EP2709754B1 - Matériaux poreux pour extraction en phase solide et chromatographie - Google Patents
Matériaux poreux pour extraction en phase solide et chromatographie Download PDFInfo
- Publication number
- EP2709754B1 EP2709754B1 EP12804908.7A EP12804908A EP2709754B1 EP 2709754 B1 EP2709754 B1 EP 2709754B1 EP 12804908 A EP12804908 A EP 12804908A EP 2709754 B1 EP2709754 B1 EP 2709754B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- porous material
- porous
- vinylcaprolactam
- copolymer
- materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011148 porous material Substances 0.000 title claims description 223
- 238000002414 normal-phase solid-phase extraction Methods 0.000 title claims description 23
- 238000004587 chromatography analysis Methods 0.000 title claims description 8
- 239000000463 material Substances 0.000 claims description 115
- 229910052757 nitrogen Inorganic materials 0.000 claims description 103
- 238000000034 method Methods 0.000 claims description 39
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical group C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 35
- 239000000178 monomer Substances 0.000 claims description 34
- 239000000203 mixture Substances 0.000 claims description 32
- 239000002245 particle Substances 0.000 claims description 30
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 claims description 29
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 29
- 229920001577 copolymer Polymers 0.000 claims description 23
- 230000002209 hydrophobic effect Effects 0.000 claims description 23
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 21
- 102000004169 proteins and genes Human genes 0.000 claims description 13
- 108090000623 proteins and genes Proteins 0.000 claims description 13
- 108091034117 Oligonucleotide Proteins 0.000 claims description 12
- 239000004793 Polystyrene Substances 0.000 claims description 9
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 8
- 230000014759 maintenance of location Effects 0.000 claims description 8
- 238000003786 synthesis reaction Methods 0.000 claims description 8
- 229920002223 polystyrene Polymers 0.000 claims description 6
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 5
- 230000007717 exclusion Effects 0.000 claims description 4
- 239000012071 phase Substances 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 238000001542 size-exclusion chromatography Methods 0.000 claims description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 4
- 238000009838 combustion analysis Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims description 3
- 239000007790 solid phase Substances 0.000 claims description 3
- 239000013060 biological fluid Substances 0.000 claims description 2
- 239000012620 biological material Substances 0.000 claims description 2
- 108091005573 modified proteins Proteins 0.000 claims description 2
- 102000035118 modified proteins Human genes 0.000 claims description 2
- 238000004113 cell culture Methods 0.000 claims 1
- 239000012228 culture supernatant Substances 0.000 claims 1
- 210000003000 inclusion body Anatomy 0.000 claims 1
- 239000011159 matrix material Substances 0.000 claims 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 54
- 239000000243 solution Substances 0.000 description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 29
- 229910052717 sulfur Inorganic materials 0.000 description 26
- 229910052698 phosphorus Inorganic materials 0.000 description 23
- 229910052760 oxygen Inorganic materials 0.000 description 22
- 238000001179 sorption measurement Methods 0.000 description 22
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 20
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 18
- 239000000126 substance Substances 0.000 description 17
- 230000003068 static effect Effects 0.000 description 15
- 238000005342 ion exchange Methods 0.000 description 14
- 239000002904 solvent Substances 0.000 description 14
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 12
- 238000011084 recovery Methods 0.000 description 12
- 125000006575 electron-withdrawing group Chemical group 0.000 description 11
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 description 10
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 10
- 239000008346 aqueous phase Substances 0.000 description 10
- -1 e.g. Substances 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 210000002381 plasma Anatomy 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 150000001412 amines Chemical group 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 230000001186 cumulative effect Effects 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 8
- 229920003091 Methocel™ Polymers 0.000 description 8
- 238000003795 desorption Methods 0.000 description 8
- 125000000524 functional group Chemical group 0.000 description 8
- 239000012074 organic phase Substances 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 7
- 239000000839 emulsion Substances 0.000 description 7
- 239000004744 fabric Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- MWZFQMUXPSUDJQ-KVVVOXFISA-M sodium;[(z)-octadec-9-enyl] sulfate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCCOS([O-])(=O)=O MWZFQMUXPSUDJQ-KVVVOXFISA-M 0.000 description 6
- 239000010421 standard material Substances 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 239000003361 porogen Substances 0.000 description 5
- 239000002594 sorbent Substances 0.000 description 5
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 125000000962 organic group Chemical group 0.000 description 4
- 230000002572 peristaltic effect Effects 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 238000004811 liquid chromatography Methods 0.000 description 3
- 239000002207 metabolite Substances 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- RIWRFSMVIUAEBX-UHFFFAOYSA-N n-methyl-1-phenylmethanamine Chemical compound CNCC1=CC=CC=C1 RIWRFSMVIUAEBX-UHFFFAOYSA-N 0.000 description 3
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102000018832 Cytochromes Human genes 0.000 description 2
- 108010052832 Cytochromes Proteins 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 102000036675 Myoglobin Human genes 0.000 description 2
- 108010062374 Myoglobin Proteins 0.000 description 2
- OJGMBLNIHDZDGS-UHFFFAOYSA-N N-Ethylaniline Chemical compound CCNC1=CC=CC=C1 OJGMBLNIHDZDGS-UHFFFAOYSA-N 0.000 description 2
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methylaniline Chemical compound CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 2
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 2
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 2
- BHHGXPLMPWCGHP-UHFFFAOYSA-N Phenethylamine Chemical compound NCCC1=CC=CC=C1 BHHGXPLMPWCGHP-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000009920 chelation Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical group 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- SASNBVQSOZSTPD-UHFFFAOYSA-N n-methylphenethylamine Chemical compound CNCCC1=CC=CC=C1 SASNBVQSOZSTPD-UHFFFAOYSA-N 0.000 description 2
- XHWNEBDUPVMPKI-UHFFFAOYSA-N oxazetidine Chemical compound C1CON1 XHWNEBDUPVMPKI-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 239000012460 protein solution Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000006557 surface reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- CIISBYKBBMFLEZ-UHFFFAOYSA-N 1,2-oxazolidine Chemical compound C1CNOC1 CIISBYKBBMFLEZ-UHFFFAOYSA-N 0.000 description 1
- IBUAUYVPWFANRM-UHFFFAOYSA-N 1-methyldiazinane Chemical compound CN1CCCCN1 IBUAUYVPWFANRM-UHFFFAOYSA-N 0.000 description 1
- WGTASENVNYJZBK-UHFFFAOYSA-N 3,4,5-trimethoxyamphetamine Chemical compound COC1=CC(CC(C)N)=CC(OC)=C1OC WGTASENVNYJZBK-UHFFFAOYSA-N 0.000 description 1
- LYUQWQRTDLVQGA-UHFFFAOYSA-N 3-phenylpropylamine Chemical compound NCCCC1=CC=CC=C1 LYUQWQRTDLVQGA-UHFFFAOYSA-N 0.000 description 1
- VKJXAQYPOTYDLO-UHFFFAOYSA-N 4-methylphenethylamine Chemical compound CC1=CC=C(CCN)C=C1 VKJXAQYPOTYDLO-UHFFFAOYSA-N 0.000 description 1
- UZOFELREXGAFOI-UHFFFAOYSA-N 4-methylpiperidine Chemical compound CC1CCNCC1 UZOFELREXGAFOI-UHFFFAOYSA-N 0.000 description 1
- WECUIGDEWBNQJJ-UHFFFAOYSA-N 4-phenylbutan-2-amine Chemical compound CC(N)CCC1=CC=CC=C1 WECUIGDEWBNQJJ-UHFFFAOYSA-N 0.000 description 1
- AGNFWIZBEATIAK-UHFFFAOYSA-N 4-phenylbutylamine Chemical compound NCCCCC1=CC=CC=C1 AGNFWIZBEATIAK-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- BWLUMTFWVZZZND-UHFFFAOYSA-N Dibenzylamine Chemical compound C=1C=CC=CC=1CNCC1=CC=CC=C1 BWLUMTFWVZZZND-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-N Formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 1
- 102000008192 Lactoglobulins Human genes 0.000 description 1
- 108010060630 Lactoglobulins Proteins 0.000 description 1
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical group C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- PBCJIPOGFJYBJE-UHFFFAOYSA-N acetonitrile;hydrate Chemical compound O.CC#N PBCJIPOGFJYBJE-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000002159 adsorption--desorption isotherm Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000000538 analytical sample Substances 0.000 description 1
