EP2686853B1 - Elektromagnetische aktuatorvorrichtung - Google Patents

Elektromagnetische aktuatorvorrichtung Download PDF

Info

Publication number
EP2686853B1
EP2686853B1 EP12714594.4A EP12714594A EP2686853B1 EP 2686853 B1 EP2686853 B1 EP 2686853B1 EP 12714594 A EP12714594 A EP 12714594A EP 2686853 B1 EP2686853 B1 EP 2686853B1
Authority
EP
European Patent Office
Prior art keywords
yoke
armature
unit
section
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12714594.4A
Other languages
English (en)
French (fr)
Other versions
EP2686853A1 (de
Inventor
Raphael BORY
Jonas BOLL
Daniela HÄRTER
Robert STEYER
Philipp TERHORST
Thomas Schiepp
Markus Laufenberg
Oliver Thode
Viktor Raff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETO Magnetic GmbH
Original Assignee
ETO Magnetic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ETO Magnetic GmbH filed Critical ETO Magnetic GmbH
Priority to EP17165459.3A priority Critical patent/EP3211645A1/de
Publication of EP2686853A1 publication Critical patent/EP2686853A1/de
Application granted granted Critical
Publication of EP2686853B1 publication Critical patent/EP2686853B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions

Definitions

  • the present invention relates to an electromagnetic actuator device according to the preamble of the main claim.
  • Such a device is for example from the JP 2000 170951 A is known and relates to an electromagnetic actuator device for implementing a 3-way valve, in which, in departure from the usual and beyond known as vortex actuator technologies, the coil winding does not surround the armature (or the associated working air gap), but the coil winding, in the Type of "outsourced coil” is offset laterally relative to an armature movement longitudinal axis (or an associated air gap) and a magnetic flux transfer to the armature unit or to the air gap by means of suitable flux-conducting portions of the yoke.
  • JP 2000 170951 A in a very special technical context, which in particular makes a transfer to other, generic actuating tasks (or else to other valve drives) only possible to a very limited extent.
  • the known from this prior art device requires a not inconsiderable space, in addition, a heat dissipation from the known device is not without problems.
  • the DE 20 2008 015980 U1 the applicant and the EP1 288 487 A2 and the DE 101 46 899 A1 each disclosing an electromagnetic actuator device according to the preamble of claim 1. Further electromagnetic actuator devices are in US4633209 and DE 20 2008 015 303 U1 disclosed.
  • Object of the present invention is therefore to provide an electromagnetic actuator according to the preamble of the main claim, wherein a Bestrombare coil unit encloses a first yoke portion of a stationary yoke unit and relative to the yoke unit movably guided, cooperating with a control partner and drivable for performing an actuating armature anchor second yoke portions of the yoke unit to form working air gaps cooperate, with regard to to improve a more compact, in particular also more flexible, mechanical realization, in particular to be able to separate the coil unit from the working air gap, and to create the possibility of realizing improved heat dissipation or localized heat (and thus less concentrated on one location) let develop.
  • the object is achieved by the electromagnetic actuator device having the features of the main claim; advantageous developments of the invention are described in the subclaims.
  • the working air gaps are formed outside the first yoke section, that is to say they are not enclosed by a coil unit (which is typically cylindrical or rectangular in design), but laterally displaced in the sense discussed above.
  • a magnetic flux resistance of flux guide is at least one of the magnetic flux circuits in response to a flowing therein magnetic flux variable.
  • presetting or predetermined influencing of the movement behavior of the plurality of anchor units is to design the air gaps differently (in each case based on a predetermined, comparable anchor position, for example a stop position of the anchor units).
  • Another way to influence the switching or movement behavior of a respective armature unit of the anchor means is to associate this armature spring means or the like power storage and about further education to store one or more of the armature units against a restoring force of such a spring or lead (where in turn further education by different configurations such as the spring forces then the respective switching or movement behavior of the associated anchor units can be influenced in a predetermined manner).
  • the electromagnetic actuator device according to the invention is indeed preferably for the realization of hydraulic or pneumatic valve solutions, especially in the vehicle sector, but is not limited to these applications.
  • the present invention can be used favorably and suitably configured for virtually any field of application in which structural or spatial flexibility can be used in conjunction with flexibly configurable magnetic flux guides or flow paths within the respective flux guide circuits.
  • the Fig. 1 illustrates in the schematic longitudinal sectional view of an electromagnetic actuator device for driving two anchor units 10, 12 by means of a common, centrally located (centrally) between them on a yoke section 13 coil unit 14. More specifically, as schematically with reference to the graph of Fig. 1 recognizable, the elongated armature units 10 and 12 shown axially movably guided (in a movement and drive direction perpendicular in the plane), wherein the armature units 10 and 12 cooperate with stationary yoke sections 15 and 16 and, for the realization thereof, together by the coil unit 14 extending flow control circuits, which are guided over flow-conducting connection sections 18 to 24. Accordingly arise for the anchor units 10 and 12 effective air gaps 26 and 28 respectively.
  • the Fig. 2 to 4 illustrate various operating conditions in response to energization of the coil unit 14: So shows about the Fig. 3 two flow paths in the flux guide circuits running through the respective armatures 10 and 12, respectively, on the basis of the arrowheads 30 and 32, these magnetic fluxes flowing through the yoke section 13 ("first yoke section") associated with the coil unit 14, as symbolized by the arrowhead 34. Is against it, as in the Fig. 2 As shown by a shortened air gap 28, an effective flow resistance in the right flow circuit (ie relative to the armature unit 12) is reduced relative to the other branch, the magnetic flux concentrates as indicated by the arrowhead 36 in FIG Fig.
  • a first variant illustrates the Fig. 5 in the perspective view: on both sides of an axially movable armature 40 and a stationary yoke portion 42 having central arrangement, a pair of individual coils 44 and 46 is provided such that armature 40 and stator 42 are framed on both sides of the individual coils 44, 46.
  • a magnetic flux (resulting when the coils are energized) of the coils 44 and 46, respectively, is fed into the armature 40 or the stator 42 via common elongated plate-shaped flux conducting elements 48 and 50, the elements 48 and 50 additionally being used for a mechanical connection the overall arrangement (with an outlet opening 52 for the anchor unit) provide.
  • two flux guide circuits are formed, wherein a respective one of the flux circuits runs through one of the individual coils 44 and 46 and both flux circuits then flow together through the armature-stator arrangement 40, 42 (insofar the flow path corresponds analogously of the Fig. 3 but with a provision of a central armature-stator arrangement and two external individual coils).
  • This basic configuration of the Fig. 5 is, however, not limited to two individual coils, nor about the symmetrical arrangement shown; Rather, by varying the geometry of the elements 48, 50, a change in distance it can also, as in the Fig. 6 to 8 illustrates, compared to the elongated elements 48, 50 suitably kinked configuration are present, or it can be provided around one (or even more) common armature-stator assembly (s) around more than two individual coils: So describes about the Fig. 6 in plan view, a variation of the elements 48 and 50, such that now two legs 54, 56, angled away from each other by an angle 58 of about 135 °, extend and end, compare Fig.
  • FIG. 7 A comparison arrangement of the presupposed as known, traditional type in the representation of Fig. 7 illustrates the resulting installation space or geometry advantage: namely, in order to produce a magnetic flux behavior comparable to the pair of individual coils 44, 46, a single coil of a winding cross-section 60, as in FIG Fig. 7 indicated to be present, but possibly in a limited installation space (adapted to the configuration of Fig. 6, 8 ) not possible.
  • a further advantage of the example with a plurality of individual coils provided adjacent to an armature-stator arrangement with an adding or overlapping flow profile, such as in FIG Fig. 5 respectively. 6 and 8 shown, is that possible lateral forces are reduced (to the anchor) compared to a solution with only one adjacent the anchor unit outsourced coil (as far as a mutual compensation takes place, see for example the flowchart of Fig. 3 in analogous application to an arrangement with two external individual coils).
  • a reduction of the lateral forces on the anchor has a favorable effect on wear and therefore an effective service life.
  • the present invention allows numerous practical advantages: For example, arranging the anchor means in a use as a valve offers much more flexible connection possibilities in the configuration according to the invention adjacent to the coil unit for example, compared to the known state of the art, in which typically the elongated armature unit is surrounded by the coil unit (typically cylindrical-radial). Accordingly, the working air gap can be made more flexible (and suitable for a particular application).
  • advantageous is provided adapted to respective installation and room conditions, not to provide the cylindrical winding, but to provide approximately rectangular or other coil cross-sections. This is especially true in cooperation with flux-conducting elements, which are realized by means of (typically produced by punching) sheets and further advantageously present in suitable stacking configurations.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)

