EP2709969B1 - Ozonolyseverfahren und sicherheitssystem für eine ozonabsorptionssäule - Google Patents

Ozonolyseverfahren und sicherheitssystem für eine ozonabsorptionssäule Download PDF

Info

Publication number
EP2709969B1
EP2709969B1 EP12705732.1A EP12705732A EP2709969B1 EP 2709969 B1 EP2709969 B1 EP 2709969B1 EP 12705732 A EP12705732 A EP 12705732A EP 2709969 B1 EP2709969 B1 EP 2709969B1
Authority
EP
European Patent Office
Prior art keywords
ozone
column
threshold
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12705732.1A
Other languages
English (en)
French (fr)
Other versions
EP2709969A2 (de
Inventor
Thomas Chad WALKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emery Oleochemicals LLC
Original Assignee
Emery Oleochemicals LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emery Oleochemicals LLC filed Critical Emery Oleochemicals LLC
Publication of EP2709969A2 publication Critical patent/EP2709969A2/de
Application granted granted Critical
Publication of EP2709969B1 publication Critical patent/EP2709969B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/34Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with ozone; by hydrolysis of ozonides

Definitions

  • the present invention relates to a process for producing an ozonide from an ethylenically unsaturated compound.
  • Azelaic acid and pelargonic acid can be produced in commercial quantities via an oxidative cleavage of an alkenyl unit (i.e., double bond between two carbon atoms) in oleic acid.
  • azelaic acid has been prepared from oleic acid by oxidation with chromium sulfate.
  • chromium sulfate because stoichiometric use of chromium reagents is undesirable, a more efficient oxidation approach utilizing ozone was developed.
  • FIG. 1 is a diagrammatic flow chart indicating the pieces of equipment used and their relationship in the ozonolysis process.
  • This process involves reacting an ethylenically unsaturated compound, such as oleic acid, with ozone in an absorber 13 to form an ozonide.
  • the ozone is provided by a continuous closed system 12 that recirculates and recycles the ozone enriched gas.
  • the ozonide is transferred from the absorber 13 to one or more reaction chambers 37 where it is decomposed in the presence of additional oxygen and optional ozone to form a mixture of compounds including monobasic and dibasic acids, the mixture being referred to as mixed oxidation products (MOP).
  • MOP mixed oxidation products
  • Monobasic acids and dibasic acids are then separated and individually processed in a series of stills 40 and 52, condensers 43 and 55, extractor 64, and evaporators 70 to remove compounds and undesired fractions among the range of molecular weights of monobasic and dibasic acids produced.
  • the separated and purified monobasic and dibasic acids are then stored in storage tanks 46, 76.
  • Ozonized gas is fed into the absorber 13 by a continuous closed system 12 through which the gas circulates.
  • the gas is recycled, i.e., the gas is reconditioned for reuse multiple times in the absorber 13.
  • the closed system 12 reconditions the gas by removing organic compounds and water from the gas, restoring the desired oxygen concentration, and generating the desired concentration of ozone.
  • the closed system 12 maintains the desired predetermined oxygen concentration by bleeding off a small portion of the spent gas and replacing the bled off portion with fresh oxygen gas from an oxygen supply 16.
  • the gas is then passed through a dehydrator 19 before being transferred to an ozone generator 22 which utilizes electricity to generate ozone.
  • the ozone and oxygen mixture passes to the absorber 13 in which its ozone content is absorbed by the oleic acid as further explained below.
  • the oxygen gas now substantially devoid of ozone, passes to an electrostatic precipitator 25, which removes any contaminating fine mist organic compounds that may have been picked up in the absorber 13.
  • the decontaminated oxygen gas then passes from the electrostatic precipitator 25 through a compression pump 28 to a cooler 31 and then returns back to the dehydrator 19, in which substantially all remaining moisture is removed to complete a pass through the closed system 12.
  • a portion of the gas may be bled from the closed system 12 through a valve to one or more reaction chambers 37 for reaction with the ozonide to form the MOP.
  • Temperatures within the absorber column can rise above safe operating values due to, for example, a failure in the cooling system or a change in the flow rate or concentration of one or both of the ozone containing gas and the unsaturated fatty acid.
  • a system that considers the operating temperatures, the flow rates, pressures, and volumes for the reactants and products, and then responds to those parameters in the event they fall outside acceptable ranges is needed to improve the safety of the process.
  • WO 2007/072097 discloses a flow-type laboratory scale ozonolysis apparatus comprising a reservoir, a feed pump, a mixing element with two inlets and an outlet, a reactor unit and a pressure-adjusting means, all connected into a flow path.
