EP2667139A1 - Wärmetauscher und klimaanlage - Google Patents

Wärmetauscher und klimaanlage Download PDF

Info

Publication number
EP2667139A1
EP2667139A1 EP12736904.9A EP12736904A EP2667139A1 EP 2667139 A1 EP2667139 A1 EP 2667139A1 EP 12736904 A EP12736904 A EP 12736904A EP 2667139 A1 EP2667139 A1 EP 2667139A1
Authority
EP
European Patent Office
Prior art keywords
flat
heat exchanger
heat
downwind
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12736904.9A
Other languages
English (en)
French (fr)
Inventor
Masanori Jindou
Yoshio Oritani
Shun Yoshioka
Toshimitsu Kamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of EP2667139A1 publication Critical patent/EP2667139A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Definitions

  • the present invention relates to heat exchangers having a flat tube and a plurality of fins and configured to exchange heat between a fluid flowing in the flat tube and air, and air conditioners having the heat exchangers.
  • Patent Document 1 shows a heat exchanger in which a plurality of flat tubes, each extending in a horizontal direction, are arranged one above another with a predetermined space between the flat tubes, and plate-like fins are arranged in a direction along which the flat tubes extend, with a predetermined space between the fins.
  • Patent Document 2 and Patent Document 3 show heat exchangers in which a plurality of flat tubes, each extending in a horizontal direction, are arranged one above another with a predetermined space between the flat tubes, and a corrugated fin is provided between adjacent flat tubes. In these heat exchangers, air flowing in contact with the fins exchanges heat with a fluid flowing in the flat tubes.
  • fins of the heat exchanger of this type include louvers which promote heat transfer.
  • the louvers are formed by cutting and bending part of the fins. It is advantageous to make the length of each louver as long as possible so that the heat transfer properties of the fins are increased.
  • fins of the conventional heat exchangers include louvers each having a width almost equal to the width of the fin and arranged in a direction in which air passes.
  • a refrigerant circuit of an air conditioner is provided with an outdoor heat exchanger in which a refrigerant is heat exchanged with outdoor air.
  • the outdoor heat exchanger functions as an evaporator in a heating operation of the air conditioner.
  • frost i.e., ice
  • Heat exchangers having flat tubes arranged one above another can be used as an outdoor heat exchanger of an air conditioner.
  • the flat surfaces of the flat tubes face upward, and therefore, drain water can be easily accumulated on the flat tubes.
  • the drain water enters through the slits of the cut and bent louvers, and accumulates at the slits.
  • the drain water accumulated around the fins may block heat transfer from the refrigerant to the frost, and it may take a long time to melt the frost completely.
  • the present invention is thus intended to promote discharge of drain water, and reduce a time necessary for defrosting, in a heat exchanger having flat tubes arranged one above another.
  • the first aspect of the present invention is directed to a heat exchanger, including: a plurality of flat tubes (33) arranged one above another such that flat surfaces thereof face each other and each having therein a passage (34) of a fluid; and a plurality of fins (35, 36) configured to divide a space between adjacent ones of the flat tubes (33) into a plurality of air passages (38) through which air flows, each of the plurality of fins (35, 36) including a plurality of plate-like heat-transfer portions (37) each of which extends from one to the other of the adjacent flat tubes (33) and comprises a side wall of each of the air passages (38), and a downwind side plate (42, 47) connected to a downwind side edge of each of the heat-transfer portions (37) and serving as a discharge path.
  • each of the plurality of heat-transfer portions (37) has a plurality of protrusions (51, 52, 53) which are protruded toward the air passage (38) and extend in a direction intersecting with an airflow direction, and the plurality of protrusions (51, 52, 53) are arranged in the airflow direction.
  • the heat exchanger (30) includes a plurality of flat tubes (33) and a plurality of fins (35, 36).
  • the heat-transfer portions (37) of the fins (35, 36) are disposed in the space between vertically adjacent ones of the flat tubes (33).
  • the air passages (38) are formed in the space between the flat tubes (33).
  • the heat exchanger (30) exchanges heat between the air flowing in the air passages (38) and a fluid flowing in the passage (34) inside each flat tube (33).
  • the heat-transfer portion (37) of the present invention has a plurality of protrusions (51, 52, 53) which are protruded toward the air passage (38), and the protrusions (51, 52, 53) are arranged in the airflow direction in the air passage (38).
  • the plurality of protrusions (51, 52, 53) increase the heat transfer properties of the heat-transfer portion (37).
  • the moisture in the air turns into frost and adheres to the surface of the heat-transfer portion (37).
  • water i.e., drain water
  • the protrusions (51, 52, 53) of the heat-transfer portion (37) of the present invention are not formed by cutting and bending part of the heat-transfer portion (37).
  • the protrusions (51, 52, 53) of the present invention have no cut in which the drain water accumulates, and therefore, the drain water around the protrusions (51, 52, 53) smoothly flows to the downwind side.
  • the drain water is discharged downward along the wall surface of the downwind side plate (42, 47).
  • the second aspect of the present invention is that in the first aspect of the present invention, the plurality of protrusions (51, 52, 53) include an upwind protrusion (51) provided at an upwind side of the air passage (38), and a downwind protrusion (53) provided at a downwind side of the air passage (38), and in the heat-transfer portion (37), a height of a flat portion (51a) provided in an area between the upwind protrusion (51) and the flat tube (33) located below is greater than a height of a flat portion (53a) provided in an area between the downwind protrusion (53) and the flat tube (33) located below.
  • the heat-transfer portion (37) of the second aspect of the present invention has an upwind protrusion (51) closer to the upwind side, and a downwind protrusion (53) closer to the downwind side.
  • the amount of frost adhering to the upwind protrusion (51) is greater than the amount of frost adhering to the downwind protrusion (53).
  • the amount of drain water generated at the upwind protrusion (51) is greater than the amount of drain water generated at the downwind protrusion (53).
  • the height of the flat portion (51a) on the lower side of the upwind protrusion (51) is greater than the height of the flat portion (53a) on the lower side of the downwind protrusion (53).
  • the third aspect of the present invention is that in the first or second aspect of the present invention, a height including the heights of the flat portions (51a, 52a, 53a) provided in the area between the plurality of protrusions (51, 52, 53) and the flat tube (33) located below is reduced in a direction from the upwind side to the downwind side.
  • a height including the heights of the flat portions (51 a, 52a, 53 a) on the lower side of the plurality of protrusions (51, 52, 53) is reduced in a direction from the upwind side to the downwind side.
  • the height of the gap along the flat portions (51a, 52a, 53a) is reduced with decreasing distance to the downwind side.
  • the fourth aspect of the present invention is that in any one of the first to third aspects of the present invention, the protrusion (51, 52, 53) is tilted with a vertical direction such that a lower end of the protrusion (51, 52, 53) is located downwind of an upper end of the protrusion (51, 52, 53).