Description

  • Die vorliegende Erfindung betrifft eine elektromagnetische Aktuatorvorrichtung nach dem Oberbegriff des Hauptanspruchs.
  • Eine derartige Vorrichtung ist beispielsweise aus der JP 2000 170951 A bekannt und betrifft eine elektromagnetische Aktuatorvorrichtung zur Realisierung eines 3-Wege-Ventils, bei welcher, in Abkehr von üblichen und darüber hinaus als bekannt vorauszusetzenden Aktuatortechnologien, die Spulenwicklung nicht den Anker (bzw. den zugehörigen Arbeitsluftspalt) umschließt, vielmehr die Spulenwicklung, in der Art einer "ausgelagerten Spule", gegenüber einer Anker-Bewegungslängsachse (bzw. einem zugehörigen Luftspalt) lateral versetzt ist und eine magnetische Flussübertragung zur Ankereinheit bzw. zum Luftspalt mittels geeigneter flussleitender Abschnitte des Jochs erfolgt.
  • Allerdings erfolgt die Offenbarung gemäß JP 2000 170951 A in einem sehr speziellen technischen Kontext, der insbesondere eine Übertragung auf andere, generische Stellaufgaben (oder aber auf andere Ventilantriebe) nur sehr begrenzt möglich macht. Zudem benötigt auch die aus diesem Stand der Technik bekannte Vorrichtung einen nicht unbeträchtlichen Bauraum, wobei zusätzlich eine Wärmeabfuhr von der bekannten Vorrichtung nicht unproblematisch ist. Zum weiteren Stand der Technik werden die DE 20 2008 015980 U1 der Anmelderin sowie die EP1 288 487 A2 und die DE 101 46 899 A1 genannt, die jeweils eine elektromagnetische Aktuatorvorrichtung nach dem Oberbegriff von Anspruch 1 offenbaren. Weitere elektromagnetische Aktuatorvorrichtungen sind in US4633209 und DE 20 2008 015 303 U1 offenbart. Aufgabe der vorliegenden Erfindung ist es daher, eine elektromagnetische Aktuatorvorrichtung nach dem Oberbegriff des Hauptanspruchs zu schaffen, bei welcher eine bestrombare Spuleneinheit einen ersten Jochabschnitt einer stationären Jocheinheit umschließt und relativ zur Jocheinheit bewegbar geführte, mit einem Stellpartner zusammenwirkende und zum Ausführen einer Stellbewegung antreibbare Ankermittel mit zweiten Jochabschnitten der Jocheinheit unter Ausbildung von Arbeitsluftspalten zusammenwirken, im Hinblick auf eine kompaktere, insbesondere auch flexiblere mechanische Realisierung zu verbessern, dabei insbesondere die Möglichkeit zu schaffen, die Spuleneinheit vom Arbeitsluftspalt zu separieren, und die Möglichkeit zu schaffen, eine verbesserte Wärmeabfuhr zu realisieren bzw. Wärme lokal verteilt (und damit weniger auf einen Ort konzentriert) entstehen zu lassen.
  • Die Aufgabe wird durch die elektromagnetische Aktuatorvorrichtung mit den Merkmalen des Hauptanspruchs gelöst; vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben. Erfindungsgemäss sind die Arbeitsluftspalte außerhalb des ersten Jochabschnitts gebildet, mithin also nicht von einer (weiterbildungsgemäß typischerweise zylindrisch oder rechteckförmig ausgebildeten) Spuleneinheit umschlossen ist, sondern im vorstehend diskutierten Sinne lateral ausgelagert ist.
  • In besonders bevorzugter Ausgestaltung der Erfindung mit einer Mehrzahl von magnetische Flussleitkreisen in der Jocheinheit, wobei jeder der Flussleitkreise durch den (die gemeinsame Spule tragenden) ersten Jochabschnitt sowie über einen jeweiligen einer der Mehrzahl der Ankereinheiten zugeordneten Luftspalte verläuft, ist ein magnetischer Flusswiderstand von Flussleitmitteln mindestens eines der magnetischen Flussleitkreise in Abhängigkeit von einem darin fließenden magnetischen Fluss veränderlich. Dies geschieht insbesondere dadurch, dass durch geeignete Ausgestaltung eines wirksamen Flussleitquerschnittes dieser Flussleitmittel ab einer vorbestimmten magnetischen Flussdichte eine Sättigung auftritt, mithin ab dieser Schwelle der magnetische Flusswiderstand erhöht ist. Konsequenz dieses Effektes ist, dass dann ein Magnetfluss vom betreffenden Flussleitkreis in einen anderen der Flussleitkreise verdrängt wird, insoweit dann eine Ankerbewegung ausgelöst oder beeinflusst werden kann.
  • Weitere Möglichkeiten zur Voreinstellung bzw. vorbestimmten Beeinflussung des Bewegungsverhaltens der Mehrzahl der Ankereinheiten (in den jeweiligen Jochzweigen) besteht darin, die Luftspalte unterschiedlich auszugestalten (jeweils bezogen auf eine vorbestimmte, vergleichbare Ankerposition, etwa eine Anschlagposition der Ankereinheiten). Dabei ist es insbesondere weiterbildungsgemäß bevorzugt, den wirksamen Luftspalt in einem jeweiligen Jochzweig zu variieren bzw., entsprechend einem beabsichtigten Bewegungsverhalten (etwa einer beabsichtigten Reihenfolge einer Aktivierung), unterschiedlich einzurichten.
  • Eine weitere Möglichkeit, das Schalt- bzw. Bewegungsverhalten einer jeweiligen Ankereinheit der Ankermittel zu beeinflussen, liegt darin, dieser Ankereinheit Federmittel oder dergleichen Kraftspeicher zuzuordnen und etwa weiterbildungsgemäß eine oder mehrere der Ankereinheiten gegen eine Rückstellkraft einer derartigen Feder zu lagern bzw. zu führen (wobei wiederum weiterbildungsgemäß durch unterschiedliche Ausgestaltungen etwa der Federkräfte dann das jeweilige Schalt- bzw. Bewegungsverhalten der zugeordneten Ankereinheiten vorbestimmt beeinflusst werden kann). Im Rahmen weiterer bevorzugter Ausführungsformen der Erfindung ist vorgesehen, die Jocheinheit mittels geeigneter blechförmiger, weiter bevorzugt durch Stanzen hergestellter Flussleitelemente, ggf. geeignet gestapelt, zu realisieren, um auch hier, neben Vorteilen in der Herstellung, Wirbelströme zu reduzieren.
