EP2717316B1 - Verfahren zur Herstellung verspannter Germanium-Lamellenstrukturen - Google Patents

Verfahren zur Herstellung verspannter Germanium-Lamellenstrukturen Download PDF

Info

Publication number
EP2717316B1
EP2717316B1 EP12187332.7A EP12187332A EP2717316B1 EP 2717316 B1 EP2717316 B1 EP 2717316B1 EP 12187332 A EP12187332 A EP 12187332A EP 2717316 B1 EP2717316 B1 EP 2717316B1
Authority
EP
European Patent Office
Prior art keywords
areas
trenches
structures
substrate
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12187332.7A
Other languages
English (en)
French (fr)
Other versions
EP2717316A1 (de
Inventor
Benjamin Vincent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Interuniversitair Microelektronica Centrum vzw IMEC
Original Assignee
Interuniversitair Microelektronica Centrum vzw IMEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interuniversitair Microelektronica Centrum vzw IMEC filed Critical Interuniversitair Microelektronica Centrum vzw IMEC
Priority to EP12187332.7A priority Critical patent/EP2717316B1/de
Priority to JP2013174538A priority patent/JP6204749B2/ja
Priority to US14/047,950 priority patent/US9263528B2/en
Publication of EP2717316A1 publication Critical patent/EP2717316A1/de
Application granted granted Critical
Publication of EP2717316B1 publication Critical patent/EP2717316B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Definitions