  • the protrusion (51, 52, 53) is tilted with respect to a vertical direction such that the lower end of the protrusion (51, 52, 53) is located downwind of the upper end of the protrusion (51, 52, 53).
  • the drain water generated around the protrusions (51, 52, 53) during defrosting is guided by the protrusions (51, 52, 53) and flows down to the downwind side.
  • the fifth aspect of the present invention is that in any one of the first to fourth aspects of the present invention, the height of the flat portion (51a, 51b) provided in the area between at least one protrusion (51, 52) of the plurality of protrusions (51, 52, 53) and the flat tube (33) located below the protrusion (51, 52) is reduced in the direction from the upwind side to the downwind side.
  • the height of the flat portion (51a, 52a) on the lower side of at least one protrusion (51, 52) of the plurality of protrusions (51, 52, 53) is reduced in the direction from the upwind side to the downwind side.
  • the height of the gap along the flat portions (51a, 52a, 53a) is reduced with decreasing distance to the downwind side.
  • each of the plurality of fins (36) is in a plate-like shape having, in an upwind side thereof, a plurality of cutouts (45) for inserting the flat tubes (33); the fins (36) are arranged in an extension direction of the flat tube (33), with a predetermined space between adjacent ones of the fins (36); and the flat tube (33) is fitted to a periphery of the cutout (45), and in the fin (36), an area between vertically adjacent ones of the cutouts (45) comprises the heat-transfer portion (37), and a vertically extending portion continuous with the downwind side edge of each of the heat-transfer portions (37) comprises the downwind side plate (47).
  • a downwind side plate (47) is formed on the downwind side of the plurality of heat-transfer portions (37), which are arranged one above another, such that the downwind side plate (47) is continuous with the plurality of heat-transfer portions.
  • an integrally formed, elongated fin (36) is obtained.
  • the flat tube (33) is fitted to the periphery of the cutout (45) formed in each of the fins (36), and therefore, a plurality of air passages (38) are formed by being surrounded by adjacent flat tubes (33) and the heat-transfer portions (37).
  • the seventh aspect of the present invention is that in the sixth aspect of the present invention, the downwind side plate (47) is provided with a rib (57) extending along the downwind side edges of the plurality of heat-transfer portions (37).
  • the drain water generated at the heat-transfer portions (37) during defrosting flows to the downwind side plate (47), and flows down along the rib (57).
  • the fin (36) includes a raised portion (61, 62) that is cut and bent toward the air passage (38), and a bent surface (61a, 62a) of the raised portion (61, 62) is tilted with respect to a horizontal plane.
  • the fin (36) includes a raised portion (61, 62).
  • the tip of the raised portion (61, 62) is brought into contact with the adjacent fin (36), thereby keeping a predetermined space between two adjacent fins (36).
  • the provision of a raised portion like the raised portion (61, 62) may cause a situation where drain water generated during defrosting is retained on the upper surface of the raised portion (61, 62).
  • the raised portion (61, 62) of the present invention is tilted with respect to the horizontal plane, and therefore, the drain water on the upper surface of the raised portion (61, 62) is smoothly flows down.
  • the ninth aspect of the present invention is directed to an air conditioner (10), and includes refrigerant circuit (20) in which the heat exchanger (30) of any one of the first to eighth aspects of the present invention is provided, wherein the refrigerant circuit (20) performs a refrigeration cycle by circulating a refrigerant.
  • the heat exchanger (30) of any one of the first to eighth aspects of the present invention is connected to a refrigerant circuit (20).
  • the refrigerant circulating in the refrigerant circuit (20) flows in the passage (34) of the flat tube (33) and exchanges heat with the air flowing in the air passage (39).
  • part of each of the heat-transfer portions (37) of the plurality of fins (35, 36) is protruded toward the air passage (38), thereby forming a plurality of protrusions (51, 52, 53).
  • the protrusions (51, 52, 53) can promote heat transfer between air and a fluid.
  • the protrusions (51, 52, 53) of the present invention are not in such a shape that is formed by giving a cut in the heat-transfer portion and bending the cut portion, unlike the conventional louvers.
  • the protrusions (51, 52, 53) do not easily accumulate drain water melted from frost during defrosting, and thus, the drain water can be smoothly discharged to the downwind side. As a result, the time necessary for defrosting can be reduced.
  • the height of the flat portion (51a) on the lower side of the upwind protrusion (51) is greater than the height of the flat portion (53a) on the lower side of the downwind protrusion (53).
  • a sufficient gap is provided along the flat portion (51a) on the lower side of the upwind protrusion (51), and thus, the considerable amount of drain water generated at the upwind protrusion (51) can be smoothly discharged.
  • the height of the downwind flat portion (53a) is reduced, thereby making it possible to draw the drain water accumulated on the upper surface of the flat tube (33) located below to the downwind side by capillary action.
  • the protrusion (51, 52, 53) is tilted such that the lower end of the protrusion (51, 52, 53) is located downwind of the upper end of the protrusion (51, 52, 53).
  • water melted from frost on the surface of the protrusion (51, 52, 53) can be smoothly discharged to the downwind side.
  • the height of the flat portion (51a, 52a) on the lower side of at least one protrusion (51, 52) is gradually reduced with decreasing distance to the downwind side, thereby making it possible to draw drain water accumulated on the upper surface of the flat tube (33) to the downwind side by capillary action.
  • downwind side edges of the heat-transfer portions (37) arranged one above another are connected by a downwind side plate (47), and a rib (57) is formed on the downwind side plate (47).
  • a rib (57) is formed on the downwind side plate (47).
  • the fin (36) includes a raised portion (61, 62).
  • the raised portion (61, 62) can be used as a spacer between adjacent fins (36). Further, the bent surface (61a, 62a) of the raised portion (61, 62) is tilted with respect to a horizontal plane, thereby making it possible to prevent drain water from being accumulated on the upper surface of the horizontal plane.
  • An exchanger (30) of the first embodiment comprises an outdoor heat exchanger (23) of an air conditioner (10) described later.
  • the air conditioner (10) having the heat exchanger (30) of the present embodiment will be described with reference to FIG. 1 .
  • the air conditioner (10) has an outdoor unit (11) and an indoor unit (12).
  • the outdoor unit (11) and the indoor unit (12) are connected to each other via a liquid communication pipe (13) and a gas communication pipe (14).
  • a refrigerant circuit (20) is formed by the outdoor unit (11), the indoor unit (12), the liquid communication pipe (13), and the gas communication pipe (14).
  • the refrigerant circuit (20) includes a compressor (21), a four-way valve (22), an outdoor heat exchanger (23), an expansion valve (24), and an indoor heat exchanger (25).
  • the compressor (21), the four-way valve (22), the outdoor heat exchanger (23), and the expansion valve (24) are accommodated in the outdoor unit (11).
  • the outdoor unit (11) is provided with an outdoor fan (15) configured to supply outdoor air to the outdoor heat exchanger (23).
  • the indoor heat exchanger (25) is accommodated in the indoor unit (12).
