legierung mit der Werkstoffnummer 1.4888 wie Temperaturbeständigkeit und Korrosionsbeständigkeit sowie die leichte Umformbarkeit ist sie auch für andere Bauteile, die hohen Temperaturen und korrosiven Gasen ausgesetzt sind, geeignet. Denkbare weitere Einsatzmöglichkeiten für die Legierung ergeben sich beispielsweise als Zündkerzen für Verbrennungsmotoren, Abgasturbolader, Schutzrohre für Sensoren und in der Heizungstechnik für Zündelektroden in Ölbrennern oder Gasbrennern sowie für Flammsensoren.
Vorteile der Erfindung
Das aus der Legierung mit der Werkstoffnummer 1 .4888 gefertigte Glührohr weist eine hohe Temperaturbeständigkeit bis 1 100 °C auf. Ohne Einschränkungen bei der Lebensdauer lässt sich eine maximale Glühtemperatur von 1 100 °C und eine hohe Nachglühtemperatur von 1050 °C realisieren. Das Glührohr ist des Weiteren beständig gegen die im Brennraum einer Verbrennungskraftmaschine vorhandenen korrosiven Einflüsse. Dies stellt sicher, dass auch das vom Glührohr umschlossene Widerstandselement geschützt ist und verhindert einen vorzeitigen Ausfall des Bauteils. Des Weiteren weist das Glührohr eine gute Beständigkeit gegen Verformungen auf. Dies gewährleistet beim Einsatz der Glühstiftkerze in einer Verbrennungskraftmaschine eine gute Entflammung des Kraftstoffgemischs und damit eine gleichmäßige Verbrennung mit geringen Emissionen.
Von den derzeit häufig eingesetzten Nickelbasis-Legierungen erfüllt zwar NiCr25FeAIY die Anforderungen an die Korrosionsbeständigkeit, aufgrund des hohen Gehalts an Nickel sind die Materialkosten jedoch sehr hoch. Allen bisher eingesetzten Legierungen gemeinsam ist der hohe Nickelgehalt, und damit verbunden ein hoher Materialpreis.
Die für die Verwendung in einem Glührohr vorgeschlagene Legierung zeigt gute
Eigenschaften bei reduziertem Nickelgehalt und erleichtert durch seine Umformbarkeit die Fertigung der Glühstiftkerze. Die Legierung mit der Werkstoffnummer 1.4888 lässt sich durch Umformverfahren wie beispielsweise Fließpressen, Durchziehen, Tiefziehen und anderen Verfahren leicht umformen.
Die genannten Vorteile lassen sich auch auf andere Verwendung der Legierung übertragen, wie beispielsweise Zündkerzen für Verbrennungsmotoren, Abgasturbolader, Schutzrohre für Sensoren sowie Zündelektroden und Flammsensoren in der Heizungstechnik.
Kurze Beschreibung der Zeichnungen
Fig. 1 zeigt ein Ausführungsbeispiel der erfindungsgemäßen Glühstiftkerze. Ausführungsformen der Erfindung
In Fig. 1 ist die erfindungsgemäße Verwendung der Legierung mit der Werkstoffnummer 1 .4888 als Werkstoff für das Glührohr 4 einer Glühstiftkerze 1 1 dargestellt. Die
Glühstiftkerze 1 1 umfasst das Glührohr 4, welches ein Widerstandselement 12 umschließt, ein Gehäuse 5 und elektrische Anschlussvorrichtungen in Form eines Rundsteckers 10.
Das vom Glührohr 4 umschlossene Widerstandselement 12 umfasst auf der dem Brennraum einer Verbrennungskraftmaschine zugewandten Seite eine Heizwendel 1 und auf der dem Rundstecker 10 zugewandten Seite eine Regelwendel 3. Der verbleibende Innenraum im Glührohr 4 ist mit einem elektrisch isolierenden Wärmeleitpulver 2 wie beispielsweise Magnesiumoxid-Pulver aufgefüllt. Die Heizwendel 1 weist einen nahezu