  • the present invention is related to the production of fin-shaped structures comprising strained Ge on a SiGe buffer, mainly for use as quantum well digital logic transistors.
  • a known technique for depositing a SiGe layer in a narrow trench is referred to as Aspect Ratio Trapping (ART). This technique allows filling of narrow trenches, e.g. obtained by STI (Shallow Trench Isolation) on a silicon substrate, with a SiGe layer that does not show defects in the top part of the trenches.
  • STI Shallow Trench Isolation
  • the document US20070221956 discloses a method for forming germanium-rich fins using oxidation of SiGe fins.
  • the SiGe fins are formed by patterning an SiGe layer and the underlying graded SiGe buffer.
  • the invention is related to a method as disclosed in the appended claims.
  • the method of the invention provides a way of producing fin-structures comprising strained Ge on a SiGe buffer of less than 20nm in width, without the above-described limitation on the size of the fins.
  • the present invention is related to a method for producing one or more semiconductor fin structures, in particular fins comprising a SiGe buffer portion and a strained Ge top portion.
  • the strained Ge portion is formed by a step of oxidizing SiGe structures extending outwards from an insulation surface, said insulation surface being preferably formed by the top surface of STI oxide regions produced in a Si substrate.
  • the SiGe structures may be grown in the Si substrate by Aspect Ratio Trapping, thereby obtaining a SiGe structure that is relaxed and essentially defect free in a top region.
  • the oxidation step results in the formation of a Ge region and a SiO 2 layer covering the fin.
  • the oxidation is continued until a pure strained Ge top portion is obtained on the SiGe base of the fins.
  • the process can involve the oxidation of separate SiGe structures formed by overgrowth of SiGe into separate mushroom-shaped overgrowth portions.
  • the SiGe structures are formed after a CMP step and the step of etching the oxide regions in between the structures.
  • the SiGe structures are obtained by patterning a SiGe layer that is sufficiently thick so as to obtain relaxed and defect free SiGe in a top sublayer of said SiGe layer.
  • the invention is thus in particular related to a method for producing one or more semiconductor fin structures comprising the steps of :
  • said oxidation and condensation continue until substantially none of the second material remains in the top portion of the fins, whilst the first material in said top portion remains in a strained condition.
  • the step of producing said one or more elongate structures comprises the steps of :
  • the step of producing said one or more elongate structures comprises the steps of :
  • the step of producing said one or more elongate structures comprises the steps of :
  • Said two different semiconductor materials are silicon and germanium, wherein said compound material is SiGe, said base portion is a SiGe portion and said top portion is a strained Ge portion.
  • SiGe is defined as Si x Ge 1-x , with x higher than 0.2.
  • Said substrate may be a silicon substrate.
  • the method of the invention may further comprise the step of depositing a cap layer formed of silicon on said one or more relaxed and defect free fin-shaped structures consisting of said alloy material, before subjecting said structures to said oxidation step.
  • Figures 1a to 1f illustrate a first embodiment of the method according to the invention.
  • standard STI Shallow Trench Isolation
  • SiGe silicon germanium
  • x any suitable value known in the art for this type of alloy.
  • the width and depth of the trenches 4 is such that aspect ratio trapping (ART) takes place, i.e. dislocations 6 become trapped by the sidewalls of the trenches 4.
  • the result is a set of elongate SiGe structures 7, consisting of a base area 8 and a mushroom-shaped overgrowth area 9.
  • the depth and aspect ratio of the trenches 4 is such that in said mushroom-shaped area 9 and in an upper portion 8' of the base area 8, relaxed and defect free SiGe is formed.
  • a further etching step removes a portion of the STI oxide, resulting in part of the elongate SiGe structures 7 extending outwards with respect to oxide surface 10 (see figure 1d ).
  • the mushroom-shaped portion 9 itself is the part that is extending outwards with respect to the oxide surface 14 (see figure 1c ). This structure is then subjected to a dry oxidation at high temperature, transforming the structures 7 into :
  • the Ge top portion 17 is obtained by condensation of the Ge from the SiGe simultaneously with the oxidation of the Si.