  • the indoor unit (12) is provided with an indoor fan (16) configured to supply indoor air to the indoor heat exchanger (25).
  • the refrigerant circuit (20) is a closed circuit filled with a refrigerant.
  • a discharge side of the compressor (21) is connected to a first port of the four-way valve (22), and a suction side of the compressor (21) is connected to a second port of the four-way valve (22).
  • the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger (25) are provided sequentially from a third port to a fourth port of the four-way valve (22).
  • the compressor (21) is a scroll type or rotary type hermetic compressor (21).
  • the four-way valve (22) switches between a first state (the state shown in solid line in FIG. 1 ) in which the first port communicates with the third port, and the second port communicates with the fourth port, and a second state (the state shown in broken line in FIG. 1 ) in which the first port communicates with the fourth port, and the second port communicates with the third port.
  • the expansion valve (24) is a so-called electronic expansion valve (24).
  • the outdoor heat exchanger (23) the outdoor air is heat exchanged with the refrigerant.
  • the outdoor heat exchanger (23) is comprised of the heat exchanger (30) of the present embodiment.
  • the indoor heat exchanger (25) the indoor air is heat exchanged with the refrigerant.
  • the indoor heat exchanger (25) is comprised of a so-called cross-fin type fin-and-tube heat exchanger having a circular heat-transfer tube.
  • the air conditioner (10) performs a cooling operation.
  • the four-way valve (22) is set to the first state during the cooling operation.
  • the outdoor fan (15) and the indoor fan (16) are driven during the cooling operation.
  • the refrigerant circuit (20) performs a refrigeration cycle. Specifically, the refrigerant discharged from the compressor (21) passes through the four-way valve (22), flows into the outdoor heat exchanger (23), and dissipates heat to the outdoor air and condenses. The refrigerant flowing out of the outdoor heat exchanger (23) expands when it passes through the expansion valve (24), flows into the indoor heat exchanger (25), and takes heat from the indoor air and evaporates. The refrigerant flowing out of the indoor heat exchanger (25) passes through the four-way valve (22) and is then sucked into the compressor (21) and compressed. The indoor unit (12) supplies air which has been cooled in the indoor heat exchanger (25) to an indoor space.
  • the air conditioner (10) performs a heating operation.
  • the four-way valve (22) is set to the second state during the heating operation.
  • the outdoor fan (15) and the indoor fan (16) are driven during the heating operation.
  • the refrigerant circuit (20) performs a refrigeration cycle. Specifically, the refrigerant discharged from the compressor (21) passes the four-way valve (22), flows into the indoor heat exchanger (25), and dissipates heat to the indoor air and condenses. The refrigerant flowing out of the indoor heat exchanger (25) expands when it passes through the expansion valve (24), flows into the outdoor heat exchanger (23), and takes heat from the outdoor air and evaporates. The refrigerant flowing out of the outdoor heat exchanger (23) passes through the four-way valve (22) and is then sucked into the compressor (21) and compressed. The indoor unit (12) supplies air which has been heated in the indoor heat exchanger (25) to an indoor space.
  • the outdoor heat exchanger (23) functions as an evaporator in the heating operation.
  • the evaporation temperature of the refrigerant in the outdoor heat exchanger (23) may sometimes be below 0°C.
  • the moisture in the outdoor air turns into frost and adheres to the outdoor heat exchanger (23).
  • the air conditioner (10) performs a defrosting operation every time a duration of the heating operation reaches a predetermined value (e.g., several tens of minutes), for example.
  • the four-way valve (22) is switched from the second state to the first state, and the outdoor fan (15) and the indoor fan (16) are stopped.
  • a high temperature refrigerant discharged from the compressor (21) is supplied to the outdoor heat exchanger (23).
  • the frost adhering to the surface of the outdoor heat exchanger (23) is heated and melted by the refrigerant.
  • the refrigerant which dissipates heat in the outdoor heat exchanger (23) sequentially passes through the expansion valve (24) and the indoor heat exchanger (25), and is then sucked into the compressor (21) and compressed.
  • the heating operation starts again. That is, the four-way valve (22) is switched from the first state to the second state, and the outdoor fan (15) and the indoor fan (16) are driven again.
  • the heat exchanger (30) of the present embodiment which comprises the outdoor heat exchanger (23) of the air conditioner (10) will be described with reference to FIGS. 2 to 6 .
  • the heat exchanger (30) of the present embodiment includes one first header collecting pipe (31), one second header collecting pipe (32), a plurality of flat tubes (33), and a plurality of fins (35).
  • the first header collecting pipe (31), the second header collecting pipe (32), the flat tubes (33), and the fins (35) are all aluminum alloy members, and are attached to one another with solder.
  • Both of the first header collecting pipe (31) and the second header collecting pipe (32) are in an elongated hollow cylindrical shape, with both ends closed.
  • the first header collecting pipe (31) is provided upright at the left end of the heat exchanger (30)
  • the second header collecting pipe (32) is provided upright at the right end of the heat exchanger (30).
  • the first header collecting pipe (31) and the second header collecting pipe (32) are provided such that their axial directions are vertical.
  • the flat tube (33) is a heat-transfer tube having a flat oblong cross section or a rectangular cross section with rounded corners.
  • the plurality of flat tubes (33) extend in a horizontal direction, and are arranged such that the flat surfaces thereof face each other. Further, the plurality of flat tubes (33) are arranged one above another with a predetermined space between the flat tubes (33).
  • One end of each of the flat tubes (33) is inserted in the first header collecting pipe (31), and the other end of the flat tube (33) is inserted in the second header collecting pipe (32).
  • each flat tube (33) has a plurality of fluid passages (34).
  • Each fluid passage (34) extends in a direction in which the flat tubes (33) extend.
  • the plurality of fluid passages (34) are aligned in a width direction of the flat tube (33) which is orthogonal to the direction in which the flat tube (33) extends.
  • One end of each of the plurality of fluid passages (34) formed in each flat tube (33) communicates with the interior space of the first header collecting pipe (31), and the other end of the fluid passage (34) communicates with the interior space of the second header collecting pipe (32).
  • the refrigerant supplied to the heat exchanger (30) exchanges heat with the air, while flowing in the fluid passages (34) of the flat tubes (33).
  • Each of the fins (35) is a corrugated fin which curves up and down and is placed between vertically adjacent flat tubes (33).
  • the fin (35) includes a plurality of heat-transfer portions (37) and a plurality of intermediate plates (41).
  • the intermediate plates (41) of each fin (35) are attached to the flat tubes (33) with solder.
  • the fin (35) is a corrugated fin obtained by bending a metal plate of a given width, and in a shape which curves up and down.
  • the fin (35) includes the heat-transfer portions (37) and the intermediate plates (41) alternately arranged in the extension direction of the flat tube (33).