  • Im Rahmen bevorzugter Weiterbildungen der Erfindung liegt es ferner, die Spuleneinheit im Rahmen der Erfindung mit beliebigen Umfangskonturen bzw. Querschnitten zu versehen, um insoweit wiederum die baulich-konstruktiven Optimierungsmöglichkeiten zu nutzen; neben zylindrischen Außenkonturen ist es dabei insbesondere vorteilhaft und weiterbildungsgemäß beansprucht, die Spuleneinheit querschnittlich rechteckig auszugestalten.
  • Im Ergebnis eignet sich die erfindungsgemäße elektromagnetische Aktuatorvorrichtung zwar bevorzugt zur Realisierung von Hydraulik- oder Pneumatikventillösungen, insbesondere im Fahrzeugbereich, ist jedoch nicht auf diese Anwendungsgebiete beschränkt. Vielmehr lässt sich die vorliegende Erfindung günstig für nahezu beliebige Anwendungsgebiete nutzen und geeignet konfigurieren, bei welchen bauliche bzw. räumliche Flexibilität in Verbindung mit flexibel gestaltbaren magnetischen Flussführungen bzw. Flussverläufen innerhalb der jeweiligen Flussleitkreise genutzt werden können.
  • Weitere Vorteile, bevorzugte Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen; diese zeigen in:
  • Fig. 1:
    eine Prinzipdarstellung einer elektromagnetischen Aktuatorvorrichtung gemäß einer ersten Ausführungsform der Erfindung zum Verdeutlichen des prinzipiellen Zusammenwirkens der verschiedenen Funktionskomponenten;
    Fig. 2 - Fig. 4:
    verschiedene Betriebs- bzw. Magnetfluss- und Schaltzustände der Vorrichtung gemäß Fig. 1, verdeutlicht durch einen jeweiligen Magnetfluss symbolisierende Pfeilschaaren;
    Fig. 5:
    eine Perspektivansicht einer Ausführungsform der elektromagnetischen Aktuatorvorrichtung welche nicht Teil der vorliegenden Erfindung ist
    Fig. 6 - Fig. 8:
    konstruktive Varianten der Ausgestaltung eines Flussleitelements in weiteren nicht Teil der Erfindung seienden Beispielen gegenüber dem Beispiel der Fig. 5.
  • Die Fig. 1 verdeutlicht in der schematischen Längsschnittansicht eine elektromagnetische Aktuatorvorrichtung zum Antreiben zweier Ankereinheiten 10, 12 mittels einer gemeinsamen, zentral (mittig) zwischen diesen auf einem Jochabschnitt 13 vorgesehenen Spuleneinheit 14. Genauer gesagt sind, wie schematisch anhand des Schaubilds der Fig. 1 erkennbar, die langgestreckt dargestellten Ankereinheiten 10 bzw. 12 axial beweglich geführt (in einer Bewegungs- und Antriebsrichtung senkrecht in der Zeichnungsebene), wobei die Ankereinheiten 10 und 12 zusammenwirken mit stationären Jochabschnitten 15 bzw. 16 und, zur Realisierung entsprechender, gemeinsam durch die Spuleneinheit 14 verlaufender Flussleitkreise, die über flussleitende Verbindungsabschnitte 18 bis 24 geführt sind. Entsprechend entstehen für die Ankereinheiten 10 bzw. 12 wirksame Luftspalte 26 bzw. 28.
  • Die Fig. 2 bis 4 verdeutlichen verschiedene Betriebszustände als Reaktion auf eine Bestromung der Spuleneinheit 14: So zeigt etwa die Fig. 3 zwei Flussverläufe in den durch die jeweiligen Anker 10 bzw. 12 verlaufenden Flussleitkreise anhand der Pfeilschaaren 30 bzw. 32, wobei diese Magnetflüsse durch den der Spuleneinheit 14 zugeordneten Jochabschnitt 13 ("ersten Jochabschnitt") fließen, wie durch die Pfeilschaar 34 symbolisiert. Ist dagegen, wie in der Fig. 2 gezeigt, durch einen verkürzten Luftspalt 28 ein wirksamer Flusswiderstand im rechten Flussleitkreis (d.h. bezogen auf die Ankereinheit 12) gegenüber dem anderen Zweig vermindert, konzentriert sich der Magnetfluss, wie durch die Pfeilschaar 36 in Fig. 2 gezeigt, auf diesen rechten Bereich, mit der Wirkung, dass primär eine Antriebswirkung auf die Ankereinheit 12 in Richtung auf das statische Element 16 entsteht, entsprechend dieser Luftspalt dann geschlossen wird (Darstellung der Fig. 4). Durch diese Wirkung und eine entsprechende (Querschnitt-) Dimensionierung im rechtseitigen Flussleitkreis (z.B. der flussleitenden Komponenten 16, 20, 24 bzw. 12) tritt dann jedoch eine Sättigung in diesem Flussleitkreis auf, mit der Wirkung, dass durch den dadurch wiederum erhöhten Flusswiderstand ein Teil des Magnetflusses in den linken Flussleitkreis, wirksam für die Ankereinheit 10, verdrängt wird. Entsprechend kommt es durch diesen verdrängten Fluss 38 zu einer Kraftbeaufschlagung der Ankereinheit 10, welche darauffolgend den Luftspalt 30 schließt. Mithin verdeutlicht die gezeigte asymmetrische Konfiguration (ausgehend von der Fig. 2), wie etwa ein unterschiedliches, hier zeitlich aufeinanderfolgendes, Bewegungs- bzw. Schaltverhalten der Ankereinheiten provoziert werden kann.
  • Alternativ kann eine derartige Wirkung auch durch geeignet an den Ankereinheiten vorzusehende Federmittel (mit entsprechend verschiedenen Federkräften) realisiert werden, wiederum ergänzend oder alternativ mittels vorbestimmt eingestellter und dann entsprechend eine Sättigung erreichender wirksamer magnetischer Flussquerschnitte der beteiligten flussleitenden Komponenten.