  • the oxidation step (hereafter also referred to as condensation/oxidation step) continues until the top portion 17 of the fins consists of substantially pure strained Ge, i.e. until no silicon is left in the top portion, whilst ensuring that the formed Ge is in a strained condition.
  • the condensed volume is kept below the critical volume of plastic relaxation. This critical volume depends on the lattice mismatch between Ge and the initial relaxed SiGe, so mainly on the initial Ge concentration.
  • the silicon oxide layer 18 is removed above the level 10 of the STI regions, by a suitable etching step, resulting in a set of fins 15 having a Ge top portion 17 of defect free strained Ge on a buffer of SiGe (the buffer being the base portion 16).
  • silicon oxide formed in the oxidation step remains, i.e. in the preferred case where the regions 3 are also silicon oxide, the fins are embedded in a continuous oxide layer.
  • a small over-etching may occur of the STI regions 3 during removal of the oxide 18, i.e. material removed from surface 10.
  • the flanks of the base portions 16 may comprise a zone (not shown) of pure Ge or SiGe with higher Ge content, as Ge condensation may take place also in these regions.
  • the fins 15 are suitable for producing quantum well FinFET transistors by applying further process steps as known in the art.
  • the width of the top portions 17 can be lower than 20nm.
  • the size of this top portion 17 can be designed by adequate choices in terms of the SiGe composition (value of x in Si x Ge 1-x ), the size of the overgrowth areas 9, the size of the trenches 4, taking into account the critical volume as stated above. Sufficient freedom is possible in the choice of these parameters to allow the production of very narrow fin structures starting from trenches 4 that are wide enough to ensure that no twin formation takes place during filling of the trench.
  • the invention thus provides a solution for the above described problem : size reduction of the fins is possible without requiring trenches 4 that are too narrow to avoid twin formation in the upper part of the trench.
  • the overgrowth of the SiGe is continued until a contiguous layer 20 of relaxed and defect free SiGe is obtained on top of the STI-substrate.
  • the depth and aspect ratio of the trenches 4 is such that relaxed and defect free SiGe is obtained in the overgrowth area 20 and in an upper area 8' of the SiGe deposited in the trenches 4.
  • CMP chemical-mechanical-polishing step
  • An etch step follows to recess the STI oxide regions and form SiGe structures 7, a part of which is extending outwards from the STI surface 10. This structure is then subjected to the oxidation step as described above, again leading to the formation of :
  • the strained Ge fins 15 are obtained, with remaining oxide areas 19 at the sides.
  • a thin silicon cap layer is deposited (not shown), preferably by epitaxial growth, on top of the elongate structures 7, before performing the oxidation step.
  • the purpose of this cap layer is to avoid oxidation of Germanium.
  • the Si-cap forms a silicon oxide layer which will obstruct formation of germanium oxide, and ensure that all of the Ge moves to the center portion 17 by condensation.
  • the oxidation of the cap may take place at a lower temperature than the oxidation of the SiGe.
  • diffusion anneal steps can be combined with condensation/oxidation steps in a cyclic process, in order to enhance the interdiffusion of the semiconductor elements in the alloy Si and Ge).
  • a condensation/oxidation and anneal cycles is to be regarded as an embodiment of the 'oxidation step' referred to in the claims.
  • the structures 7 that are partly extending outwards with respect to the insulation areas 3 are obtained in another way than in the embodiments of figures 1 and 2 .
  • a layer of SiGe is grown on a substrate, e.g. a Silicon substrate.
  • the layer is grown at a sufficiently high thickness for un upper sublayer of the SiGe to be in a relaxed condition, and defect free.
  • the thickness is sufficient so that dislocations caused by a mismatch between the SiGe and the underlying substrate do not propagate into said upper portion.
  • the SiGe layer is few microns thick, preferably with a Ge gradient in order to bend dislocations defects forming in this way a graded strain relaxed buffer.
  • a patterning and etching step is performed to produce trenches in the SiGe layer, whereafter said trenches are filled with an insulating material, for example silicon oxide. Possibly after a planarization step, this results in the same structure as the one shown in figure 2d , i.e. elongate areas of SiGe in between oxide areas 3, wherein a top portion 8' of the SiGe is relaxed and defect free.
  • an insulating material for example silicon oxide
  • the description of a layer being deposited or produced 'on' another layer or substrate includes the options of