temperaturunabhängigen elektrischen Widerstand auf, während der elektrische Widerstand der Regelwendel 3 mit zunehmender Temperatur ansteigt. Im kalten Zustand des
Widerstandselements 12 ist der elektrische Widerstand der Regelwendel 3 gering und es kann ein großer Strom durch die Heizwendel 1 fließen. Durch die nun folgende Erwärmung steigt der Widerstand in der Regelwendel 3 und der Stromfluss verringert sich. Auf diese Weise wird die Temperatur im Glührohr 4 unabhängig von externen Steuergeräten kontrolliert. Denkbar ist jedoch auch eine Ausführungsform ohne Regelwendel 3, bei der die Temperatur auf andere Weise, wie beispielsweise mit einem externen Steuergerät kontrolliert wird.
Das Widerstandselement 12 ist an einer Seite mit dem Glührohr 4 elektrisch leitend verbunden. Die andere Seite wird von einem Anschlussbolzen 7 kontaktiert. Auf der Seite des Anschlussbolzenz 7 ist das Glührohr von dem Gehäuse 5 teilweise aufgenommen. Das Glührohr 4 ist gegen das Gehäuse 5 durch eine Pressverbindung abgedichtet. Die
Abdichtung zwischen Glührohr 4 und Anschlussbolzen 7 erfolgt durch eine
temperaturbeständige Elastomerdichtung 6. Durch diese Dichtung 6 wird das Innere des Glührohrs hermetisch gegenüber der Atmosphäre im Motorraum abgedichtet. Nach dem Verschließen der Dichtung 6 verbleibende Restmengen an H20, N2 oder 02 im Glührohr 4 könnten bei hohen Temperaturen mit der Heizwendel 1 oder der Regelwendel 3 reagieren und diese damit schädigen. Um diese Restmengen zu binden, kann die Innenseite des Glührohrs 4 mit einem Gettermaterial beschichtet werden. Diese wenige μηη dicke
Beschichtung mit beispielsweise Aluminium oder Magnesium reagiert beim Aufheizen des Glührohrs 4 mit den Restmengen an H20, N2 oder 02 im Glührohr 4. Zusätzlich oder alternativ kann das Gettermaterial auch dem Wärmeleitpulver 2 in geringen Mengen beigemischt werden.
Der Anschlussbolzen 7 verläuft durch das Gehäuse und ist am Ende mit der als Rundstecker 10 ausgeführten Anschlussvorrichtung verbunden. Zwischen Rundstecker 10 und dem
Gehäuse 5 ist eine Isolierscheibe 9 aus einem nicht elektrisch leitenden Material angeordnet. Eine Dichtung 8 im Bereich der Isolierscheibe 9, beispielsweise aus Elastomer, dichtet das Gehäuse 5 der Glühstiftkerze gegen die Umgebung ab. Des Weiteren kann die heißgasbeständige duktile Legierung auch in Zündkerzen für
Ottomotoren eingesetzt werden. Die Legierung mit der Werkstoffnummer 1.4888 ist dabei insbesondere als Elektrodenmaterial für die Mittelelektrode geeignet.
Die heißgasbeständige duktile Legierung kann ferner als Schutzrohr für verschiedene Sensoren verwendet werden. Viele Sensoren reagieren empfindlich auf hohe Temperaturen oder werden leicht von korrosiven Gasen angegriffen. Das aus der Legierung mit der Werkstoffnummer 1.4888 gefertigte Schutzrohr umhüllt den Sensor, beispielsweise eine Lambdasonde oder den Flammsensor eines Ölbrenners oder Gasbrenners, und schützt diesen vor den schädlichen Umwelteinflüssen.
Die Legierung ist aufgrund ihrer hohen Oxidationsbeständigkeit und Kriechbeständigkeit als Werkstoff für Zündelektroden in der Heizungstechnik gut geeignet.