  • Mechanisch befinden sich bei dem Ausführungsbeispiel der Fig. 1 bis 4 beide Ankereinheiten 10 bzw. 12 unmittelbar am Spulenumfang bzw. diesem benachbart, sodass in potentiell einen Spulenwirkungsgrad erhöhender Weise eine optimierte Feldlinienbündelung über beide Anker und damit beidseits der Spuleneinheit erfolgt, vergleiche die Fig. 3. Eine geometrisch-mechanische Unsymmetrie, etwa durch Variation der jeweiligen Ankerabstände von der mittleren Spule, gestattet dann hier wiederum das Einrichten geeigneter abweichender Flussverläufe bzw. davon bestimmter Ankerbewegungen. Nicht Teil der Erfindung ist ein Beispiel, welches in in den Figuren nicht gezeigter Weise lediglich eine Ankereinheit mit einem zugehörigen zweiten Jochabschnitt, bevorzugt seitlich beabstandet bzw. benachbart zur Spuleneinheit, vorsieht. Auch dieses einfachste Beispiel realisiert bereits das Prinzip des ausgelagerten Ankers, nämlich eines im Rahmen eines Flusskreiszweiges vorgesehenen und seitlich bzw. benachbart angeordneten Ankers (samt zugehörigem Luftspalt), so dass eine Ankerbewegungsrichtung zwar weiterbildungsgemäß achsparallel zu einer Erstreckungsrichtung der Spuleneinheit (bzw. des zugehörigen ersten Jochabschnitts) erfolgen kann, diese Achsen jedoch nicht mehr koaxial verlaufen.
  • Anhand der Fig. 5 bis 8 wird nachfolgend ein Aspekt, der nicht Teil der vorliegenden Erfindung ist, anhand eines weiteren Beispiels beschrieben. Eine erste Variante verdeutlicht die Fig. 5 in der perspektivischen Ansicht: Beidseits einer einen axial beweglichen Anker 40 sowie einen stationären Jochabschnitt 42 aufweisenden mittleren Anordnung ist ein Paar von Einzelspulen 44 bzw. 46 vorgesehen, dergestalt, dass Anker 40 bzw. Stator 42 beidseits von den Einzelspulen 44, 46 umrahmt sind. Ein (bei Bestromung der Spulen entstehender) Magnetfluss der Spulen 44 bzw. 46 wird über gemeinsame, langgestreckt-plattenförmige Flussleitelemente 48 bzw. 50 in den Anker 40 bzw. den Stator 42 eingetragen, wobei die Elemente 48 bzw. 50 zusätzlich für eine mechanische Verbindung der Gesamtanordnung (mit einer Austrittsöffnung 52 für die Ankereinheit) sorgen.
  • Im Hinblick auf eine Flussführung in dieser Vorrichtung sind wiederum zwei Flussleitkreise ausgebildet, wobei ein jeweiliger der Flussleitkreise durch eine der Einzelspulen 44 bzw. 46 verläuft und beide Flussleitkreise dann gemeinsam durch die Anker-Stator-Anordnung 40, 42 fließen (insoweit entspricht der Flussverlauf analog der Fig. 3, jedoch bei einem Vorsehen einer mittleren Anker-Stator-Anordnung und zwei außenliegenden Einzelspulen).
  • Diese prinzipielle Konfiguration der Fig. 5 ist gleichwohl weder auf zwei Einzelspulen, noch etwa die gezeigte symmetrische Anordnung beschränkt; vielmehr kann, etwa durch Variation der Geometrie der Elemente 48, 50, eine Abstandsänderung erfolgen, es kann auch, wie in den Fig. 6 bis 8 verdeutlicht, eine gegenüber den langgestreckten Elementen 48, 50 geeignet abgeknickte Konfiguration vorliegen, oder aber es können mehr als zwei Einzelspulen um eine (oder aber auch um mehrere) gemeinsame Anker-Stator-Anordnung(en) herum vorgesehen sein: So beschreibt etwa die Fig. 6 in der Draufsicht eine Variation der Elemente 48 bzw. 50, dergestalt, dass nunmehr zwei Schenkel 54, 56, voneinander um einen Winkel 58 von ca. 135° abgewinkelt, sich erstrecken und endseitig, vergleiche Fig. 8, mit den Einzelspulen 44 bzw. 46 flussleitend verbunden sind. Eine Vergleichsanordnung der als bekannt vorausgesetzten, traditionellen Art in der Darstellung der Fig. 7 verdeutlicht den dadurch realisierten Einbauraum- bzw. Geometrievorteil: Um nämlich ein dem Paar von Einzelspulen 44, 46 vergleichbares magnetisches Flussverhalten zu erzeugen, müsste eine Einzelspule eines Wicklungsquerschnitts 60, wie in Fig. 7 angedeutet, vorhanden sein, was aber möglicherweise in einem beschränkten Einbauraum (angepasst an die Konfiguration der Fig. 6, 8) nicht möglich ist.
  • Ein weiterer Vorteil des Beispiels mit einer Mehrzahl von benachbart einer Anker-Stator-Anordnung vorgesehener Einzelspulen mit sich addierendem bzw. überlagerndem Flussverlauf, etwa der in Fig. 5 bzw. Fig. 6 und 8 gezeigten Art, liegt darin, dass mögliche Querkräfte (auf den Anker) im Vergleich zu einer Lösung mit lediglich einer benachbart der Ankereinheit ausgelagerten Spule verringert sind (da insoweit eine gegenseitige Kompensation stattfindet, vergleiche etwa das Flussdiagramm der Fig. 3 bei analoger Anwendung auf eine Anordnung mit zwei außenliegenden Einzelspulen). Gerade bei Produkten mit hohen Lebensdaueranforderungen, wie etwa im Ventilbereich, wirkt sich eine derartige Verringerung der Querkräfte auf den Anker günstig auf einen Verschleiß und mithin eine wirksame Nutzungsdauer aus.
  • Die vorliegende Erfindung, unabhängig von den gezeigten oder weiteren möglichen Ausführungsformen, ermöglicht zahlreiche praktische Vorteile: So bietet etwa das Anordnen der Ankermittel in einer Verwendung als Ventil deutlich flexiblere Anschlussmöglichkeiten in der erfindungsgemäßen Konfiguration benachbart der Spuleneinheit etwa gegenüber dem bekannten Stand der Technik, bei welchem typischerweise die langgestreckte Ankereinheit von der Spuleneinheit (typischerweise zylindrisch-radial) umgeben ist. Entsprechend kann der Arbeitsluftspalt flexibler (und geeignet für einen jeweiligen Anwendungsfall) ausgestaltet werden. Zusätzlich weiterbildungsgemäß vorteilhaft ist vorgesehen, angepasst an jeweilige Einbau- und Raumbedingungen, die nicht mit zylindrischer Wicklung zu versehen, sondern etwa rechteckige oder andere Spulenquerschnitte vorzusehen. Dies gilt insbesondere im Zusammenwirken mit flussleitenden Elementen, welche mithilfe von (typischerweise durch Stanzen hergestellten) Blechen realisiert sind und weiter vorteilhaft in geeigneten Stapelkonfigurationen vorliegen.
  • Damit lässt sich auch für die vorliegende Erfindung der Vorteil einer Wirbelstromreduktion (gerade für höhere Frequenzen) geblechter Flussleitelemente nutzen.