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Claims (7)

  1. Verfahren zur Herstellung einer oder mehrerer Halbleiterlamellenstrukturen (15), umfassend die Schritte zum:
    • Herstellen einer oder mehrerer länglicher Strukturen (7) auf einem Substrat, wobei die Strukturen aus einer Legierung aus Silizium und Germanium bestehen, ein Teil der Strukturen sich in Bezug auf die Oberfläche (10, 14) einer Isolierungsschicht, die auf dem Substrat vorliegt, nach außen erstreckt, ein Deckabschnitt (8',9) der Strukturen aus entspanntem und defektfreiem Legierungsmaterial besteht,
    • Unterziehen der Struktur(en) (7) einem Oxidationsschritt, um die Struktur(en) umzuwandeln zu:
    • einer oder mehreren Lamellen (15), die einen Basisabschnitt (16) umfassen, der aus der Legierung gebildet ist, und einen Deckabschnitt (17), der aus Germanium in einem verspannten Zustand gebildet ist, wobei der Deckabschnitt durch Kondensation von Germanium gebildet wird,
    • eine Schicht aus Siliziumoxid (18), die die Lamelle(n) (15) abdeckt, wobei die Oxidschicht (18) durch Oxidation des Siliziums gebildet wird,
    • Entfernen des Teils der Schicht (18) von Siliziumoxid, die sich über der Oberfläche (10, 14) der Isolierungsschicht erstreckt, um dadurch die eine oder mehreren Lamellenstrukturen (15), die einen Deckabschnitt (17) von Germanium in verspanntem Zustand umfasst, auf einem Basisabschnitt (16) des Legierungsmaterials herzustellen.
  2. Verfahren nach Anspruch 1, wobei der Schritt zur Herstellung der einen oder mehreren länglichen Strukturen (7) die Schritte umfasst zum:
    • Bereitstellen oder Herstellen eines Substrats (1) mit einem oder mehreren lamellenförmigen Bereichen (2) auf der Oberfläche, mit Isolierungsbereichen (3), die die Räume zwischen den lamellenförmigen Bereichen füllen,
    • Entfernen von Substratmaterial von den lamellenförmigen Bereichen (2), wodurch Gräben (4) zwischen den Isolierungsbereichen (3) erzeugt werden,
    • Züchten der Silizium- und Germaniumlegierung in den Gräben (4) durch eine Technik, die "Aspect Ratio Trapping" von Verlagerungen in den Gräben erlaubt, wodurch entspanntes und defektfreies Legierungsmetall in einem oberen Abschnitt (8') der Gräben erhalten wird, wie auch in einem pilzförmigen Abschnitt (9), der die Oberkanten von jedem der Gräben (4) überspannt,
    • optional, Entfernen eines Deckabschnitts der Isolierungsbereiche (3), was dazu führt, dass sich der pilzförmige Abschnitt (9) und optional mindestens Teil des entspannten und defektfreien oberen Abschnitts (8') in Bezug auf die Oberfläche (14, 10) der Isolierungsbereiche (3) oder des Rests der Isolierungsbereiche (3) nach außen erstrecken.
  3. Verfahren nach Anspruch 1, wobei der Schritt zum Herstellen der einen oder mehreren länglichen Strukturen (7) die Schritte umfasst zum:
    • Bereitstellen oder Herstellen eines Substrats (1) mit einem oder mehreren lamellenförmigen Bereichen (2) auf der Oberfläche, mit Isolierungsbereichen (3), die die Räume zwischen den lamellenförmigen Bereichen füllen,
    • Entfernen von Substratmaterial von den lamellenförmigen Bereichen (2), wodurch Gräben (4) zwischen den Isolierungsbereichen (3) gebildet werden,
    • Züchten der Silizium- und Germaniumlegierung in den Gräben durch eine Technik, die "Aspect Ratio Trapping" von Verlagerungen in den Gräben erlaubt, wodurch entspanntes und im Wesentlichen defektfreies Legierungsmaterial in einem oberen Abschnitt (8') der Gräben erhalten wird, wie auch in einem angrenzenden Bereich (20), der die oberen Ränder der Gräben überlagert,
    • Ebnen des Substrats mindestens bis zur höchsten Ebene (14) der Isolierungsbereiche (3),
    • Entfernen eines Deckabschnitts der Isolierungsbereiche (3), was darin resultiert, dass mindestens Teil des oberen entspannten und defektfreien Abschnitts (8') sich in Bezug auf die Oberfläche (10) des Rests der Isolierungsbereiche (3) nach außen erstreckt.
  4. Verfahren nach Anspruch 1, wobei der Schritt zur Herstellung der einen oder mehreren länglichen Strukturen (7) die Schritte umfasst zum:
    • Herstellen einer Schicht der Legierung auf einem Substrat, wobei die Schicht ausreichend dick ist, sodass sie einen oberen Bereich umfasst, der in einem entspannten und defektfreien Zustand ist,
    • Ätzen einer Vielzahl an Gräben in die Schicht,
    • Füllen der Gräben mit einem Isolierungsmaterial, optional gefolgt von einem Ebnungsschritt, um dadurch ein Substrat mit einem oder mehreren länglichen Bereichen der Legierung auf der Oberfläche zu erhalten, mit Isolierungsbereichen (3), die die Räume zwischen den länglichen Bereichen füllen, wodurch entspanntes und im Wesentlichen defektfreies Legierungsmaterial in einem oberen Abschnitt (8') der länglichen Bereiche erhalten wird,
    • Entfernen eines Deckabschnitts der Isolierungsbereiche (3), was darin resultiert, dass mindestens Teil des oberen entspannten und defektfreien Abschnitts (8'), sich in Bezug auf die Oberfläche (10) des Rests der Isolierungsbereiche (3) nach außen erstreckt.
  5. Verfahren nach Anspruch 4, wobei die Silizium- und Germaniumlegierung als SixGe1-x definiert ist, mit x höher als 0,2.
  6. Verfahren nach einem der Ansprüche 1 bis 5, wobei das Substrat ein Siliziumsubstrat ist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, weiter umfassend den Schritt zum Abscheiden einer Abdeckschicht, die aus dem zweiten Halbleitermaterial gebildet wird, auf der einen oder den mehreren entspannten und defektfreien lamellenförmigen Strukturen (7), die aus dem Legierungsmaterial bestehen, bevor die Strukturen dem Oxidationsschritt unterzogen werden.
EP12187332.7A 2012-10-05 2012-10-05 Verfahren zur Herstellung verspannter Germanium-Lamellenstrukturen Active EP2717316B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12187332.7A EP2717316B1 (de) 2012-10-05 2012-10-05 Verfahren zur Herstellung verspannter Germanium-Lamellenstrukturen
JP2013174538A JP6204749B2 (ja) 2012-10-05 2013-08-26 歪みGeフィン構造の製造方法
US14/047,950 US9263528B2 (en) 2012-10-05 2013-10-07 Method for producing strained Ge fin structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12187332.7A EP2717316B1 (de) 2012-10-05 2012-10-05 Verfahren zur Herstellung verspannter Germanium-Lamellenstrukturen

