EP2655996B1 - Module de chauffage, systeme de chauffage comprenant plusieurs modules de chauffage et installation comprenant un tel systeme de chauffage - Google Patents

Module de chauffage, systeme de chauffage comprenant plusieurs modules de chauffage et installation comprenant un tel systeme de chauffage Download PDF

Info

Publication number
EP2655996B1
EP2655996B1 EP11817386.3A EP11817386A EP2655996B1 EP 2655996 B1 EP2655996 B1 EP 2655996B1 EP 11817386 A EP11817386 A EP 11817386A EP 2655996 B1 EP2655996 B1 EP 2655996B1
Authority
EP
European Patent Office
Prior art keywords
heating
balls
crucible
matter
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11817386.3A
Other languages
German (de)
English (en)
Other versions
EP2655996A1 (fr
Inventor
Didier Lesueur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FINAXO ENVIRONNEMENT
Original Assignee
FINAXO ENVIRONNEMENT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FINAXO ENVIRONNEMENT filed Critical FINAXO ENVIRONNEMENT
Priority to PL11817386T priority Critical patent/PL2655996T3/pl
Publication of EP2655996A1 publication Critical patent/EP2655996A1/fr
Application granted granted Critical
Publication of EP2655996B1 publication Critical patent/EP2655996B1/fr
Priority to HRP20151296TT priority patent/HRP20151296T1/hr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/0806Charging or discharging devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0273Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using indirect heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/20Incineration of waste; Incinerator constructions; Details, accessories or control therefor having rotating or oscillating drums
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/02Crucible or pot furnaces with tilting or rocking arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles
    • F27B14/12Covers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • F27B19/02Combinations of furnaces of kinds not covered by a single preceding main group combined in one structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • F27B19/04Combinations of furnaces of kinds not covered by a single preceding main group arranged for associated working
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/28Plastics or rubber like materials
    • F23G2209/281Tyres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/508Providing additional energy for combustion, e.g. by using supplementary heating
    • F23G2900/50801Providing additional energy for combustion, e.g. by using supplementary heating using the heat from externally heated bodies, e.g. steel balls