Claims (9)

  1. Elektromagnetische Aktuatorvorrichtung mit
    einer einen ersten Jochabschnitt (13) einer stationären Jocheinheit der Aktuatorvorrichtung umschließenden und durch Bestromung aktivierbaren Spuleneinheit (14);
    und relativ zur Jocheinheit bewegbar geführten, mit einem abtriebsseitigen Stellpartner zusammenwirkenden und zum Ausführen einer Stellbewegung antreibbaren Ankermitteln (10, 12), die mit zweiten Jochabschnitten (15, 16) der Jocheinheit unter Ausbildung von Luftspalten (26, 28) für einen durch die aktivierte Spuleneinheit erzeugten Magnetfluss zusammenwirken,
    dadurch gekennzeichnet, dass einem Außenmantel der Spuleneinheit radial außenseitlich benachbart die Ankermittel vorgesehen sowie dort eine Mehrzahl der zweiten Jochabschnitte (15, 16) zum Zusammenwirken mit einer Mehrzahl getrennt voneinander bewegbar geführten Ankereinheiten (10, 12) der Ankermittel so ausgebildet ist,
    dass unter Ausbildung einer Mehrzahl der einer jeweiligen Ankereinheit zugeordneten und außerhalb des ersten Jochabschnitts dem Außenmantel radial außenseitlich benachbart gebildeten Luftspalte von der jeweiligen Ankereinheit zu dem jeweiligen der zweiten Jochabschnitte eine Mehrzahl von magnetischen Flussleitkreisen in der Jocheinheit entsteht,
    wobei jeder der Flussleitkreise durch den ersten Jochabschnitt, den jeweiligen der zweiten Jochabschnitte, die jeweilige der Ankereinheiten sowie über den jeweiligen der Luftspalte verläuft und eine durch eine Stellposition und/oder eine Bewegung einer zugehörigen Ankereinheit bedingte Änderung des jeweiligen der Luftspalte eine Flussänderung in einem Flussleitkreis einer anderen der Ankereinheiten bewirkt.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Jocheinheit Flussleitmittel aufweist, die so ausgebildet sind, dass deren magnetischer Flusswiderstand, insbesondere durch Ausbilden eines vorbestimmten maximalen wirksamen Flussquerschnitts, veränderlich ist, insbesondere oberhalb eines vom Flussquerschnitt bestimmten Schwellwertes ansteigt.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die aus einem magnetisch leitenden Material realisierten Flussleitmittel eine der Anzahl der Ankereinheiten entsprechende Anzahl von Jochzweigen ausbilden, die an den ersten Jochabschnitt ansetzen.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass ein jeweiliger der Jochzweige mit einer zugehörigen der Ankereinheiten einen von einer Stellposition der Ankereinheit beeinflussten Luftspalt der genannten Luftspalte ausbildet.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die für eine Anschlagposition der Mehrzahl der Ankereinheiten jeweils eingerichteten Luftspalte eine voneinander verschiedene Abmessung, insbesondere einen unterschiedlichen wirksamen Luftspaltabstand, aufweisen.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, ferner umfassend Federmittel, wobei mindestens eine der Ankereinheiten gegen eine Rückstellkraft der Federmitteln gelagert oder geführt ist.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die auf eine Mehrzahl der Ankereinheiten wirkende Rückstellkraft für mindestens zwei der Ankereinheiten unterschiedlich eingerichtet ist.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet dass die Jocheinheit und/oder der erste Jochabschnitt und/oder der zweite Jochabschnitt und/oder ein Flussleitabschnitt zwischen dem ersten und dem zweiten Jochabschnitt als Blechelement, insbesondere stapelfähiges Blechelement, und/oder als Schichtanordnung aus einer Mehrzahl von Blechelementen realisiert ist.
  9. Verwendung der elektromagnetischen Aktuatorvorrichtung nach einem der Ansprüche 1 bis 8 zur Realisierung eines Pneumatik- oder Hydraulikventils, insbesondere für ein Kraftfahrzeug.
EP12714594.4A 2011-03-16 2012-03-15 Elektromagnetische aktuatorvorrichtung Not-in-force EP2686853B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17165459.3A EP3211645A1 (de) 2011-03-16 2012-03-15 Elektromagnetische aktuatorvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201120004021 DE202011004021U1 (de) 2011-03-16 2011-03-16 Elektromagnetische Aktuatorvorrichtung
PCT/EP2012/054547 WO2012123538A1 (de) 2011-03-16 2012-03-15 Elektromagnetische aktuatorvorrichtung

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP17165459.3A Division-Into EP3211645A1 (de) 2011-03-16 2012-03-15 Elektromagnetische aktuatorvorrichtung
EP17165459.3A Division EP3211645A1 (de) 2011-03-16 2012-03-15 Elektromagnetische aktuatorvorrichtung

Publications (2)

Publication Number Publication Date
EP2686853A1 EP2686853A1 (de) 2014-01-22
EP2686853B1 true EP2686853B1 (de) 2017-11-08

Family

ID=45974256

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17165459.3A Withdrawn EP3211645A1 (de) 2011-03-16 2012-03-15 Elektromagnetische aktuatorvorrichtung
EP12714594.4A Not-in-force EP2686853B1 (de) 2011-03-16 2012-03-15 Elektromagnetische aktuatorvorrichtung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17165459.3A Withdrawn EP3211645A1 (de) 2011-03-16 2012-03-15 Elektromagnetische aktuatorvorrichtung

Country Status (5)

Country Link
US (1) US9117583B2 (de)
EP (2) EP3211645A1 (de)
CN (1) CN103443877B (de)
DE (1) DE202011004021U1 (de)
WO (1) WO2012123538A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018117074A1 (de) * 2018-07-13 2020-01-16 Svm Schultz Verwaltungs-Gmbh & Co. Kg Elektromagnetischer Aktuator mit Ankerscheibe
CN113562203B (zh) * 2021-07-02 2022-12-13 哈尔滨工业大学 一种具有冗余气隙的电磁作动器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008015303U1 (de) * 2008-11-19 2009-03-26 Bürkert Werke GmbH & Co. KG Hubanker-Antrieb