  • the ozonolysis apparatus further comprises an ozone source, as well as a dispensing valve transmitting a gas stream only in a single direction and installed between the ozone source and one of the inlets of the mixing element.
  • the feed pump of the ozonolysis apparatus is a liquid pump generating a constant volume rate
  • the reservoir contains at least the substance, as a solute, to be subjected to the ozonolysis reaction
  • the reactor unit consists of first and second reactor zones differing in function from one another.
  • the outlet of the first reactor zone is connected to the inlet of the second reactor zone.
  • an inlet for feeding in substances is inserted into the flow path between the reactor zones, and the pressure-adjusting means is installed into the flow path after the reactor unit and is provided with an electrically governed control.
  • the invention refers to a process for producing an ozonide in accordance with claim 1.
  • the invention refers to a process for producing an ozonide from an ethylenically unsaturated carboxylic acid having between 8 and 30 carbon atoms and one or more unsaturated carbon to carbon double bonds comprising the steps of contacting an ozone enriched gas with the unsaturated carboxylic acid in an absorber column (110) having a trough (126) at the top (128) and a pot (130) at the bottom (132) having separate stages to form an ozonide; and operating a safety system comprising:
  • Also described herein is an improved process for producing a carboxylic acid mixture comprising a saturated mono carboxylic acid and a saturated dicarboxylic acid.
  • the process includes generating an ozone enriched gas in an ozone generator and introducing the ozone enriched gas to an absorber column. There, the ozone enriched gas is contacted with an unsaturated carboxylic acid feed in the absorber to form an ozonide. The ozonide is contacted with an oxygen enriched gas in a reactor to obtain the carboxylic acid mixture. The carboxylic acid mixture is optionally purified.
  • the process further includes a safety system that monitors operating conditions of the absorber column and responds to those conditions which are able to disrupt the formation of ozonide or generate other materials capable of causing a safety risk should the operating conditions exceed a threshold value.
  • the gas recycling system is used to circulate and recondition depleted gas from an absorber column in which an ozonizing reaction is conducted.
  • the recycle gas system is useful to recondition the depleted gas from the absorber and as shown in Fig. 2 , provides a significant improvement in efficiency and safety over the recycle gas system shown in Fig. 1 .
  • This invention is directed to a safety system that includes sensors, switches, valves, and rupture disks located in the vicinity of an ozone absorber column used in the process of adding ozone across a double bond of an unsaturated organic compound, such as oleic acid.
  • the ozonation reaction forms an ozonide of the unsaturated organic compound at the unsaturated bond.
  • the ozonide leaves the absorber column and is oxidized in a series of oxidation reactions to yield a mixture of a dibasic acid, such as azaleic acid, and a monobasic acid, such as pelargonic acid.
  • the desired monobasic and dibasic acids may be purified from by products and each other in a series of distillation and crystallization steps.
  • the reaction product i.e., the ozonide
  • the reaction product i.e., the ozonide
  • the safety system includes a plurality of valve and switch assemblies arrayed at various locations contiguous to the column to interrupt reactant and product flows, as well as to introduce a water quench into the column under certain conditions.
  • the safety system includes mechanisms to safely relieve excessive pressure in the absorber column that could result in an explosion.
  • the conditions that are monitored in the absorber column 110 include the operating temperatures within the absorber column 110, the flow of reactants through the column 110 (e.g., ethylenically unsaturated compound, such as oleic acid, ozone carried by an oxygen gas (ozone enriched gas), or both), the flow of the product (e.g., ozonide) out of the column, and the operating pressure in the absorber column 110.
  • Each condition is typically monitored independently of the other conditions. If any one of these conditions is observed to meet or exceed the threshold values described in further detail below, then an aspect of the safety system is activated, shutting down the column and decreasing the risk of an explosion.
  • the absorber column 110 has separate stages 112, 114, 116, 118, 120, 122, and 124 that optimize the reaction conditions for the reactants, e.g. an unsaturated fatty acid such as oleic acid and ozone, to produce an ozonide.
  • the exemplary absorber column 110 described herein has seven such stages and further includes a trough 126 at the top 128 of the absorber column 110 and a pot 130 at the bottom 132.
  • the unsaturated fatty acid enters the trough 126 at the top 128 of the absorber column 110 and flows down the column 110 through the separate stages 112, 114, 116, 118, 120, 122, 124.