Definitions

  • the present invention relates to a heating module for heating solid material to a predetermined temperature.
  • the solid material may be in the form of beads, granules, and more generally solid bodies of more or less identical size.
  • a heating module can be integrated in a heating system comprising several modules of this type.
  • Such a heating system may in particular be integrated in an installation for producing pyrolysis gas from organic material.
  • the present invention also relates to such a heating system and such an installation for producing pyrolysis gas.
  • the heating module of the present invention can be integrated into any heating system or installation requiring a module or a heating system.
  • the purpose is not to melt the material, but only to heat it to a certain temperature at which it always remains in the solid state.
  • the crucible is topped with the hat that allows to create a closed space isolated from the outside.
  • the hat is movable relative to the bucket, or vice versa.
  • the crucible is provided with passage holes for conveying the heat of the burner into the crucible through the material to be heated.
  • the crucible is frustoconical and pierced with a plurality of through holes.
  • the heating trough further comprises a fan for generating a flow of air heated by the burner through the passage holes of the crucible and the material to be heated.
  • the flow of air pulsed by the fan causes the heat or the flame of the burner to pass through the passage holes of the crucible so as to directly heat the material, not just the crucible.
  • the cap comprises an exhaust duct for evacuating hot gases from the crucible.
  • the cap not only serves as a lid for the crucible, but also a fume hood for recovering hot gases, which can optionally be used for another application.
  • the heating trough is pivotally mounted about a horizontal axis and the cap is movable in translation along a vertical axis.
  • the invention also relates to a material heating system comprising several heating modules as defined above, in which the modules are arranged side by side, the heating buckets being pivotally mounted along a common horizontal axis, each heating bucket pivoting independently, the heating system further comprising a material loading rail disposed above the buckets and provided with a crucible loading carriage and a heated material discharge rail disposed beneath the buckets and provided with a crucible unloading carriage, the modules and the carriages being sequentially actuated to deliver heated material with a regular sequenced flow.
  • each bucket receives a defined quantity of balls from the loading carriage and delivers after a certain heating time the same quantity of heated balls in the unloading carriage.
  • the buckets are sequentially and sequentially actuated to receive and deliver defined amounts of beads spaced in time but with a regular sequence.
  • the heating system is positioned above the reactor, the delivery systems comprising elevators provided with buckets vertically movable back and forth. It can also be said that the pivot axis of the heating buckets is parallel to the axis of the furnace.
  • the present invention has been implemented in a non-limiting manner in an installation for producing pyrolysis gas from organic materials, such as sludge, used tires, waste from the food industry such as vinasse, etc.
  • the installation is very schematically represented on the figure 1 which will now be detailed.
  • the heart of this installation is a pyrolysis furnace F which is arranged in a sealed enclosure E comprising an inlet lock chamber Si and an outlet lock chamber So.
  • the pyrolysis furnace F operates on the principle that the organic material is heat-treated at a high temperature in an oxygen-free atmosphere.
  • An installation of the prior art using such a pyrolysis furnace is described in the document WO 2005/018841 .
  • the pyrolysis furnace of this document comprises a worm to advance the organic waste to be treated from one end to the other of the furnace.
  • preheated steel balls are used which are introduced into the pyrolysis furnace and follow the same path as the organic waste within the pyrolysis furnace.
  • the operating principle of this pyrolysis furnace of the prior art is incorporated in the present invention.
  • the pyrolysis furnace F also incorporates a worm to advance preheated beads and organic material through the pyrolysis furnace.
  • a worm to advance preheated beads and organic material through the pyrolysis furnace.
  • US-A-4,384,947 discloses the preheating of oily schists by entrainment in a series of diluted phase risers having gaseous stream of progressively increasing temperature.
  • the heat for pyrolysis is provided by a circulation of hot thermal support bodies, for example heated ceramic balls in a suitable heating apparatus for balls.
  • the pyrolysis furnace F which is truncated, rotates about a horizontal axis X and receives in the form of rain organic waste from an axial supply duct D1 and preheated balls B from a chain conveyor path C.
  • This conveying path C may be in the form of a chain closed on itself and driven in the manner of a track.
  • the preheated balls B arrive on the conveying path C from the entry lock S 1. figure 2 that the preheated balls B fall in the form of rain in the furnace F above the organic waste fed through the conduit D1.
  • the chain conveyor arranged above the organic material supply duct D1 is a characteristic which can be protected in itself, that is to say independently of the particular structure of the other components of the installation.
  • the cooled beads pass on a dust collector K on which the balls B progress so as to lose the dust of pyrolyzed organic material which is present on their surface.
  • the dust collector K may for example be in the form of an inclined grid formed of metal cables arranged in parallel. To soundproof, each cooled ball B rolls between two cables while losing the dust in passing.
  • the sealed enclosure E is constituted by the furnace F, the entry lock S 1, the conveying path C, a part of the feed duct D 1, the dust collector K, the dust collecting tray U and the airlock So.
  • the feed duct constitutes an organic matter inlet in the enclosure E.
  • the duct I constitutes a pyrolysis gas outlet.
  • the input valve Si is a ball entry and the output lock So is a ball outlet for the enclosure E.
  • this sealed chamber E there is an oxygen-free atmosphere at a pressure below atmospheric pressure. In this way, the only risk of sudden degradation is an implosion of the furnace or the enclosure, and not an explosion, since the enclosure is in depression.
  • the organic material which is supplied at the level of the conduit D1 comes from a reservoir T containing a large quantity of organic matter.
  • This tank T can be directly connected to the supply duct D1.
  • a dryer D may be interposed between the tank T and the duct D1, as shown in FIG. figure 1 .
  • This dryer D is optional.
  • the gases from this dryer D can be discharged into the atmosphere with prior treatment in an L washing tower.
  • a heat exchanger P can be interposed between the dryer D and the washing tower L to recover the heat of the gases. before washing in the washing tower.
  • This heat exchanger P is also optional.
  • the heat required to dry the organic matter comes directly from the installation as will be seen below.
  • the organic material from the tank T arrives in the pyrolysis furnace F through the dryer D (optional) and the feed duct D1 which is advantageously located on the axis X of the pyrolysis furnace F.
  • the solid residues from the treated organic material are recovered in the tank U located below the dust collector K.
  • the pyrolysis gases resulting from the thermal treatment of the organic material using the preheated balls are here conveyed through the pipe I to a boiler H which will burn the pyrolysis gas to create usable heat to feed for example a radiator circuit R.
  • a boiler H which will burn the pyrolysis gas to create usable heat to feed for example a radiator circuit R.
  • the cooled dust-free balls B exit the exit chamber So to fall on a connecting ramp Q for routing them to an elevator A2 provided with a bucket G2 which is movable vertically back and forth.
  • the elevator A2 can be provided with several buckets G2.
  • the purpose of the bucket G2 is to mount a predetermined quantity of balls B at a loading rail M3 on which a carriage M31 moves.
  • the loading rail M3 is arranged horizontally, and advantageously parallel to the axis X of the furnace.
  • the rail M3 with its carriage M31 is an integral part of a heating system M comprising a plurality of heating modules arranged side by side aligned along an axis V which is advantageously parallel to the axis X of the pyrolysis furnace.
  • Each heating module comprises a heating trough M1 disposed under the rail M3 and a cap M2 disposed above the corresponding heating trough M1.
  • the cooled balls from the ramp Q and the elevator A2 are discharged into the carriage M31 which in turn discharges its contents into one of the heating buckets M1.
  • the carriage 31 is withdrawn and the cap M2 goes down on the heating trough M1 to close it.
  • the balls are then heated inside the heating trough M1 to a predetermined temperature.
  • the cap M2 is raised and the heating trough M1 tilts around the pivot axis V to dump its contents in an unloading trolley M41 which is movable on a horizontal rail M4 disposed below the row of heating buckets M1, as can be seen on the figure 1 .
  • This quantity of heated balls is then conveyed by the unloading trolley M41 which discharges them directly into the inlet Si to follow the path previously described with reference to the figure 2 .
  • the carriage M41 dumps the balls in an elevator A1 comprising a bucket G1 movable vertically back and forth, similarly to that of the bucket G2.
  • the heated balls contained in the cup G1 are poured into the entry lock chamber Si.
  • the cycle balls are then buckled.