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157520A (en) * 1975-11-04 1979-06-05 Westinghouse Electric Corp. Magnetic flux shifting ground fault trip indicator
US4164721A (en) * 1975-12-11 1979-08-14 Minolta Camera Kabushiki Kaisha Magnetic actuator for a shutter mechanism
DE2816555A1 (de) * 1977-04-18 1978-10-19 Francaise App Elect Mesure Magnetkreisanordnung fuer einen elektromagneten fuer einen mit einem permanentmagneten als anker
GB1591471A (en) * 1977-06-18 1981-06-24 Hart J C H Electromagnetic actuators
US4127835A (en) * 1977-07-06 1978-11-28 Dynex/Rivett Inc. Electromechanical force motor
US4217507A (en) * 1979-01-08 1980-08-12 The Singer Company Linear motor
US4306207A (en) * 1980-05-07 1981-12-15 Hosiden Electronics Co., Ltd. Self-sustaining solenoid
JPH0134326Y2 (de) * 1981-04-22 1989-10-19
JPS5829754U (ja) * 1981-08-21 1983-02-26 日立金属株式会社 ドアロツク用アクチユエ−タ
FR2520152B1 (fr) * 1982-01-20 1986-02-28 Telemecanique Electrique Electro-aimant a equipage mobile a aimant permanent a fonctionnement monostable
US4524797A (en) * 1982-02-25 1985-06-25 Robert Bosch Gmbh Solenoid valve
US4550302A (en) * 1982-11-09 1985-10-29 Matsushita Electric Industrial Co., Ltd. Solenoid
JPS59171314U (ja) * 1983-04-28 1984-11-16 オムロン株式会社 電磁石装置
EP0130423A3 (de) * 1983-06-30 1985-09-18 EURO-Matsushita Electric Works Aktiengesellschaft Polarisierter Elektromagnet und seine Anwendung in einem polarisierten elektromagnetischen Relais
DE3334159A1 (de) * 1983-09-21 1985-04-04 Sauer, Otto, 6800 Mannheim Magnetventil
US4797645A (en) * 1984-03-05 1989-01-10 Mitsubishi Mining & Cement Co., Ltd. Electromagnetic actuator
JPS60261111A (ja) * 1984-06-08 1985-12-24 Mitsubishi Mining & Cement Co Ltd 電磁アクチユエ−タ
FR2568402B1 (fr) 1984-07-24 1987-02-20 Telemecanique Electrique Electro-aimant a courant continu, en particulier pour appareil electrique de commutation
CN1003822B (zh) * 1984-10-09 1989-04-05 三菱矿业水泥株式会社 电磁执行机构
GB8514544D0 (en) * 1985-06-08 1985-07-10 Lucas Ind Plc Electromagnetic actuator
US4679017A (en) * 1986-03-19 1987-07-07 Synchro-Start Products, Inc. Emergency manual actuation mechanism for a solenoid
US4835503A (en) * 1986-03-20 1989-05-30 South Bend Controls, Inc. Linear proportional solenoid
US4751487A (en) * 1987-03-16 1988-06-14 Deltrol Corp. Double acting permanent magnet latching solenoid
US4868695A (en) * 1988-03-30 1989-09-19 Magnetic Peripherals Inc. Head/arm lock mechanism for a disk drive
US4903578A (en) * 1988-07-08 1990-02-27 Allied-Signal Inc. Electropneumatic rotary actuator having proportional fluid valving
US5268662A (en) * 1988-08-08 1993-12-07 Mitsubishi Mining & Cement Co., Ltd. Plunger type electromagnet
US5388086A (en) * 1989-06-13 1995-02-07 Kabushiki Kaisha Toshiba Electro-magnetic actuator for driving an objective lens
US4994776A (en) * 1989-07-12 1991-02-19 Babcock, Inc. Magnetic latching solenoid
DE19646243C1 (de) * 1996-11-08 1997-10-23 Siemens Ag Elektromagnetischer Differenzstrom-Auslöser
US5032812A (en) * 1990-03-01 1991-07-16 Automatic Switch Company Solenoid actuator having a magnetic flux sensor
US5257014A (en) * 1991-10-31 1993-10-26 Caterpillar Inc. Actuator detection method and apparatus for an electromechanical actuator
JP3294382B2 (ja) * 1992-10-30 2002-06-24 株式会社デンソー 流量制御弁
US5303012A (en) * 1993-02-10 1994-04-12 Honeywell Inc. Single magnet latch valve with position indicator
JP2607670Y2 (ja) * 1993-10-21 2002-03-04 エスエムシー株式会社 自己保持型電磁弁
US5453724A (en) * 1994-05-27 1995-09-26 General Electric Flux shifter assembly for circuit breaker accessories
US5523684A (en) * 1994-11-14 1996-06-04 Caterpillar Inc. Electronic solenoid control apparatus and method with hall effect technology
US6836201B1 (en) * 1995-12-01 2004-12-28 Raytheon Company Electrically driven bistable mechanical actuator
US5809157A (en) * 1996-04-09 1998-09-15 Victor Lavrov Electromagnetic linear drive
US5969589A (en) * 1996-08-28 1999-10-19 Ferrofluidics Corporation Quiet ferrofluid solenoid
DE19712669C2 (de) * 1997-03-26 2000-03-30 Daimler Chrysler Ag Elektromagnetisch gesteuertes Ventil
JP2000170951A (ja) 1998-10-02 2000-06-23 Pacific Ind Co Ltd 自己保持型3方向電磁弁
US6242994B1 (en) * 1999-03-16 2001-06-05 Ferrofluidics Corporation Apparatus to reduce push back time in solenoid valves