- 108010054176 apotransferrin Proteins 0.000 description 1
- 239000006286 aqueous extract Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- HONIICLYMWZJFZ-UHFFFAOYSA-N azetidine Chemical compound C1CNC1 HONIICLYMWZJFZ-UHFFFAOYSA-N 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 235000010633 broth Nutrition 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229960001701 chloroform Drugs 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 229960004132 diethyl ether Drugs 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940052303 ethers for general anesthesia Drugs 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 235000019439 ethyl acetate Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 235000015203 fruit juice Nutrition 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- LYBKPDDZTNUNNM-UHFFFAOYSA-N isopropylbenzylamine Chemical compound CC(C)NCC1=CC=CC=C1 LYBKPDDZTNUNNM-UHFFFAOYSA-N 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 238000013489 large scale run Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000005649 metathesis reaction Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- HIPXPABRMMYVQD-UHFFFAOYSA-N n-benzylbutan-1-amine Chemical compound CCCCNCC1=CC=CC=C1 HIPXPABRMMYVQD-UHFFFAOYSA-N 0.000 description 1
- IQQYKULLKVYXCS-UHFFFAOYSA-N n-benzyldecan-1-amine Chemical compound CCCCCCCCCCNCC1=CC=CC=C1 IQQYKULLKVYXCS-UHFFFAOYSA-N 0.000 description 1
- TWOFDIYIPNBWBG-UHFFFAOYSA-N n-benzyldodecan-1-amine Chemical compound CCCCCCCCCCCCNCC1=CC=CC=C1 TWOFDIYIPNBWBG-UHFFFAOYSA-N 0.000 description 1
- HVAAHUDGWQAAOJ-UHFFFAOYSA-N n-benzylethanamine Chemical compound CCNCC1=CC=CC=C1 HVAAHUDGWQAAOJ-UHFFFAOYSA-N 0.000 description 1
- QLXGHVPXPRAKSO-UHFFFAOYSA-N n-benzylheptadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCNCC1=CC=CC=C1 QLXGHVPXPRAKSO-UHFFFAOYSA-N 0.000 description 1
- ONCCNQMCFOIMAZ-UHFFFAOYSA-N n-benzylheptan-1-amine Chemical compound CCCCCCCNCC1=CC=CC=C1 ONCCNQMCFOIMAZ-UHFFFAOYSA-N 0.000 description 1
- SZBUYNOTXPNWFG-UHFFFAOYSA-N n-benzylhexadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCNCC1=CC=CC=C1 SZBUYNOTXPNWFG-UHFFFAOYSA-N 0.000 description 1
- VFZWCTYGZWDQGK-UHFFFAOYSA-N n-benzylhexan-1-amine Chemical compound CCCCCCNCC1=CC=CC=C1 VFZWCTYGZWDQGK-UHFFFAOYSA-N 0.000 description 1
- XUSMAGTYLITCIN-UHFFFAOYSA-N n-benzylnonan-1-amine Chemical compound CCCCCCCCCNCC1=CC=CC=C1 XUSMAGTYLITCIN-UHFFFAOYSA-N 0.000 description 1
- OALZJIBCZVVPBY-UHFFFAOYSA-N n-benzyloctadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCNCC1=CC=CC=C1 OALZJIBCZVVPBY-UHFFFAOYSA-N 0.000 description 1
- VRYPROVLGPMATH-UHFFFAOYSA-N n-benzyloctan-1-amine Chemical compound CCCCCCCCNCC1=CC=CC=C1 VRYPROVLGPMATH-UHFFFAOYSA-N 0.000 description 1
- WDMJEDQBYNCFKE-UHFFFAOYSA-N n-benzylpentadecan-1-amine Chemical compound CCCCCCCCCCCCCCCNCC1=CC=CC=C1 WDMJEDQBYNCFKE-UHFFFAOYSA-N 0.000 description 1
- GSSNBCHDTWIOLI-UHFFFAOYSA-N n-benzylpentan-1-amine Chemical compound CCCCCNCC1=CC=CC=C1 GSSNBCHDTWIOLI-UHFFFAOYSA-N 0.000 description 1
- OUMBFMLKPJUWDQ-UHFFFAOYSA-N n-benzylpropan-1-amine Chemical compound CCCNCC1=CC=CC=C1 OUMBFMLKPJUWDQ-UHFFFAOYSA-N 0.000 description 1
- ZSHHDUILGOFOHU-UHFFFAOYSA-N n-benzyltetradecan-1-amine Chemical compound CCCCCCCCCCCCCCNCC1=CC=CC=C1 ZSHHDUILGOFOHU-UHFFFAOYSA-N 0.000 description 1
- VMHWSIJFDBLPKO-UHFFFAOYSA-N n-benzyltridecan-1-amine Chemical compound CCCCCCCCCCCCCNCC1=CC=CC=C1 VMHWSIJFDBLPKO-UHFFFAOYSA-N 0.000 description 1
- VCFMSZPEUJDWDN-UHFFFAOYSA-N n-benzylundecan-1-amine Chemical compound CCCCCCCCCCCNCC1=CC=CC=C1 VCFMSZPEUJDWDN-UHFFFAOYSA-N 0.000 description 1
- VSHTWPWTCXQLQN-UHFFFAOYSA-N n-butylaniline Chemical compound CCCCNC1=CC=CC=C1 VSHTWPWTCXQLQN-UHFFFAOYSA-N 0.000 description 1
- VTHOTOFWYDBNID-UHFFFAOYSA-N n-decylaniline Chemical compound CCCCCCCCCCNC1=CC=CC=C1 VTHOTOFWYDBNID-UHFFFAOYSA-N 0.000 description 1
- LQKYCMRSWKQVBQ-UHFFFAOYSA-N n-dodecylaniline Chemical compound CCCCCCCCCCCCNC1=CC=CC=C1 LQKYCMRSWKQVBQ-UHFFFAOYSA-N 0.000 description 1
- HSUQACPCUAXOOL-UHFFFAOYSA-N n-heptadecylaniline Chemical compound CCCCCCCCCCCCCCCCCNC1=CC=CC=C1 HSUQACPCUAXOOL-UHFFFAOYSA-N 0.000 description 1
- JHXGAYWKTQKNGW-UHFFFAOYSA-N n-heptylaniline Chemical compound CCCCCCCNC1=CC=CC=C1 JHXGAYWKTQKNGW-UHFFFAOYSA-N 0.000 description 1
- IXEGRINNWXKNJO-UHFFFAOYSA-N n-hexadecylaniline Chemical compound CCCCCCCCCCCCCCCCNC1=CC=CC=C1 IXEGRINNWXKNJO-UHFFFAOYSA-N 0.000 description 1
- OXHJCNSXYDSOFN-UHFFFAOYSA-N n-hexylaniline Chemical compound CCCCCCNC1=CC=CC=C1 OXHJCNSXYDSOFN-UHFFFAOYSA-N 0.000 description 1
- KBNHOFDIDSVFMZ-UHFFFAOYSA-N n-nonylaniline Chemical compound CCCCCCCCCNC1=CC=CC=C1 KBNHOFDIDSVFMZ-UHFFFAOYSA-N 0.000 description 1
- UEKWTIYPDJLSKK-UHFFFAOYSA-N n-octadecylaniline Chemical compound CCCCCCCCCCCCCCCCCCNC1=CC=CC=C1 UEKWTIYPDJLSKK-UHFFFAOYSA-N 0.000 description 1
- GCULWAWIZUGXTO-UHFFFAOYSA-N n-octylaniline Chemical compound CCCCCCCCNC1=CC=CC=C1 GCULWAWIZUGXTO-UHFFFAOYSA-N 0.000 description 1
- PCUVXVWVGBBDFW-UHFFFAOYSA-N n-pentadecylaniline Chemical compound CCCCCCCCCCCCCCCNC1=CC=CC=C1 PCUVXVWVGBBDFW-UHFFFAOYSA-N 0.000 description 1
- UMNSMBWAESLVOC-UHFFFAOYSA-N n-pentylaniline Chemical compound CCCCCNC1=CC=CC=C1 UMNSMBWAESLVOC-UHFFFAOYSA-N 0.000 description 1
- CDZOGLJOFWFVOZ-UHFFFAOYSA-N n-propylaniline Chemical compound CCCNC1=CC=CC=C1 CDZOGLJOFWFVOZ-UHFFFAOYSA-N 0.000 description 1
- TULXPFISOFPGEV-UHFFFAOYSA-N n-tetradecylaniline Chemical compound CCCCCCCCCCCCCCNC1=CC=CC=C1 TULXPFISOFPGEV-UHFFFAOYSA-N 0.000 description 1
- QANXKUOOYFKWAH-UHFFFAOYSA-N n-tridecylaniline Chemical compound CCCCCCCCCCCCCNC1=CC=CC=C1 QANXKUOOYFKWAH-UHFFFAOYSA-N 0.000 description 1
- VRNRWXGCZIUTMX-UHFFFAOYSA-N n-undecylaniline Chemical compound CCCCCCCCCCCNC1=CC=CC=C1 VRNRWXGCZIUTMX-UHFFFAOYSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000002429 nitrogen sorption measurement Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- WHZAVXDAPULYIC-UHFFFAOYSA-N oxazecane Chemical compound C1CCCCONCCC1 WHZAVXDAPULYIC-UHFFFAOYSA-N 0.000 description 1
- AQNQGBUEVCAVML-UHFFFAOYSA-N oxazepane Chemical compound C1CCNOCC1 AQNQGBUEVCAVML-UHFFFAOYSA-N 0.000 description 1
- OZQGLZFAWYKKLQ-UHFFFAOYSA-N oxazinane Chemical compound C1CCONC1 OZQGLZFAWYKKLQ-UHFFFAOYSA-N 0.000 description 1
- KKHNAVZYZJMXFV-UHFFFAOYSA-N oxazocane Chemical compound C1CCCONCC1 KKHNAVZYZJMXFV-UHFFFAOYSA-N 0.000 description 1
- LQDWKKODBRUMCO-UHFFFAOYSA-N oxazonane Chemical compound C1CCCNOCCC1 LQDWKKODBRUMCO-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 229940117803 phenethylamine Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000004094 preconcentration Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 238000005464 sample preparation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- PGAZQSBUJDVGIX-UHFFFAOYSA-N thiazepane Chemical compound C1CCNSCC1 PGAZQSBUJDVGIX-UHFFFAOYSA-N 0.000 description 1
- AJZGFFKDLABHDD-UHFFFAOYSA-N thiazinane Chemical compound C1CCSNC1 AJZGFFKDLABHDD-UHFFFAOYSA-N 0.000 description 1
- VZYZKDFMQQEERI-UHFFFAOYSA-N thiazocane Chemical compound C1CCCSNCC1 VZYZKDFMQQEERI-UHFFFAOYSA-N 0.000 description 1
- OFQATRROVVSIRI-UHFFFAOYSA-N thiazonane Chemical compound C1CCCNSCCC1 OFQATRROVVSIRI-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 235000015192 vegetable juice Nutrition 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J43/00—Amphoteric ion-exchange, i.e. using ion-exchangers having cationic and anionic groups; Use of material as amphoteric ion-exchangers; Treatment of material for improving their amphoteric ion-exchange properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/264—Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/282—Porous sorbents
- B01J20/285—Porous sorbents based on polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/08—Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/16—Organic material
- B01J39/18—Macromolecular compounds
- B01J39/20—Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J41/00—Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/08—Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/12—Macromolecular compounds
- B01J41/14—Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F226/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
- C08F226/06—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/80—Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J2220/82—Shaped bodies, e.g. monoliths, plugs, tubes, continuous beds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/405—Concentrating samples by adsorption or absorption
Definitions
- Solid phase extraction is a chromatographic technique that is widely used, e.g., for preconcentration and cleanup of analytical samples, for purification of various chemicals, and for removal of toxic or valuable substances from aqueous solutions.