  • a source of gas G For feeding the heating buckets, a source of gas G.
  • the buckets M1 are thus filled, heated and sequentially emptied to feed the pyrolysis furnace F regularly with a constant sequenced flow. For example, a first bucket is filled and warmed up. The second bucket is then filled and warmed up. When the first bucket has finished heating, the third bucket can be filled and warmed up. Then the first bucket can be emptied, while the second has finished heating and the fourth filled and half heated. And so on.
  • the operation of the buckets requires synchronization or sequencing accurate and reliable.
  • the pyrolysis gas production plant is particularly compact and has a very small footprint. This is due to the fact that the heating system M is arranged parallel above the enclosure E containing the pyrolysis furnace F. These two superimposed macro-components are bordered and part and other by the elevators A1 and A2.
  • the boiler H, the radiator system R, the organic material tank T, the dryer D, the washing tower L and the exchanger P can be deported, since they are only connected by pipes, ducts and / or pipes.
  • the heating of the balls is carried out outside the sealed enclosure E which is delimited by the airlock Si and the airlock So.
  • the elevators A1, A2, the ramp Q and the heating system M are located outside the enclosure E.
  • the superimposed arrangement of the enclosure E and the heating system M is a feature that can also be protected in itself, that is to say independently of the structure of the other components of the installation.
  • the airlock Si may have strictly the same design as the airlock So. However, as we can see on the figure 1 , the airlock Si is arranged parallel to the axis X of the furnace F, while the airlock So is arranged perpendicularly to the axis X of the furnace F. Apart from this difference in layout, the two locks are identical. Consequently, reference will be made to an airlock with reference to Figures 3 to 5d to illustrate the design and operation of these airlocks.
  • the airlock represented in exploded on the figure 3 comprises a fixed cage S1 for receiving a rotary drum S2.
  • the rotary drum S2 is rotatable about itself inside the fixed cage S1 around a longitudinal axis Y.
  • the fixed cage S1 comprises an upper face S11 formed with an opening high loading S13, a lower face S18 formed with a low discharge opening S19, two side faces S14, one of which is provided with two exhaust ducts S15 and two end faces S16 each forming a mounting opening S17.
  • the fixed cage S1 is hollow so as to define a hollow interior S10 which is generally of substantially cylindrical shape. This hollow interior S10 communicates with the outside through the two upper and lower openings S13, S19 and the two mounting openings S17.
  • the fixed cage S1 can for example be made by machining a stainless steel block, or by molding.
  • the rotary drum S2 has a generally cylindrical general configuration adapted to be inserted with limited play in the hollow interior S10 of the fixed cage S1.
  • the rotary drum S2 comprises a cylindrical body S21 defining a hollow interior S20 which communicates with the outside through a window S22. Both ends of the body S21 are provided with two flanges S23 closing the ends of the cylindrical body. It may be noted that the external surface of the body S21 is formed with a network of grooves S24, S25 intended to receive dynamic seals S31 and S32. These seals may for example be made in graphitized ceramic braid.
  • FIG. 5a the window S22 of the rotary drum S2 is arranged aligned (or facing) with the upper loading opening S13 of the fixed cage S1. Any communication between the high opening S13 and the low discharge opening S19 is prevented by the dynamic seals S31, S32 mounted on the rotary drum S2 and coming into sealing contact with the inside of the fixed cage S1. .
  • material such as beads B, can be introduced into the rotating drum S2. This introduction can simply be done by gravity. Once the desired amount of balls have been loaded inside the airlock, the rotating drum S2 rotates one quarter of a turn clockwise to arrive at the configuration shown in FIG.
  • the window S22 is then oriented downwards opposite the low discharge opening S19.
  • the balls B can then out of the drum S2, simply by gravity. Again, it may be noted that the S31 seals and the S32 annular seals (not shown) prohibit any communication between the high loading opening S13 and the low unloading opening S19.
  • the hollow interior S20 of the drum S2 is filled with a gas, which may be outside air, or pyrolysis gas. Turning the drum S2 a quarter of a turn clockwise again results in the configuration shown in the figure. figure 5d .
  • the window S22 is then oriented towards the lateral face S14 of the fixed cage S1 where the other evacuation duct S15 is formed.
  • the inside of the drum can then be evacuated by means of a vacuum pump.
  • the drum S2 can then continue its rotation to reach again in the configuration represented on the figure 5a , ready for a new load of logs. A complete operating cycle is then completed.
  • the two exhaust ducts S15 are located on the same lateral face S14, whereas in the schematic drawings of the Figures 5a to 5d each side face S14 is provided with a discharge duct S15. This difference is very secondary and does not change the operation of the airlock.
  • the rotary displacement of the drum S2 inside the cage S1 is then carried back and forth between the configuration of the figure 5a and that of the figure 5c . This is again a secondary detail of operation.
  • the window S22 has an elongated configuration in the direction of the Y axis, just like the two openings S13 and S19. This makes it possible to unload the contents of the airlock in the form of an elongated line or strip, and not in the form of a substantially pyramidal pile. This feature is particularly advantageous when the airlock is used as an input lock chamber Si associated with a chain conveyor path C on which the beads must be deposited linearly. This characteristic (elongated window) is also used in the outlet airlock So at which the cooled balls B arrive on the entire width of the dust collector K.
  • the very design of the airlock namely a rotating drum inside a fixed cage, allows it to withstand particularly stringent temperature and pressure conditions, which is the case in the sealed enclosure E. Indeed, the balls arrive in the airlock Si with a very high temperature and exit the exit chamber So with a lower temperature, but still relatively high. Thanks to the rotary design of the airlock, it is very insensitive to thermal expansion phenomena that are entirely concealed by the dynamic seals.
  • the airlocks also support very well the depression prevailing inside the enclosure E. Indeed, because of the rotating design of the airlock, the depression does not generate a pressure force that acts directly on the operation of the airlock. In other words, the rotary drum S2 can rotate inside the fixed cage independently of the pressure inside the enclosure.
  • the airlock that has just been described can serve as both airlock and airlock in any installation comprising a sealed enclosure whose input and output flows must be controlled accurately.
  • the airlock is therefore not directly related to the pyrolysis gas production facility described above.
  • the ball heating system M of the pyrolysis gas production plant also incorporates particularly interesting and advantageous features which will now be described with reference to the Figures 6 and 7 .
  • the heating system comprises several heating modules each comprising a heating trough M1 and a cap M2.
  • the bucket M1 and the cap M2 are mutually movable relative to each other along a vertical axis of translation Z.
  • the bucket M1 can be pivotally mounted by pivoting about a pivot axis V. By pivoting about this axis V, the contents of the bucket M1 can be dumped.
  • the bucket M1 comprises a crucible M11 disposed in an insulating jacket M16 which supports a burner M13.
  • This burner M13 which may be a gas burner, produces a flame M14 inside the jacket M16 under the crucible M11 in order to heat it.
  • a predetermined quantity of beads B was previously poured into the crucible M11 by the loading trolley M31. In this way, the balls B are heated inside the crucible M11 by the flame M14 produced by the burner M13.
  • the crucible M11 is provided with a plurality of through holes M12 through which the flame M14 of the burner M13 can pass to come into direct contact with the balls B located in the crucible M11.
  • the crucible M11 has a conical shape, and can be made from a cut stainless steel plate, and then deformed into a cone. This results in a rapid and uniform heating of the balls inside the crucible M11 since the flame M14 can propagate between the interstices present between the balls.
  • the heating trough M1 may also be provided with a fan M15 adapted to generate a pulsed air flow which has the tendency to cause the flame M14 towards the crucible M11 and through the M12 through holes. The forced hot air flow passes directly through the quantity of balls present in the M11 crucible and heats them quickly and uniformly.
  • the first function of the cap M2 is to close the crucible M11 during the heating phase. Thus, a minimal amount of heat is dissipated in the air. It follows that the heating of the balls is even faster and more uniform.
  • the second function of the cap M2 is to collect and evacuate the hot gases from the crucible. For this, the cap M2 forms a convergence host M23 which is extended by an exhaust duct M24.
  • the hot gases can for example be conveyed through a hose J to the dryer D, as visible on the figure 1 . Other applications for exhausted hot gases are obviously possible.
  • Such a heating module finds a preferred application in the pyrolysis gas production installation described above. However, such a heating module can be used in other installations that require the solid material to be rapidly and uniformly heated, such as balls, without melting them.
  • the pyrolysis gas production facility is optimized.