DE19914372B4 (de) * 1999-03-30 2007-05-16 Pierburg Gmbh Vorrichtung zur Überwachung des Ventilhubes eines elektromagnetisch angetriebenen Ventils
US6293516B1 (en) * 1999-10-21 2001-09-25 Arichell Technologies, Inc. Reduced-energy-consumption actuator
US6265956B1 (en) * 1999-12-22 2001-07-24 Magnet-Schultz Of America, Inc. Permanent magnet latching solenoid
WO2001063156A1 (en) * 2000-02-22 2001-08-30 Seale Joseph B A solenoid for efficient pull-in and quick landing
US6305662B1 (en) * 2000-02-29 2001-10-23 Arichell Technologies, Inc. Reduced-energy-consumption actuator
US6948697B2 (en) * 2000-02-29 2005-09-27 Arichell Technologies, Inc. Apparatus and method for controlling fluid flow
US20070241298A1 (en) * 2000-02-29 2007-10-18 Kay Herbert Electromagnetic apparatus and method for controlling fluid flow
US6501357B2 (en) * 2000-03-16 2002-12-31 Quizix, Inc. Permanent magnet actuator mechanism
US6401976B1 (en) * 2000-03-23 2002-06-11 Nordson Corporation Electrically operated viscous fluid dispensing apparatus and method
DE10033923A1 (de) * 2000-07-12 2002-01-24 Lsp Innovative Automotive Sys Verfahren zur sensorlosen Ermittlung der Geschwindigkeit und Position elektromagnetischer Stellsysteme
CN1234135C (zh) * 2001-01-18 2005-12-28 株式会社日立制作所 电磁铁和使用该电磁铁的开关装置的操作机构
JP3842990B2 (ja) * 2001-08-13 2006-11-08 Smc株式会社 電磁弁用ソレノイドの可動鉄心及びその製造方法
US6856222B1 (en) * 2001-08-31 2005-02-15 Caterpillar Inc. Biarmature solenoid
DE10146899A1 (de) * 2001-09-24 2003-04-10 Abb Patent Gmbh Elektromagnetischer Aktuator, insbesondere elektromagnetischer Antrieb für ein Schaltgerät
WO2003056579A1 (fr) * 2001-12-27 2003-07-10 Nok Corporation Electro-aimant
JP3927089B2 (ja) * 2002-07-16 2007-06-06 日本電産サンキョー株式会社 リニアアクチュエータ、それを用いたポンプ装置並びにコンプレッサー装置
US7352268B2 (en) * 2002-09-26 2008-04-01 Engineering Matters, Inc. High intensity radial field magnetic actuator
US7280019B2 (en) * 2003-08-01 2007-10-09 Woodward Governor Company Single coil solenoid having a permanent magnet with bi-directional assist
JP2006108615A (ja) * 2004-09-07 2006-04-20 Toshiba Corp 電磁アクチュエータ
CN1291433C (zh) * 2005-09-09 2006-12-20 刘津平 低功耗数控接触器及其组成的控制系统
BRPI0615879A2 (pt) * 2005-09-13 2011-05-31 Armour Magnetic Components Inc atuador de solenóide e método para fabricar e utilizar o mesmo
FR2895594B1 (fr) * 2005-12-22 2008-03-07 Sagem Defense Securite Dispositif de deplacement lineaire d'un corps entre deux positions predeterminees
JP2009521074A (ja) * 2005-12-22 2009-05-28 シーメンス アクチエンゲゼルシヤフト スイッチ装置の作動方法および作動装置
FR2896615A1 (fr) * 2006-01-20 2007-07-27 Areva T & D Sa Actionneur magnetique a aimant permanent a volume reduit
US20070210653A1 (en) * 2006-03-13 2007-09-13 Scanlon Matthew J Moving magnet actuator with counter-cogging end-ring and asymmetrical armature stroke
DE102007004377A1 (de) * 2007-01-29 2008-08-07 Diener Precision Pumps Ltd. Elektromagnetisch zu betätigendes Ventil
US8106734B2 (en) * 2007-04-25 2012-01-31 Saia-Burgess, Inc. Adjustable mid air gap magnetic latching solenoid
DE102007028600B4 (de) * 2007-06-19 2011-06-22 ETO MAGNETIC GmbH, 78333 Elektromagnetische Stellvorrichtung
DE202007013709U1 (de) * 2007-10-01 2007-12-20 Bürkert Werke GmbH & Co. KG Anordnung von angereihten Magnetantrieben
DE202009010495U1 (de) * 2008-08-01 2009-12-17 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung
US7864008B2 (en) * 2008-10-22 2011-01-04 Deltrol Controls Solenoid assembly with shock absorbing feature
US7969772B2 (en) * 2008-11-18 2011-06-28 Seagate Technology Llc Magnetic mechanical switch
DE202008015980U1 (de) * 2008-12-03 2010-04-29 Eto Magnetic Gmbh Elektromagnetische Aktuatorvorrichtung
KR200451951Y1 (ko) * 2008-12-31 2011-01-25 엘에스산전 주식회사 적층 코어를 사용한 모노스테이블 영구자석형 액추에이터
DE202009006940U1 (de) * 2009-04-16 2010-09-02 Eto Magnetic Gmbh Elektromagnetische Nockenwellen-Verstellvorrichtung
US8581682B2 (en) * 2009-10-07 2013-11-12 Tyco Electronics Corporation Magnet aided solenoid for an electrical switch
DE202010010371U1 (de) * 2010-07-16 2011-10-17 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung
DE102011014193A1 (de) * 2011-03-16 2012-10-04 Eto Magnetic Gmbh Aktuator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008015303U1 (de) * 2008-11-19 2009-03-26 Bürkert Werke GmbH & Co. KG Hubanker-Antrieb