  • the ozone enriched gas has an ozone concentration in the range between 0.5% to 12% ozone, enters near the bottom 132 of the absorber column 110 and travels up the absorber column 110 through the separate stages 112, 114, 116, 118, 120, 122, 124, counter-current to the flow of the unsaturated fatty acid. While the exemplary absorber column 110 has seven stages 112, 114, 116, 118, 120, 122, 124 it is understood that absorber columns with greater than or less than seven stages are within the scope of the invention. Accordingly, the number of components for the safety system such as the number of sensors, switches, valves, and rupture disks may similarly be varied and are within the scope of the invention.
  • the first element of the safety system described herein includes a sensor that monitors the temperature within the column and a switch linked to the sensor stops the supply of the ozone enriched gas to the absorber column no in the event that the sensor detects a temperature at any of the stages 112, 114, 116, 118, 120, 122, 124 of the absorber column 110 that is above a first threshold temperature but is less than the critical temperature.
  • the switch causes the ozone generators to shut down by switching off supply of electricity to the generators thereby stopping the production of ozone in the generators.
  • the switch also causes the ozone enriched gas valve 134, which supplies the absorber column 110 with ozone enriched gas, to close.
  • the first threshold temperature value is between 37°C (100°F) and 60°C (140°F) as measured at any of the stages 112, 114, 116, 118, 120, 122, 124 in the absorber column 110, in the trough 126, or in the pot 130.
  • the first threshold temperature value is between 43°C (110 °F) and 54°C (130°F).
  • the threshold temperature value is between 49°C (120°F) and 52°C (125°F).
  • the first threshold temperature is monitored and the response is controlled by first temperature monitor 138 located at each stage 112, 114, 116, 118, 120, 122, 124 of the column 110.
  • the first temperature monitor 138 includes a sensor to measure the temperature and a switch to effect the response as needed.
  • the sensor and switch may be included in a single device or may be in discrete devices that are in communication with each other.
  • the first temperature monitors 138 are set to detect if the temperature in any one of the stages 112, 114, 116, 118, 122, 124 of the column 110, or in the trough 126 or pot 130 reaches or exceeds the first threshold temperature.
  • this monitor 138 will send a signal to automatically shut down the ozone generators (not shown) by switching off the supply of electricity to the ozone generator and also to close the ozone enriched gas valve 134, thereby preventing a runaway exothermic reaction that could result in an explosion.
  • the first temperature monitor 138 closes an electrical contact in the switch portion of the monitor 138 when the sensor portion detects a temperature in the column 110 that exceeds the first threshold temperature.
  • the ozone enriched gas valve 134 closes automatically in response to the signal from the first temperature monitor 138.
  • the ozone enriched gas valve 134 may be opened and closed by a control valve, such as an air pressure control valve as is known to those of ordinary skill in the art, that is linked to the first temperature monitor 138.
  • the safety system also includes a second temperature monitor 144 that is independent of the first temperature monitor 138.
  • the second temperature monitor 144 detects the temperature of certain stages of the absorber column, such as stages 112, 122, or 124 in the exemplary column, and if the temperature exceeds a second threshold temperature that is greater than the first threshold temperature but less than the critical temperature, all ozone generators will shut down, the ozone enriched gas valve 134 supplying the absorber column 110 will close as described above, and water valves 140 will open to that corresponding stage wherein the second threshold temperature was exceeded, injecting water through a nozzle 142 to cool the absorber column 110 and to quench the reaction in that stage.
  • the second threshold temperature value is between 43°C (110°F) and 66°C (150°F).
  • the second threshold temperature value is between 49°C (120°F) and 60°C (140°F).
  • the second threshold temperature value is between 52°C (125°F) and 57°C (135°F).
  • the risk of a runaway reaction in that stage which can result in explosion is substantially increased.
  • the response is to shut off the supply of reactants to the reactor and to cool the reactor such as with the external application of a coolant.
  • cooling agents are not directly added to the reactant because of the risk that the cooling agent could either react with the reactants or rapidly convert to a gas (or steam, as is the case with water) thereby rapidly increasing the pressure in the vessel and increasing the risk of an explosion.
  • Water is injected at a rate to quench the reaction and continues to be injected until the temperature reaches the first threshold temperature or below, at which point water injection is stopped by closing the water valves 140.
  • the operator of the absorber column 110 will stop the injection of the water by closing the water valves 140.
  • automatic systems such as a computer controlled system (not shown), can also be used.