Claims

Ansprüche 1 . Verwendung einer heißgaskorrosionsbeständigen duktilen Legierung, enthaltend 36 bis 39 Gew.-% Nickel, 20 bis 23 Gew.-% Chrom, 0 bis 0,12 Gew.-% Kohlenstoff, 0 bis 1 Gew.-% Mangan, 1 ,3 bis 2,2 Gew.-% Silizium, 0 bis 0,5 Gew.-% Aluminium, 0,03 bis 0,5 Gew.-% Lanthan, 0 bis 0,03 Gew.-% Schwefel, 0 bis 0,03 Gew.-% Phosphor, 0 bis 0,5 Gew.-% Kupfer, Rest Eisen, wobei die Summe aller Komponenten 100 Gew.-% nicht übersteigt, als Werkstoff für Bauteile, die hohen Temperaturen und korrosiven Gasen ausgesetzt sind.
2. Verwendung einer heißgaskorrosionsbeständigen duktilen Legierung nach Anspruch 1 , wobei die Legierung jeweils eins oder mehrere der Elemente Cer, Yttrium, Zirkonium, Hafnium, Titan mit bis zu 0,5 Gew.-% enthält.
3. Verwendung einer heißgaskorrosionsbeständigen duktilen Legierung, enthaltend 36 bis 39 Gew.-% Nickel, 20 bis 23 Gew.-% Chrom, 0 bis 0,12 Gew.-% Kohlenstoff, 0 bis 1 Gew.-% Mangan, 1 ,3 bis 2,2 Gew.-% Silizium, 0 bis 0,5 Gew.-% Aluminium, 0,03 bis 0,5 Gew.-% Lanthan, 0 bis 0,03 Gew.-% Schwefel, 0 bis 0,03 Gew.-% Phosphor, 0 bis 0,5 Gew.-% Kupfer, Rest Eisen, wobei die Summe aller Komponenten 100 Gew.-% nicht übersteigt, als Werkstoff für Glührohre von Glühstiftkerzen für Selbstzündermotoren.
4. Verwendung einer heißgaskorrosionsbeständigen duktilen Legierung nach Anspruch 3, wobei die Legierung jeweils eins oder mehrere der Elemente Cer, Yttrium, Zirkonium, Hafnium, Titan mit bis zu 0,5 Gew.-% enthält.
5. Verwendung einer heißgaskorrosionsbeständigen duktilen Legierung, enthaltend 36 bis 39 Gew.-% Nickel, 20 bis 23 Gew.-% Chrom, 0 bis 0,12 Gew.-% Kohlenstoff, 0 bis 1 Gew.-% Mangan, 1 ,3 bis 2,2 Gew.-% Silizium, 0 bis 0,5 Gew.-% Aluminium, 0,03 bis 0,5 Gew.-% Lanthan, 0 bis 0,03 Gew.-% Schwefel, 0 bis 0,03 Gew.-% Phosphor, 0 bis 0,5 Gew.-%
Kupfer, Rest Eisen, wobei die Summe aller Komponenten 100 Gew.-% nicht übersteigt, als Werkstoff für Zündkerzen für Ottomotoren.
6. Verwendung einer heißgaskorrosionsbestandigen duktilen Legierung nach Anspruch 5, wobei die Legierung jeweils eins oder mehrere der Elemente Cer, Yttrium, Zirkonium, Hafnium, Titan mit bis zu 0,5 Gew.-% enthält.
7. Verwendung einer heißgaskorrosionsbestandigen duktilen Legierung, enthaltend 36 bis 39 Gew.-% Nickel, 20 bis 23 Gew.-% Chrom, 0 bis 0,12 Gew.-% Kohlenstoff, 0 bis 1 Gew.-% Mangan, 1 ,3 bis 2,2 Gew.-% Silizium, 0 bis 0,5 Gew.-% Aluminium, 0,03 bis 0,5 Gew.-% Lanthan, 0 bis 0,03 Gew.-% Schwefel, 0 bis 0,03 Gew.-% Phosphor, 0 bis 0,5 Gew.-% Kupfer, Rest Eisen, wobei die Summe aller Komponenten 100 Gew.-% nicht übersteigt, als Werkstoff für Schutzrohre für Sensoren.
8. Verwendung einer heißgaskorrosionsbestandigen duktilen Legierung nach Anspruch 7, wobei die Legierung jeweils eins oder mehrere der Elemente Cer, Yttrium, Zirkonium, Hafnium, Titan mit bis zu 0,5 Gew.-% enthält.
9. Verwendung einer heißgaskorrosionsbeständigen duktilen Legierung nach Anspruch 6 oder 7 zur Verwendung als Schutzrohr für eine Lambda-Sonde.
10. Verwendung einer heißgaskorrosionsbeständigen duktilen Legierung, enthaltend 36 bis 39 Gew.-% Nickel, 20 bis 23 Gew.-% Chrom, 0 bis 0,12 Gew.-% Kohlenstoff, 0 bis 1 Gew.-%
Mangan, 1 ,3 bis 2,2 Gew.-% Silizium, 0 bis 0,5 Gew.-% Aluminium, 0,03 bis 0,5 Gew.-% Lanthan, 0 bis 0,03 Gew.-% Schwefel, 0 bis 0,03 Gew.-% Phosphor, 0 bis 0,5 Gew.-% Kupfer, Rest Eisen, wobei die Summe aller Komponenten 100 Gew.-% nicht übersteigt, als Werkstoff für Zündelektroden in Ölbrennern oder Gasbrennern.
1 1 . Verwendung einer heißgaskorrosionsbeständigen duktilen Legierung nach Anspruch 10, wobei die Legierung jeweils eins oder mehrere der Elemente Cer, Yttrium, Zirkonium, Hafnium, Titan mit bis zu 0,5 Gew.-% enthält.
EP12723861.6A 2011-06-21 2012-05-23 Verwendung einer heissgaskorrosionsbeständigen duktilen legierung Pending EP2726638A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110077893 DE102011077893A1 (de) 2011-06-21 2011-06-21 Verwendung einer heißgaskorrosionsbeständigen duktilen Legierung
PCT/EP2012/059585 WO2012175271A2 (de) 2011-06-21 2012-05-23 Verwendung einer heissgaskorrosionsbeständigen duktilen legierung