Description

  • La présente invention concerne un module de chauffage pour chauffer de la matière solide à une température déterminée. La matière solide peut être sous la forme de billes, de granulés, et plus généralement de corps solides de taille plus ou moins identique. Un tel module de chauffage peut être intégré dans un système de chauffage comprenant plusieurs modules de ce type. Un tel système de chauffage peut notamment être intégré dans une installation pour produire du gaz de pyrolyse à partir de matière organique. D'ailleurs, la présente invention concerne également un tel système de chauffage et une telle installation de production de gaz de pyrolyse. Toutefois, le module de chauffage de la présente invention peut être intégré dans n'importe quel système de chauffage ou installation nécessitant un module ou un système de chauffage.
  • Dans le domaine de la sidérurgie et de la fonderie, il est déjà connu de transporter de la matière en fusion dans un auget qui est monté pivotant autour d'un axe horizontal afin de pouvoir déverser son contenu. Bien entendu, il s'agit là de transporter de la matière liquide, et non pas de chauffer de la matière solide.
  • Pour le chauffage de matières solides, tel que des billes, à une température déterminée, la présente invention prévoit un module de chauffage comprenant :
    • un auget de chauffage comprenant un creuset pour recevoir la matière à chauffer, et un bruleur pour chauffer le creuset,
    • un chapeau monté de manière amovible sur l'auget de chauffe pour fermer le creuset.
  • Le but n'est pas de faire fondre la matière, mais uniquement de la chauffer à une température déterminée à laquelle elle reste toujours à l'état solide. Pour augmenter rapidement la température à l'intérieur du creuset, et éviter des émanations de gaz nocif, le creuset est surmonté du chapeau qui permet de créer un espace clos isolé de l'extérieur. Le chapeau est déplaçable par rapport à l'auget, ou vice-versa.
  • Selon une forme de réalisation avantageuse, le creuset est pourvu de trous de passage pour acheminer la chaleur du bruleur dans le creuset à travers la matière à chauffer. De préférence, le creuset est tronconique et percé d'une pluralité de trous de passage. Ainsi, la chaleur ou la flamme du bruleur ne fait pas que chauffer le creuset de l'extérieur, mais pénètre directement à l'intérieur du creuset et se propage entre les interstices présents dans la matière. Il s'ensuit que la matière est chauffée plus rapidement, et de manière plus homogène, puisque la transmission de la chaleur ne se fait pas uniquement par transmission à travers du creuset, mais directement en contact de la matière à chauffer.
  • Selon une caractéristique additionnelle avantageuse, l'auget de chauffe comprend en outre une soufflante pour générer un flux d'air chauffé par le bruleur à travers les trous de passage du creuset et la matière à chauffer. Le flux d'air pulsé par la soufflante permet d'entrainer la chaleur ou la flamme du bruleur à travers les trous de passage du creuset de manière à chauffer directement la matière, et non pas uniquement le creuset.
  • Selon un autre aspect intéressant de l'invention, le chapeau comprend un conduit d'évacuation pour évacuer les gaz chauds du creuset. Ainsi, le chapeau ne sert pas uniquement de couvercle pour le creuset, mais également de hotte d'évacuation permettant de récupérer les gaz chauds, qui peuvent éventuellement être utilisés pour une autre application.
  • Selon un mode de réalisation pratique, l'auget de chauffe est monté pivotant autour d'un axe horizontal et le chapeau est déplaçable en translation selon un axe vertical.
  • L'invention concerne également un système de chauffage de matière comprenant plusieurs modules de chauffage tels que définis ci-dessus, dans lequel les modules sont disposés côte à côte, les augets de chauffe étant montés pivotant selon un axe horizontal commun, chaque auget de chauffe pivotant de manière indépendante, le système de chauffage comprenant en outre un rail de chargement de matière disposé au-dessus des augets et pourvu d'un chariot de chargement de creusets et un rail de déchargement de matière chauffée disposé en-dessous des augets et pourvu d'un chariot de déchargement de creusets, les modules et les chariots étant actionnés de manière séquencée pour délivrer de la matière chauffée avec un débit séquencé régulier. Lorsqu'il s'agit de billes à chauffer, chaque auget reçoit une quantité définie de billes du charriot de chargement et délivre après un certain temps de chauffe la même quantité de billes chauffées dans le charriot de déchargement. Les augets sont actionnés de manière séquencée et consécutive de manière à recevoir et délivrer des quantités de billes définies espacées dans le temps mais avec une séquence régulière.
  • L'invention a également pour objet une installation pour produire du gaz de pyrolyse à partir de matière organique comprenant :
    • un four ou réacteur de pyrolyse fonctionnant sans oxygène avec des billes préchauffées,
    • un système de chauffage tel que défini ci-dessus pour chauffer les billes, et
    • des systèmes d'acheminement de billes pour acheminer les billes chauffées du système de chauffage au four ou réacteur et les billes refroidies du four ou réacteur au système de chauffage.
  • Avantageusement, le système de chauffage est positionné au-dessus du réacteur, les systèmes d'acheminement comprenant des ascenseurs pourvus de godets déplaçables verticalement en va-et-vient. On peut également dire que l'axe de pivotement des augets de chauffe est parallèle à l'axe du four. En disposant le système de chauffage au-dessus du four, on minimise de manière optimale l'encombrement de l'installation au sol.
  • Selon une caractéristique intéressante de l'invention, le four est placé dans une enceinte étanche pourvue d'une entrée de matière organique et une sortie de gaz de pyrolyse, ainsi que d'une entrée de billes préchauffées et une sortie de billes refroidies, l'entrée et/ou la sortie de billes étant équipée d'un sas comprenant :
    • une cage fixe pourvue de deux ouvertures disposées de manière opposée, à savoir une ouverture haute de chargement et une ouverture basse de déchargement,
    • un tambour rotatif monté en rotation selon un axe X à l'intérieur de la cage, le tambour comprenant une fenêtre qui est positionnable sélectivement en regard d'une des ouvertures de la cage fixe pour charger et décharger la matière du sas. Le module de chauffage de la présente invention ainsi que les sas de l'enceinte étanche sont particulièrement bien adaptés au chauffage et au transit de billes, par exemple d'acier, dans une installation pour la production de gaz de pyrolyse à partir de matière organique, par exemple des déchets tel que des pneus usagés, des boues, de la vinasse, etc.
  • L'invention sera maintenant plus amplement décrite en référence aux dessins joints donnant à titre d'exemple non limitatif un mode de réalisation et d'application de la présente invention.
  • Sur les figures :
    • La figure 1 est une vue schématique d'ensemble d'une installation de production de gaz de pyrolyse mettant en oeuvre la présente invention,
    • La figure 2 est une vue schématique agrandie d'une partie de l'installation de la figure 1 incorporant deux sas selon l'invention,
    • La figure 3 est une vue en perspective éclatée d'un sas selon la présente invention,
    • La figure 4 est une vue similaire à celle de la figure 3 pour le sas à l'état monté,
    • Les figures 5a, 5b, 5c et 5d sont des vues en coupe transversale verticale à travers le sas des figures 3 et 4 dans des positions de tambour différentes pour illustrer son fonctionnement,
    • La figure 6 est une vue schématique d'un autre détail de l'installation de la figure 1 montrant un auget de chauffage, et
    • La figure 7 est une vue en perspective fortement agrandie d'un creuset utilisé dans l'auget de chauffage de la figure 6.
  • La présente invention a été mise en oeuvre de manière non limitative dans une installation de production de gaz de pyrolyse à partir de matières organiques, tels que des boues, des pneus usagés, des déchets de l'industrie agroalimentaire tels que la vinasse, etc. L'installation est représentée de manière très schématique sur la figure 1 qui va maintenant être détaillée.
  • Le coeur de cette installation est un four de pyrolyse F qui est disposé dans une enceinte étanche E comprenant un sas d'entrée Si et un sas de sortie So. Le four de pyrolyse F fonctionne sur le principe que la matière organique est traitée thermiquement à haute température dans une atmosphère exempte d'oxygène. Une installation de l'art antérieur utilisant un tel four de pyrolyse est décrit dans le document WO 2005/018841 . Le four de pyrolyse de ce document comprend une vis sans fin permettant de faire progresser les déchets organiques à traiter d'un bout à l'autre du four. Pour l'apport de chaleur, on utilise des billes d'acier préalablement chauffées qui sont introduites dans le four de pyrolyse et suivent le même parcours que les déchets organiques à l'intérieur du four de pyrolyse. Le principe de fonctionnement de ce four de pyrolyse de l'art antérieur est repris dans la présente invention. Ainsi, le four de pyrolyse F intègre également une vis sans fin pour faire progresser des billes préchauffées et de la matière organique à travers le four de pyrolyse. Nous ne reviendrons pas sur les principes physicochimiques permettant d'extraire des gaz de pyrolyse de la matière organique chauffée dans une atmosphère exempte d'oxygène, étant donné que ce principe est largement décrit dans le document précité WO 2005/018841 . La présente invention s'attache plus particulièrement à des composants de l'installation qui sont associés plus ou moins directement au four de pyrolyse F afin d'assurer un fonctionnement optimal de l'installation.
  • US-A 4 384 947 divulgue le préchauffage des schistes huileux par entraînement dans une série de conduits élévateurs en phase diluée présentant de courant gazeux de témperature croissant de façon progressive. La chaleur destinéee à la pyrolyse est fournie par une circulation de corps support thermiques chauds, par example des billes de céramique chauffée dans un appareil de chauffage approprié pour billes.