  • the material in the column 110 i.e., water, reactants, and products, may then be sent to a catch tank (not shown) and processed for recycling back through the system to complete the reaction.
  • the safety system also monitors and responds to changes in the flow of reactants in the absorber column.
  • One of the reactants is the ozone enriched gas that flows from the recycled gas system to the absorber column.
  • the ozone enriched gas flow safety component is activated if either or both of the pressure or volume of the ozone enriched gas drops below their respective threshold values.
  • An exemplary ozone enriched gas pressure threshold is in the range between 0 kPa (0 psig) to 103kPa (15 psig), or, alternatively, in the range between 34 kPa (5 psig) and 68 kPa (10 psig).
  • the ozone generators will shut down and close the ozone enriched gas valve 134 feeding the absorber column 110.
  • the ozone enriched gas pressure is measured by pressure sensors located upstream from the ozone generators. Any gas pressure sensor as known to those skilled in the art may be used.
  • a similar result will follow if the ozone enriched gas flow falls below the ozone enriched gas volume threshold.
  • the ozone enriched gas flow is measured at the inlet of the ozone generator with a flow meter that has a low level trip, i.e., is tripped when the flow drops below the threshold value. Any gas flow meter as known to those skilled in the art may be used.
  • the safety system described herein also monitors and responds to the flow of liquid reactant through the column.
  • the liquid reactant and ozone enriched gas pass through the column, some liquid reactant will become entrained as liquid droplets in the ozone enriched gas.
  • the amount of liquid reactant entrained in the ozone enriched gas will increase if the liquid reactant begins backing up in any of the lower stages of the column. Therefore, increased levels of entrained liquid reactant may be used as an indicator of the flow of liquid reactants through the column.
  • the trough 126 is part of a system at the top of the column that removes the entrained liquid reactant from the ozone enriched gas.
  • the trough 126 collects the liquid reactant that has been removed from the ozone enriched gas.
  • the collected liquid reactant is then drained to a lower stage of the column.
  • the drain 127 has a limited capacity to remove collected liquid reactant in the trough 126.
  • the drain 127 may remove the volume of liquid reactant collected from the ozone enriched gas under normal operating conditions without the liquid reactant pooling in the trough.
  • the safety system monitors the volume of liquid reactant in the trough 126.
  • the volume of liquid reactant in the trough 126 is monitored. If the depth of liquid reactant in the trough 126 meets or exceeds a threshold value, referred to herein as the liquid reactant threshold, a sensor 146 will detect the increased depth of the liquid reactant and generate a signal to shut down the ozone generators as described above, close the ozone enriched gas valve 134, close the ethylenically unsaturated compound valve 148 supplying the column 110, and also close the diluent feed valve 150 used to control the viscosity of the mixture of the ozone enriched gas with the liquid reactant.
  • the liquid reactant threshold can vary depending on the characteristics of the column 110, such as the volume of the trough, size of the drain, etc.
  • the liquid reactant threshold is a depth of liquid reactant in the trough 126 that is greater than the normal operating depth of liquid reactant in the trough.
  • the liquid reactant threshold can be an increase of at least 5% of the normal operating depth of the liquid reactant in the trough, depending on the characteristics of the column.
  • the change in depth correlates to a change in the volume of liquid reactant in the trough of at least 5% over the normal operating volume of the liquid reactant in the trough, depending on the characteristics of the column.
  • the senor 146 begins indicating an increasing depth of liquid reactant as soon as the liquid reactant touches the sensor 146, which can be located 0.6 cm (0.25 inches) to 12.7 cm (5 inches) above the bottom 129 of the trough 126.
  • the threshold is triggered when the sensor detects a change in the depth of the liquid reactant in the range from 0.6 cm (0.25 inches) to 3.8 cm (1.5 inches) above the normal operating depth of the liquid reactant, or a 5% to a 600% change in the volume of liquid reactant in the trough collected during normal operating conditions.
  • liquid reactant is understood to include the mixture of ethylenically unsaturated compound, such as oleic acid, and its reaction products and intermediaries as well as a diluent.
  • Such diluent includes, but is not limited to, saturated short chain acids such as acetic acid, butanoic acid, caproic acid, heptanoic acid, caprylic acid, pelargonic acid, and capric acid; esters such as ethyl acetate and butyl acetate; and alkanes such as hexane, octane, and decane.
  • saturated short chain acids such as acetic acid, butanoic acid, caproic acid, heptanoic acid, caprylic acid, pelargonic acid, and capric acid