  • the fin (35) includes a plurality of heat-transfer portions (37) arranged in the extension direction of the flat tube (33) and placed between adjacent flat tubes (33).
  • the fin (35) further includes a projecting plate (42) on the downwind side.
  • the heat-transfer portion (37) is a plate-like portion which extends from one to the other of vertically adjacent flat tubes (33).
  • the heat-transfer portions (37) are side walls of air passages (38) formed in the space between adjacent flat tubes (33).
  • the upwind side edge of the heat-transfer portion (37) is a leading edge (39).
  • the intermediate plate (41) is a plate-like portion along the flat surface of the flat tube (33), and is continuous with the upper ends or the lower ends of the horizontally adjacent heat-transfer portions (37).
  • the heat-transfer portion (37) and the intermediate plate (41) form an approximately right angle.
  • the projecting plate (42) is a plate-like portion continuous with the downwind side edge of each heat-transfer portion (37).
  • the projecting plate (42) is an elongated plate which extends vertically, and projects further to the downwind side than the flat tube (33).
  • the upper end of the projecting plate (42) projects upward from the upper end of the heat-transfer portion (37), and the lower end of the projecting plate (42) projects downward from the lower end of the heat-transfer portion (37).
  • the projecting plates (42) of vertically adjacent fins (35) which are arranged with a flat tube (33) interposed therebetween are in contact with each other.
  • the vertically continuous projecting plates (42) comprise a downwind side plate which forms a discharge path for drain water.
  • the heat-transfer portion (37) and the projecting plate (42) of the fin (35) are provided with a plurality of waffle portions (51, 52, 53).
  • the waffle portions (51, 52, 53) comprise a protrusion extending vertically.
  • Each of the waffle portions (51, 52, 53) is protruded toward the air passage (38) into a mountain-like shape such that the ridge of each waffle portion (51, 52, 53) intersects with airflow.
  • the waffle portions (51, 52, 53) are formed by plastically deforming part of the heat-transfer portion (37) by e.g., press work.
  • Each of the waffle portions (51, 52, 53) extends obliquely with respect to the vertical direction such that the lower end of each waffle portion is positioned downwind of the upper end of the waffle portion.
  • Each of the waffle portions (51, 52, 53) includes a pair of trapezoidal surfaces (54, 54) extending vertically, and a pair of flat triangular surfaces (55, 55) at the upper and lower locations.
  • the pair of trapezoidal surfaces (54, 54) are arranged next to each other in the airflow direction, and forms a mountain fold portion (56), i.e., a ridge, in the middle of the pair of trapezoidal surfaces (54, 54).
  • the pair of triangular surfaces (55, 55) are positioned at the upper and lower locations with the mountain fold portion (56) interposed therebetween.
  • the heat-transfer portion (37) is provided with the plurality of waffle portions (51, 52, 53) sequentially arranged from the upwind side to the downwind side.
  • the waffle portions (51, 52, 53) include one upwind waffle portion (51) located on the upwind side of the heat-transfer portion (37), two downwind waffle portions (53, 53) located on the downwind side of the heat-transfer portion (37), and one intermediate waffle portion (52) located between the upwind waffle portion (51) and the downwind waffle portion (53).
  • the upwind waffle portion (51) comprises an upwind protrusion located on the most upwind side among the plurality of waffle portions (51, 52, 53).
  • the downwind waffle portions (53, 53) comprise a downwind protrusion located on the most downwind side among the plurality of waffle portions (51, 52, 53).
  • the upper end of the upwind waffle portion (51) is located lower than the upper end of the downwind waffle portion (53).
  • the upper end of the intermediate waffle portion (52) and the upper ends of the downwind waffle portions (53) are at approximately the same height.
  • the upper end of the upwind waffle portion (51), the upper end of the intermediate waffle portion (52), and the upper ends of the downwind waffle portions (53) are approximately parallel to the flat surface of the flat tube (33) located above.
  • the lower end of the upwind waffle portion (51) is located higher than the lower ends of the downwind waffle portions (53).
  • the lower end of the upwind waffle portion (51) is tilted such that a downwind side of the lower end is located lower than an upwind side of the lower end.
  • the lower end of the intermediate waffle portion (52) is also tilted such that a downwind side of the lower end is located lower than an upwind side of the lower end.
  • the lower ends of the downwind waffle portions (53) are approximately parallel to the flat surface of the flat tube (33).
  • the fin (35) is provided with a water-conducting rib (57) on the downstream side of the waffle portions (51, 52, 53). Specifically, one water-conducting rib (57) is provided at each projecting plate (42). The water-conducting rib (57) extends vertically along the downwind side edge of the projecting plate (42). As shown in FIG. 5 , the water-conducting rib (57) forms a raised line (57a) on one surface of the projecting plate (42), and forms a recessed groove (57b) on the other surface of the projecting plate (42).
  • the raised lines (57a) are formed in side surfaces on the same side of the vertically adjacent projecting plates (42), and the side surfaces on the same side of the projecting plates (42) adjacent to each other in the extension direction of the flat tube (33).
  • the vertically adjacent water-conducting ribs (57) are approximately aligned in the vertical direction.
  • the upper end of the water-conducting rib (57) is located slightly lower than the upper end of the projecting plate (42), and the lower end of the water-conducting rib (57) is located slightly higher than the lower end of the projecting plate (42).
  • each of the water-conducting ribs (57) may extend from the upper end to the lower end of the projecting plate (42).
  • a first flat portion (51a) is provided in the area between the lower end of the upwind waffle portion (51) and the flat tube (33) located below; a second flat portion (52a) is provided in the area between the lower end of the intermediate waffle portion (52) and the flat tube (33) located below; and a third flat portion (53a) is provided in the area between the lower ends of the downwind waffle portions (53) and the flat tube (33) located below.
  • the height of the first flat portion (51a) is reduced in a direction from the upwind side to the downwind side.
  • the height of the second flat portion (52a) is reduced as well in the direction from the upwind side to the downwind side. That is, in the present embodiment, the heights of the two flat portions (51a, 52a) located between the lower ends of the two protrusions (51, 52) of the four protrusions (51, 52, 53, 53) and the flat tube (33) located below the protrusions (51, 52) are reduced in the direction from the upwind side to the downwind side. Further, in the heat-transfer portion (37), the height of the first flat portion (51a) is greater than the height of each third flat portion (53a).
  • the height of the flat portion located on the lower side of only one of the four protrusions (51, 52, 53, 53) may be reduced in the direction from the upwind side to the downwind side, or heights of three or more flat portions may be reduced in the direction from the upwind side to the downwind side.
  • the heat exchanger (30) of the present embodiment comprises the outdoor heat exchanger (23) of the air conditioner (10).
  • the air conditioner (10) performs a heating operation, but during the operation when the evaporation temperature of the refrigerant in the outdoor heat exchanger (23) is below 0°C, the moisture in the outdoor air turns into frost and adheres to the outdoor heat exchanger (23).