Publications (1)

Publication Number Publication Date
EP2726638A2 true EP2726638A2 (de) 2014-05-07

Family

ID=46172784

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12723861.6A Pending EP2726638A2 (de) 2011-06-21 2012-05-23 Verwendung einer heissgaskorrosionsbeständigen duktilen legierung

Country Status (5)

Country Link
EP (1) EP2726638A2 (de)
JP (1) JP5774215B2 (de)
CN (1) CN103620072A (de)
DE (1) DE102011077893A1 (de)
WO (1) WO2012175271A2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103272877A (zh) * 2013-05-23 2013-09-04 苏州贝思特金属制品有限公司 一种低碳镍铬铁合金无缝管
JP2015155790A (ja) * 2014-01-15 2015-08-27 日本特殊陶業株式会社 シースヒータ、グロープラグ
CN104451426A (zh) * 2014-11-14 2015-03-25 无锡信大气象传感网科技有限公司 一种用于制作称重传感器弹性体的不锈钢材料
JP6795886B2 (ja) * 2015-02-10 2020-12-02 日本特殊陶業株式会社 グロープラグ及びその製造方法
DE102016111736B4 (de) * 2016-06-27 2020-06-18 Heraeus Nexensos Gmbh Hülse zur Abdeckung eines Temperatursensors, Temperaturmessvorrichtung mit einer derartigen Hülse, Verfahren zum Verbinden einer derartigen Hülse mit einer Temperaturmessvorrichtung und Verwendung einer Legierung
CN109309369B (zh) * 2017-07-27 2020-08-11 中国石油天然气股份有限公司 一种用于密封仪表探头信号线的堵头
DE102019204225A1 (de) * 2019-03-27 2020-10-01 Robert Bosch Gmbh Vorbehandlungsverfahren zum Vorbehandeln von Bauteilen vor einem galvanischen Beschichten