  • esters such as ethyl acetate and butyl acetate
  • alkanes such as hexane, octane, and decane.
  • pelargonic acid is recommended because, as an end product of the process, it does not interfere with the operation of the circulating oxygen system and requires no separate distillation. In other words, since pelargonic acid is one of the end products
  • the safety system also monitors and responds to the flow of the product out of the pot.
  • product is understood to include the ozonide, unreacted liquid reactants, and diluent. This aspect is monitored as part of the safety system to prevent overfilling the pot 130 and possibly backing up in the column 110 of the product, which can result in an explosion.
  • the flow of product out of the pot 130 may be determined by monitoring the liquid level of the product in the pot 130.
  • the liquid level of the product in the pot may be measured with a differential pressure sensor 154 that measures the head of the liquid, or with a float switch similar to the float switch 146 described above.
  • the safety system will shut down the ozone generators, close the ozone enriched gas valve 134 supplying the absorber column 110 with ozone enriched gas, close the unsaturated carboxylic acid valve 148 supplying the column 110, and also close the diluent feed valve 150.
  • sensor 154 in Fig. 2 is used detect if level of product in the pot reaches a product threshold level of 1/3 of the height of the pot 130 or a height of 56 cm (22 inches) from the bottom of the pot having a diameter at its widest point of 86 cm (34 inches). It is understood that the product threshold level can vary depending on the characteristics of the column 110.
  • the safety system also includes rupture disks 158 fitted throughout the absorber column no that are designed to burst if the pressure anywhere in the column no exceeds a first threshold operating pressure that is at or below maximum safe operating pressure for the absorber column no.
  • the first threshold pressure is in the range between 138 kPa (20 psig) to 414 kPa (60 psig), or more preferably in the range between 241 kPa (35 psig) to 310 kPa (45 psig).
  • the rupture disks can be formed as known in the art from a disk of material, such as a metal, and designed to burst at specified pressure. When the rupture disks burst, the vented gases and product are discharged into a catch tank.
  • piping that is associated with the absorber column may also be fitted with rupture disks.
  • the mechanism for relieving excessive pressure may also include at least one relief valve (not shown) on the dryer (not shown) upstream of the ozone generators that is set to open if the pressure within the dryer exceeds a second threshold operating pressure. This prevents the pressure within the ozone enriched gas supply from being too great upon entry into the column 110. If the ozone enriched gas pressure is greater than the second threshold operating pressure, then the mixture of the reactants, i.e., ozone and oleic acid, could result in a runaway reaction and explosion.
  • the dryer pressure relief valve is set to open if the pressure at the dryer exceeds the second threshold pressure in the range between 68 kPa (10 psig) and 172 kPa (25 psig), or more preferably between 103 kPa (15 psig) 138 kPa (20 psig).
  • the safety system described herein is useful with an absorber column that generates ozonides of unsaturated acids in an ozonolysis system.
  • the safety system is particularly suited for use with an ozonolysis system that breaks down oleic acid into pelargonic acid and azelaic acid.
  • the safety system may be useful with ozonolysis systems used to break down other unsaturated acids into component carbon chains which form monobasic and dibasic acids via the ozonolysis reaction.
  • the unsaturated acids have between 8 and 30 carbon atoms and one or more unsaturated carbon to carbon bonds.
  • the monobasic and dibasic acid products that result from the ozonolysis reaction are determined by the location of the one or more unsaturated carbon to carbon bonds in the unsaturated acid.
  • the unsaturated acids may be isolated from biological sources, such as plants, animals, or microorganisms. Alternatively, the unsaturated acids may be isolated from petroleum sources and synthetic sources. Exemplary mono unsaturated acids and their respective potential oxidation products are included in the Table below.
  • monounsaturated acids While the list above includes monounsaturated acids, it is understood that polyunsaturated acids could be utilized as well.
  • the resulting monobasic acids and dibasic acids, and their respective derivatives may be used for a number of different purposes such as in the preparation of lubricant base stocks, plasticizers, lacquers, herbicides, skin treatments, textile coning oils, flotation agents for mineral refining, fragrances, catalyst scavengers, corrosion inhibitors, metal cleaners, polymerization initiators, lithium complex greases, epoxy flexibilizers, thermosetting unsaturated polyester resins, polyamide hot melts, urethane elastomers, and elastomeric fibers, wire coatings and molding resins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Gas Separation By Absorption (AREA)