  • the air conditioner (10) performs a defrosting operation to melt the frost adhering to the outdoor heat exchanger (23). Drain water is generated in the defrosting operation due to melting of the frost.
  • the fins have a considerable amount of frost on the heat-transfer portions (37), and the space between adjacent heat-transfer portions (37) is almost clogged with the frost shortly before start of the defrosting operation.
  • the heat-transfer portion (37) of the present embodiment shown in FIG. 4 has much frost particularly on the surface of the upwind waffle portion (51) on the upwind side.
  • a gap is provided along the first flat portion (51a) on the lower side of the upwind waffle portion (51), and air can easily flow through this gap, the moisture in the air can turn into frost and easily adhere to a lower portion of the intermediate waffle portion (52) and a lower portion of the downwind waffle portion (53), as well, in the heat-transfer portion (37).
  • the height of the first flat portion (51a) on the lower side of the upwind waffle portion (51) is greater than the heights of the second flat portion (52a) and the third flat portions (53a).
  • frost from adhering particularly to the upwind area of the heat-transfer portion (37). This may increase the time until the heat exchanger (30) is degraded in performance due to local frost formation in the heating operation. Since the time from the start of the heating operation until the start of the defrosting operation is extended, the duration of the heating operation is accordingly extended.
  • the frost adhering to the heat exchanger (30) is heated by the refrigerant and gradually melted.
  • the heat-transfer portion (37) has much frost particularly on the surface of the upwind waffle portion (51), and therefore, the amount of water (i.e., drain water) melted from the frost is considerable in this area.
  • the first flat portion (51a) on the lower side of the upwind waffle portion (51) is greater in height than the other flat portions (52a, 53a). This means that the upwind waffle portion (51) has sufficient gap on the lower side thereof, for discharging drain water.
  • the drain water melted from the frost adhering to the upwind waffle portion (51) runs smoothly along the first flat portion (51a) down to the upper surface of the flat tube (33) located below.
  • the drain water discharged smoothly downward as described above allows heat of the heat-transfer portion (37) to be easily transferred to the frost remaining on the surface of the upwind waffle portion (51).
  • the time necessary to melt the frost on the surface of the upwind waffle portion (51) can be reduced, and the duration of the defrosting operation can also be reduced.
  • Each of the plurality of waffle portions (51) is tilted with respect to the vertical direction such that the lower end of each waffle portion (51) is positioned downwind of the upper end of the waffle portion (51).
  • the drain water melted from the frost on the surface of the waffle portion (51) moves to the downwind side along the direction of tilt of the waffle portion (51).
  • the drain water having moved to the downwind side arrives at the water-conducting rib (57) of the projecting plate (42).
  • the drain water moves on the surface of the raised line (57a) of the water-conducting rib (57), or on the inner side of the recessed groove (57b), and flows down by gravity.
  • the drain water having flowed down from the projecting plate (42) is guided by the water-conducting rib (57) of the projecting plate (42) located below, and flows further down. As a result, the drain water flows to the bottommost fin (35) and is then delivered to a discharge path, such as a drain pan.
  • the heat-transfer portion (37) is provided with a plurality of waffle portions (51, 52, 53).
  • the waffle portions (51, 52, 53) are formed by protruding part of the heat-transfer portion (37) toward the air passage (38), and are not formed by giving cuts in the heat-transfer portion (37) as in the conventional louver case.
  • the drain water melted from the frost can be prevented from being accumulated in the cuts of the heat-transfer portion (37), and can be smoothly discharged.
  • the upwind waffle portion (51) it is possible to prevent frost from adhering particularly to the upwind waffle portion (51) by making the first flat portion (51a) on the lower side of the upwind waffle portion (51) have a greater height than the third flat portion (53a) on the lower side of the downwind waffle portion (53). As a result, the duration of the heating operation can be extended. Also, the drain water generated on the surface of the upwind waffle portion (51) can be smoothly discharged downward along the first flat portion (51a).
  • the drain water accumulated on the upper surface of the flat tube (33) can be smoothly delivered to the downwind side by capillary action. Moreover, since each of the waffle portions (51, 52, 53) is tilted as shown in FIG. 4 , the drain water melted from the frost on the surfaces of the waffle portions (51, 52, 53) can be guided smoothly to the downwind side.
  • a heat exchanger (30) of the second embodiment comprises an outdoor heat exchanger (23) of an air conditioner (10).
  • the heat exchanger (30) of the present embodiment will be described below with reference to FIGS. 7 to 10 .
  • the heat exchanger (30) of the present embodiment includes one first header collecting pipe (31), one second header collecting pipe (32), a plurality of flat tubes (33), and a plurality of fins (36).
  • the first header collecting pipe (31), the second header collecting pipe (32), the flat tubes (33), and the fins (36) are all aluminum alloy members, and are attached to one another with solder.
  • first header collecting pipe (31), the second header collecting pipe (32), and the flat tubes (33) are the same as those of the heat exchanger (30) of the first embodiment. That is, both of the first header collecting pipe (31) and the second header collecting pipe (32) are in an elongated cylindrical shape. One of the first header collecting pipe (31) and the second header collecting pipe (32) is provided at the left end of the heat exchanger (30), and the other is provided at the right end of the heat exchanger (30).
  • Each of the flat tubes (33) is a heat-transfer tube having a flat cross section, and the flat tubes (33) are arranged one above another such that the flat surfaces thereof face each other.
  • Each flat tube (33) has a plurality of fluid passages (34). One end of each of the flat tubes (33) arranged one above another is inserted in the first header collecting pipe (31), and the other end is inserted in the second header collecting pipe (32).
  • Each fin (36) is in a plate-like shape, and the fins (36) are arranged in an extension direction of the flat tube (33) with a predetermined space between the fins (36). In other words, the fins (36) are arranged to be substantially orthogonal to the extension direction of the flat tube (33).
  • each fin (36) is in an elongated plate-like shape formed by pressing a metal plate.
  • the fin (36) is provided with a plurality of elongated cutouts (45) each extending in a width direction of the fin (36) from a leading edge (39) of the fin (36).
  • the plurality of cutouts (45) are formed in the fin (36) at predetermined intervals in a longitudinal direction of the fin (36).
  • a downwind portion of the cutout (45) comprises a tube insertion portion (46).
  • a width of the tube insertion portion (46) in a vertical direction is substantially equal to the thickness of the flat tube (33), and a length of the tube insertion portion (46) is substantially equal to the width of the flat tube (33).
  • the flat tube (33) is inserted in the tube insertion portion (46) of the fin (36) and is attached to the periphery of the tube insertion portion (46) with solder.