- SPE is usually performed using a column or cartridge containing an appropriate material or sorbent.
- SPE procedures have been developed using sorbents that can interact with analytes by hydrophobic, ion-exchange, chelation, sorption, and other mechanisms, to bind and remove the analytes from fluids.
- US 6,114,466 relates to a material for purification of physiological liquids of organism, wherein said material is composed of a porous hydrophobic divinylbenzene copolymer, to which hydrophilic polymer chains of e.g. N-vinylcaprolactam are grafted by radical polymerization.
- the invention provides novel porous materials that are useful in chromatographic processes, e.g., solid phase extraction, and that provide a number of advantages. Such advantages include superior wetting characteristics, selective capture of analytes of interest, and non-retention of interfering analytes.
- the invention advantageously provides novel porous materials having a large percentage of larger pores (i.e. wide pores).
- the invention advantageously provides novel porous materials that overcome the problems of SPE of biological samples.
- the invention provides a porous material comprising a copolymer of at least one hydrophobic monomer and at least one hydrophilic monomer, wherein at least one of the hydrophilic monomers is N-vinylcaprolactam and wherein the porous material comprises at least 8 mole percent N-vinylcaprolactam.
- the porous material of the invention comprises a porous particle that comprises said copolymer.
- the porous material of the invention comprises a porous monolith that comprises said copolymer.
- the porous material of the invention said hydrophobic monomer is divinylbenzene or styrene.
- said copolymer of the porous material of the invention is a poly(divinylbenzene-co-N-vinylcaprolactam).
- the invention also provides solid phase extraction and chromatography materials comprising porous materials of the invention.
- the invention provides a separation device comprising a porous material of the invention.
- the invention provides a solid phase extraction cartridge comprising a porous material according to the invention.
- the invention also provides a method for removing or isolating a component from a mixture.
- the method comprises contacting the mixture with a chromatographic material comprising the porous material according to the invention, to thereby remove or isolate the component from the mixture.
- BET surface area describes the specific surface area of a material as determined by standard BET techniques for analysis of gas adsorption-desorption, such as those described in Gregg, S.J. and Sing, K.S.W. (1982) Adsorption, Surface Area and Porosity, p. 303 Academic Press, Lond on; and Lowell, S. and Shields, J.E. (1991) Powder surface area and porosity (3rd edition), p. 245. Chapman and Hall, U.K .
- the BET surface area is as measured by BET analysis of nitrogen gas adsorption at 77.3K.
- BJH surface area describes the specific surface area of a material as determined by standard BJH techniques for analysis, such as those described in Barret et al. J. Am. Chem. Soc. (1951), vol. 73, pp. 373 -380
- the BJH surface area and pore diameter are determined using a nitrogen gas adsorption desorption isotherm at 77.3K.
- hydrophilic describes having an affinity for, attracting, adsorbing or absorbing water.
- hydrophobic describes lacking an affinity for, repelling, or failing to adsorb or absorb water.
- ion-exchange functional group is intended to include a group where the counter-ion is partially free and can readily be exchanged for other ions of the same sign.
- mole percent describes the mole fraction, expressed as a percent, of the monomer of interest relative to the total moles of the various (two or more) monomers that comprise the copolymer of the porous material of the invention.
- monolith is intended to include a porous, three-dimensional material having a continuous interconnected pore structure in a single piece.
- a monolith is prepared, for example, by casting precursors into a mold of a desired shape.
- the term monolith is meant to be distinguished from a collection of individual particles packed into a bed formation, in which the end product still comprises individual particles in bed formation.
- the term "monomer” is intended to include a molecule comprising one or more polymerizable functional groups prior to polymerization, or a repeating unit of a polymer.
- porous material is intended to include a member of a class of porous crosslinked polymers penetrated by pores through which solutions can diffuse. Pores are regions between densely packed polymer chains.
- random ordering is intended to include ordering in which individual units are joined randomly.
- solid phase extraction is intended to include a process employing a solid phase for isolating classes of molecular species from fluid phases such as gases and liquids by, e.g., sorption, ion-exchange, chelation, size exclusion (molecular filtration), affinity or ion pairing mechanisms.
- sorption describes the ability of a material to take up and hold another material by absorption or adsorption.
- surface modifiers includes (typically) functional groups which impart a certain chromatographic functionality to the material.
- surface modified is used herein to describe the composite material of the present invention that possess organic groups which may additionally be substituted or derivatized with a surface modifier.
- Surface modifiers include (typically) organic functional groups that impart a certain chromatographic functionality to the material.
- surface functionalized is used herein to describe the composite material of the present invention that possess ion-exchange functional groups that impart a certain chromatographic functionality to the material.
- BET theory is used to explain the physical adsorption of gas molecules on a solid surface.
- the theory was developed by Stephen B runauer, Paul Hugh E mmett, and Edward T eller and serves as the basis for an important analysis technique for the measurement of the specific surface area of a material.
- an inert gas typically nitrogen
- an inert gas typically nitrogen
- adsorption isotherm sometimes referred to as BET isotherm, which is mostly measured over porous materials.
- BET isotherm a so-called adsorption isotherm
- the use of argon adsorption, carbon dioxide or krypton gas adsorption may be used instead of nitrogen adsorption to accurately probe the micropores.
- Monolayer formation of gas molecules on the surface is used to determine the specific surface area, while the principle of capillary condensation can be applied to assess the presence of pores, pore volume and pore size distribution.
- the flow technique uses a detector to obtain information on the amount of adsorbed gas resulting in a specific BET surface area and/or total pore volume.
- the volumetric technique measures many adsorption and/or desorption points providing a full isotherm with information on BET surface area, pore volume and pore size distribution.
- Standard BET analysis techniques are well known in the art and can be found, for example, in Gregg, S.J. and Sing, K.S.W. (1982) Adsorption, Surface Area and Porosity, p. 303 Academic Press, Lond on and in Lowell, S. and Shields, J.E. (1991) Powder surface area and porosity (3rd edition), p. 245. Chapman and Hall, U.K .
- BJH Analysis is used to estimate the volume and area of porous adsorbents available to molecules of various sizes.
- BJH Analysis is related to the BET and can also be employed to determine pore area and specific pore volume using adsorption and desorption techniques. This technique characterizes pore size distribution independent of external area due to particle size of the sample.
- BJH Analysis was developed by Elliot B arrett, Leslie J oyner and Paul H alenda.
- Figure 6 shows representative plots of the BJH surface area vs pore diameter of representative materials of the invention as compared to a standard material as determined using a nitrogen gas desorption isotherm at 77.3K.
- Figures 6 A-B show graphs of the cumulative BJH surface area vs the pore diameter.
- Figures 6 C-E show graphs of the BJH surface area vs the pore diameter in which the value of the cumulative BJH surface area at the higher pore diameter is subtracted from the value at the next lowest pore diameter.
- the associated BJH surface area in Figures 6 C-E is not a cumulative surface area, but rather, a representation of the overall surface area associated with or contributed by a given pore diameter across the range of the subtraction.
- the value shown at 900 in the Fig 6 C-E graphs is representative of the BJH surface area associated with the 900 to 950 ⁇ pores.
- the percentage of the BJH surface area contributed by pores greater than 200 ⁇ can be calculated by dividing the cumulative BJH surface from 200 ⁇ to 2000 ⁇ by the cumulative BJH surface area from the lowest pore diameter recorded ( e.g. 17 ⁇ ) to 2000 ⁇ - which represents the total BET surface area of the material - and multiplying by 100.
- the invention provides a porous material comprising a copolymer of a least one hydrophobic monomer and at least one hydrophilic monomer, wherein at least one of the hydrophilic monomers is N-vinylcaprolactam and wherein the porous material comprises at least 8 mole percent N-vinylcaprolactam.