Claims (13)

  1. Verfahren zum Produzieren eines Ozonids aus einer ethylenisch ungesättigten Carbonsäure mit zwischen 8 und 30 Kohlenstoffatomen und einer oder mehreren ungesättigten Kohlenstoff-zu-Kohlenstoff-Doppelbindungen, der die folgenden Schritte beinhaltet:
    Inkontaktbringen eines ozonangereicherten Gases mit der ungesättigten Carbonsäure in einer Absorberkolonne (110) mit einem Trog (126) an der Oberseite (128) und einem Topf (130) an der Unterseite (132) mit getrennten Stufen, um ein Ozonid zu bilden; und
    Betreiben eines Sicherheitssystems, das Folgendes beinhaltet:
    Überwachen einer Betriebsbedingung, wobei die Betriebsbedingungen mindestens eines von einer Betriebstemperatur innerhalb der Kolonne, dem Fluss von ozonangereichertem Gases mit einer Ozonkonzentration zwischen 0,5 % und 12 % durch die Kolonne, dem Betriebsdruck des ozonangereicherten Gases in der Kolonne, dem Fluss von flüssigem Reaktanten durch die Kolonne und dem Fluss von Produkt aus der Kolonne heraus und Zuordnen eines Wertes auf die überwachte Betriebsbedingung; und wobei jede Betriebsbedingungen unabhängig überwacht wird;
    Vergleichen des Betriebsbedingungswertes mit einem Schwellenwert für die mindestens eine Bedingung;
    Beeinflussen der Bildung des Produkts als Reaktion auf das Erreichen des Schwellenwerts der Betriebsbedingung;
    wobei der Betriebsbedingungswert eine Temperatur in der Absorberkolonne ist und der Schwellenwert eine erste Schwellentemperatur zwischen 37 °C (100 °F) und 60 °C (140 °F) ist; und wobei ein Sensor die Temperatur innerhalb der Kolonne überwacht und ein mit dem Sensor gekoppelter Schalter die Speisung von ozonangereichertem Gas an die Absorberkolonne durch Schließen eines Ventils für das ozonangereicherte Gas und Bewirken des Ausschaltens der Ozongeneratoren durch Abschalten der Speisung von Elektrizität an die Generatoren, falls die Temperatur in einer der Stufen in der Absorberkolonne oder in dem Trog oder in dem Topf über dem ersten Schwellentemperaturwert, d. h. zwischen 37 °C (100 °F) und 60 °C (140 °F), liegt, unterbricht; und
    wobei der Schwellenwert ferner eine zweite Schwellentemperatur umfasst, die größer als die erste Schwellentemperatur ist, und die zweite Schwellentemperatur zwischen 43 °C (110 °F) und 66 °C (150 °F) liegt, und wobei eine zweite unabhängige Temperaturüberwachungseinheit die Temperatur der Stufen innerhalb der Kolonne detektiert und, falls die Temperatur die zweite Schwellentemperatur überschreitet oder erreicht, aber geringer als die kritische Temperatur ist, ein Schalter, der mit dem zweiten Temperatursensor gekoppelt ist, das Ausschalten der Ozongeneratoren, das Schließen des Ventils für das ozonangereicherte Gas, das die Absorberkolonne speist,
    und das Öffnen von Wasserventilen an die Stufe, in der die zweite Schwellentemperatur überschritten wurde und die Bildung des Produkts in der Stufe als Reaktion auf das Erreichen der Temperatur des zweiten Schwellenwerts durch direkte Hinzufügung von Wasser in die Absorberkolonne beeinflusst wird, bewirkt.
  2. Verfahren gemäß Anspruch 1, wobei das Sicherheitssystem auch den Fluss des ozonangereicherten Gases und die Absorberkolonne von dem Recyclegassystem überwacht und die Flusssicherheitskomponenten aktiviert werden, falls eines oder beides von dem Druck oder Volumen des ozonangereicherten Gases unter die Schwellenwerte abfällt, wobei der Betriebsbedingungswert ein Schwellendruck, der von einem Gasdrucksensor stromaufwärts von den Ozongeneratoren gemessen wird, und/oder ein Schwellenvolumen des ozonangereicherten Gases, das von einem Gasflussmesser an dem Einlass des Ozongenerators gemessen wird, ist, wobei der Schwellengasdruckwert ein Druck des ozonangereicherten Gases zwischen 0 kPa (0 psig) und 103 kPa (15 psig) ist; und wobei, falls der Gasdruck auf den Schwellenwert oder unter diesen abfällt, die Ozongeneratoren ausschalten und ein Ventil für das ozonangereicherte Gas schließen werden, um die Speisung des ozonangereicherten Gases an die Absorberkolonne zu unterbrechen.