Also Published As

Publication number Publication date
WO2012123538A1 (de) 2012-09-20
CN103443877B (zh) 2017-06-09
US9117583B2 (en) 2015-08-25
CN103443877A (zh) 2013-12-11
EP3211645A1 (de) 2017-08-30
DE202011004021U1 (de) 2012-07-09
US20140125437A1 (en) 2014-05-08
EP2686853A1 (de) 2014-01-22

Similar Documents

Publication Publication Date Title
DE102013110029B4 (de) Elektrodynamischer Aktor
EP2545564B1 (de) Aktuator
DE112005003694T5 (de) Magnetmotor
EP3464968B1 (de) Elektromagnetische ventilvorrichtung und system
EP3191695B1 (de) Elektromagnetische stellvorrichtung
EP2686854B1 (de) Elektromagnetische aktuatorvorrichtung
EP2929550B1 (de) Elektromagnetische stellvorrichtung
DE102013108164B4 (de) Ventil mit einem Linearantrieb für den Ventilkolben
EP2474009B1 (de) Bistabile elektromagnetische stellvorrichtung
EP2686853B1 (de) Elektromagnetische aktuatorvorrichtung
DE102013102276B4 (de) Verdrehschutz
WO2019076549A1 (de) Elektromagnetische aktuatorvorrichtung und verwendung einer solchen
EP2689432A1 (de) Antriebseinrichtung für ein ventil, ventil zur steuerung eines gas- und/oder flüssigkeitsstroms
DE4409503C2 (de) Elektromagnetisches Gerät
DE102019131066A1 (de) Elektromagnetisches Solenoid
EP2845206B1 (de) Elektromagnetische stellvorrichtung
EP3449104B1 (de) Elektromagnetische stellvorrichtung mit d-förmiger spule für 2-pin-aktor
DE202004011676U1 (de) Elektromagnetische Linear-Stelleinrichtung
DE102010050755A1 (de) Multistabile elektromagnetische Stellvorrichtung
DE102014216274A1 (de) Aktuator mit zumindest einer stabilen Schaltlage
DE102009027131A1 (de) Linearstelleinheit für eine Schalteinrichtung eines Getriebes
DE202005019852U1 (de) Linearaktuator
DE202013105923U1 (de) Elektromagnetische Stellvorrichtung
DE202010011592U1 (de) Elektromagnetischer Aktor
WO2011124323A2 (de) Betätigungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161130

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 7/16 20060101AFI20170516BHEP

Ipc: H01F 7/08 20060101ALI20170516BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170712

RIN1 Information on inventor provided before grant (corrected)

Inventor name: THODE, OLIVER

Inventor name: BOLL, JONAS

Inventor name: SCHIEPP, THOMAS

Inventor name: TERHORST, PHILIPP

Inventor name: HAERTER, DANIELA

Inventor name: LAUFENBERG, MARKUS

Inventor name: BORY, RAPHAEL

Inventor name: STEYER, ROBERT

Inventor name: RAFF, VIKTOR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 944888

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012011615

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180208

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180209

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180308

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012011615

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012011615

Country of ref document: DE

26N No opposition filed

Effective date: 20180809

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180315

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 944888

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108