- more than 10% of the BJH surface area of the porous material is contributed by pores that have a diameter greater than or equal to 200 ⁇ .
- more than 12.5%, such as more than 15% or more than 17.5 % of the BJH surface area of the porous material is contributed by pores that have a diameter greater than or equal to 200 ⁇ .
- more than 10% of the BJH surface area of the porous material is contributed by pores that have a diameter greater than or equal to 300 ⁇ . In certain embodiments, more than 12.5%, such as more than 15% of the BJH surface area of the porous material is contributed by pores that have a diameter greater than or equal to 300 ⁇ .
- more than 12.5% of the BJH surface area of the porous material is contributed by pores that have a diameter greater than or equal to 200 ⁇ and more than 10% of the BJH surface area of the porous material is contributed by pores that have a diameter greater than or equal to 300 ⁇ .
- more than 15% of the BJH surface area of the porous material is contributed by pores that have a diameter greater than or equal to 200 ⁇ and more than 10% of the BJH surface area of the porous material is contributed by pores that have a diameter greater than or equal to 300 ⁇ .
- more than 17.5% of the BJH surface area of the porous material is contributed by pores that have a diameter greater than or equal to 200 ⁇ and more than 10% of the BJH surface area of the porous material is contributed by pores that have a diameter greater than or equal to 300 ⁇ .
- more than 15% of the BJH surface area of the porous material is contributed by pores that have a diameter greater than or equal to 200 ⁇ and more than 12.5% of the BJH surface area of the porous material is contributed by pores that have a diameter greater than or equal to 300 ⁇ .
- more than 17.5% of the BJH surface area of the porous material is contributed by pores that have a diameter greater than or equal to 200 ⁇ and more than 12.5% of the BJH surface area of the porous material is contributed by pores that have a diameter greater than or equal to 300 ⁇ .
- more than 17.5% of the BJH surface area of the porous material is contributed by pores that have a diameter greater than or equal to 200 ⁇ and more than 15% of the BJH surface area of the porous material is contributed by pores that have a diameter greater than or equal to 300 ⁇ .
- the BJH surface area of the porous materials of the invention as described herein is measured by BJH analysis of nitrogen gas adsorption at 77.3K.
- the porous material has a median pore diameter of about 100 ⁇ to about 1000 ⁇ .
- Median pore diameter is measured, according to the invention, by inverse size exclusion chromatography (I-SEC).
- the material has a median pore diameter of about 200 ⁇ to about 800 ⁇ ; about 300 ⁇ to about 550 ⁇ ; about 100 ⁇ ; about 200 ⁇ ; about 300 ⁇ ; about 400 ⁇ ; about 425; about 450 ⁇ ; about 475 ⁇ ; about 500 ⁇ ; about 525 ⁇ ; about 550 ⁇ ; about 575 ⁇ ; about 600 ⁇ ; about 700 ⁇ ; or about 800 ⁇ .
- the porous material has a nitrogen content from about 0.5%N to about 20%N; from about 1%N to about 10%N; from about 1%N to about 5%N; from about 1%N to about 4%N; about 1%N; about 1.5%N; about 2%N; about 2.5%N; about 3%N; about 3.5%N; about 4%N; about 4.5%N; about 5%N; about 5.5%N; about 6%N; about 6.5%N; about 7%N; about 7.5%N; about 8%N; about 8.5%N; about 9%N; about 9.5%N; about 10%N; about 10.5%N; about 11%N; about 11.5%N; about 12%N; about 12.5%N; about 13%N; about 13.5%N; about 14%N; about 14.5%N; or about 15%N.
- the porous material of the invention has both a median pore diameter of about 100 ⁇ to about 1000 ⁇ ; about 200 ⁇ to about 900 ⁇ ; about 300 ⁇ to about 800 ⁇ ; or about 300 ⁇ to about 550 ⁇ ; and a nitrogen content from about 0.5%N to about 20%N; from about 1%N to about 10%N; from about 1%N to about 5%N; from about 1%N to about 4%N; about 1%N; about 1.5%N; about 2%N; about 2.5%N; about 3%N; about 3.5%N; about 4%N; about 4.5%N; about 5%N; about 5.5%N; about 6%N; about 6.5%N; about 7%N; about 7.5%N; about 8%N; about 8.5%N; about 9%N; about 9.5%N; about 10%N; about 10.5%N; about 11%N; about 11.5%N; about 12%N; about 12.5%N; about 13%N; about 13.5%N; about 14%N; about 14.5%N; or about 15%N.
- the porous material has an oxygen content from about 1%O to about 20%O; from about 1%O to about 10%O; from about 1%O to about 5%O; from about 1%O to about 4%O; about 1%O; about 2%O; about 3%O; about 4%O; about 5%O; about 6%O; about 7%O; about 8%O; about 9%O; about 10%O; about 11%O; about 12%0; about 13%0; about 14%0; or about 15%0.
- the porous material has a sulfur content from about 1%S to about 20%S; from about 1%S to about 10%S; from about 1%S to about 5%S; from about 1%S to about 4%S; about 1%S; about 2%S; about 3%S; about 4%S; about 5%S; about 6%S; about 7%S; about 8%S; about 9%S; about 10%S; about 11%S; about 12%S; about 13%S; about 14%S; or about 15%S.
- the porous material has a phosphorous content from about 1%P to about 20%P; from about 1%P to about 10%P; from about 1%P to about 5%P; from about 1%P to about 4%P; about 1%P; about 2%P; about 3%P; about 4%P; about 5%P; about 6%P; about 7%P; about 8%P; about 9%P; about 10%P; about 11%P; about 12%P; about 13%P; about 14%P; or about 15%P.
- the porous material has a specific surface area in the range from about 50 to about 850 square meters per gram and pores having a diameter ranging from about 50 ⁇ to 1000 ⁇ .
- the porous materials of the invention take the form of porous particles, e.g., beads, pellets, or any other form desirable for use.
- the porous particles can have, e.g., a spherical shape, a regular shape or an irregular shape.
- the particles are beads having a diameter in the range from about 3 to about 500 ⁇ m, from about 10 to about 300 ⁇ m, or from about 20 to about 200 ⁇ m.
- the particles are beads having a diameter in the range from about 3 to about 30 ⁇ m, from about 5 to about 20 ⁇ m, or from about 10 to about 15 ⁇ m.
- the porous materials of the invention take the form of porous monoliths.
- the monoliths have the following characteristics: surface area ranging from about 50 to about 800 m 2 /g, more particularly about 300 to about 700 m 2 /g; pore volume ranging from about 0.2 to about 2.5 cm 3 /g, more particularly about 0.4 to about 2.0 cm 3 /g, still more particularly about 0.6 to about 1.4 cm 3 /g; and pore diameter ranging from about 20 to about 500 ⁇ , more particularly about 50 to 300 ⁇ , still more particularly about 80 to about 150 ⁇ .
- the porous materials of the invention comprise a copolymer comprising a least one hydrophobic monomer and at least one hydrophilic monomer, wherein at least one of the hydrophilic monomers is N-vinylcaprolactam and wherein the porous material comprises at least 8 mole percent N-vinylcaprolactam.
- the copolymer of the invention is non-sulfonated. In certain other embodiments, the copolymer is sulfonated.
- the hydrophobic monomer comprises an aromatic carbocyclic group, e.g., a phenyl group or a phenylene group, or a straight chain C 2 -C 18 -alkyl group or a branched chain C 2 -C 18 -alkyl group.
- the hydrophobic monomer can be, e.g., styrene or divinylbenzene.
- a preferred copolymer is a poly(divinylbenzene-co-N-vinylcaprolactam).
- the hydrophobic monomer is divinylbenzene or styrene
- the hydrophilic monomer is N-vinylcaprolactam
- the copolymer is a poly(divinylbenzene-co-N-vinylcaprolactam).
- the porous material comprises at least about 15 mole percent N-vinylcaprolactam.
- the porous material comprises from about 5 to about 35 mole percent N-vinylcaprolactam; from about 7 to about 33 mole percent N-vinylcaprolactam; from about 9 to about 32 mole percent N-vinylcaprolactam; from about 10 to about 30 mole percent N-vinylcaprolactam; from about 15 to about 30 mole percent N- vinylcaprolactam; from about 17.3 to about 29.6 mole percent N- vinylcaprolactam.
- the hydrophobic monomer is further substituted by at least one haloalkyl group.
- At least one of the hydrophilic monomers is N-vinylcaprolactam.
- the hydrophilic monomer is further substituted by at least one haloalkyl group.
- the hydrophilic monomer comprises one or more sulfur, phosphorous, nitrogen and/or oxygen atoms.
- porous materials in either porous particle or monolith form, are advantageously used for solid phase extraction or chromatography.
- the porous material comprises at least one porous particle, and more preferably a plurality of porous particles.
- the porous material comprises the copolymer poly(divinylbenzene-co-N-vinylcaprolactam).
- the poly(divinylbenzene-co-N- vinylcaprolactam) has ion-exchange functional moieties present at a concentration of about 0.01 to about 10.0 milliequivalents per gram of porous material; about 0.01 to about 5.0 milliequivalents per gram of porous material; about 0.01 to about 3.0 milliequivalents per gram of porous material; or about 0.01 to about 1.0 milliequivalents per gram of porous material.