  3. Verfahren gemäß Anspruch 1 oder 2, wobei das Sicherheitssystem auch den Fluss von flüssigem Reaktanten durch die Absorberkolonne durch Überwachen des Volumens von flüssigem Reaktanten in dem Trog überwacht und wobei der Betriebsbedingungswert ein Schwellenwert der Tiefe von flüssigem Reaktanten in dem Trog ist.
  4. Verfahren gemäß Anspruch 3, wobei der Fluss von flüssigem Reaktanten durch einen Sensor überwacht wird, um das Volumen des flüssigen Reaktanten in dem Trog der Kolonne zu detektieren; und wobei der Schwellenwert eine Vergrößerung der Tiefe von flüssigem Reaktanten in dem Trog um mindestens 5 % der normalen Betriebstiefe von Flüssigkeit in dem Trog der Absorberkolonne ist.
  5. Verfahren gemäß einem der Ansprüche 3 oder 4, wobei, falls der Schwellenwert erfüllt oder überschritten wird, von dem Sensor ein Signal generiert wird, um die Ozongeneratoren auszuschalten, das Ventil für das ozonangereicherte Gas zu schließen, das Ventil für die ethylenisch ungesättigte Verbindung zu schließen und das Ventil für die Verdünnungsmittelzufuhr zu schließen.
  6. Verfahren gemäß einem der Ansprüche 1 bis 5, wobei das Sicherheitssystem auch den Fluss von Produkt überwacht, wobei das Produkt Ozonid, unverdünnte flüssige Reaktanten und Verdünnungsmittel ist und wobei der Betriebsbedingungswert durch Messen des Pegels von Flüssigkeit in dem Topf der Kolonne überwacht wird, wobei der Schwellenwert ein Produktpegel von 1/3 der Höhe des Topf ist und wobei, falls der Pegel von Produkt die Schwelle erfüllt oder überschreitet, die Bildung von Ozonid durch das Ausschalten der Ozongeneratoren durch das Sicherheitssystem, Schließen des Ventils für das ozonangereicherte Gas, Schließen des Ventils für die ungesättigte Carbonsäure und Schließen des Ventils für die Verdünnungsmittelzufuhr beeinflusst wird.
  7. Verfahren gemäß einem der Ansprüche 1 bis 6, wobei das Sicherheitssystem Mechanismen für die Entlastung von übermäßigem Druck in der Absorberkolonne, falls der Druck in der Kolonne einen ersten Schwellenbetriebsdruck überschreitet, umfasst, wobei Bruchscheiben, die ausgelegt sind, um zu bersten, falls der Druck in der Kolonne den ersten Schwellenbetriebsdruck überschreitet, in der ganzen Absorberkolonne montiert sind und wobei der erste Schwellenbetriebsdruck auf oder unter dem Sicherheitsbetriebsdruck für die Absorberkolonne liegt.
  8. Verfahren gemäß Anspruch 7, wobei der erste Schwellenbetriebsdruck zwischen 137900 Pascal (20 psig) und 413700 Pascal (60 psig) liegt.
  9. Verfahren gemäß einem der Ansprüche 1 bis 8, wobei das Sicherheitssystem einen Mechanismus für die Entlastung von übermäßigem Druck stromaufwärts von den Ozongeneratoren umfasst und mindestens ein Druckentlastungsventil auf dem Trockner umfasst, wobei der Mechanismus eingestellt ist, um zu öffnen, falls der Druck des ozonangereicherten Gases vor der Einleitung in die Absorberkolonne einen zweiten Schwellenbetriebsdruck überschreitet.
  10. Verfahren gemäß Anspruch 9, wobei der Druck des ozonangereicherten Gases durch das Öffnen eines Druckentlastungsventils entlastet wird und wobei die Schwelle für die Entlastung des Druckes zwischen 68950 Pascal (10 psig) und 172400 Pascal (25 psig) liegt.
  11. Verfahren gemäß einem der Ansprüche 1 bis 10, wobei der Absorber 7 Stufen aufweist, wobei sich eine erste Temperaturüberwachungseinheit an jeder Stufe befindet und wobei sich eine zweite Temperaturüberwachungseinheit in 3 Stufen (112, 122, 124) befindet.
  12. Verfahren gemäß einem der Ansprüche 1 bis 11, wobei die ungesättigte Carbonsäure Obtusilin-, Caprolein-, Undecen-, Laurin-, Myristolein-, Palmitolein-, Petroselin-, Olein-, Vaccen-, Octadecan-, Gadolein-, Cetolein-, Eruca-, Selacholein-, Hexacosan- oder Tricosansäure ist.
  13. Verfahren gemäß einem der Ansprüche 1 bis 12, wobei die ungesättigte Carbonsäure Oleinsäure ist.
EP12705732.1A 2011-01-28 2012-01-26 Ozonolyseverfahren und sicherheitssystem für eine ozonabsorptionssäule Active EP2709969B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161437583P 2011-01-28 2011-01-28
PCT/US2012/022699 WO2012103317A2 (en) 2011-01-28 2012-01-26 Safety system for an ozone absorber column