  • an area between adjacent cutouts (45) comprises a heat-transfer portion (37), and an area on the downwind side of the tube insertion portion (46) comprises a downwind side plate (47).
  • the fin (36) includes a plurality of heat-transfer portions (37) arranged one above another, with the flat tube (33) interposed between adjacent heat-transfer portions (37), and one continuous downwind side plate (47) on the downwind side edges of the heat-transfer portions (37).
  • the heat-transfer portion (37) of the fin (36) is located between the vertically adjacent flat tubes (33), and the downwind side plate (47) protrudes further to the downwind side than the flat tube (33).
  • the heat-transfer portion (37) and the downwind side plate (47) of the fin (35) are provided with a plurality of waffle portions (51, 52, 53), similar to the first embodiment. That is, the waffle portions (51, 52, 53) are protruded toward the air passage (38), and comprises a protrusion extending vertically.
  • the waffle portions (51, 52, 53) are formed by plastically deforming part of the heat-transfer portion (37) by e.g., press work.
  • Each of the waffle portions (51, 52, 53) extends obliquely with respect to the vertical direction such that the lower end of each waffle portion is positioned downwind of the upper end of the waffle portion.
  • each of the waffle portions (51, 52, 53) includes a pair of +trapezoidal surfaces (54, 54), a pair of triangular surfaces (55, 55), and a mountain fold portion (56).
  • the heat-transfer portion (37) is provided with one upwind waffle portion (51), one intermediate waffle portion (52), and two downwind waffle portions (53, 53) sequentially arranged from the upwind side to the downwind side.
  • One of the two downwind waffle portions (53, 53) which is closer to the downwind side is astride the heat-transfer portion (37) and the downwind side plate (47).
  • flat portions (51a, 51b, 51c) are formed in the area between the lower ends of the waffle portions (51, 52, 53) and the flat tube (33) located below the waffle portions (51, 52, 53).
  • a first flat portion (51a) is provided in the area between the lower end of the upwind waffle portion (51) and the flat tube (33) located below;
  • a second flat portion (52a) is provided in the area between the lower end of the intermediate waffle portion (52) and the flat tube (33) located below;
  • a third flat portion (53a) is provided in the area between the lower ends of the downwind waffle portions (53) and the flat tube (33) located below.
  • the height of the first flat portion (51a) is reduced in the direction from the upwind side to the downwind side.
  • the height of the second flat portion (52a) is reduced as well in the direction from the upwind side to the downwind side. That is, in the present embodiment, the heights of the two flat portions (51a, 52a) located between the lower ends of the two protrusions (51, 52) of the four protrusions (51, 52, 53, 53) and the flat tube (33) located below the protrusions (51, 52) are reduced in the direction from the upwind side to the downwind side.
  • the height of the first flat portion (51a) is greater than the height of each third flat portion (53a).
  • the height of the flat portion located on the lower side of only one of the four protrusions (51, 52, 53, 53) may be reduced in the direction from the upwind side to the downwind side, or heights of three or more flat portions may be reduced in the direction from the upwind side to the downwind side.
  • the downwind side plate (47) of the fin (36) extends vertically and forms a discharge path of drain water.
  • the downwind side plate (47) is provided with one water-conducting rib (57).
  • the water-conducting rib (57) is an elongated recessed groove extending vertically along the downwind side edge of the downwind side plate (47), and extends from the upper end to the lower end of the downwind side plate (47).
  • the water-conducting rib (57) forms a raised line (57a) on one surface of the downwind side plate (47), and forms a recessed groove (57b) on the other surface of the downwind side plate (47).
  • the raised lines (57a) are formed in the side surfaces on the same side of the downwind side plates (47) adjacent to each other in the extension direction of the flat tube (33).
  • the fin (36) is provided with tabs (61, 62) configured to keep a space between adjacent fins (36).
  • Each of the tabs (61, 62) is a small rectangular piece formed by cutting and bending part of the fin (36).
  • an upwind tab (61) is provided at an upwind side edge of each heat-transfer portion (37).
  • the upwind tab (61) is formed by cutting part of the heat-transfer portion (37) and bending the cut portion obliquely upward. That is, a bent surface (61a) of the upwind tab (61) is tilted with respect to a horizontal plane.
  • a downwind tab (62) is provided on the downwind side plate (47) at a downwind side of each flat tube (33).
  • the downwind tab (62) is formed by cutting part of the downwind side plate (47) and bending the cut portion to the upwind side. That is, a bent surface (62a) of the downwind tab (62) is orthogonal to the horizontal plane.
  • each of the tabs (61, 62) has a height that allows the tabs (61, 62) to be in contact with the adjacent fin (36). That is, the tabs (61, 62) serve as spacers which keep a predetermined space between adjacent fins (36).
  • the tabs (61, 62) may be unfolded to the original state of the fin (36) after the fins (36) are soldered to the flat tubes (33).
  • the heat exchanger (30) of the second embodiment can have similar advantages as those in the first embodiment. Specifically, the heat transfer properties can be improved in the second embodiment, as well, because a plurality of waffle portions (51, 52, 53) are provided on the heat-transfer portion (37). Unlike the conventional louvers, the waffle portions (51, 52, 53) do not require cuts, and thus, no drain water accumulates around the waffle portions (51, 52, 53). In addition, the first flat portion (51a) on the lower side of the upwind waffle portion (51) allows drain water generated on the surface of the upwind waffle portion (51) to be smoothly discharged downward.
  • the drain water accumulated on the upper surface of the flat tube (33) can be drawn to the downwind side from the gap at the third flat portion (53a) by capillary action. Further, the drain water generated on the surface of each waffle portion (51, 52, 53) can be guided to the downwind side along the direction of tilt of each waffle portion (51, 52, 53).
  • the drain water having moved to the downwind side plate (47) after traveling as described above is collected on the surface of the raised line (57a) of the water-conducting rib (57), or on the inner side of the recessed groove (57b), and flows down along the water-conducting rib (57).
  • the drain water accumulated in the downwind area of the fin (36) can be smoothly discharged to e.g., a drain pan.
  • the bent surfaces (61 a, 62a) of the tabs (61, 62) of the second embodiment are tilted with respect to a horizontal plane. It is thus possible to prevent the drain water generated on the surface of the fin (36) from being accumulated on upper portions of the bent surfaces (61a, 62a) of the tabs (61, 62). Thus, airflow in the air passage (38) is not blocked by refrozen drain water on the surface of the tabs (61, 62).
  • the present invention is useful for a heat exchanger which has a flat tube and a plurality of fins and exchanges heat between a fluid flowing in the flat tube and air, and an air conditioner having the heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)
EP12736904.9A 2011-01-21 2012-01-23 Wärmetauscher und klimaanlage Withdrawn EP2667139A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011011195 2011-01-21
PCT/JP2012/000370 WO2012098914A1 (ja) 2011-01-21 2012-01-23 熱交換器及び空気調和機