- porous materials in either porous particle or monolith form, may be functionalized to provide an ion-exchange functional moiety.
- the ion-exchange functional moiety can be formed by formation of an amine functionality on materials of the invention after cholomethylation as in the methods described in U.S. Patent No. 7,731,844 .
- an amine functionality can be formed by direct reaction with a neat amine.
- the ion-exchange functional moiety can be formed from a substituted acyclic amine or a substituted cyclic amine.
- the substitution can be at any of the ring atoms, including heteroatoms.
- the ion-exchange functional moiety is a substituted cyclic secondary amine, e.g., N-methyldiazinane and 4-methylpiperidine.
- the aforesaid amines are advantageously substituted by an electron withdrawing group.
- the electron withdrawing group is selected from the group consisting of halogens, aromatic groups, unsaturated groups, ethers, thioethers, nitriles, nitro groups, esters, amides, carbamates, ureas, carbonates, sulfonamides, sulfones, sulfoxides and heteroatoms, e.g., N, O and S.
- the electron withdrawing group is a halogen, an ether, or an aromatic group.
- the electron withdrawing group of the amine has the effect of lowering the average pK a of the conjugate acid of the amine as compared to the conjugate acid of the amine without the electron withdrawing group.
- the pK a ranges from about 5 to about 7.
- the acyclic amine substituted with an electron withdrawing group includes benzylamine, N-methylbenzylamine, N-ethylbenzylamine, N-propylbenzylamine, N-butylbenzylamine, N-pentylbenzylamine, N-hexylbenzylamine, N-heptylbenzylamine, N-octylbenzylamine, N-nonylbenzylamine, N-decylbenzylamine, N-undecylbenzylamine, N-dodecylbenzylamine, N-tridecylbenzylamine, N-tetradecylbenzylamine, N-pentadecylbenzylamine, N-hexadecylbenzylamine, N-heptadecylbenzylamine, N-octadecylbenzylamine, dibenzylamine, aniline, N-methylaniline,
- the acyclic amine substituted with an electron withdrawing group is benzylamine, N-methylbenzylamine, or phenethylamine. In a preferred embodiment, the acyclic amine substituted with an electron withdrawing group is N-methylbenzylamine.
- cyclic secondary amines substituted with an electron withdrawing group include oxazetane, oxazolane, oxazinane, oxazepane, oxazocane, oxazonane, oxazecane, thiazetane, thiazolane, thiazinane, thiazepane, thiazocane, thiazonane, and thiazecane.
- the cyclic secondary amine is 1,4-oxazinane.
- the electron withdrawing group is a second heteroatom that has substituted for a carbon atom in the ring.
- the ring carbon adjacent to the nitrogen atom in azetidine is substituted by an oxygen to yield oxazetane, an amine encompassed by the term "cyclic secondary amine substituted with an electron withdrawing group”.
- an ion-exchange functional moiety can be formed by reaction of the materials of the invention with hydrogen peroxide.
- surface functionalization can be attained on the materials of the invention by the methods described in U.S. Patent No. 7,232,520 and U.S. Patent No. 7,731,844 .
- the materials of the invention may be surface modified by coating with a polymer.
- the materials of the invention may be surface modified by a combination of organic group modification and coating with a polymer.
- the organic group comprises a chiral moiety.
- the materials of the invention may be surface modified via formation of an organic covalent bond between an organic group on the material and the modifying reagent.
- the porous materials of the invention comprise a porous or non-porous core, including, but not limited to an inorganic core, an organic core or a hybrid core onto which a copolymer comprising a least one hydrophobic monomer and at least one hydrophilic monomer is grafted.
- the porous materials of the invention comprise a polymeric, porous core made from at least one hydrophobic monomer onto which a polymer made from a least one hydrophilic monomer is grafted.
- the porous materials of the invention comprise a polymeric, porous core made from at least one hydrophilic monomer onto which a polymer made from a least one hydrophobic monomer is grafted.
- the hydrophilic and hydrophobic monomers may be as described herein.
- the cores may include a silica material; a hybrid inorganic/organic material; a superficially porous material; or a superficially porous particle.
- porous materials of the invention can be prepared via a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photochemical mechanisms.
- the copolymer can be prepared via standard synthetic methods known to those skilled in the art, e.g., as described in the examples.
- porous material may be produced by known methods, such as those methods described in, for example, in U.S. Patent Nos. 4,017,528 ; 6,528,167 ; 6,686,035 ; 7,175,913 ; 7,731,844 and WO 2004/041398 .
- novel materials of the invention can be used for solid phase extraction and chromatography.
- the invention also provides a solid phase extraction or chromatography material comprising at least one porous material of the invention, comprising at least one ion-exchange functional group, at least one hydrophilic component and at least one hydrophobic component.
- the ion-exchange functional groups enable the porous material to interact with anionic, cationic, acidic and/or basic solutes.
- the hydrophilic polar components enable the porous material to have polar interactions and hydrogen bonding capabilities with solutes.
- the hydrophobic components enable the porous material to have affinity towards nonpolar solutes through hydrophobic interaction.
- porous materials of this invention have a combination of various interaction forces towards solutes, they are very useful materials for, e.g., solid phase extraction, ion-exchange, and liquid chromatography applications.
- these novel porous materials can be used to bind, recover and/or remove solutes from fluids.
- these novel porous materials have certain chemical affinities or attractions between the materials and certain molecules, particularly biological or biochemical molecules, such as proteins, peptides, hormones, oligonucleotides, polynucleotides, vitamins, cofactors, metabolites, lipids and carbohydrates.
- the materials of the invention may be used to selectively adsorb and isolate certain biomolecules for analysis and or quantification.
- the invention also provides a method for removing or isolating a component, e.g., a solute, from a mixture.
- a solution having a solute is contacted with a porous material of the invention under conditions that allow for sorption of the solute to the porous material.
- the solute can be, e.g., any molecule having a hydrophobic, hydrophilic, or ionic interaction or a combination of two or three of these interactions.
- the solute is an organic compound of polarity suitable for adsorption onto the porous material.
- solutes include, e.g., drugs, pesticides, herbicides, toxins and environmental pollutants, e.g., resulting from the combustion of fossil fuels or other industrial activity, such as metal-organic compounds comprising a heavy metal such mercury, lead or cadmium.
- the solutes can also be metabolites or degradation products of the foregoing materials.
- Solutes also include, e.g., biomolecules, such as proteins, peptides, hormones, oligonucleotides, polynucleotides, vitamins, cofactors, metabolites, lipids and carbohydrates. Solutes also include, e.g., modified proteins, modified oligonucleotides, single-stranded oligonucleotides, double-stranded oligonucleotides, DNA, and RNA.
- biomolecules such as proteins, peptides, hormones, oligonucleotides, polynucleotides, vitamins, cofactors, metabolites, lipids and carbohydrates.
- Solutes also include, e.g., modified proteins, modified oligonucleotides, single-stranded oligonucleotides, double-stranded oligonucleotides, DNA, and RNA.
- the solution e.g., can comprise water, an aqueous solution, or a mixture of water or an aqueous solution and a water-miscible polar organic solvent, e.g., methanol, ethanol, N,N-dimethylformamide, dimethylsulfoxide or acetonitrile.
- the solution is an acidic, basic or neutral aqueous, i.e., between about 0% and about 99% water by volume, solution. Specific examples are provided in the experimentals.
- the solution comprising the solute can, optionally, further contain one or more additional solutes.
- the solution is an aqueous solution which includes a complex variety of solutes.
- Solutions of this type include, e.g., blood, plasma, urine, cerebrospinal fluid, synovial fluid and other biological fluids, including, e.g., extracts of tissues, such as liver tissue, muscle tissue, brain tissue or heart tissue.
- extracts can be, e.g., aqueous extracts or organic extracts which have been dried and subsequently reconstituted in water or in a water/organic mixture.
- Solutions also include, e.g., ground water, surface water, drinking water or an aqueous or organic extract of an environmental sample, such as a soil sample.
- solutions include a food substance, such as a fruit or vegetable juice or milk or an aqueous or aqueous/organic extract of a food substance, such as fruit, vegetable, cereal or meat.
- a food substance such as a fruit or vegetable juice or milk
- an aqueous or aqueous/organic extract of a food substance such as fruit, vegetable, cereal or meat.
- Other solutions include, e.g., natural products extractions from plants and broths.
- the solution can be contacted with the porous material in any fashion which allows sorption of the solute to the porous material, such as a batch or chromatographic process.
- the solution can be forced through a porous polymer column, disk or plug, or the solution can be stirred with the porous material, such as in a batch-stirred reactor.
- the solution can also be added to a porous material-containing well of a microtiter plate.
- the porous material can take the form of a monolith or particle, e.g., beads or pellets.
- the solution is contacted with the porous material for a time period sufficient for the solute of interest to substantially sorb onto the porous material. This period is typically the time necessary for the solute to equilibrate between the porous material surface and the solution.
- the sorption or partition of the solute onto the porous material can be partial or complete.
- the porous material of the invention can also be used in a method for analytically determining the level of solute in a solution.
- a solution having a solute is contacted with a porous material of the invention under conditions so as to allow sorption of the solute to the porous material.
- the material comprises at least one ion-exchange functional group, at least one hydrophilic polar component and at least one hydrophobic component.