  • En se référant maintenant à la figure 2, on peut voir que le four de pyrolyse F, qui est représenté de manière tronquée, tourne autour d'un axe horizontal X et reçoit sous forme de pluie des déchets organiques en provenance d'un conduit d'alimentation axial D1 et des billes préchauffées B en provenance d'un chemin de convoyage à chaîne C. Ce chemin de convoyage C peut se présenter sous la forme d'une chaîne refermée sur elle-même et entraînée à la manière d'une chenillette. Les billes préchauffées B arrivent sur le chemin de convoyage C en provenance du sas d'entrée Si. On peut remarquer sur la figure 2 que les billes préchauffées B tombent sous forme de pluie dans le four F au-dessus des déchets organiques alimentés à travers le conduit D1. De cette manière, on obtient dès l'entrée du four un mélange homogène de matière organique et de billes préchauffées B, ce qui permet un traitement thermique plus homogène et régulier à travers le four de pyrolyse rotatif F. L'utilisation d'un chemin de convoyage à chaîne disposé au-dessus du conduit d'alimentation de matière organique D1 est une caractéristique qui peut être protégée en soi, c'est-à-dire indépendamment de la structure particulière des autres composants de l'installation. A la sortie du four, les billes refroidies passent sur un dépoussiéreur K sur lequel progressent les billes B de manière à perdre la poussière de matière organique pyrolysée qui est présente à leur surface. Le dépoussiéreur K peut par exemple se présenter sous la forme d'une grille inclinée formée de câbles métalliques disposés en parallèle. Pour insonoriser, chaque bille refroidie B roule entre deux câbles en perdant la poussière au passage. Celle-ci est récupérée dans un bac U disposé en dessous du dépoussiéreur K. Il est à noter que l'utilisation d'un dépoussiéreur comprend des câbles métalliques inclinés en parallèle est une caractéristique qui est protégeable indépendamment des autres composants de l'installation et peut être mise en oeuvre dans un autre type d'installation nécessitant de dépoussiérer des corps, tels que des billes. Finalement, les billes refroidies dépoussiérées B tombent par gravité dans le sas de sortie So. Les gaz de pyrolyse sortent du four F à travers une conduite I.
  • L'enceinte étanche E est constituée par le four F, le sas d'entrée Si, le chemin de convoyage C, une partie du conduit d'alimentation D1, le dépoussiéreur K, le bac de récupération de poussière U et le sas de sortie So. Le conduit d'alimentation constitue une entrée de matière organique dans l'enceinte E. La conduite I constitue une sortie de gaz de pyrolyse. Le sas d'entrée Si constitue une entrée de billes et le sas de sortie So constitue une sortie de billes pour l'enceinte E. Dans cette enceinte étanche E, il règne une atmosphère exempte d'oxygène à une pression inférieure à la pression atmosphérique. De la sorte, le seul risque de dégradation soudaine est une implosion du four ou de l'enceinte, et non pas une explosion, puisque l'enceinte est en dépression.
  • On revient maintenant à la figure 1 pour décrire les autres composants de l'installation de production de gaz de pyrolyse. La matière organique qui est alimentée au niveau du conduit D1 provient d'un réservoir T contenant une quantité importante de matière organique. Ce réservoir T peut être directement relié au conduit d'alimentation D1. En variante, un sécheur D peut être interposé entre le réservoir T et le conduit D1, comme représenté sur la figure 1. Ce sécheur D est optionnel. Les gaz issus de ce sécheur D peuvent être évacués dans l'atmosphère avec un traitement préalable dans une tour de lavage L. Optionnellement, un échangeur thermique P peut être interposé entre le sécheur D et la tour de lavage L pour récupérer la chaleur des gaz avant de les laver dans la tour de lavage. Cet échangeur thermique P est également optionnel. La chaleur nécessaire pour sécher la matière organique est issue directement de l'installation comme on le verra ci-après. Ainsi, la matière organique issue du réservoir T parvient dans le four de pyrolyse F à travers le sécheur D (optionnel) et le conduit d'alimentation D1 qui est avantageusement situé sur l'axe X du four de pyrolyse F. A la sortie du four, les résidus solides issus de la matière organique traitée sont récupérés dans le bac U situé en dessous du dépoussiéreur K. Les gaz de pyrolyse issus du traitement thermique de la matière organique à l'aide des billes préchauffées sont ici acheminés à travers la conduite I à une chaudière H qui va brûler le gaz de pyrolyse afin de créer de la chaleur utilisable pour alimenter par exemple un circuit de radiateurs R. Bien que non représenté, il est possible de récupérer la chaleur résiduelle du gaz de pyrolyse au niveau de la conduite I à travers un échangeur de chaleur avant de l'acheminer à la chaudière H. Comme on peut le voir sur la figure 1, une partie de la chaleur générée par la chaudière H est acheminée au sécheur D.
  • Les billes refroidies dépoussiérées B sortent du sas de sortie So pour tomber sur une rampe de liaison Q permettant de les acheminer à un ascenseur A2 pourvu d'un godet G2 qui est déplaçable verticalement en va-et-vient. L'ascenseur A2 peut être pourvu de plusieurs godets G2. Le godet G2 a pour but de monter une quantité prédéterminée de billes B au niveau d'un rail de chargement M3 sur lequel se déplace un chariot M31. Le rail de chargement M3 est disposé horizontalement, et avantageusement parallèlement à l'axe X du four. Le rail M3 avec son chariot M31 font partie intégrante d'un système de chauffage M comprenant plusieurs modules de chauffage disposés côte à côte de manière alignée selon un axe V qui est avantageusement parallèle à l'axe X du four de pyrolyse. Chaque module de chauffage comprend un auget de chauffage M1 disposé sous le rail M3 et un chapeau M2 disposé au-dessus de l'auget de chauffage correspondant M1. Sur la figure 1, on peut voir huit modules de chauffage de ce type. La structure fine d'un module de chauffage sera décrite de manière détaillée ci-après. Ainsi, les billes refroidies issues de la rampe Q et de l'ascenseur A2 sont déversées dans le chariot M31 qui à son tour déverse son contenu dans un des augets de chauffage M1. Le chariot 31 se retire et le chapeau M2 descend sur l'auget de chauffage M1 pour le fermer. On procède alors au chauffage des billes à l'intérieur de l'auget de chauffage M1 jusqu'à une température prédéterminée. Après cela, le chapeau M2 est relevé et l'auget de chauffage M1 bascule autour de l'axe de pivotement V pour déverser son contenu dans un chariot de déchargement M41 qui est déplaçable sur un rail horizontal M4 disposé en dessous de la rangée d'augets de chauffage M1, comme on peut le voir sur la figure 1. Cette quantité de billes chauffées est alors acheminée par le chariot de déchargement M41 qui les déverse directement dans le d'entrée Si pour suivre le parcours précédemment décrit en référence à la figure 2. En variante, le chariot M41 déverse les billes dans un ascenseur A1 comprenant un godet G1 déplaçable verticalement en va-et-vient, de manière similaire à celui du godet G2. Les billes chauffées contenues dans le godet G1 sont déversées dans le sas d'entrée Si. Le cycle des billes est alors bouclé. Pour l'alimentation des augets de chauffage, on peut prévoir une source de gaz G.
  • Les augets M1 sont ainsi remplis, chauffés et vidés de manière séquencée pour alimenter le four de pyrolyse F de manière régulière avec un débit séquencé constant. Par exemple, un premier auget est rempli et mis en chauffe. Le second auget est alors rempli et mis en chauffe. Lorsque le premier auget a fini de chauffer, le troisième auget peut être rempli et mis en chauffe. Ensuite, le premier auget peut être vidé, alors que le second a fini de chauffé et le quatrième rempli et mi en chauffe. Et ainsi de suite. Les cycles des augets se chevauchent afin d'obtenir un débit de billes chauffées sensiblement régulier et constant. Bien entendu, le fonctionnement des augets nécessite une synchronisation ou séquençage précis et fiable.
  • Il est à noter que l'installation de production de gaz de pyrolyse est particulièrement compacte et ne présente qu'un encombrement très réduit au sol. Cela provient du fait que le système de chauffage M est disposé parallèlement au-dessus de l'enceinte E contenant le four de pyrolyse F. Ces deux macro-composants superposés sont bordés et part et d'autre par les ascenseurs A1 et A2. La chaudière H, le système de radiateur R, le réservoir de matières organiques T, le sécheur D, la tour de lavage L et l'échangeur P peuvent être déportés, puisque uniquement reliés par des conduits, conduites et/ou tuyaux.
  • On peut également remarquer que le chauffage des billes est réalisé hors de l'enceinte étanche E qui est délimitée par le sas d'entrée Si et le sas de sortie So. Les ascenseurs A1, A2, la rampe Q ainsi que le système de chauffage M sont situés à l'extérieur de l'enceinte E. La disposition superposée de l'enceinte E et du système de chauffage M est une caractéristique qui peut également être protégée en soi, c'est-à-dire indépendamment de la structure des autres composants de l'installation.
  • Un composant particulièrement avantageux de cette installation est constitué par les sas d'entrée Si et de sortie So dont la conception sera maintenant décrite en détail. Le sas d'entrée Si peut avoir strictement la même conception que le sas de sortie So. Toutefois, comme on peut le voir sur la figure 1, le sas d'entrée Si est disposé parallèlement à l'axe X du four F, alors que le sas de sortie So est disposé perpendiculairement à l'axe X du four F. Hormis cette différence de disposition, les deux sas sont identiques. Par conséquent, il sera fait indifféremment référence à un sas en référence aux figures 3 à 5d visant à illustrer la conception et le fonctionnement de ces sas.
  • Le sas représenté en éclaté sur la figure 3 comprend une cage fixe S1 destinée à recevoir un tambour rotatif S2. En d'autres termes, le tambour rotatif S2 est susceptible de tourner en rotation sur lui-même à l'intérieur de la cage fixe S1 autour d'un axe longitudinal Y. La cage fixe S1 comprend une face supérieure S11 formée avec une ouverture haute de chargement S13, une face inférieure S18 formée avec une ouverture basse de déchargement S19, deux faces latérales S14 dont une est pourvue de deux conduits d'évacuation S15 et deux faces d'extrémité S16 formant chacune une ouverture de montage S17. La cage fixe S1 est creuse de manière à définir un intérieur creux S10 qui est de forme générale sensiblement cylindrique. Cet intérieur creux S10 communique avec l'extérieur à travers les deux ouvertures haute et basse S13, S19 et les deux ouvertures de montage S17. La cage fixe S1 peut par exemple être réalisée par usinage d'un bloc d'inox, ou encore par moulage.