Publications (1)

Publication Number Publication Date
EP2667139A1 true EP2667139A1 (de) 2013-11-27

Family

ID=46515547

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12736904.9A Withdrawn EP2667139A1 (de) 2011-01-21 2012-01-23 Wärmetauscher und klimaanlage

Country Status (8)

Country Link
US (1) US20130299153A1 (de)
EP (1) EP2667139A1 (de)
JP (1) JP5177306B2 (de)
KR (1) KR101313347B1 (de)
CN (1) CN103314269B (de)
AU (1) AU2012208120A1 (de)
BR (1) BR112013018043A2 (de)
WO (1) WO2012098914A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032111A (ja) * 2010-08-02 2012-02-16 Fuji Electric Co Ltd 熱交換器
EP3078930A4 (de) * 2014-01-15 2017-07-26 Samsung Electronics Co., Ltd. Wärmetauscher und klimaanlage damit
KR20170137883A (ko) * 2015-05-29 2017-12-13 미쓰비시덴키 가부시키가이샤 열교환기
EP3508807A1 (de) * 2018-01-09 2019-07-10 Panasonic Intellectual Property Management Co., Ltd. Wärmetauscher

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445875B2 (ja) * 2012-08-06 2014-03-19 日高精機株式会社 扁平チューブ用フィンおよび扁平チューブ用フィンの製造金型と金属帯状体の送り装置
KR102218301B1 (ko) 2013-07-30 2021-02-22 삼성전자주식회사 열교환기 및 그 코르게이트 핀
EP2869015B1 (de) * 2013-11-05 2017-09-20 MAHLE International GmbH Verfahren zur Verwendung asymmetrisch gewellter Rippen mit Kiemen
WO2015108289A1 (ko) * 2014-01-15 2015-07-23 삼성전자주식회사 열교환기 및 이를 갖는 공기조화기
KR102188114B1 (ko) * 2014-01-28 2020-12-07 삼성전자주식회사 열교환기
CN103925742B (zh) * 2014-04-18 2016-06-29 丹佛斯微通道换热器(嘉兴)有限公司 换热器及其制造方法、换热模块、换热装置和热源单元
WO2016194088A1 (ja) * 2015-05-29 2016-12-08 三菱電機株式会社 熱交換器及び冷凍サイクル装置
US11041676B2 (en) * 2015-07-31 2021-06-22 Lg Electronics Inc. Heat exchanger
KR20170015146A (ko) * 2015-07-31 2017-02-08 엘지전자 주식회사 열교환기
CN106705270B (zh) * 2015-11-12 2020-07-17 浙江盾安人工环境股份有限公司 换热器
CN205352165U (zh) 2015-12-16 2016-06-29 杭州三花微通道换热器有限公司 换热器芯体和具有它的换热器
GB2565486B (en) * 2016-07-01 2020-11-18 Mitsubishi Electric Corp Heat exchanger and refrigeration cycle apparatus
CN106370045B (zh) * 2016-08-30 2019-07-23 杭州三花微通道换热器有限公司 翅片和具有该翅片的换热器
JP6294537B1 (ja) * 2017-01-20 2018-03-14 三菱アルミニウム株式会社 ろう付け用混合組成物塗料
US11112150B2 (en) 2017-05-11 2021-09-07 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
US11175053B2 (en) 2017-06-22 2021-11-16 Mitsubishi Electric Corporation Heat exchanger, refrigeration cycle device, and air-conditioning apparatus
JP6631608B2 (ja) * 2017-09-25 2020-01-15 ダイキン工業株式会社 空気調和装置
JP6466631B1 (ja) * 2018-03-13 2019-02-06 日立ジョンソンコントロールズ空調株式会社 熱交換器およびこれを備えた空気調和機
WO2019239520A1 (ja) * 2018-06-13 2019-12-19 三菱電機株式会社 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
JP7272422B2 (ja) * 2019-03-26 2023-05-12 株式会社富士通ゼネラル 熱交換器、及び熱交換器を備える空気調和機
US11988462B2 (en) 2020-08-31 2024-05-21 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner using the heat exchanger