Publications (2)

Publication Number Publication Date
EP2717316A1 EP2717316A1 (de) 2014-04-09
EP2717316B1 true EP2717316B1 (de) 2019-08-14

Family

ID=47172280

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12187332.7A Active EP2717316B1 (de) 2012-10-05 2012-10-05 Verfahren zur Herstellung verspannter Germanium-Lamellenstrukturen

Country Status (3)

Country Link
US (1) US9263528B2 (de)
EP (1) EP2717316B1 (de)
JP (1) JP6204749B2 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014861A (ko) * 2011-08-01 2013-02-12 삼성전자주식회사 고 전자 이동도 트랜지스터 및 그 제조방법
US9406530B2 (en) * 2014-03-27 2016-08-02 International Business Machines Corporation Techniques for fabricating reduced-line-edge-roughness trenches for aspect ratio trapping
US9196479B1 (en) * 2014-07-03 2015-11-24 International Business Machines Corporation Method of co-integration of strained silicon and strained germanium in semiconductor devices including fin structures
US9276117B1 (en) * 2014-08-19 2016-03-01 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method and FinFET device
US10032912B2 (en) 2014-12-31 2018-07-24 Stmicroelectronics, Inc. Semiconductor integrated structure having an epitaxial SiGe layer extending from silicon-containing regions formed between segments of oxide regions
KR102274750B1 (ko) 2015-01-27 2021-07-07 삼성전자주식회사 반도체 장치 제조 방법
US9754968B2 (en) 2015-04-30 2017-09-05 International Business Machines Corporation Structure and method to form III-V, Ge and SiGe fins on insulator
US9548361B1 (en) 2015-06-30 2017-01-17 Stmicroelectronics, Inc. Method of using a sacrificial gate structure to make a metal gate FinFET transistor
US9330984B1 (en) 2015-07-08 2016-05-03 International Business Machines Corporation CMOS fin integration on SOI substrate
US9418900B1 (en) 2015-07-15 2016-08-16 International Business Machines Corporation Silicon germanium and silicon fins on oxide from bulk wafer
US9679899B2 (en) 2015-08-24 2017-06-13 Stmicroelectronics, Inc. Co-integration of tensile silicon and compressive silicon germanium
US20170084616A1 (en) 2015-09-18 2017-03-23 Samsung Electronics Co., Ltd. Semiconductor Devices Including FINFET Structures with Increased Gate Surface
US9378952B1 (en) 2015-09-30 2016-06-28 International Business Machines Corporation Tall relaxed high percentage silicon germanium fins on insulator
US9570443B1 (en) 2015-11-23 2017-02-14 International Business Machines Corporation Field effect transistor including strained germanium fins
CN106856191B (zh) * 2015-12-09 2019-11-01 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
US9659960B1 (en) * 2015-12-09 2017-05-23 International Business Machines Corporation Extremely thin silicon-on-insulator silicon germanium device without edge strain relaxation
US9911660B2 (en) 2016-04-26 2018-03-06 Lam Research Corporation Methods for forming germanium and silicon germanium nanowire devices
US10374089B2 (en) 2017-12-22 2019-08-06 International Business Machines Corporation Tensile strain in NFET channel
US10424639B1 (en) * 2018-04-19 2019-09-24 International Business Machines Corporation Nanosheet transistor with high-mobility channel
US11011517B2 (en) 2019-01-02 2021-05-18 International Business Machines Corporation Semiconductor structure including first FinFET devices for low power applications and second FinFET devices for high power applications
CN109761189A (zh) * 2019-01-10 2019-05-17 中国科学院长春光学精密机械与物理研究所 一种聚合物微纤维结构的制备方法及应用