  • Le tambour rotatif S2 présente une configuration générale sensiblement cylindrique adaptée à venir s'insérer avec un jeu limité dans l'intérieur creux S10 de la cage fixe S1. Le tambour rotatif S2 comprend un corps cylindrique S21 définissant un intérieur creux S20 qui communique avec l'extérieur à travers une fenêtre S22. Les deux extrémités du corps S21 sont pourvues de deux flasques S23 obturant les extrémités du corps cylindrique. On peut remarquer que la surface externe du corps S21 est formée avec un réseau de rainures S24, S25 destinées à recevoir des joints d'étanchéité dynamiques S31 et S32. Ces joints peuvent par exemple être réalisés en tresse céramique graphitée. On peut dénombrer sur le corps S21 quatre rainures rectilignes axiales S24 disposés de manière équiangulaire et deux rainures annulaires toriques S25 centrés sur l'axe Y. Les extrémités des joints rectilignes S31 viennent en contact avec les deux joints toriques S32. Bien que non représenté sur la figure 3, on comprend aisément la disposition des joints dans les rainures S24 et S25. Ces joints d'étanchéité dynamiques ont pour fonction de glisser avec étanchéité à l'intérieur de la cage fixe S1 afin d'empêcher toute communication directe entre l'ouverture haute de chargement S13 et l'ouverture basse de déchargement S19 de la cage fixe S1.
  • A l'état monté comme représenté sur la figure 4, les deux faces d'extrémité S16 de la cage fixe S1 sont fermées par des platines S4 boulonnées sur la cage fixe S1. Un moteur d'entraînement S5 est monté sur la platine S4 pour entraîner le tambour rotatif S2 en rotation à l'intérieur de la cage fixe S1 autour de l'axe Y. A travers l'ouverture haute de chargement S13 on peut voir le tambour rotatif S2 et même sa fenêtre S22. On peut également remarquer les deux conduits d'évacuation S15 qui peuvent être connectés à des pompes à vide respectives.
  • On se référera maintenant aux figures 5a à 5d pour décrire un cycle de fonctionnement complet du sas représenté sur les figures 3 et 4. Sur la figure 5a, la fenêtre S22 du tambour rotatif S2 est disposée de manière alignée (ou en regard) avec l'ouverture haute de chargement S13 de la cage fixe S1. Toute communication entre l'ouverture haute S13 et l'ouverture basse de déchargement S19 est empêchée par les joints d'étanchéité dynamiques S31, S32 montés sur le tambour rotatif S2 et venant en contact de frottement étanche avec l'intérieur de la cage fixe S1. Dans cette configuration, on peut introduire de la matière, telle que des billes B, à l'intérieur du tambour rotatif S2. Cette introduction peut simplement être effectuée par gravité. Une fois la quantité souhaitée de billes chargées à l'intérieur du sas, le tambour rotatif S2 effectue un quart de tour dans le sens des aiguilles d'une montre pour arriver à la configuration représentée sur la figure 5b. L'intérieur S20 du tambour rotatif S2 avec ses billes B est alors isolé de l'extérieur, et plus particulièrement des ouvertures haute S13 et basse S19 par les quatre joints d'étanchéité rectilignes S31 et les deux joints toriques S32. La fenêtre S2 est tournée vers la face latérale S14 de la cage fixe qui forme un conduit d'évacuation S15, de sorte que le contenu du tambour peut être vidé du gaz qu'il contient, qui peut être de l'air extérieur, ou du gaz de pyrolyse, dans le cas d'application qui vient d'être décrite précédemment. Au final, le tambour rotatif S2 ne contient plus que des billes B. En continuant à tourner le tambour S2 à l'intérieur de la cage dans le sens des aiguilles d'une montre d'un quart de tour, on parvient à la configuration représentée sur la figure 5c. La fenêtre S22 est alors orientée vers le bas en regard de l'ouverture basse de déchargement S19. Les billes B peuvent alors sortir du tambour S2, tout simplement par gravité. A nouveau, on peut remarquer que les joints S31 et les joints annulaires S32 (non représentés) interdisent toute communication entre l'ouverture haute de chargement S13 et l'ouverture basse de déchargement S19. Une fois les billes déchargées, l'intérieur creux S20 du tambour S2 est rempli avec un gaz, qui peut être de l'air extérieur, ou du gaz de pyrolyse. En faisant à nouveau tourner le tambour S2 d'un quart de tour dans le sens des aiguilles d'une montre, on parvient à la configuration représentée sur la figure 5d. La fenêtre S22 est alors orientée vers la face latérale S14 de la cage fixe S1 où est formé l'autre conduit d'évacuation S15. On peut alors évacuer l'intérieur du tambour à l'aide d'une pompe à vide. Le tambour S2 peut ensuite continuer sa rotation pour parvenir à nouveau dans la configuration représentée sur la figure 5a, prêt pour un nouveau chargement de billes. Un cycle opératoire complet est alors terminé.
  • Sur la figure 4, les deux conduits d'évacuation S15 sont situés sur la même face latérale S14, alors que sur les dessins schématiques des figures 5a à 5d, chaque face latérale S14 est pourvue d'un conduit d'évacuation S15. Cette différence est très secondaire et ne modifie en rien le fonctionnement du sas. Lorsque les deux conduits d'évacuation S15 sont situés sur la même face latérale comme représenté sur la figure 4, le déplacement rotatif du tambour S2 à l'intérieur de la cage S1 s'effectue alors en va-et-vient entre la configuration de la figure 5a et celle de la figure 5c. Il s'agit là encore d'un détail secondaire de fonctionnement.
  • On peut remarquer que la fenêtre S22 présente une configuration allongée dans le sens de l'axe Y, tout comme les deux ouvertures S13 et S19. Cela permet de décharger le contenu du sas sous la forme d'une ligne ou d'une bande allongée, et non pas sous la forme d'un tas sensiblement pyramidale. Cette caractéristique est particulièrement avantageuse lorsque le sas est utilisé en tant que sas d'entrée Si associé à un chemin de convoyage à chaîne C sur lequel les billes doivent être déposées linéairement. Cette caractéristique (fenêtre allongée) est également mise à profit dans le sas de sortie So au niveau duquel les billes refroidies B arrivent sur la totalité de la largeur du dépoussiéreur K.
  • D'autre part, la conception même du sas, à savoir un tambour rotatif à l'intérieur d'une cage fixe, lui permet de supporter des conditions de température et de pression particulièrement contraignantes, ce qui est le cas dans l'enceinte étanche E. En effet, les billes arrivent dans le sas d'entrée Si avec une température très élevée et sortent du sas de sortie So avec une température plus basse, mais tout de même relativement élevée. Grâce à la conception rotative du sas, il est très peu sensible aux phénomènes de dilatation thermique qui sont entièrement encaissés par les joints d'étanchéité dynamiques. Les sas supportent également très bien la dépression régnant à l'intérieur de l'enceinte E. En effet, du fait de la conception rotative du sas, la dépression n'engendre pas de force de pression qui agit directement sur le fonctionnement du sas. En d'autres termes, le tambour rotatif S2 peut tourner à l'intérieur de la cage fixe indépendamment de la pression régnant à l'intérieur de l'enceinte.
  • Le sas qui vient d'être décrit peut servir aussi bien de sas d'entrée que de sas de sortie dans n'importe quelle installation comprenant une enceinte étanche dont les flux d'entrée et de sortie doivent être contrôlés avec précision. Le sas n'est donc pas directement lié à l'installation de production de gaz de pyrolyse qui a été décrite précédemment.
  • Le système de chauffage de billes M de l'installation de production de gaz de pyrolyse intègre également des caractéristiques particulièrement intéressantes et avantageuses qui vont maintenant être décrites en référence aux figures 6 et 7. Comme précédemment décrit, le système de chauffage comprend plusieurs modules de chauffage comportant chacun un auget de chauffage M1 et un chapeau M2. L'auget M1 et le chapeau M2 sont déplaçables mutuellement l'un par rapport à l'autre selon un axe vertical de translation Z. Pour des raisons pratiques, il est plus facile de déplacer le chapeau M2 par rapport à l'auget M1 qui reste fixe en translation. Cependant, l'auget M1 peut être monté rotatif par pivotement autour d'un axe de pivotement V. En pivotant autour de cet axe V, le contenu de l'auget M1 peut être déversé.
  • L'auget M1 comprend un creuset M11 disposé dans une jaquette isolante M16 qui supporte un brûleur M13. Ce brûleur M13, qui peut être un brûleur à gaz, produit une flamme M14 à l'intérieur de la jaquette M16 sous le creuset M11 afin de le chauffer. Une quantité de billes prédéterminée B a été préalablement déversée dans le creuset M11 par le chariot de chargement M31. De cette manière, les billes B sont chauffées à l'intérieur du creuset M11 par la flamme M14 produite par le brûleur M13. Avantageusement, comme représenté sur la figure 7, le creuset M11 est pourvu d'une pluralité de trous de passage M12 à travers lesquels la flamme M14 du brûleur M13 peut passer pour venir en contact direct des billes B situées dans le creuset M11. Selon une forme de réalisation avantageuse, le creuset M11 présente une forme conique, et peut être réalisé à partir d'une plaque d'inox découpée, puis déformée en cône. On obtient ainsi un chauffage rapide et uniforme des billes à l'intérieur du creuset M11 étant donné que la flamme M14 peut se propager entre les interstices présents entre les billes. Pour améliorer la propagation de la flamme M14, l'auget de chauffage M1 peut en outre être pourvu d'une soufflante M15 adaptée à générer un flux d'air pulsé qui a pour tendance d'entraîner la flamme M14 en direction du creuset M11 et à travers les trous de passage M12. Le flux d'air chaud pulsé passe directement à travers la quantité de billes présente dans le creuset M11 et les chauffe de manière rapide et uniforme.
  • Le chapeau M2 a pour première fonction de fermer le creuset M11 lors de la phase de chauffage. Ainsi, une quantité minime de chaleur est dissipée dans l'atmosphère. Il s'ensuit que le chauffage des billes est encore plus rapide et plus uniforme. Pour garantir une parfaite étanchéité entre le chapeau M2 et l'auget M1, on peut prévoir des joints toriques d'étanchéité M17 et M22. La seconde fonction du chapeau M2 est de collecter et d'évacuer les gaz chauds du creuset. Pour cela, le chapeau M2 forme une hôte de convergence M23 qui se prolonge par un conduit d'évacuation M24. Les gaz chauds peuvent par exemple être acheminés à travers un tuyau J au sécheur D, comme visible sur la figure 1. D'autres applications pour les gaz chauds évacués sont évidemment envisageables.
  • Un tel module de chauffage trouve une application privilégiée dans l'installation de production de gaz de pyrolyse décrit précédemment. Toutefois, on peut mettre en oeuvre un tel module de chauffage dans d'autres installations nécessitant de chauffer rapidement et de manière homogène de la matière solide, telles que des billes, sans chercher à la faire fondre.
  • Grâce à l'invention, grâce à la conception particulière des sas et des modules de chauffage, l'installation de production de gaz de pyrolyse est optimisée.