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126447A (en) * 1977-10-31 1978-11-21 Crucible Inc. Lanthanum-modified high-temperature alloy
DE4130139C1 (de) * 1991-09-11 1992-08-06 Krupp-Vdm Ag, 5980 Werdohl, De
JPH06248393A (ja) * 1993-02-26 1994-09-06 Nippon Steel Corp 耐高温腐食特性に優れたオーステナイト系ステンレス鋼
JPH06330226A (ja) * 1993-05-19 1994-11-29 Nippon Steel Corp 耐高温腐食特性に優れた複層鋼材およびその製造方法
JPH0813104A (ja) * 1994-06-24 1996-01-16 Sanyo Special Steel Co Ltd 耐ヒートサイクル性に優れた耐熱合金及び該合金を使用したヒーターチューブ
DE19812785A1 (de) * 1998-03-24 1999-10-07 Beru Ag Schutzrohre für Glüh- und Meßelemente
JP2002098333A (ja) * 2000-09-26 2002-04-05 Ngk Spark Plug Co Ltd グロープラグ
CN2620178Y (zh) * 2003-04-18 2004-06-09 上海方欣实业有限公司 温度传感器保护管
EP1975267B1 (de) * 2006-01-11 2013-07-03 Nippon Steel & Sumitomo Metal Corporation Metallmaterial mit hervorragender metal-dusting-beständigkeit
US7823556B2 (en) * 2006-06-19 2010-11-02 Federal-Mogul World Wide, Inc. Electrode for an ignition device
DE102007005605B4 (de) * 2007-01-31 2010-02-04 Thyssenkrupp Vdm Gmbh Eisen-Nickel-Chrom-Silizium-Legierung
JP2009162409A (ja) * 2007-12-28 2009-07-23 Ngk Spark Plug Co Ltd グロープラグ
DE102009000751A1 (de) * 2008-02-21 2009-08-27 Robert Bosch Gmbh Glührohr für eine Glühstiftkerze und Verfahren zu dessen Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012175271A2 *

Also Published As

Publication number Publication date
CN103620072A (zh) 2014-03-05
JP5774215B2 (ja) 2015-09-09
WO2012175271A3 (de) 2013-09-26
JP2014522450A (ja) 2014-09-04
DE102011077893A1 (de) 2012-12-27
WO2012175271A2 (de) 2012-12-27

Similar Documents

Publication Publication Date Title
EP2726638A2 (de) Verwendung einer heissgaskorrosionsbeständigen duktilen legierung
EP1241753A2 (de) Zündkerze und ihr Herstellungsverfahren
DE10224891A1 (de) Legierung auf Nickelbasis
EP3014184B1 (de) Glührohr für eine regelbare glühstiftkerze
DE102010024488A1 (de) Nickelbasislegierung
KR101445464B1 (ko) 스파크 플러그
EP2465173B1 (de) Zündkerze mit elektroden mit geringer quellrate und hoher korrosionsbeständigkeit
EP2518170B1 (de) Zündkerze
EP2093548B1 (de) Hochtemperatursensor und Verfahren zu dessen Herstellung
JPWO2012086292A1 (ja) スパークプラグ及びその製造方法
CN107078472A (zh) 铑合金
DE102007011535A1 (de) Hochtemperatursensor und Verfahren zu dessen Herstellung
US20120074829A1 (en) Alloys for spark ignition device electrode spark surfaces
US20140232254A1 (en) Electrode core material for spark plugs
US20140370258A1 (en) Electrode material, spark-plug electrode, and spark plug
EP2649375B1 (de) Glühkerze und verfahren zu deren herstellung
KR101625349B1 (ko) 전극 재료 및 스파크 플러그
WO2015093003A1 (ja) スパークプラグ
DE102015105015B4 (de) Zündkerze und Verfahren zur Herstellung
DE10157466A1 (de) Elektrisch beheizbare Glühkerze und Verfahren zur Herstellung einer elektrisch beheizbaren Glühkerze
CN110914678B (zh) 气体传感器
DE102016012138A1 (de) Temperatursensor
US9887519B1 (en) Spark plug
JP6075707B2 (ja) 電極材料、点火プラグ用電極、及び点火プラグ
JP2013127911A (ja) スパークプラグ及びその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140326

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18W Application withdrawn

Effective date: 20171201

18D Application deemed to be withdrawn

Effective date: 20171201

D18W Application withdrawn (deleted)