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1519420A2 (de) * 2003-09-25 2005-03-30 Interuniversitaire Microelectronica Centrum vzw ( IMEC) Halbleiterbauelement mit mehrfachem Gate und diesbezügliches Herstellungsverfahren
EP2595175B1 (de) * 2005-05-17 2019-04-17 Taiwan Semiconductor Manufacturing Company, Ltd. Verfahren zur herstellung von halbleiterstrukturen mit gitterfehlanpassung und verminderter versetzungsfehlerdichte
KR101329388B1 (ko) * 2005-07-26 2013-11-14 앰버웨이브 시스템즈 코포레이션 다른 액티브 영역 물질의 집적회로 집적을 위한 솔루션
JP4635897B2 (ja) * 2006-02-15 2011-02-23 株式会社東芝 半導体装置及びその製造方法
JP2007258485A (ja) * 2006-03-23 2007-10-04 Toshiba Corp 半導体装置及びその製造方法
US7777250B2 (en) * 2006-03-24 2010-08-17 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
KR100756809B1 (ko) * 2006-04-28 2007-09-07 주식회사 하이닉스반도체 반도체 소자 및 그 제조 방법
JP4271210B2 (ja) * 2006-06-30 2009-06-03 株式会社東芝 電界効果トランジスタ、集積回路素子、及びそれらの製造方法
US8173551B2 (en) * 2006-09-07 2012-05-08 Taiwan Semiconductor Manufacturing Co., Ltd. Defect reduction using aspect ratio trapping
US7799592B2 (en) * 2006-09-27 2010-09-21 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ratio trapping
US8106381B2 (en) * 2006-10-18 2012-01-31 Translucent, Inc. Semiconductor structures with rare-earths
US7767560B2 (en) * 2007-09-29 2010-08-03 Intel Corporation Three dimensional strained quantum wells and three dimensional strained surface channels by Ge confinement method
JP4966153B2 (ja) * 2007-10-05 2012-07-04 株式会社東芝 電界効果トランジスタおよびその製造方法
US7727830B2 (en) 2007-12-31 2010-06-01 Intel Corporation Fabrication of germanium nanowire transistors
US8048723B2 (en) * 2008-12-05 2011-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Germanium FinFETs having dielectric punch-through stoppers
US8274097B2 (en) * 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
WO2010003928A2 (en) * 2008-07-06 2010-01-14 Interuniversitair Microelektronica Centrum Vzw (Imec) Method for doping semiconductor structures and the semiconductor device thereof
US20100072515A1 (en) * 2008-09-19 2010-03-25 Amberwave Systems Corporation Fabrication and structures of crystalline material
US8053299B2 (en) * 2009-04-17 2011-11-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabrication of a FinFET element
US9768305B2 (en) * 2009-05-29 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Gradient ternary or quaternary multiple-gate transistor
US9484462B2 (en) * 2009-09-24 2016-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure of fin field effect transistor
US8623728B2 (en) * 2009-07-28 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming high germanium concentration SiGe stressor
SG169921A1 (en) * 2009-09-18 2011-04-29 Taiwan Semiconductor Mfg Improved fabrication and structures of crystalline material
US8269283B2 (en) * 2009-12-21 2012-09-18 Intel Corporation Methods and apparatus to reduce layout based strain variations in non-planar transistor structures
US8211772B2 (en) * 2009-12-23 2012-07-03 Intel Corporation Two-dimensional condensation for uniaxially strained semiconductor fins
JP5166458B2 (ja) * 2010-01-22 2013-03-21 株式会社東芝 半導体装置及びその製造方法
US8395195B2 (en) * 2010-02-09 2013-03-12 Taiwan Semiconductor Manufacturing Company, Ltd. Bottom-notched SiGe FinFET formation using condensation
JP5454984B2 (ja) * 2010-03-31 2014-03-26 株式会社東芝 半導体装置の製造方法
US9105660B2 (en) * 2011-08-17 2015-08-11 United Microelectronics Corp. Fin-FET and method of forming the same
US8624326B2 (en) * 2011-10-20 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and method of manufacturing same
US9105661B2 (en) * 2011-11-03 2015-08-11 Taiwan Semconductor Manufacturing Company, Ltd. Fin field effect transistor gate oxide
US8853781B2 (en) * 2011-12-16 2014-10-07 International Business Machines Corporation Rare-earth oxide isolated semiconductor fin
US8603868B2 (en) * 2011-12-19 2013-12-10 International Business Machines Corporation V-groove source/drain MOSFET and process for fabricating same
CN104160478B (zh) * 2011-12-28 2017-02-15 英特尔公司 在非天然表面上形成具有减小的表面粗糙度和体缺陷密度的异质层的方法以及由此形成的结构
US8354320B1 (en) * 2012-02-09 2013-01-15 Globalfoundries Inc. Methods of controlling fin height of FinFET devices by performing a directional deposition process
US8580642B1 (en) * 2012-05-21 2013-11-12 Globalfoundries Inc. Methods of forming FinFET devices with alternative channel materials
US9583398B2 (en) * 2012-06-29 2017-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit having FinFETS with different fin profiles
US8673718B2 (en) * 2012-07-09 2014-03-18 Globalfoundries Inc. Methods of forming FinFET devices with alternative channel materials
US20140030876A1 (en) * 2012-07-27 2014-01-30 Globalfoundries Inc. Methods for fabricating high carrier mobility finfet structures
US9728464B2 (en) * 2012-07-27 2017-08-08 Intel Corporation Self-aligned 3-D epitaxial structures for MOS device fabrication
US20140054705A1 (en) * 2012-08-27 2014-02-27 International Business Machines Corporation Silicon germanium channel with silicon buffer regions for fin field effect transistor device
US8765563B2 (en) * 2012-09-28 2014-07-01 Intel Corporation Trench confined epitaxially grown device layer(s)