Claims (10)

  1. Module de chauffage pour chauffer de la matière solide, tel que des billes (B), à une température déterminée, caractérisé en ce qu'il comprend :
    - un auget de chauffage (M1) comprenant un creuset (M11) pour recevoir la matière à chauffer, et un bruleur (M13) pour chauffer le creuset (M11) et la matière à chauffer,
    - un chapeau (M2) monté de manière amovible sur l'auget de chauffage (M1) pour fermer le creuset (M11).
  2. Module selon la revendication 1, dans lequel le creuset (M11) est pourvu de trous de passage (M12) pour acheminer la chaleur du bruleur (M13) dans le creuset (M11) à travers la matière à chauffer.
  3. Module selon la revendication 2, dans lequel le creuset (M11) est tronconique et comprend une pluralité de les trous de passage (M12).
  4. Module selon la revendication 2 ou 3, dans lequel l'auget de chauffage (M1) comprend en outre une soufflante (M15) pour générer un flux d'air chauffé par le bruleur (M13) à travers les trous de passage (M12) du creuset (M11) et la matière à chauffer.
  5. Module selon l'une quelconque des revendications précédentes, dans lequel le chapeau (M2) comprend un conduit d'évacuation (M24) pour évacuer les gaz chauds du creuset.
  6. Module selon l'une quelconque des revendications précédentes, dans lequel l'auget de chauffage (M1) est monté pivotant autour d'un axe horizontal (V) et le chapeau (M2) est déplaçable en translation selon un axe vertical (Z).
  7. Système de chauffage de matière (M) comprenant plusieurs modules de chauffage selon l'une quelconque des revendications précédentes, dans lequel les modules sont disposés côte à côte, les augets de chauffage (M1) étant montés pivotant selon un axe horizontal commun (V), chaque auget pivotant de manière indépendante, le système de chauffage (M) comprenant en outre un rail de chargement de matière (M3) disposé au-dessus des augets (M1) et pourvu d'un chariot de chargement de creusets (M31) et un rail de déchargement de matière chauffée (M4) disposé en-dessous des augets (M1) et pourvu d'un chariot de déchargement de creusets (M41), les modules et les chariots étant actionnés de manière séquencée pour délivrer de la matière chauffée avec un débit séquencé régulier.
  8. Installation pour produire du gaz de pyrolyse à partir de matière organique comprenant :
    - un four de pyrolyse (F) fonctionnant sans oxygène avec des billes préchauffées (B),
    - un système de chauffage (M) selon la revendication 7 pour chauffer les billes (B), et
    - des systèmes d'acheminement de billes (A1, A2, Q) pour acheminer les billes chauffées du système de chauffage (M) au four de pyrolyse (F) et les billes refroidies du four au système de chauffage.
  9. Installation selon la revendication 8, dans laquelle le système de chauffage (M) est positionné au-dessus du four de pyrolyse (F), les systèmes d'acheminement comprenant des ascenseurs (A1, A2) pourvus de godets (G1, G2) déplaçables verticalement en va-et-vient.
  10. Installation selon la revendication 8 ou 9, dans laquelle le four de pyrolyse (F) est placé dans une enceinte étanche (E) pourvue d'une entrée de matière organique (D1) et une sortie de gaz de pyrolyse (I), ainsi que d'une entrée de billes préchauffées et une sortie de billes refroidies, l'entrée et/ou la sortie de billes étant équipée d'un sas (Si, So) comprenant :
    - une cage fixe (S1) pourvue de deux ouvertures disposées de manière opposée, à savoir une ouverture haute de chargement (S13) et une ouverture basse de déchargement (S19),
    - un tambour rotatif (S2) monté en rotation selon un axe (Y) à l'intérieur de la cage (S1), le tambour comprenant une fenêtre (S22) qui est positionnable sélectivement en regard d'une des ouvertures (S13, S19) de la cage fixe (S1) pour charger et décharger la matière du sas (Si, So).
EP11817386.3A 2010-12-21 2011-12-19 Module de chauffage, systeme de chauffage comprenant plusieurs modules de chauffage et installation comprenant un tel systeme de chauffage Active EP2655996B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL11817386T PL2655996T3 (pl) 2010-12-21 2011-12-19 Moduł grzewczy, system do podgrzewania zawierający kilka modułów grzewczych i instalacja zawierająca taki system do podgrzewania
HRP20151296TT HRP20151296T1 (hr) 2010-12-21 2015-11-30 Grijaä†i modul, sustav za grijanje koji sadrži više grijaä†ih modula i instalacija koja sadrži takav sustav za grijanje

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1060943A FR2969266B1 (fr) 2010-12-21 2010-12-21 Module de chauffage, systeme de chauffage comprenant plusieurs modules de chauffage et installation comprenant un tel systeme de chauffage.
PCT/FR2011/053044 WO2012085422A1 (fr) 2010-12-21 2011-12-19 Module de chauffage, systeme de chauffage comprenant plusieurs modules de chauffage et installation comprenant un tel systeme de chauffage

Publications (2)

Publication Number Publication Date
EP2655996A1 EP2655996A1 (fr) 2013-10-30
EP2655996B1 true EP2655996B1 (fr) 2015-09-02

Family

ID=44351692

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11817386.3A Active EP2655996B1 (fr) 2010-12-21 2011-12-19 Module de chauffage, systeme de chauffage comprenant plusieurs modules de chauffage et installation comprenant un tel systeme de chauffage

Country Status (14)

Country Link
US (1) US9291394B2 (fr)
EP (1) EP2655996B1 (fr)
CN (1) CN103348206B (fr)
AU (1) AU2011346973B2 (fr)
BR (1) BR112013015983B1 (fr)
CA (1) CA2821875C (fr)
DK (1) DK2655996T3 (fr)
ES (1) ES2555129T3 (fr)
FR (1) FR2969266B1 (fr)
HR (1) HRP20151296T1 (fr)
PL (1) PL2655996T3 (fr)
PT (1) PT2655996E (fr)
RU (1) RU2596732C2 (fr)
WO (1) WO2012085422A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018003969A1 (de) * 2018-05-16 2019-11-21 Meri Environmental Solutions Gmbh Verfahren und Vorrichtung zum Trocknen von vorzugsweise einer laufenden Materialbahn mit wenigstens einer mit Biogas beheizten Trocknungseinrichtung
EP3928050A4 (fr) 2019-02-20 2022-11-02 Westran Thermal Processing LLC Système de transfert d'énergie industriel modulaire