Publications (2)

Publication Number Publication Date
EP2709969A2 EP2709969A2 (de) 2014-03-26
EP2709969B1 true EP2709969B1 (de) 2019-04-10

Family

ID=45757195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12705732.1A Active EP2709969B1 (de) 2011-01-28 2012-01-26 Ozonolyseverfahren und sicherheitssystem für eine ozonabsorptionssäule

Country Status (6)

Country Link
EP (1) EP2709969B1 (de)
CA (1) CA2841761C (de)
MY (1) MY187460A (de)
SG (1) SG194232A1 (de)
TW (1) TWI603953B (de)
WO (1) WO2012103317A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113905725A (zh) * 2019-05-31 2022-01-07 科学与工业研究委员会 用于脂肪酸的氧化的方法
CN114053971A (zh) * 2021-12-06 2022-02-18 上海友尹化工科技有限公司 一种连续臭氧氧化反应系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU227638B1 (en) * 2005-12-23 2011-10-28 Thales Rt Flowing laboratorial ozonizating apparatus and method for ozonization reaction
US8425784B2 (en) * 2007-11-05 2013-04-23 University Of Kansas Ozonolysis reactions in liquid CO2 and CO2-expanded solvents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
SG194232A1 (en) 2013-12-30
WO2012103317A3 (en) 2012-11-22
CA2841761A1 (en) 2012-08-02
MY187460A (en) 2021-09-23
WO2012103317A2 (en) 2012-08-02
CA2841761C (en) 2018-03-20
TWI603953B (zh) 2017-11-01
TW201302695A (zh) 2013-01-16
EP2709969A2 (de) 2014-03-26

Similar Documents

Publication Publication Date Title
US3530185A (en) Oxidation process
DE962078C (de) Verfahren zur kontinuierlichen Oxydation von organischen Verbindungen mit einem ozonhaltigen Gasgemisch
CN109180428B (zh) 一种2,2-二甲基-1,3-丙二醇的生产工艺
EA005869B1 (ru) Способ получения (мет)акриловых кислот и способ их дистилляции
EP3277657B1 (de) Herstellung von tert-butylestern aliphatischer carbonsäuren
EP2709969B1 (de) Ozonolyseverfahren und sicherheitssystem für eine ozonabsorptionssäule
RU2460718C2 (ru) Способ адсорбционной очистки сложных алкиловых эфиров метакриловой кислоты
EP3390339B1 (de) Herstellung von tert-butylestern ethylenisch ungesättigter carbonsäuren
CN109134217B (zh) 一种环己烷氧化法生产环己酮过程中氧化装置及氧化工艺改进方法
CA2841595A1 (en) A method of purifying a dicarboxylic acid compound
SU757513A1 (ru) Способ получения циклогексанона, циклогексанола и адипиновой кислоты 1
TWI511951B (zh) 純化二羧酸之改良方法
EP2704814B1 (de) Verfahren zum rekonditionieren von einem gas aus der ozonolyse einer ungesättigten fettsäure
EP4038051B1 (de) Verfahren zur herstellung von alkansulfonsäuren
CA2841602C (en) Cleaning compositions and method of using the same
CN112079705A (zh) 异丁酸的制备方法
CN112076715A (zh) 制备异丁酸的反应装置
WO2005051883A1 (ja) (メタ)アクリル酸の精製方法
JP6816724B2 (ja) ケトン及び/又はアルコールの製造方法及びそのシステム
KR20010052376A (ko) 탄화수소의 중간 산화물로의 제어된 산화
CN114369010A (zh) 一种安全、高效提升3-甲基-3-丁烯-1-醇分离收率的方法
CN117776855A (zh) 一种反应精制四氯乙烷的连续生产方法及其装置
PL77924B2 (de)
KR20160068378A (ko) 부타디엔 제조장치
CH334302A (de) Verfahren zur Gewinnung von Wasserstoffperoxyd

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131209

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1194055

Country of ref document: HK

17Q First examination report despatched

Effective date: 20151221

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181106

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1118442

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012058793

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190410

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1118442

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190910

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190711

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012058793

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

26N No opposition filed

Effective date: 20200113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1194055

Country of ref document: HK

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200126

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20231026 AND 20231101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 13

Ref country code: GB

Payment date: 20240124

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240131

Year of fee payment: 13