Also Published As

Publication number Publication date
US9263528B2 (en) 2016-02-16
EP2717316A1 (de) 2014-04-09
JP6204749B2 (ja) 2017-09-27
JP2014096565A (ja) 2014-05-22
US20140099774A1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
EP2717316B1 (de) Verfahren zur Herstellung verspannter Germanium-Lamellenstrukturen
US7928436B2 (en) Methods for forming germanium-on-insulator semiconductor structures using a porous layer and semiconductor structures formed by these methods
JP7105239B2 (ja) パワーデバイス用の窒化ガリウムエピタキシャル構造
US10115826B2 (en) Semiconductor structure and the manufacturing method thereof
KR101622048B1 (ko) 누설이 감소된 cmos 디바이스 및 그 형성 방법
JP4686480B2 (ja) 高度な緩和及び低い積層欠陥密度を有する薄いSiGeオン・インシュレータ(SGOI)ウェハを形成する方法。
JP7074393B2 (ja) 異なる歪み状態を有するフィン構造を含む半導体構造を作製するための方法及び関連する半導体構造
KR20170109487A (ko) 소오스/드레인 스트레서를 갖는 나노시트 및 나노와이어 장치와 그 제조 방법
US10037916B2 (en) Semiconductor fins for finFET devices and sidewall image transfer (SIT) processes for manufacturing the same
TW201344758A (zh) 半導體裝置及其製造方法
CN109155278B (zh) 制造应变绝缘体上半导体衬底的方法
US9870940B2 (en) Methods of forming nanosheets on lattice mismatched substrates
US20150076620A1 (en) Method for manufacturing transistors and associated substrate
US20120252174A1 (en) Process for forming an epitaxial layer, in particular on the source and drain regions of fully-depleted transistors
KR20150000386A (ko) 응력 변형된 반도체 구조물 형성 방법
US20180053826A1 (en) Semiconductor device and method for fabricating the same
KR101867999B1 (ko) Iii-v족 물질층을 형성하는 방법, iii-v족 물질층을 포함하는 반도체 소자 및 그 제조방법
KR20170132074A (ko) 희생 에피택셜 게이트 스트레서
EP2897161A1 (de) Verfahren zur Herstellung einer CMOS-Vorrichtung
CN115692308A (zh) 一种半导体结构的制备方法及半导体结构
JP2005191457A (ja) 半導体基体とその作製方法、半導体装置
JP2008130726A (ja) 半導体装置の製造方法
CN106531631A (zh) 一种形成鳍的方法及结构

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140926

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IMEC VZW

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190606

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1168045

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012062898

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1168045

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012062898

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191005

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191114

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121005

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 12