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3020227A (en) * 1959-12-21 1962-02-06 Oil Shale Corp Process and apparatus for heating solid inert heat-carrying bodies
US3595540A (en) * 1969-09-02 1971-07-27 Oil Shale Corp Ball heater-equilibrator system
US4404152A (en) * 1980-11-24 1983-09-13 Phillips Petroleum Company Iron-containing refractory balls for retorting oil shale
US4384947A (en) * 1981-08-10 1983-05-24 Tosco Corporation Preheating of oil shale prior to pyrolysis
US4407653A (en) * 1981-11-19 1983-10-04 Tosco Corporation Apparatus for heating solid heat-carrying bodies
CA1265930A (fr) * 1984-03-05 1990-02-20 Fernand Claisse Machine pour la preparation d'echantillons
US4605438A (en) * 1985-06-28 1986-08-12 The Dow Chemical Company Apparatus and method for forming a wear-resistant metal composition
GB8826142D0 (en) * 1988-11-08 1988-12-14 British Gas Plc Apparatus for & method of heating container
US5599182A (en) * 1995-07-26 1997-02-04 Xothermic, Inc. Adjustable thermal profile heated crucible method and apparatus
TW460584B (en) * 1996-07-15 2001-10-21 Nippon Crucible Co Continuous melting apparatus for law-melting point metal, improved crucible for such apparatus, and melting method using such apparatus
JPH1038261A (ja) * 1996-07-18 1998-02-13 Toyota Motor Corp 燃焼装置
JP3796617B2 (ja) * 1998-10-23 2006-07-12 日本坩堝株式会社 アルミニウムインゴット等の溶解保持炉
JP2002089822A (ja) * 2000-09-19 2002-03-27 Akira Minowa 灰の溶融装置
FR2858570B1 (fr) 2003-08-04 2006-11-17 Gerard Poulleau Procede pour la thermolyse et/ou le sechage de dechets organiques utilisant un four a billes
JP4776541B2 (ja) * 2004-09-29 2011-09-21 日本坩堝株式会社 加熱処理装置及び加熱処理方法
FR2882046B1 (fr) * 2005-02-15 2007-04-06 Thales Sa Installation de production d'hydrogene ou de gaz de synthese par gazeification
US7858022B2 (en) * 2005-06-09 2010-12-28 Nippon Crucible Co., Ltd. Crucible-type continuous melting furnace
CN101050920A (zh) * 2007-04-18 2007-10-10 天津镁特威科技有限公司 燃汽式镁合金定量熔化保温炉
CN201053820Y (zh) * 2007-04-19 2008-04-30 重庆新永精密合金有限公司 高效坩埚炉
CN201145476Y (zh) * 2007-08-31 2008-11-05 天津镁特威科技有限公司 辐射管组件式镁合金定量熔化保温炉
CN102066287A (zh) * 2008-06-18 2011-05-18 住友化学株式会社 钛酸铝系陶瓷的制造方法
KR101015277B1 (ko) * 2008-12-10 2011-02-15 삼성모바일디스플레이주식회사 증발원
RU84375U1 (ru) * 2009-03-17 2009-07-10 Учреждение Российской Академии Наук Объединенный Институт Высоких Температур Ран (Оивт Ран) Устройство пиролизной переработки органических веществ
RU2406747C1 (ru) * 2009-04-15 2010-12-20 ООО "Энергетика и технология" (ООО "ЭНИТ") Пиролизный комплекс для утилизации твердых бытовых отходов
CN201614431U (zh) * 2009-07-16 2010-10-27 王占双 一种支撑坩埚

Also Published As

Publication number Publication date
CA2821875C (fr) 2019-12-31
BR112013015983A2 (pt) 2018-07-10
DK2655996T3 (en) 2015-12-14
WO2012085422A1 (fr) 2012-06-28
CN103348206B (zh) 2016-02-24
RU2013133989A (ru) 2015-01-27
BR112013015983B1 (pt) 2019-07-09
CN103348206A (zh) 2013-10-09
AU2011346973A1 (en) 2013-07-11
US9291394B2 (en) 2016-03-22
AU2011346973B2 (en) 2017-04-13
US20130302217A1 (en) 2013-11-14
CA2821875A1 (fr) 2012-06-28
FR2969266B1 (fr) 2013-01-04
FR2969266A1 (fr) 2012-06-22
HRP20151296T1 (hr) 2016-01-01
ES2555129T3 (es) 2015-12-29
EP2655996A1 (fr) 2013-10-30
RU2596732C2 (ru) 2016-09-10
PL2655996T3 (pl) 2016-02-29
PT2655996E (pt) 2015-12-22

Similar Documents

Publication Publication Date Title
EP0606608B1 (fr) Procédé pour l évacuation de résidus solides d'une installation d'épuration de gaz
FR2608461A1 (fr) Installation et procede perfectionnes d'extraction de petrole, de gaz et de sous-produits a partir de schistes bitumineux et d'autres matieres impregnees d'hydrocarbures
EP2915897A1 (fr) Procédé de rechargement d'une cellule d'évaporation
WO2016193274A1 (fr) Four de craquage
EP2655996B1 (fr) Module de chauffage, systeme de chauffage comprenant plusieurs modules de chauffage et installation comprenant un tel systeme de chauffage
EP0099833A1 (fr) Dispositif de conversion et de récupération d'énergie thermique
EP0045256A2 (fr) Procédé et installation de gazéification de matières d'origine végétale
EP0485255B1 (fr) Procédé et dispositif de production d'un combustible solide à partir de déchets combustibles
EP0420776B1 (fr) Procédé et dispositif pour le chargement de matériaux dans un four, et le préchauffage de ceux-ci
FR2969170A1 (fr) Sas d'entree ou de sortie, et installation de production de gaz de pyrolyse utilisant un tel sas.
EP0972562B1 (fr) Dispositif d'élimination de dépôts carbonés sur des objets solides
EP0990848B1 (fr) Procédé d'épuration thermique de gaz et incinérateur thermique régénératif
CA3039727C (fr) Dispositif de production de dihydrogene, procede de production de dihydrogene a partir d'un tel dispositif et utilisation d'un tel dispositif
EP0451048B1 (fr) Procédé et installation de séchage et de dégazage de poudres
EP0624656A1 (fr) Procédé et installation pour le traitement par thermolyse sous vide de produits solides, avec séparation et récupération en continu d'une fraction liquide de ces produits
EP0491611A1 (fr) Procédé de traitement de fumées de silice en vue de leur blanchiment, et dispositif de mise en oeuvre du procédé
EP1470204A2 (fr) Procede et installation pour gazeifier des matieres combustibles
EP3178578B1 (fr) Installation d'incineration de dechets et procede associe
WO1996011742A1 (fr) Installation pour le traitement de dechets contenant une fraction organique
WO2007125198A1 (fr) Procédé de thermolyse et système à tunnel de thermolyse
FR2505350A1 (fr) Gazeificateurs de combustibles solides a lit fixe et a tirage inverse
WO1991019685A1 (fr) Installation pour le traitement d'une matiere premiere pulverulente telle que sulfate de calcium en vue de preparer un liant hydraulique
BE551978A (fr)
FR2486957A1 (fr) Chariot chargeur destine a l'alimentation en charbon des fours a coke a chambres horizontales
FR2778734A1 (fr) Four tournant pour le traitement de dechets domestiques et industriels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150402

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 746871

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011019463

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20151296

Country of ref document: HR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20151207

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20151130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2555129

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20151229

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20151296

Country of ref document: HR

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 746871

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151203

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011019463

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151219

26N No opposition filed

Effective date: 20160603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151219

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111219

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20151296

Country of ref document: HR

Payment date: 20190606

Year of fee payment: 8

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20151296

Country of ref document: HR

Payment date: 20191217

Year of fee payment: 9

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20151296

Country of ref document: HR

Payment date: 20201214

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HR

Payment date: 20201214

Year of fee payment: 10

Ref country code: PT

Payment date: 20201211

Year of fee payment: 10

Ref country code: DK

Payment date: 20201223

Year of fee payment: 10

Ref country code: IT

Payment date: 20201215

Year of fee payment: 10

Ref country code: SE

Payment date: 20201211

Year of fee payment: 10

Ref country code: FR

Payment date: 20201224

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20201211

Year of fee payment: 10

Ref country code: BE

Payment date: 20201223

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20201211

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210122

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210209

Year of fee payment: 10

Ref country code: GB

Payment date: 20210118

Year of fee payment: 10

Ref country code: DE

Payment date: 20210112

Year of fee payment: 10

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20151296

Country of ref document: HR

Effective date: 20221219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011019463

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211219

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211220

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211219

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211219

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211219