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2427336A (en) * 1945-04-25 1947-09-16 Peerless Of America Heat transfer unit
US3437134A (en) * 1965-10-24 1969-04-08 Borg Warner Heat exchanger
US4328861A (en) * 1979-06-21 1982-05-11 Borg-Warner Corporation Louvred fins for heat exchangers
JPS61237995A (ja) * 1985-04-12 1986-10-23 Matsushita Electric Ind Co Ltd フイン付熱交換器
KR900006245B1 (ko) * 1985-04-19 1990-08-27 마쯔시다덴기산교 가부시기가이샤 열교환기
US4709753A (en) * 1986-09-08 1987-12-01 Nordyne, Inc. Uni-directional fin-and-tube heat exchanger
JP3064055B2 (ja) * 1991-08-29 2000-07-12 昭和アルミニウム株式会社 熱交換器の製造方法
JPH0590173U (ja) * 1992-04-20 1993-12-07 住友軽金属工業株式会社 フィン・チューブ式熱交換器
KR100290761B1 (ko) * 1995-01-23 2001-06-01 구자홍 핀 튜브형 열교환기
JPH09324995A (ja) * 1996-06-05 1997-12-16 Toshiba Corp 熱交換器
KR100210072B1 (ko) * 1996-07-09 1999-07-15 윤종용 공기조화기의 열교환기
US5752567A (en) * 1996-12-04 1998-05-19 York International Corporation Heat exchanger fin structure
US5975200A (en) * 1997-04-23 1999-11-02 Denso Corporation Plate-fin type heat exchanger
US5787972A (en) * 1997-08-22 1998-08-04 General Motors Corporation Compression tolerant louvered heat exchanger fin
JPH11294984A (ja) 1998-04-09 1999-10-29 Zexel:Kk 並設一体型熱交換器
US6964296B2 (en) * 2001-02-07 2005-11-15 Modine Manufacturing Company Heat exchanger
JP4096226B2 (ja) 2002-03-07 2008-06-04 三菱電機株式会社 フィンチューブ型熱交換器、その製造方法及び冷凍空調装置
US7021370B2 (en) * 2003-07-24 2006-04-04 Delphi Technologies, Inc. Fin-and-tube type heat exchanger
JP2005201467A (ja) * 2004-01-13 2005-07-28 Matsushita Electric Ind Co Ltd 熱交換器
KR100621525B1 (ko) * 2005-06-09 2006-09-11 위니아만도 주식회사 열교환기의 전열핀
JP2007017042A (ja) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd 熱交換器
US7540320B1 (en) * 2006-02-10 2009-06-02 Thomas Middleton Semmes High efficiency conditioning air apparatus
JP5320846B2 (ja) 2008-06-20 2013-10-23 ダイキン工業株式会社 熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012098914A1 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032111A (ja) * 2010-08-02 2012-02-16 Fuji Electric Co Ltd 熱交換器
EP3078930A4 (de) * 2014-01-15 2017-07-26 Samsung Electronics Co., Ltd. Wärmetauscher und klimaanlage damit
KR20170137883A (ko) * 2015-05-29 2017-12-13 미쓰비시덴키 가부시키가이샤 열교환기
CN107614998A (zh) * 2015-05-29 2018-01-19 三菱电机株式会社 换热器
EP3306251A4 (de) * 2015-05-29 2018-05-09 Mitsubishi Electric Corporation Wärmetauscher
AU2015396674B2 (en) * 2015-05-29 2019-05-09 Mitsubishi Electric Corporation Heat exchanger
US10393452B2 (en) 2015-05-29 2019-08-27 Mitsubishi Electric Corporation Heat exchanger
EP3508807A1 (de) * 2018-01-09 2019-07-10 Panasonic Intellectual Property Management Co., Ltd. Wärmetauscher

Also Published As

Publication number Publication date
KR101313347B1 (ko) 2013-10-01
US20130299153A1 (en) 2013-11-14
AU2012208120A1 (en) 2013-08-01
KR20130099254A (ko) 2013-09-05
CN103314269A (zh) 2013-09-18
BR112013018043A2 (pt) 2019-09-24
JP2012163317A (ja) 2012-08-30
WO2012098914A1 (ja) 2012-07-26
JP5177306B2 (ja) 2013-04-03
CN103314269B (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
EP2667139A1 (de) Wärmetauscher und klimaanlage
US9316446B2 (en) Heat exchanger and air conditioner
EP2667125B1 (de) Wärmetauscher und klimaanlage
JP5141840B2 (ja) 熱交換器および空気調和機
EP2667140B1 (de) Wärmetauscher und klimaanlage
EP3306252B1 (de) Wärmetauscher und kältekreislaufvorrichtung
JP5569408B2 (ja) 熱交換器及び空気調和機
JP2015031490A (ja) 熱交換器及び空気調和機
JP5736794B2 (ja) 熱交換器および空気調和機
JP5569409B2 (ja) 熱交換器および空気調和機
JP2012154492A (ja) 熱交換器及び空気調和機
WO2012098913A1 (ja) 熱交換器及び空気調和機
JP2015031491A (ja) 熱交換器及び空気調和機
JP2012154500A (ja) 熱交換器および空気調和機

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130812

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20150206