- the porous material having the sorbed solute is washed with a solvent under conditions so as to desorb the solute from the porous material.
- the level of the desorbed solute present in the solvent after the washing is analytically determined.
- the solution contacted with the porous material can comprise the solute of interest in dilute form, e.g., at a concentration too low for accurate quantitation.
- a solution which includes the solute of interest can be prepared having a substantially higher concentration of the solute of interest than that of the original solution.
- the method can also result in solvent exchange, that is, the solute is removed from a first solvent and re-dissolved in a second solvent.
- Solvents which are suitable for desorbing the solute from the porous material can be, e.g., polar water-miscible organic solvents, such as alcohols, e.g., methanol, ethanol or isopropanol, acetonitrile, acetone, and tetrahydrofuran, or mixtures of water and these solvents.
- the desorbing solvent can also be, e.g., a nonpolar or moderately polar water-immiscible solvent such as dichloromethane, diethylether, chloroform, or ethylacetate. Mixtures of these solvents are also suitable.
- Preferred solvents or solvent mixtures must be determined for each individual case. Specific examples are provided in the experimentals.
- a suitable solvent can be determined by one of ordinary skill in the art without undue experimentation, as is routinely done in chromatographic methods development (see, e.g., McDonald and Bouvier, eds., Solid Phase Extraction Applications Guide and Bibliography, "A Resource for Sample Preparation Methods Development,” 6th edition, Waters, Milford, MA (1995 ); Snyder and Kirkland, Introduction to Modern Liquid Chromatography, New York: J. Wiley and Sons (1974 )).
- the level of the desorbed solute present in the solvent can be analytically determined by a variety of techniques known to those skilled in the art, e.g., high performance liquid chromatography, liquid chromatography/mass spectrometry, gas chromatography, gas chromatography/mass spectrometry, or immunoassay.
- the invention also provides separation devices comprising the porous materials of the invention.
- separation devices include chromatographic columns, cartridges, thin layer chromatographic plates, filtration membranes, sample clean up devices, solid phase organic synthesis supports, and microtiter plates.
- more than one type of functionalized porous material can be used in the separation devices, e.g., columns, cartridges, and the like.
- the porous materials of the invention are especially well suited for solid phase extraction.
- the invention also includes a solid phase extraction cartridge comprising a porous material of the invention packed inside an open-ended container.
- the porous material is packed as particles within the open-ended container to form a solid phase extraction cartridge.
- the container can be, e.g., a cylindrical container or column, which is open at both ends so that the solution can enter the container through one end, contact the porous material within the container, and exit the container through the other end.
- the porous material can be packed within the container as small particles, such as beads having a diameter between about 3 ⁇ m and about 500 ⁇ m; between about 5 ⁇ m and about 200 ⁇ m; or between about 10 ⁇ m and about 50 ⁇ m.
- the porous particles can be packed in the container enmeshed in a porous membrane.
- the container can be formed of any material, which is compatible, within the time frame of the solid phase extraction process, with the solutions and solvents to be used in the procedure. Such materials include glass and various plastics, such as high density polyethylene and polypropylene.
- the container is cylindrical through most of its length and has a narrow tip at one end.
- One example of such a container is a syringe barrel.
- the amount of porous material within the container is limited by the container volume and can range from about 0.001 g to about 50 kg, and preferably is between about 0.025 g and about 1 g.
- the amount of porous material suitable for a given extraction depends upon the amount of solute to be sorbed, the available surface area of the porous material and the strength of the interaction between the solute and the porous material. This amount can be readily determined by one of ordinary skill in the art.
- the cartridge can be a single use cartridge, which is used for the treatment of a single sample and then discarded, or it can be used to treat multiple samples.
- N-vinylcaprolactam and NVP were obtained from ISP
- sodium oleyl sulfate was obtained from ALCOLAC.
- Diethethylbenzene and 2-ethylhexanol were obtained from ALDRICH.
- AIBN was obtained from DUPONT.
- Methocel E-15 and divinylbenzene were purchased from DOW. Inhibitor was removed from DVB prior to use.
- the %N values were measured by combustion analysis (CE-440 Elemental Analyzer; Morris Analytical Inc., North Chelmsford, MA).
- the specific surface areas (SSA) and the average pore diameters (APD) of these materials were measured using the multi-point N 2 sorption method (Micromeritics ASAP 2400; Micromeritics Instruments Inc., Norcross, Ga., or equivalent).
- the specific surface area was calculated using either the BJH method or the BET method, and the average pore diameter was calculated from the desorption leg of the nitrogen isotherm at 77.3K.
- the BJH SSA was correlated to pore diameter using the nitrogen desorption isotherm from the BJH method.
- the exclusion volume (Ve) is determined from the intersection of the two linear lines for the external and internal pores in the plot of the logarithm of molecular sizes of PS standards versus their retention volumes.
- the median pore diameter is defined as the molecular size corresponding to 50% internal pore volume, that is, at the retention volume equal to (Vt + Ve)/2.
- aqueous phase was prepared by dissolving 5.05 g of Methocel in 1 L of water at 90 °C and allowing the mixture to cool to room temperature.
- Sodium oleyl sulfate (Sipex OS, ALCOLAC) for reactions requiring it, was added to the aqueous phase when it reached ⁇ 50 °C.
- the organic phase was prepared by combining the requisite amounts of DVB and either NVP or V-Cap with 1.9 g of AIBN and the requisite amounts of porogens (toluene, diethylbenzene and/or 2-ethylhexanol) in a 3 L, 4-neck kettle equipped with an overhead stirrer and a Thermowatch apparatus. With the overhead mixer turned on low, the aqueous solution was slowly added. At this point, a peristaltic pump (Cole-Parmer MasterFlex Model 7520-00), equipped with an inline static mixer was attached to the kettle via glass tubes (19/24 joints) connected to the inlet and outlet lines of the pump.
- a peristaltic pump Cold-Parmer MasterFlex Model 7520-00
- the system was then purged with Ar, the overhead mixer was set to 400 RPM, and the peristaltic pump was set to 6 ( ⁇ 900 mL/min.). After mixing for ⁇ 30 minutes, the droplet size and longevity was checked using a light microscope. The target particle size was 10 - 30 ⁇ m in diameter, with droplets lasting for greater than 30 sec. before collapse. If these conditions were met, the peristaltic pump was allowed to empty into the kettle and then shut off. The solution was heated to 70 °C, allowed to stir overnight ( ⁇ 16 hours), and then cooled to room temperature. The mixture was poured into a 3L glass filter equipped with a 20 ⁇ m cloth, the mother liquor was filtered, and the particles were washed with 3 x 600 mL of methanol. The resulting material was dried in a vacuum oven overnight at 80 °C and then submitted for analysis.
- Methocel E-15 (Dow Chemical) was dissolved in 1L of water at 90 °C, then cooled to room temperature.
- V-Cap N-vinylcaprolactam
- AIBN azobisisobutyronitrile
- the emulsion droplet size was checked after 30 minutes. Once the desired droplet size range had been reached (by adjusting the rate of flow through the static mixer), the static mixing loop was turned off, and the mixture heated at 70 °C for 16 hours, then cooled to room temperature. The mixture was filtered using a 20 ⁇ m polyester filter cloth, washed 3x with 600 mL of methanol and dried for 16 hours under vacuum at 80 °C. %N - 3.34; SA - 562 m 2 /g, BET APD - 88.5 ⁇ .
- Methocel E-15 (Dow Chemical) was dissolved in 1L of water at 90 °C, then cooled to room temperature.
- V-Cap N-vinylcaprolactam
- AIBN azobisisobutyronitrile
- the static mixing loop was turned off, and the mixture heated at 70 °C for 16 hours, then cooled to room temperature.
- the mixture was filtered using a 20 ⁇ m polyester filter cloth, washed 3x with 600 mL of methanol and dried for 16 hours under vacuum at 80 °C. %N - 1.70; SA - 807 m 2 /g, BET APD - 77.0 ⁇ .
- Methocel E-15 (Dow Chemical) was dissolved in 1L of water at 90 °C. After cooling to 50 °C, 3.24 g of sodium oleyl sulfate (Sipex OS, ALCOLAC) was added, and then the solution was cooled to room temperature.
- the static mixing loop was turned off, and the mixture heated at 70 °C for 16 hours, then cooled to room temperature.
- the mixture was filtered using a 20 ⁇ m polyester filter cloth, washed 3x with 600 mL of methanol and dried for 16 hours under vacuum at 80 °C. %N - 2.05; SA - 552 m 2 /g, BET APD - 145.9 ⁇
- Methocel E-15 (Dow Chemical) was dissolved in 1L of water at 90 °C. After cooling to 50 °C, 3.24 g of sodium oleyl sulfate (Sipex OS, ALCOLAC) was added, and then the solution was cooled to room temperature.
- the static mixing loop was turned off, and the mixture heated at 70 °C for 16 hours, then cooled to room temperature.
- the mixture was filtered using a 20 ⁇ m polyester filter cloth, washed 3x with 600 mL of methanol and dried for 16 hours under vacuum at 80 °C. %N - 2.68; SA - 458 m 2 /g, BET APD - 193 ⁇ .
- Methocel E-15 (Dow Chemical) was dissolved in 12L of water at 90 °C. After cooling to 50 °C, 35.3 g of sodium oleyl sulfate (Sipex OS, ALCOLAC) was added, and then the solution was cooled to room temperature. In a 5 L RBF, divinylbenzene (DVB 80, Dow Chemical), N-vinylcaprolactam (V-Cap, International Specialty Products, Wayne, NJ), and 20.7 g of azobisisobutyronitrile (AIBN, DuPont) were dissolved in a mixture of diethylbenzene and 2-ethylhexanol.
- Dow Chemical divinylbenzene
- V-Cap N-vinylcaprolactam
- AIBN azobisisobutyronitrile
- Methocel E-15 (Dow Chemical) was dissolved in 12L of water at 90 °C.
- 1902 g of divinylbenzene (DVB 80, Dow Chemical) 1137 g of N-vinylpyrrolidone (NVP, International Specialty Products, Wayne, NJ), and 20.7 g of azobisisobutyronitrile (AIBN, DuPont) were dissolved in a mixture of diethylbenzene and 2-ethylhexanol.
- the organic and aqueous phases were combined in a 33L glass reactor equipped with baffles, and stirred overhead stirrer at a rate appropriate to achieve an oil droplet size of 20 ⁇ m.
- Example 8 Use of Wide Pore Material weak anion exchanger for the purification of oligonucleotides in plasma
- Comparative Material 2 is a representative material from US Patent No. 7,731,844 having a nominal particle size of 30 ⁇ m), according to the following protocol:
- aqueous and organic solutions are prepared as in Example 5, except that no sodium oleyl sulfate is added to the aqueous phase.
- the organic and aqueous phases are combined in small glass vials in the same ratio as in Example 5.
- Each of the vials is then sealed with a stopper, placed vertically in a thermostated oil bath, heated at 70 °C for 16 hours, and cooled to room temperature.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Claims (16)
- Un matériau poreux comprenant un copolymère d'un ou plusieurs monomères hydrophobes et d'un ou plusieurs monomères hydrophiles, dans lequel un ou plusieurs des monomères hydrophiles sont un N-vinylcaprolactame et dans lequel le matériau poreux comprend au moins 8 % en moles de N-vinylcaprolactame.
- Le matériau poreux selon la revendication 1, dans lequel ledit matériau a un diamètre de pore moyen compris entre environ 100 Å et environ 1000 Å, dans lequel les dimensions de pore moyennes sont déterminées par chromatographie d'exclusion stérique inverse (I-SEC), dans lequel des polystyrènes (PS) standards sont utilisés avec une phase mobile du tétrahydrofurane ; du toluène est utilisé pour la détermination du volume de pore total (Vt) à partir des pores internes et des pores externes ; la taille moléculaire en angström est calculée en divisant le poids moléculaire du PS standard par 41,4 ; le volume d'exclusion (Ve) est déterminé par l'intersection des deux lignes linéaires des pores internes et externes dans le graphique du logarithme des tailles moléculaires des PS standards par rapport à leurs volumes de rétention ; et le diamètre de pore moyen est défini comme étant la taille moléculaire correspondant à 50 % du volume de pores internes, c'est-à-dire au volume de rétention égal à (Vt + Ve)/2.
- Le matériau poreux selon la revendication 1, dans lequel ledit matériau a un diamètre de pore moyen compris entre environ 300 Å et environ 800 Å, de préférence entre environ 300 Å et environ 550 Å, ou d'environ 300 Å, dans lequel les dimensions de pore moyennes sont déterminées par chromatographie d'exclusion stérique inverse (I-SEC), dans lequel des polystyrènes (PS) standards sont utilisés avec une phase mobile du tétrahydrofurane ; du toluène est utilisé pour la détermination du volume de pore total (Vt) à partir des pores internes et des pores externes ; la taille moléculaire en angström est calculée en divisant le poids moléculaire du PS standard par 41,4 ; le volume d'exclusion (Ve) est déterminé par l'intersection des deux lignes linéaires des pores internes et externes dans le graphique du logarithme des tailles moléculaires des PS standards par rapport à leurs volumes de rétention ; et le diamètre de pore moyen est défini comme étant la taille moléculaire correspondant à 50 % du volume de pores internes, c'est-à-dire au volume de rétention égal à (Vt + Ve)/2.
- Le matériau poreux selon la revendication 1, dans lequel le matériau poreux comprend (i) un particule poreuse qui comprend ledit copolymère ou (ii) un monolithe poreux qui comprend ledit copolymère.
- Le matériau poreux selon la revendication 1, dans lequel ledit monomère hydrophobe est un divinylbenzène ou un styrène.
- Le matériau poreux selon la revendication 1, dans lequel la teneur en azote dudit matériau, mesurée par analyse de combustion, est comprise entre environ 1 % N et environ 20 % N.
- Le matériau poreux selon la revendication 6, dans lequel la teneur en azote dudit matériau, mesurée par analyse de combustion, est comprise entre environ 1 % N et environ 10 % N, de préférence entre environ 1 % N et environ 5 % N, de préférence entre environ 1 % N et environ 4 % N.
- Le matériau poreux selon la revendication 1, dans lequel ledit copolymère est un poly(divinylbenzène-et-N-vinylcaprolactame).
- Le matériau poreux selon l'une quelconque des revendications 1 à 8, dans lequel ledit copolymère comprend au moins 15 % en moles de N-vinylcaprolactame.
- Le matériau poreux selon l'une quelconque des revendications 1 à 8, dans lequel ledit copolymère comprend entre 5 et 35 % en moles de N-vinylcaprolactame.
- Un matériau d'extraction en phase solide ou de chromatographie comprenant un ou plusieurs matériau poreux selon l'une quelconque des revendications 1 à 10.
- Un procédé permettant de retirer ou d'isoler un composant d'un mélange, consistant à :
mettre en contact le mélange avec un matériau chromatographique comprenant le matériau poreux selon l'une quelconque des revendications 1 à 10, afin d'ainsi retirer ou isoler le composant du mélange. - Le procédé selon la revendication 12, dans lequel le matériau poreux est un copolymère de poly(divinylbenzène-et-N-vinylcaprolactame).
- Le procédé selon la revendication 12, dans lequel le composant est un matériau biologique, de préférence sélectionné dans le groupe constitué de (i) une protéine intacte, une protéine dénaturée, une protéine modifiée, un oligonucléotide, un oligonucléotide modifié, un oligonucléotide simple brin, un oligonucléotide double brin, un ADN, un ARN ou un peptide ; ou (ii) un corps d'inclusion, un fluide biologique, un tissu biologique, une matrice biologique, un échantillon de tissu enrobé ou un surnageant de culture cellulaire.
- Un dispositif de séparation comprenant le matériau poreux selon l'une quelconque des revendications 1 à 10, dans lequel ledit dispositif est de préférence sélectionné dans le groupe constitué de colonnes chromatographiques, cartouches, plaques chromatographiques sur couche mince, membranes de filtration, dispositifs de nettoyage d'échantillon, supports de synthèse organique en phase solide et plaques de microtitration.
- Une cartouche d'extraction en phase solide comprenant le matériau poreux selon l'une quelconque des revendications 1 à 10, dans lequel la cartouche comprend de préférence une colonne à extrémité ouverte qui contient le matériau poreux.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21153190.0A EP3851189A1 (fr) | 2011-05-20 | 2012-05-18 | Matériaux poreux pour extraction en phase solide et chromatographie |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161488561P | 2011-05-20 | 2011-05-20 | |
PCT/US2012/038501 WO2013002909A1 (fr) | 2011-05-20 | 2012-05-18 | Matériaux poreux pour extraction en phase solide et chromatographie et procédés de préparation et d'utilsation correspondants |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21153190.0A Division EP3851189A1 (fr) | 2011-05-20 | 2012-05-18 | Matériaux poreux pour extraction en phase solide et chromatographie |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2709754A1 EP2709754A1 (fr) | 2014-03-26 |
EP2709754A4 EP2709754A4 (fr) | 2015-07-08 |
EP2709754B1 true EP2709754B1 (fr) | 2021-01-27 |
Family
ID=47424473
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12804908.7A Active EP2709754B1 (fr) | 2011-05-20 | 2012-05-18 | Matériaux poreux pour extraction en phase solide et chromatographie |
EP21153190.0A Pending EP3851189A1 (fr) | 2011-05-20 | 2012-05-18 | Matériaux poreux pour extraction en phase solide et chromatographie |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21153190.0A Pending EP3851189A1 (fr) | 2011-05-20 | 2012-05-18 | Matériaux poreux pour extraction en phase solide et chromatographie |
Country Status (4)
Country | Link |
---|---|
US (2) | US10258979B2 (fr) |
EP (2) | EP2709754B1 (fr) |
JP (2) | JP6522941B2 (fr) |
WO (1) | WO2013002909A1 (fr) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210220814A1 (en) * | 2011-05-20 | 2021-07-22 | Waters Technologies Corporation | Porous materials for solid phase extraction and chromatography and processes for preparation and use thereof |
US11092574B2 (en) | 2013-12-24 | 2021-08-17 | Waters Technologies Corporation | Materials for hydrophilic interaction chromatography and processes for preparation and use thereof for analysis of glycoproteins and glycopeptides |
US10119944B2 (en) * | 2013-12-24 | 2018-11-06 | Waters Technologies Corporation | Materials for hydrophilic interaction chromatography and processes for preparation and use thereof for analysis of glycoproteins and glycopeptides |
TWI746476B (zh) * | 2015-11-13 | 2021-11-21 | 美商艾克頌美孚硏究工程公司 | 混合之二甲苯的分離 |
JP6256932B2 (ja) * | 2015-12-29 | 2018-01-10 | 株式会社アイスティサイエンス | 濃度の大きく異なる複数成分を含有する試料の分析前処理方法 |
EP4443155A2 (fr) | 2016-07-28 | 2024-10-09 | Waters Technologies Corporation | Flux de travail préanalytiques encapsulés pour dispositifs à écoulement continu, chromatographie liquide et analyse par spectrométrie de masse |
KR102034841B1 (ko) | 2016-11-11 | 2019-10-21 | 주식회사 엘지화학 | 다이옥신류 화합물 분석용 전처리 방법 및 이를 이용한 분석 방법 |
WO2018147393A1 (fr) * | 2017-02-10 | 2018-08-16 | 三菱ケミカル株式会社 | Agent de séparation pour purification d'insuline humaine et procédé de purification d'insuline humaine |
WO2020072668A1 (fr) * | 2018-10-02 | 2020-04-09 | Waters Technologies Corporation | Sorbants, dispositifs, kits et procédés utiles pour le traitement d'échantillons biologiques |
CA3142017C (fr) * | 2019-06-14 | 2023-09-19 | Laboratory Corporation Of America Holdings | Bioanalyse lc-ms d'oligonucleotides sans appariement d'ions |
NL2031060B1 (en) | 2022-02-24 | 2023-09-06 | Cue2Walk Int B V | Cueing device with self-activation. |
WO2023161359A1 (fr) | 2022-02-24 | 2023-08-31 | Cue2Walk International B.V. | Algorithme de dispositif de signalisation |
WO2024036164A2 (fr) * | 2022-08-08 | 2024-02-15 | University Of Wyoming | Procédé et système de quantification de matériau poreux |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3663263A (en) * | 1969-04-03 | 1972-05-16 | Monsanto Co | Method of preparing chromatographic columns |
DE2357184A1 (de) | 1973-11-16 | 1975-05-22 | Merck Patent Gmbh | Verfahren zur herstellung von organisch modifizierten siliciumdioxiden |
DE69211010T2 (de) * | 1991-10-21 | 1997-01-23 | Cornell Res Foundation Inc | Chromographiesäule mit makroporöser Polymerfüllung |
US5882521A (en) * | 1996-04-18 | 1999-03-16 | Waters Investment Ltd. | Water-wettable chromatographic media for solid phase extraction |
US20020146413A1 (en) * | 2001-04-10 | 2002-10-10 | James Brady | System for treating patient with bacterial infections |
US6114466A (en) | 1998-02-06 | 2000-09-05 | Renal Tech International Llc | Material for purification of physiological liquids of organism |
JPH11302304A (ja) | 1998-04-17 | 1999-11-02 | Sekisui Chem Co Ltd | 高分子微粒子の製造方法及び液体クロマトグラフィー用充填剤の製造方法 |
DE69936920T2 (de) * | 1998-06-12 | 2008-05-15 | Waters Investments Ltd., New Castle | Neue poröse ionenaustauschharze für die festphasenextraktion und chromatographie |
US7232520B1 (en) | 1998-06-12 | 2007-06-19 | Waters Investments Limited | Ion exchange porous resins for solid phase extraction and chromatography |
US6686035B2 (en) | 1999-02-05 | 2004-02-03 | Waters Investments Limited | Porous inorganic/organic hybrid particles for chromatographic separations and process for their preparation |
JP2001343378A (ja) | 2000-06-02 | 2001-12-14 | Showa Denko Kk | 固相抽出用充填剤及び固相抽出方法 |
CN1188440C (zh) | 2000-08-29 | 2005-02-09 | 马林克罗特贝克公司 | 用于分析物分离的功能性聚合物介质 |
US6528167B2 (en) | 2001-01-31 | 2003-03-04 | Waters Investments Limited | Porous hybrid particles with organic groups removed from the surface |
US20020197252A1 (en) | 2001-04-10 | 2002-12-26 | Renal Tech International | Selective adsorption devices and systems |
WO2003014450A1 (fr) * | 2001-08-09 | 2003-02-20 | Waters Investments Limited | Materiaux monolithiques hybrides inorganiques/organiques utilises pour les separations chromatographiques, et leur procede de preparation |
GB2414993B (en) | 2002-10-30 | 2007-07-11 | Waters Investments Ltd | Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separations and process for the preparation thereof |
DE10257095A1 (de) | 2002-12-05 | 2004-06-24 | Basf Ag | Unlösliche, hochvernetzte Styrol-4-sufonathaltige Popcorn-Polymerisate, Verfahren zu deren Herstellung und Verwendung |
JP4637533B2 (ja) | 2004-08-31 | 2011-02-23 | 信和化工株式会社 | 固相抽出用分離剤 |
US7731884B2 (en) | 2004-12-08 | 2010-06-08 | Advanced Elastomer Systems, L.P. | Molded gasket and method of making |
DE102004063633B4 (de) * | 2004-12-28 | 2011-12-15 | Polymerics Gmbh | Verwendung eines Sorbens zur Festphasenextraktion (solid phase extraction, SPE) |
EP2091623A4 (fr) * | 2006-11-17 | 2011-10-12 | Gareth Michael Forde | Matériaux, procédés et systèmes pour une purification et/ou séparation de molécules |
WO2008085435A1 (fr) * | 2007-01-12 | 2008-07-17 | Waters Investments Limited | Matériaux organiques / inorganiques hybrides de carbone-hétéroatome-silicium poreux pour les séparations chromatographiques et processus de préparation de ceux-ci |
JP2008185530A (ja) | 2007-01-31 | 2008-08-14 | Ai Bio Chips:Kk | 分離回収用ゲル組成物及びこれを用いた分離回収方法 |
AT507846B1 (de) * | 2009-01-22 | 2011-12-15 | Fresenius Medical Care De Gmbh | Sorptionsmittel für endotoxine |
-
2012
- 2012-05-18 EP EP12804908.7A patent/EP2709754B1/fr active Active
- 2012-05-18 JP JP2014511570A patent/JP6522941B2/ja active Active
- 2012-05-18 US US14/114,440 patent/US10258979B2/en active Active
- 2012-05-18 WO PCT/US2012/038501 patent/WO2013002909A1/fr active Application Filing
- 2012-05-18 EP EP21153190.0A patent/EP3851189A1/fr active Pending
-
2018
- 2018-03-26 JP JP2018057853A patent/JP2018140392A/ja active Pending
-
2019
- 2019-04-11 US US16/381,881 patent/US20200009545A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US20140096596A1 (en) | 2014-04-10 |
JP6522941B2 (ja) | 2019-05-29 |
EP3851189A1 (fr) | 2021-07-21 |
JP2014513807A (ja) | 2014-06-05 |
EP2709754A1 (fr) | 2014-03-26 |
US20200009545A1 (en) | 2020-01-09 |
US10258979B2 (en) | 2019-04-16 |
JP2018140392A (ja) | 2018-09-13 |
EP2709754A4 (fr) | 2015-07-08 |
WO2013002909A1 (fr) | 2013-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2709754B1 (fr) | Matériaux poreux pour extraction en phase solide et chromatographie | |
EP1091981B1 (fr) | Nouvelles resines poreuses d'echange d'ions pour l'extraction en phase solide et la chromatographie | |
US5976367A (en) | Water-wettable chromatographic media for solid phase extraction | |
JP2008540084A (ja) | 極性官能基を持つ重合体で修飾された固相抽出用の多孔性基質 | |
Neagu et al. | Adsorption studies of some inorganic and organic salts on new zwitterionic ion exchangers with carboxybetaine moieties | |
CA2762628A1 (fr) | Matiere de separation polymere poreuse | |
US20210220814A1 (en) | Porous materials for solid phase extraction and chromatography and processes for preparation and use thereof | |
US7232520B1 (en) | Ion exchange porous resins for solid phase extraction and chromatography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131217 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20150609 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B01J 20/285 20060101AFI20150602BHEP Ipc: B01J 20/28 20060101ALI20150602BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170630 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B01J 43/00 20060101ALI20200723BHEP Ipc: B01J 20/285 20060101AFI20200723BHEP Ipc: B01J 39/20 20060101ALI20200723BHEP Ipc: B01J 20/28 20060101ALI20200723BHEP Ipc: B01D 15/08 20060101ALI20200723BHEP Ipc: B01J 41/14 20060101ALI20200723BHEP Ipc: G01N 1/40 20060101ALI20200723BHEP Ipc: B01J 20/26 20060101ALI20200723BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200831 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1357844 Country of ref document: AT Kind code of ref document: T Effective date: 20210215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012074296 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210127 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1357844 Country of ref document: AT Kind code of ref document: T Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210527 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210427 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210527 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012074296 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20211028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210518 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210518 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210527 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602012074296 Country of ref document: DE Representative=s name: FORRESTERS IP LLP, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602012074296 Country of ref document: DE Representative=s name: KUEHR, VERA, DIPL.-BIOL., DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120518 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230612 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602012074296 Country of ref document: DE Representative=s name: FORRESTERS IP LLP, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240419 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |