WO2005018841A2 - Thermolyse de dechets organiques en four a billes - Google Patents

Thermolyse de dechets organiques en four a billes Download PDF

Info

Publication number
WO2005018841A2
WO2005018841A2 PCT/FR2004/002032 FR2004002032W WO2005018841A2 WO 2005018841 A2 WO2005018841 A2 WO 2005018841A2 FR 2004002032 W FR2004002032 W FR 2004002032W WO 2005018841 A2 WO2005018841 A2 WO 2005018841A2
Authority
WO
WIPO (PCT)
Prior art keywords
waste
oven
thermolysis
heating
balls
Prior art date
Application number
PCT/FR2004/002032
Other languages
English (en)
Other versions
WO2005018841A3 (fr
WO2005018841B1 (fr
Inventor
Gérard POULLEAU
Original Assignee
Colignon, Pascal
Hustache, François
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colignon, Pascal, Hustache, François filed Critical Colignon, Pascal
Priority to AU2004266869A priority Critical patent/AU2004266869B2/en
Priority to EP04767811A priority patent/EP1660248A2/fr
Priority to US11/659,123 priority patent/US20090218209A1/en
Priority to CN2004800290263A priority patent/CN1863606B/zh
Priority to BRPI0413322-6A priority patent/BRPI0413322A/pt
Priority to CA2576071A priority patent/CA2576071C/fr
Publication of WO2005018841A2 publication Critical patent/WO2005018841A2/fr
Publication of WO2005018841A3 publication Critical patent/WO2005018841A3/fr
Publication of WO2005018841B1 publication Critical patent/WO2005018841B1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/16Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/20Incineration of waste; Incinerator constructions; Details, accessories or control therefor having rotating or oscillating drums
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/508Providing additional energy for combustion, e.g. by using supplementary heating
    • F23G2900/50801Providing additional energy for combustion, e.g. by using supplementary heating using the heat from externally heated bodies, e.g. steel balls

Definitions

  • thermolysis is an alternative to incineration, ' over which it has many advantages (no emission of dioxins, no production of ash contaminated with organic compounds, great flexibility Operating) .
  • a good presentation of the question appears in the ⁇ Report on new technologies. Of recovery of household waste and ordinary industrial waste ', Parliamentary Office for the evaluation of scientific and technological choices, France, National Assembly n ° 1693 / Senate, n ° 415, G. Miquel and S. Poignant (Ile proximity: modes de treatment, III: thermolysis), as well as in G. Poulleau, Household waste ', edition Air Eau California, 2001.
  • Thermolysis consists of a chemical decomposition by heating in the absence of air of organic matter, whatever its form, liquid, pasty or solid. It is carried out, continuously or discontinuously, by bringing the organic matter to a temperature of 400 to 700 ° C., or even up to 1100 ° C. when it is a question of treating hazardous waste, away from air, in a fixed enclosure or rotating.
  • risky waste has the meaning given to it by the legislator, parts of cattle including parts likely to contain prions, agents of spreading BSE).
  • the manufacture of charcoal, about which we speak rather of pyrolysis, is thermolysis. Pyrolysis has long been applied to the recovery of household waste (DE 29040324, Berghoff).
  • thermolysis transforms organic substances into variously recoverable products: - gases, burnt on the production site, for example as a heat source for thermolysis itself; condensates which 'the oil fraction can be exported as a fuel; - solid residues comprising on the one hand a coke, which can be exported as fuel after reprocessing, and a mineral fraction which, depending on the nature and characteristics of the organic matter treated, can be recovered or eliminated in accordance with the legislation in force.
  • Heating of the mass to be thermolyzed is obtained by various means, inter alia by the direct action of a radiant flame inside the enclosure, by circulation of fumes or combustion gases through the mass of waste to thermolyze, by contact with internal tubes, by external heating of the enclosure.
  • thermolysis installations for example FR 2654112 (CGS), FR 2725643 (Traidec).
  • CGS CGT
  • FR 2725643 Traidec
  • Direct heating of the material with a combustion gas at high temperature is a technique which has major drawbacks.
  • the combustion gases generally produced with the thermolysis gas contain a lot of oxygen. Indeed, producing a flame in a enclosure where one wishes to thermolyze waste requires that the quantity of air in the flame be increased, in order precisely to preserve this flame and its temperature which drops inexorably in a reducing medium. Under these conditions it is common to observe excess air from 100 to 200%, whereby the excess air and in particular the oxygen of this air will combine with chlorinated molecules (for example) and produce dioxins but also all kinds of combinations which denature the products of thermolysis.
  • the present invention overcomes these drawbacks with a process for thermolysis of organic waste which consists in providing the heat necessary for the thermal treatment of this waste by previously overheated steel balls.
  • the term 'organic waste' means different solids, semirismaux, paste containing a certain proportion of organic matter.
  • putrescible fraction of household waste sludge from industrial and urban treatment plants, agricultural waste, refusal of composting, organic matter from the food industry (fats, slaughterhouse waste including hazardous waste, animal meal, etc.), non-recoverable organic matter from industry, shredded non-retreadable used tires, hospital waste, generally all waste containing organic matter which, if respected legislation, can no longer be the subject of burial in the state or cremation.
  • thermolysis means heat treatment away from air resulting in the physical and chemical transformation of the material subjected to this treatment with release of volatile condensable or noncondensable products and formation of a solid carbonaceous residue. (coke). This is indeed true thermolysis, for the course of which the total absence of air is a condition of its operation. What distinguishes the process from waste treatment by combustion or partial thermolysis.
  • the invention consists of a process for the thermal treatment, in an oxygen-free atmosphere, of organic waste in which the waste is heated in a stationary or rotary furnace, characterized in that the means for heating said waste is consisting of steel balls overheated beforehand and which pass in the furnace at the same time as the said waste with which they are intimately mixed.
  • It also consists of an installation for the thermal treatment of organic waste comprising at least one fixed or rotary furnace in which the waste travels during its treatment, means for supplying the furnace with waste, means for recovering the treated waste, means for recovering the volatile products resulting from this treatment, as well as means for heating the mass of waste, characterized in that the means for heating the mass of waste consists of a mass of steel balls previously overheated, which pass through the furnace with the waste to be treated, as well as devices for supplying the furnace with superheated beads, their recovery at the outlet of the processing furnace, for the circulation of these beads, as well as an oven for heating marbles.
  • thermolysis group The general structure of a thermolysis group according to the invention is shown diagrammatically in FIG. 1, with: (1) thermolysis oven; (2) High temperature heated ball inlet duct; (3) Waste intake duct to be thermolyzed; (4) Barrel or airlock of exit of the balls having given up their thermal energy; (5) Worm; (6) Vibrating grid to separate the balls from the thermolysis residues; (7) outlet pipe for the mixture of thermolysis residue beads; (8) Recirculation pipe for steel balls; (9) Steel balls; (10) Oven for heating steel balls; (11) Barrel or airlock for introducing steel balls; (12) Barrel or airlock for introducing the material to be treated; (13) Extraction fan or vacuum pump for the suction of thermolysis gases and the maintenance of a low vacuum in the oven; (14) Collector (thermolysis gas for energy recovery; fumes for condensation and extraction of the incondensables to be burned); (15) Hopper for recovery of thermolysis residues; (16) Thermolysis residue transfer screw; (17) Airlock or barrel for
  • FIG. 2 represents a specific thermolysis unit; we will read the following elements which supplement those of general figure 1: (31) Storage hopper for thermolysis residues; (32) Wash tank for thermolysis residues; (33) Solid residue evacuation pipe; (34) Coke drip mat; (35) Coke drainage storage and recovery basin; (36) Storage tank for all liquid effluents, condensates, coke drips, soiled water from the washing tank and separation of thermolysis residues; (37) Towards the use of thermolysis gases.
  • FIG. 3 is the diagram of an installation capable of accommodating waste of variable and more or less significant humidity and which comprises, in series, drying oven and a thermolysis unit.
  • thermolysis oven a buffer hopper for the storage of dried waste
  • 38) of an elevator between the hopper (24) and the intake duct (3) of the thermolysis oven we will find the elements indexed in the previous figures around (S) the drying oven; (T) the thermolysis oven; (24) a buffer hopper for the storage of dried waste; (38) of an elevator between the hopper (24) and the intake duct (3) of the thermolysis oven.
  • the heating mass of the process consists of a significant amount of steel balls, usually balls with a diameter of 20 to 50 millimeters. It may be necessary to use larger diameters to treat particular loads, for example, 60 millimeters to thermolyze shredded tires or long fiber waste.
  • the choice of steel balls provides a solution to certain technical requirements, in particular rapid transfer of heat at high temperature levels, optimization of the exchange surfaces in the reduced space that constitutes the thermolysis furnace, mechanical disintegration of the organic matter as soon as it enters the oven and coke at the end of the journey.
  • the load of the mass of the balls and their diameter are determined as a function of the powers to be used, of the free volume within the heating mass; other criteria are involved such as their handling or their handling during recirculation and in particular the transit in the barrels, and the concern to avoid deformations in the thermolysis enclosure during their fall at the entry of the device.
  • Their apparent density, important compared to the material to be treated, is of the order of 4000 kg / m 3 to 4500 kg / m 3 .
  • the developed surface of the heating mass is very large with regard to its volume and guarantees, during its mixing with the material to be treated, a uniformly distributed distribution of the heat in the mass of the waste.
  • the furnace where the thermal treatment of waste takes place is a horizontal or slightly inclined furnace.
  • the furnace where the thermal treatment of the waste takes place is preferably a stationary furnace, in which the mass of balls + waste advance thanks to an endless screw (5) equipped with stirring devices (profiled bars for example).
  • the oven is rather a traditional oven equipped for the entry of balls and waste, with a device for pre-mixing the balls and waste.
  • a backup heater (19) is provided, if only to ensure the preheating of the oven at the start of the installation; it occasionally fulfills various functions: maintaining the outlet temperature of the steel balls, booster for changing the speed (material flow, raising the temperature, thermolysis, drying, etc.) All barrels and airlocks for introducing or leaving the materials are waterproof. air by construction. In in practice, they are fitted with pressure balancing units neutralizing the interior volume of the barrel and the supply of waste or the output of solid thermolysis products is carried out by a cascade of hoppers with automatic filling.
  • thermolysis furnace (1) All the rotating parts, bearings of the rotary kiln, axis of the Archimedes screw and screw for lifting and transferring the balls and solids are also made impermeable to air, for example, by being fitted with motors and bearings in waterproof cages.
  • the process works as described below (refer to Figures 1 and 2).
  • the waste enters the thermolysis furnace (1) through the intake duct (3) and the barrel (12) and they meet there the steel balls which have been admitted at the head by the duct (2) and the barrel (11) coming from a heating oven (10) where they have been brought to a high temperature of the order of 600 to 1100 ° C.
  • Thermolysis occurs during the mixing of waste and balls during the progression of materials in the oven (7).
  • thermolysis residues are extracted through the grid (6), collected in a recovery hopper (15) and evacuated to the outside by an extraction system (16) and airlock and conduit (17) and (18) .
  • the balls are taken up via the barrel (4), reassembled by the elevator (22) and returned via the conduit (8) to the oven (10) from where they resume their cycle.
  • the thermolysis gases are captured by a collector (14), separated from their condensable components (21) and extracted at (13) to be burned or to supply gas turbines on site.
  • the installation (FIG. 2) is supplemented with the elements which have been listed with FIG.
  • (32) is the equipment for the compulsory treatment of thermolysis residues, a flooding which makes it possible to separate by draining (34) a floating fuel, coke, by decantation (33) solid residues, including metals which can be separated for example by sorting magnetic or eddy current, and the flooding and draining water (35) to be directed to a storage (36) in order to undergo a depollution treatment.
  • the sludge settled in (33) will be treated and conditioned before being evacuated to a specialized landfill center or to a possible recovery if the final product is acceptable.
  • thermolysis gases are used on site (37)
  • the temperature of the waste in contact with the steel balls is brutal, which favors the production of gas to the detriment of coke.
  • the gases released at high temperature then remain in contact with the heating mass long enough for the fats and other heavy molecules that generate certain types of waste, to undergo cracking: a thermolysis gas is produced with an optimized calorific value, fouling of the installation is reduced.
  • the heating of the steel balls is carried out in an oven (10), which may be gas, electrically heated, induction. In the case of a gas oven, it is advantageous to use the thermolysis gas taken from production for a percentage varying between 10 and 15%, which leaves 85% to 90% of gas for external energy recovery.
  • the simplest embodiment is that of an open flame oven, the atmosphere of which is isolated from that of the rest of the installation by sealed barrels, as described above, to oppose the introduction of the excess flame air in the thermolysis oven.
  • Induction heating of the balls is a variant particularly elegant, possible due to the metallic nature of this vector.
  • the process being simple and secure in its implementation and its operation in continuous or semi-continuous mode, very small-sized installations can be set up on the actual waste production sites; they allow the producer of waste himself to destroy it and recover it for his own needs, the excess energy in the form of hot water, steam or electricity.
  • this hopper can be used in a cracking reactor for thermolysis gases, for example in the case where the waste is a liquefied fat.
  • thermolysis gases for example in the case where the waste is a liquefied fat.
  • the vaporization of the water becomes a limiting factor for carrying out the thermolysis and it is better to provide for prior dehydration of this waste.
  • the invention easily lends itself to such dehydration within the installation itself, at least if the initial dryness (dry matter content) is greater than 35%. (Below 35%, thermolysis would require an external supply of calories and it is more reasonable to apply to these more water-rich materials an external mechanical treatment much less energy-consuming). This is shown schematically in Figure 3.
  • the installation then comprises two ovens of the same type in series, the thermolysis oven (T) and the drying oven (S). It is the same heating mass of steel balls which passes through these two ovens and which successively operates the thermolysis of the dried waste and the dehydration of the wet waste.
  • Wet waste enters the drying oven (S) from where it passes directly into the thermolysis oven (T).
  • the high temperature heating mass first enters the oven (T) where it thermolyses its contents; at the exit from the thermolysis oven, its temperature is still high enough to ensure partial drying of the waste in the oven (S).
  • An elevator (38) takes up the dried waste from the hopper (24) and brings it to the airlock (12) for introducing the waste into the thermolysis oven.
  • a device for collecting the gases and drying fumes is provided on the oven (S) which directs them to the burner of the thermolysis gases.
  • the installation according to the invention can obviously be used as a simple material drying installation. Such drying, although unconventional, however has various advantages, namely that performed in the absence of air, it does not form any dangerous oxidation product; and that being a direct contact between the material to be dried and the heating mass, the necessary energy is transmitted to the very heart of the material causing a rapid and homogeneous rise in its temperature and avoids its agglomeration.
  • thermolysis group and a drying group are minimal and are due to the inlet and outlet temperatures of the heating mass, - in thermolysis, 600 to 1100 ° C at the inlet, 500 to 850 ° C at the outlet for gases and residues, - during drying, 500 to 600 ° C at the inlet, 120 to 140 ° C at the outlet of dry waste, which lead, for example, to the development of the whole condensation (21) in condensation of the mist in order to extract the noncondensables to be burned in a boiler, or of the extraction fan (13) for the suction of drying mist.
  • the thermal shock at the inlet being sufficient, in the case of hazardous waste, to prevent any risk of entrainment of prions in the vapors.
  • Other uses of the installation with steel ball furnace are conceivable (sterilization, cooking, etc.) which do not depart from the scope of the invention.
  • the following nonlimiting examples illustrate the invention.
  • Example 1 A continuous thermolysis installation treating annually 800 tonnes (approximately 100 kg per hour) of waste having undergone prior drying in order to reduce their water content to 5%, and titrating (average composition) 70% of materials organic, is arranged around a tubular reactor 0.7 m in diameter and 7.2 m in total length.
  • the energy requirements for carrying out thermolysis, determined by prior tests, are (excluding thermal losses) 50 kWh per 100 kg of waste.
  • the average thermolysis temperature is fixed at 600C.
  • the heating mass consists of steel balls 20 mm in diameter, the mass of which is estimated as follows.
  • the heating mass yielding its heat from 700 to 500 ° C is 50,000 / (0.174 X 200) ⁇ 1,437 kg, i.e. 44,000 20 mm diameter beads (32.65 g per bead).
  • the installation produces gas at a rate of approximately 70 kg per hour, recoverable for approximately 600 kWh, and 25 kg of solid residues.
  • Example 2 The same installation allows the treatment of butchery waste. It guarantees thermolysis throughout the mass at a temperature of 700 ° C, which can be brought to
  • the waste treatment method according to the invention is a particular application of a more general heat treatment principle, that of a method for subjecting a divided material, solid or pasty, to a heat treatment (heating or cooling) with a view to to modify its physical state or its chemical composition, characterized in that the material to be treated and a mass of steel balls previously brought to a temperature such as at the outlet of the chamber, the treated material and the mass balls are at the 'selected temperature as a temperature of heat treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Fertilizers (AREA)

Abstract

La caractéristique du procédé est que l'énergie thermique nécessaire à une thermolyse des déchets conduite en l'absence d'air leur est distribuée par une masse chauffante constituée de billes d'acier (9) qui cheminent dans un four (1) à co-courant avec les déchets. Le procédé s'applique aux déchets ménagers, aux résidus de stations d'épuration, aux déchets hospitaliers, aux déchets à risques de l'industrie agro-alimentaire, et d'une façon générale à tous les déchets contenant de la matière organique, qu'ils soient d'origine urbaine, agricole ou industrielle.

Description

THERMOLYSE DE DECHETS ORGANIQUES EN FOUR A BILLES . Domaine technique
L'invention a trait au traitement des déchets organiques, qu'ils soient d'origine industrielle, agricole ou ménagère. Elle concerne leur transformation par thermolyse, plus particulièrement par thermolyse procédant dans une installation munie d'un four fixe ou tournant. Les opérations d' élimination., des déchets s'inscrivent dans une perspective à la fois de valorisation et de préservation de l'-environnement . Comme méthode d'élimination des déchets, la thermolyse est une alternative à l'incinération,' sur laquelle elle présente beaucoup d'avantages (pas d'émission de dioxines, pas- de production de cendres contaminées par des composés organiques, grande souplesse de fonctionnement) . Un bon exposé de la question figure dans le λRapport sur les nouvelles technologies .de valorisation des déchets ménagers et des déchets industriels banals' , Office parlementaire d'évaluation des choix scientifiques et technologiques, France, Assemblée nationale n° 1693 / Sénat, n° 415, G. Miquel et S. Poignant (Ile partie : les modes de traitement, III : la thermolyse), ainsi que dans G. Poulleau, Les déchets ménagers' , édition Air Eau Conseil, 2001.
Technique antérieure
La thermolyse consiste en une décomposition chimique par chauffage en- l'absence d'air de la matière organique, quelle que soit sa forme, liquide, pâteuse ou solide. Elle est réalisée, en continu ou en discontinu, en portant la matière organique à une température de 400 à 700°C, voire jusqu'à 1100°C lorsqu'il s'agit de traiter des déchets à risques, à l'abri de l'air, dans une enceinte fixe ou tournante. (Le terme déchets à risques' s' entendant au sens que lui a donné le législateur, parties des bovins notamment les parties susceptibles de contenir les prions, agents de propagation de l'ESB). La fabrication du charbon de bois, à propos de laquelle on parle plutôt de pyrolyse, est une thermolyse. La pyrolyse a été appliquée de longue date déjà à la valorisation des ordures ménagères (DE 29040324, Berghoff) .
Quel qu'en soit le mode de réalisation, la thermolyse transforme les substances organiques en produits diversement valorisables : - des gaz, brûlés sur le site de production, par exemple comme source thermique pour la thermolyse elle- même ; de condensats dont ' la fraction huileuse est exportable comme combustible ; - de résidus solides comprenant d'une part un coke, exportable comme combustible après retraitement, et une fraction minérale qui selon la nature et les caractéristiques de la matière organique traitée peut faire l'objet d'une valorisation ou d'une élimination conformément à la législation en vigueur. Le chauffage de la masse à thermolyser est obtenu par divers moyens, entre autres par l'action directe d'une flamme radiante à l'intérieur de l'enceinte, par circulation de fumées ou de gaz de combustion à travers la masse de déchets à thermolyser, par contact avec des tubulures internes, par chauffage externe de l'enceinte. On trouve de nombreuses descriptions d' installations de thermolyse, par exemple FR 2654112 (CGS), FR 2725643 (Traidec) . Le chauffage direct de la matière avec un gaz de combustion à haute température est une technique qui présente des inconvénients majeurs. Les gaz de combustion généralement produits avec le gaz de thermolyse contiennent beaucoup d'oxygène. En effet, produire une flamme dans une enceinte où l'on souhaite thermolyser des déchets nécessite que la quantité d'air dans la flamme soit augmentée, afin justement de préserver cette flamme et sa température qui chute inexorablement en milieu réducteur. Dans ces conditions il est courant de constater des excès d'air de 100 à 200%, moyennant quoi l'excès d'air et en particulier l'oxygène de cet air va se combiner à des molécules chlorées (par exemple) et produire des dioxines mais aussi toutes sortes de combinaisons qui dénaturent les produits de la thermolyse. D'autres inconvénients doivent être signalés, à savoir l'amoindrissement du pouvoir calorifique inférieur (PCI) du gaz sortant de l'enceinte de thermolyse, et l'obligation de traiter les fumées non recyclées pour en éliminer notamment les imbrûlés consécutifs au brûlage d'un gaz contenant des fumées. Il en est ainsi de tous les procédés de destruction de déchets qui déroulent en présence d'air, tel le procédé de De Muynck, décrit dans US 5,762,010, qui s'apparente à un procédé de combustion en lit fluidisé dans lequel, dans la même enceinte, le déchet entraîné par des billes de céramique est totalement brûlé après avoir subi une pyrolyse partielle sous l'effet de la chaleur dégagée par cette combustion. Le chauffage externe de l'enceinte nécessite d'importantes surfaces d'échange thermique, implique un temps de séjour relativement long des matières organiques dans l'enceinte ; le rendement thermique est affecté de la perte de calories dans les fumées ; la surchauffe des parois provoque plus ou moins rapidement leur encrassement interne, contre lequel luttent plus ou moins efficacement des systèmes de décrassage catalytique ou mécanique lors d'arrêts obligatoires. Les tubulures chauffantes internes au four sont très sensibles à la dégradation par les ferrailles mal déchiquetées inévitablement apportées à un moment ou un autre avec les déchets à traiter. Tous les modes de thermolyse de déchets ne permettent pas d'atteindre des températures supérieures à 700°C sauf à utiliser une flamme en contact direct qui apparente dans ce cas le procédé à une incinération. De ce fait, il n'est pas possible de proposer des solutions satisfaisantes pour certains déchets tels que les déchets à risques d'abattoirs bovins, ou les déchets hospitaliers.
Exposé de l'invention
La présente invention remédie à ces inconvénients avec un procédé de thermolyse de déchets organiques qui consiste à apporter la chaleur nécessaire au traitement thermique de ces déchets par des billes d'acier préalablement surchauffées. Au sens de la présente 'invention, le terme 'déchets organiques' s'entend de différents corps solides, semi- pâteaux, pâteux contenant une certaine proportion de matières organiques. On en donne ci-après une liste non limitative : fraction putrescible de déchets ménagers, boues de stations d'épuration industrielles et urbaines, déchets agricoles, refus de compostage, matières organiques provenant de l'industrie agroalimentaire (graisses, déchets d'abattoirs dont déchets à risques, farines animales, etc.), matières organiques non valorisables en provenance de l' industrie, pneumatiques usagés non rechapables déchiquetés, déchets hospitaliers, d'une façon générale tous les déchets contenant des matières organiques qui, si l'on respecte la législation, ne peuvent plus faire l'objet d'un enfouissement en l'état ou d'une incinération. Il faut noter que la législation actuelle n'accorde le droit à l'enfouissement de déchets industriels spéciaux que si leur carbone organique total est inférieur à 3 grammes par kilo ; aussi mesure-t-on tout l'intérêt des procédés, tels celui de l'invention, qui permet d'éliminer en totalité le carbone organique dans des déchets pauvres tels que le sable contaminé par des hydrocarbures ou des phénols. Cette définition s'étend également aux liquides organiques qui peuvent être distribués sur les billes de manière à les enrober, ou le cas échéant être mêlés préalablement à des supports organiques absorbants, par exemple déchets végétaux, sciures. Egalement au sens de la présente invention, thermolyse' signifie traitement thermique à l'abri de l'air aboutissant à la transformation physique et chimique du matériau soumis à ce traitement avec libération de produits volatils condensables ou incondensables et formation d'un résidu solide carboné (coke). Il s'agit bien ici de thermolyse vraie, pour le déroulement de laquelle l'absence totale d'air est une condition de son fonctionnement. Ce en quoi, le procédé se distingue des traitements de déchets par combustion ou de thermolyse partielle.
Avec ces définitions, l'invention consiste en un procédé pour le traitement thermique, en atmosphère dépourvue d'oxygène, de déchets organiques dans lequel les déchets sont chauffés dans un four fixe ou rotatif, caractérisé en ce que le moyen de chauffage desdits déchets est constitué de billes d'acier préalablement surchauffées et qui cheminent dans le four en même temps que lesdits déchets avec lesquels elles sont intimement mêlées. Elle consiste également en une installation pour le traitement thermique de déchets organiques comprenant au moins un four fixe ou rotatif dans lequel cheminent les déchets au cours de leur traitement, des moyens d'alimentation du four en déchets, des moyens de récupération des déchets traités, des moyens de récupération des produits volatils issus de ce traitement, ainsi que des moyens de chauffage de la masse de déchets, caractérisé en ce que le moyen de chauffage de la masse des déchets est constitué par une masse de billes d'acier préalablement surchauffées, qui cheminent dans le four avec les déchets à traiter, ainsi que des dispositifs pour l'alimentation du four en billes surchauffées, leur récupération à la sortie du four de traitement, pour la circulation de ces billes, ainsi qu'un four pour le chauffage des billes.
Figures et références
La structure générale d'un groupe de thermolyse selon l'invention est schématisée sur la figure 1, avec : (1) Four de thermolyse ; (2) Conduit d'admission billes chauffées à haute température ; (3) Conduit d'admission déchets à thermolyser ; (4) Barillet ou sas de sortie des billes ayant cédé leur énergie thermique ; (5) Vis sans fin ; (6) Grille vibrante pour séparer les billes des résidus de thermolyse ; (7) Conduit de sortie du mélange de billes de résidus de thermolyse ; (8) Conduit de recirculation des billes en acier ; (9) Billes en acier ; (10) Four de chauffage des billes d'acier ; (11) Barillet ou sas d'introduction des billes d'acier ; (12) Barillet ou sas d'introduction de la matière à traiter ; (13) Ventilateur d'extraction ou pompe à vide pour l'aspiration des gaz de thermolyse et le maintien d'une faible dépression dans le four ; (14) Collecteur (gaz de thermolyse pour valorisation énergétique ; buées pour condensation et extraction des incondensables devant être brûlés) ; (15) Trémie de récupération des résidus de thermolyse ; (16) Vis de transfert des résidus de thermolyse ; (17) Sas ou barillet d'évacuation des résidus de thermolyse ; (18) Conduit d'évacuation des résidus de thermolyse ; (19) Chauffage d'appoint pour compenser les déperditions du four ou apporter de l'énergie lors des phases démarrage ; (20) Isolation de l'ensemble four, conduits, trémie, etc. ; (21) Ensemble condensation sous dépression, récupération des condensables de thermolyse ; (22) Dispositif de remontée de la masse chauffante (vis, tapis, etc. ) ; (M) sont des moteurs.
La figure 2 représente une unité spécifique de thermolyse ; on y lira les éléments suivants qui complètent ceux de la figure générale 1 : (31) Trémie de stockage des résidus de thermolyse ; (32) Bassin de lavage des résidus de thermolyse ; (33) Conduit d'évacuation des résidus solides ; (34) Tapis d'égouttage du coke ; (35) Bassin de stockage et de reprise des egouttures du coke ; (36) Bassin de stockage de l'ensemble des effluents liquides, condensats, egouttures du coke, eau souillées du bassin de lavage et séparation des résidus de thermolyse ; (37) Vers l'utilisation des gaz de thermolyse. La figure 3 est le schéma d'une installation susceptible d'accueillir des déchets d'humidité variable et plus ou moins importante et qui comprend, en série, four de séchage et une unité de thermolyse. On y retrouvera les éléments indexés sur les figures précédentes autour (S) du four de séchage ; (T) du four de thermolyse ; (24) d'une trémie tampon pour le stockage des déchets séchés ; (38) d'un élévateur entre la trémie (24) et le conduit d'admission (3) du four de thermolyse.
Réalisation de l'invention
De façon tout à fait' caractéristique, la masse chauffante du procédé est constituée par une quantité importante de billes d'acier, le plus souvent des billes d'un diamètre de 20 à 50 millimètres. On peut être amené à utiliser des diamètres plus importants pour traiter des charges particulières par exemple, 60 millimètres pour thermolyser des broyats de pneus ou de déchets à longues fibres. Le choix de billes en acier apporte une solution à certains impératifs techniques, en particulier transfert rapide de la chaleur à des niveaux de température élevés, optimisation des surfaces d'échanges dans l'espace réduit que constitue le four de thermolyse, désagrégation mécanique de la matière organique dès son entrée dans le four et du coke en fin de parcours. La charge de la masse des billes et leur diamètre sont déterminés en fonction des puissances à mettre en œuvre, du volume libre au sein de la masse chauffante ; interviennent d'autres critères tels que leur manipulation ou leur manutention lors de la recirculation et notamment le transit dans les barillets, et la préoccupation d'éviter des déformations dans l'enceinte de thermolyse lors de leur chute à l'entrée du dispositif. On trouvera dans l'exemple 1 des indications pour l'estimation de leur charge. Leur masse volumique apparente, importante par rapport à la matière à traiter, est de l'ordre de 4000 kg/m3 à 4500 kg/m3. La surface développée de la masse chauffante est très importante en regard de son volume et garantit lors de son brassage avec la matière à traiter une diffusion uniformément répartie de la chaleur dans la masse des déchets. Cette caractéristique est particulièrement appréciable lorsqu'il s'agit du traitement thermique des déchets à risques : des températures aussi élevées que 1100°C ne sont indispensables à la destruction totale de la matière protéique, et donc des prions, que dans des installations déficientes quant à l'uniformité de la température de thermolyse . Le four où s'opère le traitement thermique des déchets est un four horizontal ou peu incliné. Lorsque la puissance à mettre en œuvre est relativement modeste et que la masse à traiter ne dépasse guère les 500 kilogrammes/heure, le four où s'opère le traitement thermique des déchets est de préférence un four fixe, dans lequel la masse billes + déchets avance grâce à une vis sans fin (5) équipée de dispositifs de brassages (barres profilées par exemple) . C'est ce mode de réalisation qui a été pris comme exemple descriptif des figures, sans que cela restreigne en rien la portée de l'invention. Pour des capacités importantes, le four est plutôt un four traditionnel équipé pour l'entrée des billes et déchets, d'un dispositif de pré-mélange des billes et des déchets. Il est prévu un chauffage d'appoint (19), ne serait-ce que pour assurer le préchauffage du four au démarrage de l'installation ; il remplit occasionnellement diverses fonctions : maintien de la température de sortie des billes en acier, appoint pour changement de régime (débit matières, rehausse température thermolyse, séchage etc.) Tous les barillets et sas d' introduction ou de sortie des matériaux sont étanches à l'air par construction. Dans la pratique, ils sont munis de centrales d'équilibrage des pressions neutralisant le volume intérieur du barillet et l'alimentation en déchets ou la sortie des produits solides de thermolyse y est réalisée par une cascade de trémies à remplissage automatique. Toutes les pièces tournantes, paliers du four tournant, axe de la vis d'Archimède et vis de relevage et de transfert des billes et des solides sont également rendues imperméables à l'air, par exemple, en étant munies de moteurs et de paliers installés en cages étanches . Le procédé fonctionne comme décrit après (se référer aux figures 1 et 2) . Les déchets pénètrent dans le four de thermolyse (1) par le conduit d'admission (3) et le barillet (12) et ils y rencontrent les billes d'acier qui ont été admise en tête par le conduit (2) et le barillet (11) en provenance d'un four de chauffage (10) où elles ont été portées à une température élevée de l'ordre de 600 à 1100°C. La thermolyse se produit au cours du brassage des déchets et des billes pendant la progression des matériaux dans le four (7). Les matériaux qui sortent du four sont maintenant constitués des billes refroidies et des résidus de thermolyse. Leur température est alors comprise entre 500 et 850°C. Les résidus de thermolyse sont extraits au travers de la grille (6), recueillis dans une trémie de récupération (15) et évacués vers l'extérieur par un système d'extraction (16) et sas et conduit (17) et (18). Les billes sont reprises via le barillet (4), remontées par l'élévateur (22) et renvoyées via le conduit (8) vers le four (10) d'où elles reprennent leur cycle. Les gaz de thermolyse sont captés par un collecteur (14), séparés de leurs composants condensables (21) et extraits en (13) pour être brûlés ou pour alimenter des turbines à gaz sur place. L'installation (figure 2) est complétée des éléments qui ont été énumérés avec la figure 1 et dont le fonctionnement est habituel à l'homme du métier. (32) est l'équipement de traitement obligatoire des résidus de thermolyse, un noyage qui permet de séparer par egouttage (34) un combustible flottant, le coke, par décantation (33) les résidus solides, dont les métaux séparables par exemple par tri magnétique ou par courants de Foucault, et les eaux de noyage et d' egouttage (35) à diriger vers un stockage (36) en vue de subir un traitement de dépollution. Les boues décantées en (33) seront traitées et conditionnées avant évacuation vers un centre d' enfouissement spécialisé ou vers une valorisation éventuelle si le produit final est acceptable. Les gaz de thermolyse sont utilisés sur place (37) La mise en température du déchet au contact des billes d'acier est brutale, ce qui favorise la production de gaz au détriment du coke. Les gaz libérés à haute température restent ensuite au contact de la masse chauffante suffisamment longtemps pour que les graisses et autres molécules lourdes que génèrent certains types de déchets, subissent un craquage : on produit un gaz de thermolyse avec un pouvoir calorifique optimisé, l'encrassement de l'installation est réduit. Le chauffage des billes d'acier est réalisé dans un four (10), qui peut être à gaz, à rayonnement électrique, à induction. Dans le cas d'un four à gaz, il est avantageux d'utiliser le gaz de thermolyse prélevé sur la production pour un pourcentage variant entre 10 et 15% ce qui laisse 85% à 90% de gaz pour une valorisation énergétique extérieure. La réalisation la plus simple est celle d'un four à flamme nue, dont l'atmosphère est isolée de celle du reste de l'installation par des barillets étanches, comme décrits plus haut, pour s'opposer à l'introduction de l'excès d'air de la flamme dans le four de thermolyse. Le chauffage des billes par induction est une variante particulièrement élégante, possible du fait de la nature métallique de ce vecteur. Le procédé étant simple et sécurisé dans sa mise en œuvre et son fonctionnement en mode continu ou semi- continu, des installations de taille très modestes peuvent être mises en place sur les lieux-mêmes de production des déchets ; elles permettent au producteur de déchets lui- même de les détruire et d' en récupérer pour ses propres besoins l'énergie excédentaire sous forme d'eau chaude, de vapeur ou d'électricité. Pour certaines applications soumises à des variations de puissances et de débits, on peut prévoir une trémie de stockage des billes chauffées en amont du barillet (11) . Par ailleurs cette trémie peut être utilisée en réacteur de craquage des gaz de thermolyse, par exemple dans le cas où le déchet est une graisse liquéfiée. Dès que la teneur en eau des déchets à thermolyser est importante, la vaporisation de l'eau devient un facteur limitant pour la réalisation de la thermolyse et il vaut mieux prévoir une déshydratation préalable de ces déchets. L'invention se prête aisément à une telle déshydratation au sein même de l'installation, au moins si la siccité (teneur en matières sèches) initiale soit supérieure à 35%. (En dessous de 35 %, la thermolyse exigerait un apport externe de calories et il est plus raisonnable d'appliquer à ces matières plus riches en eau un traitement mécanique externe beaucoup moins énergivore) . C'est ce qui est schématisé sur la figure 3. L' installation comprend alors deux fours du même type en série, le four de thermolyse (T) et le four de séchage (S) . C'est la même masse chauffante de billes d'acier qui transite dans ces deux fours et qui opère successivement la thermolyse du déchet séché et la déshydratation du déchet humide. Les déchets humides entrent dans le four de séchage (S) d'où ils passent directement dans le four de thermolyse (T) . La masse chauffante à haute température entre tout d'abord dans le four (T) où elle assure la thermolyse de son contenu ; à la sortie du four de thermolyse, sa température est encore suffisamment élevée pour assurer un séchage partiel préalable des déchets dans le four (S). Un élévateur (38) reprend les déchets séchés à la trémie (24) et les amène au sas (12) d'introduction des déchets dans le four de thermolyse. Un dispositif de collecte des gaz et buées de séchage est prévu sur le four (S) qui les dirige vers le brûleur des gaz de thermolyse. L'installation selon l'invention peut évidemment être utilisée comme installation de simple séchage de matériaux. Un tel séchage, bien que peu conventionnel, présente cependant divers avantages, à savoir qu'exécuté en l'absence d'air, il ne forme aucun produit d'oxydation dangereux ; et que s' agissant d'un contact direct entre la matière à sécher et la masse chauffante, l'énergie nécessaire est transmise au coeur même de la matière provoquant une élévation rapide et homogène de sa température et évite son agglomération. Les différences entre un groupe de thermolyse et un groupe de séchage selon l'invention sont minimes et tiennent aux températures d'entrée et de sortie de la masse chauffante, - en thermolyse, 600 à 1100°C à l'entrée, 500 à 850°C en sortie pour les gaz et les résidus, - en séchage, 500 à 600°C à l'entrée, 120 à 140°C en sortie des déchets secs, qui entraînent, par exemple, l'aménagement de l'ensemble de condensation (21) en condensation des buées afin d'en extraire les incondensables à brûler dans une chaudière, ou du ventilateur d'extraction (13) pour l'aspiration de buées de séchage. Le choc thermique a l'entrée étant suffisant, dans le cas de déchets à risques, pour empêcher tout risque d'entraînement de prions dans les vapeurs. D'autres utilisations de l'installation avec four à billes d'acier sont envisageables (stérilisation, cuissons, etc.) qui ne sortent pas du cadre de l'invention. Les exemples non limitatifs qui suivent illustrent 1' invention.
Exemple 1 Une installation de thermolyse en continu traitant annuellement 800 tonnes (soit environ 100 kg à l'heure) de déchets ayant subi un séchage préalable afin de réduire leur teneur en eau à 5%, et titrant (composition moyenne) 70% de matières organiques, est agencé autour d'un réacteur tubulaire de 0,7 m de diamètre et de 7,2 m de longueur totale. Les besoins énergétiques pour réaliser la thermolyse, déterminés par essais préalables, sont (hors pertes thermiques) de 50 kWh pour 100 kg de déchets. La température moyenne de thermolyse est fixée à 600C. La masse chauffante est constituée de billes d'acier de 20 mm de diamètre, dont la masse est estimée comme suit. Avec une chaleur spécifique moyenne de l'acier de 0,174 W/kg/°C, la masse chauffante cédant sa chaleur de 700 à 500°C est 50.000 / (0,174 X 200) ≈ 1437 kg, c'est-à-dire 44.000 billes de diamètre 20 mm (32,65 g par bille). L'installation produit du gaz à raison d'environ 70 kg par heure, valorisable pour environ 600 kWh, et 25 kg de résidus solides.
Exemple 2 La même installation permet le traitement de déchets de boucherie. Elle garantit une thermolyse dans toute la masse à une température de 700°C, pouvant être portée à
900°C s'il s'agit de déchets à risques, température à laquelle toutes les protéines, y compris les éventuels prions sont détruits. La possibilité de traitement direct des déchets de boucherie épargne une étape de transformation de la matière en farines animales.
Le procédé de traitement de déchets selon l'invention est une application particulière d'un principe de traitement thermique plus général, celui d'un procédé pour soumettre un matériau divisé, solide ou pâteux, à un traitement thermique (chauffage ou refroidissement) en vue d'en modifier son état physique ou sa composition chimique, caractérisé en ce que l'on fait cheminer dans une enceinte, à co-courant, le matériau à traiter et une masse de billes d'acier préalablement portées à une température telle qu'à la sortie de l'enceinte, le matériau traité et la masse de billes se trouvent à la ' température choisie comme température de traitement thermique.

Claims

REVENDICATIONS
1. Procédé pour le traitement thermique en atmosphère dépourvue d' oxygène de déchets organiques dans lequel les déchets sont chauffés dans un four fixe ou rotatif (four de thermolyse) , caractérisé en ce que le moyen de chauffage desdits déchets est constitué de billes d'acier préalablement surchauffées et qui cheminent dans le four en même temps que lesdits déchets avec lesquels elles sont intimement mêlées.
2. Procédé selon la revendication 1, caractérisé en ce que le traitement thermique est une thermolyse et que les billes d'acier qui constituent le moyen de cette thermolyse entrent dans le four de thermolyse à des températures comprises entre 600 et 1100°C et sortent du four à des températures comprises entre 500 et 850°C.
3. Procédé selon l'une ou l'autre des revendications 1 à 2, caractérisé en ce que le chauffage des billes est réalisé dans un four à gaz extérieur au four de thermolyse.
4. Procédé selon la revendication 3 caractérisé en ce que le chauffage des billes est réalisé dans un four à gaz alimenté par tout ou partie des gaz de thermolyse.
5. Procédé selon l'une ou l'autre des revendications 1 à 3, caractérisé en ce que le chauffage des billes est réalisé dans un four à induction.
6. Procédé selon l'une ou l'autre des revendications 1.3 caractérisé en ce que le chauffage des billes est réalisé par rayonnement dans un four électrique.
7. Procédé selon les revendications 1 à 6, dans lequel la masse chauffante est constituée de billes d'acier dont le diamètre est de 20 à 100 millimètres
8. Procédé selon les revendications 1 à 6, dans lequel la masse chauffante est constituée de billes d'acier dont le diamètre est de 20 à 50 millimètres.
9. Installation pour le traitement thermique en atmosphère dépourvue d'oxygène de déchets organiques, comprenant au moins un four fixe ou rotatif (four de thermolyse) dans lequel cheminent les déchets au cours de leur traitement, des moyens d'alimentation du four en déchets, des moyens de récupération des produits volatils issus de ce traitement, des moyens de récupération résidus solides du traitement ainsi que des moyens de chauffage de la masse de déchets, caractérisée en ce que le moyen de chauffage de la masse des déchets est constitué par une masse de billes d'acier préalablement chauffées dans un four extérieur au four de thermolyse, qui cheminent dans le four de thermolyse avec les déchets à traiter, ainsi que des dispositifs pour l'alimentation du four en billes chauffées, pour leur récupération à la sortie du four, pour la circulation de ces billes, et que l'installation comprend un four pour le chauffage des billes, tous les barillets ou sas d' introduction ou de sortie des matériaux, toutes les pièces tournantes étant réalisés de façon à interdire toute entrée d'air dans l'installation.
10. Installation pour le traitement thermique de déchets organiques selon la revendication 9, caractérisée en ce que le traitement thermique est une thermolyse, que les billes d'acier qui constituent le moyen de chauffage des déchets entrent dans le four de thermolyse à une température comprise à des températures de 600 à 1100°C, qu'elles sortent du four de thermolyse à des températures de 500 à 850°C.
11 Installation pour le traitement thermique de déchets organiques selon les revendications 9 et 10, caractérisée en ce qu' elle comprend en outre un four de séchage des déchets situé en amont du four de thermolyse des déchets, et que lesdits déchets cheminent successivement dans le four de séchage et le four de thermolyse, que ce sont les billes sortant du four de thermolyse qui constituent le moyen de chauffage pour le séchage préalable des déchets et que l'installation comprend en outre un moyen de transfert des déchets séchés vers le four de thermolyse.
12 Utilisation de l'installation selon la revendication 9 pour le séchage de déchets, dans laquelle la masse chauffante que constituent les billes d' acier entre dans le four fixe ou rotatif à une température de 500 à 600°C et en sort à une température de 120 à 140°C
PCT/FR2004/002032 2003-08-04 2004-07-29 Thermolyse de dechets organiques en four a billes WO2005018841A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2004266869A AU2004266869B2 (en) 2003-08-04 2004-07-29 Thermolysis of organic waste in a ball furnace
EP04767811A EP1660248A2 (fr) 2003-08-04 2004-07-29 Thermolyse de dechets organiques en four a billes
US11/659,123 US20090218209A1 (en) 2003-08-04 2004-07-29 Thermolysis of organic waste in a ball furnace
CN2004800290263A CN1863606B (zh) 2003-08-04 2004-07-29 在球式炉中的有机废料的热解
BRPI0413322-6A BRPI0413322A (pt) 2003-08-04 2004-07-29 processo para o tratamento térmico de dejetos orgánicos
CA2576071A CA2576071C (fr) 2003-08-04 2004-07-29 Thermolyse de dechets organiques en four a billes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0309592A FR2858570B1 (fr) 2003-08-04 2003-08-04 Procede pour la thermolyse et/ou le sechage de dechets organiques utilisant un four a billes
FR0309592 2003-08-04

Publications (3)

Publication Number Publication Date
WO2005018841A2 true WO2005018841A2 (fr) 2005-03-03
WO2005018841A3 WO2005018841A3 (fr) 2005-05-06
WO2005018841B1 WO2005018841B1 (fr) 2005-07-07

Family

ID=34072999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/002032 WO2005018841A2 (fr) 2003-08-04 2004-07-29 Thermolyse de dechets organiques en four a billes

Country Status (9)

Country Link
US (1) US20090218209A1 (fr)
EP (1) EP1660248A2 (fr)
CN (1) CN1863606B (fr)
AU (1) AU2004266869B2 (fr)
BR (1) BRPI0413322A (fr)
CA (1) CA2576071C (fr)
FR (1) FR2858570B1 (fr)
RU (1) RU2381081C2 (fr)
WO (1) WO2005018841A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2969170A1 (fr) * 2010-12-21 2012-06-22 Finaxo Environnement Sas d'entree ou de sortie, et installation de production de gaz de pyrolyse utilisant un tel sas.
WO2012085880A2 (fr) 2010-12-23 2012-06-28 Sea Marconi Technologies Di Vander Tumiatti S.A.S. Installation modulaire permettant de réaliser des procédés de conversion de matrices carbonées
WO2012085422A1 (fr) 2010-12-21 2012-06-28 Finaxo Environnement Module de chauffage, systeme de chauffage comprenant plusieurs modules de chauffage et installation comprenant un tel systeme de chauffage
US8308912B2 (en) 2009-05-25 2012-11-13 Francois Hustache Method for pyrogasification of organic waste
WO2016174247A1 (fr) 2015-04-30 2016-11-03 Tanfoglio Domenico Four de pyrolyse

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0908082D0 (en) * 2009-05-11 2009-06-24 Univ Aston Biomass pyrolysis
WO2013015719A1 (fr) * 2011-07-26 2013-01-31 Общество С Ограниченной Ответственностью "Сервис Порт. Аг" Procédé de transformation de déchets solides et dispositif pour sa mise en oeuvre
SG192290A1 (en) * 2012-01-06 2013-08-30 Carbonexcel Pte Ltd Method and apparatus for torrefaction of biomass materials
US20130327626A1 (en) * 2012-06-12 2013-12-12 Phillips 66 Company Catalytic pyrolysis of biomass in an auger reactor
US20130327627A1 (en) * 2012-06-12 2013-12-12 Phillips 66 Company Catalytic biomass pyrolysis in an auger reactor
GB2510901B (en) * 2013-02-19 2014-12-24 Chinook End Stage Recycling Ltd Improvements In Waste Processing
ITRM20130094A1 (it) * 2013-02-19 2014-08-20 Antonino Abrami Metodo per il trattamento e valorizzazione in loco dei metalli residui della lavorazione pirolitica
CZ2013506A3 (cs) * 2013-06-27 2015-03-11 Vladimir Zakaryan Zařízení pro termický rozklad organického materiálu a výrobu plynu pro použití k výrobě tepla a elektrické energie
US10513660B2 (en) 2013-07-19 2019-12-24 ABRI-Tech Inc. Compact fast pyrolysis system for conversion of carbonaceous materials to liquid, solid and gas
US20150021159A1 (en) * 2013-07-19 2015-01-22 ABRI-Tech Inc. Compact fast pyrolysis system for conversion of carbonaceous materials to liquid, solid and gas
US9725655B2 (en) * 2013-09-13 2017-08-08 Virens Energy, Llc Process and apparatus for producing hydrocarbon fuel from waste plastic
CN103599916B (zh) * 2013-09-29 2016-02-03 密西西比国际水务有限公司 一种无氧热解处理病死家畜和城市有机垃圾的方法和设备
JP2015105344A (ja) * 2013-11-29 2015-06-08 国立研究開発法人産業技術総合研究所 燃料製造装置及び燃料製造方法
FR3043080B1 (fr) * 2015-11-04 2021-01-08 Haffner Energy Procede de production de gaz synthetique hypergaz
US11698189B2 (en) * 2016-01-06 2023-07-11 Hsiao-Nan WANG Catalyst column and thermal cracking system
CN107435928A (zh) * 2016-05-25 2017-12-05 北京三态环境科技有限公司 一种内热式生活垃圾热解系统
CN107676799A (zh) * 2017-02-09 2018-02-09 李艺 一种能量球高速换热裂解生活医疗垃圾废胎废塑设备
CN107445441A (zh) * 2017-08-31 2017-12-08 李艺 一种旋转内外双釜和能量球高速加热污泥、粪料的干燥装置
CN110305678A (zh) * 2019-06-04 2019-10-08 珠海格力电器股份有限公司 一种裂解工艺、裂解炉及橡胶材料裂解设备
CN110732544B (zh) * 2019-09-16 2022-01-28 浙江潜能生态科技有限公司 一种地下智能脱污囊分质处理垃圾系统
CN111808621A (zh) * 2020-07-04 2020-10-23 上海和惠生态环境科技有限公司 一种有机危废处理工艺
WO2023080656A2 (fr) * 2021-11-03 2023-05-11 조원경 Séchoir hélicoïdal utilisant des billes de broyage
KR102498908B1 (ko) * 2021-11-03 2023-02-09 조원경 건조볼을 이용한 입체 스크류 건조기
CN113983469B (zh) * 2021-11-08 2022-12-09 通辽市恒新环保工程有限公司 一种净化二噁英烟气的焚烧炉
CN114276825B (zh) * 2021-12-30 2022-11-25 山东祥桓环境科技有限公司 一种球循环筛分粉体密封出料一体化装置及方法
KR102538619B1 (ko) * 2022-11-17 2023-05-31 조원경 건조기 내부 스케일 청소가 가능한 스크류 건조기

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762010A (en) * 1994-06-21 1998-06-09 Groep Danis, Naamloze Vennootschap Method and device for processing waste having a calorific value

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1712082A (en) * 1921-08-11 1929-05-07 Koppers Heinrich Process and apparatus for distilling solid carbonaceous material
US4235676A (en) * 1977-09-16 1980-11-25 Deco Industries, Inc. Apparatus for obtaining hydrocarbons from rubber tires and from industrial and residential waste
US4160719A (en) * 1977-09-28 1979-07-10 Phillips Petroleum Company Iron-containing refractory balls for retorting oil shale
FR2668774B1 (fr) * 1990-11-07 1995-09-01 Inst Francais Du Petrole Procede et dispositif de production d'un combustible solide a partir de dechets combustibles.
ATE195261T1 (de) * 1992-03-04 2000-08-15 Commw Scient Ind Res Org Stoffbehandlung
US6387221B1 (en) * 1998-06-25 2002-05-14 James D. Schoenhard Processing method and system to convert garbage to oil
WO2000024671A1 (fr) * 1998-10-28 2000-05-04 Ebara Corporation Procede de carbonisation de dechets
JP2001059683A (ja) * 1999-08-20 2001-03-06 Japan Electric Cable Technology Center Inc ロータリキルン式熱分解炉
JP2001200093A (ja) * 2000-01-17 2001-07-24 Toshiba Corp 廃プラスチック処理装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762010A (en) * 1994-06-21 1998-06-09 Groep Danis, Naamloze Vennootschap Method and device for processing waste having a calorific value

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 200129 Derwent Publications Ltd., London, GB; Class A35, AN 2001-277369 XP002279301 & JP 2001 059683 A (null) 6 mars 2001 (2001-03-06) *
DATABASE WPI Section Ch, Week 200164 Derwent Publications Ltd., London, GB; Class A35, AN 2001-568310 XP002279302 & JP 2001 200093 A (TOSHIBA KK) 24 juillet 2001 (2001-07-24) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8308912B2 (en) 2009-05-25 2012-11-13 Francois Hustache Method for pyrogasification of organic waste
FR2969170A1 (fr) * 2010-12-21 2012-06-22 Finaxo Environnement Sas d'entree ou de sortie, et installation de production de gaz de pyrolyse utilisant un tel sas.
WO2012085422A1 (fr) 2010-12-21 2012-06-28 Finaxo Environnement Module de chauffage, systeme de chauffage comprenant plusieurs modules de chauffage et installation comprenant un tel systeme de chauffage
WO2012085880A2 (fr) 2010-12-23 2012-06-28 Sea Marconi Technologies Di Vander Tumiatti S.A.S. Installation modulaire permettant de réaliser des procédés de conversion de matrices carbonées
WO2016174247A1 (fr) 2015-04-30 2016-11-03 Tanfoglio Domenico Four de pyrolyse

Also Published As

Publication number Publication date
EP1660248A2 (fr) 2006-05-31
WO2005018841A3 (fr) 2005-05-06
FR2858570B1 (fr) 2006-11-17
CN1863606A (zh) 2006-11-15
FR2858570A1 (fr) 2005-02-11
AU2004266869B2 (en) 2010-02-11
RU2007106710A (ru) 2008-08-27
BRPI0413322A (pt) 2006-10-10
AU2004266869A2 (en) 2005-03-03
CA2576071C (fr) 2013-06-11
US20090218209A1 (en) 2009-09-03
CN1863606B (zh) 2010-11-03
WO2005018841B1 (fr) 2005-07-07
CA2576071A1 (fr) 2005-03-03
AU2004266869A1 (en) 2005-03-03
RU2381081C2 (ru) 2010-02-10

Similar Documents

Publication Publication Date Title
EP1660248A2 (fr) Thermolyse de dechets organiques en four a billes
EP0934489B1 (fr) Installation pour le traitement par thermolyse et pour la valorisation energetique des dechets
US7802528B2 (en) Pyrolysis apparatus
RU2014137447A (ru) Автотермальное сушильное устройство, способ автотермальной усушки биомассы (варианты), способ увеличения экономической эффективности использования усушенной биомассы как топлива и способ производства пеллет из усушенной биомассы
EP0108317B1 (fr) Procédé de gazéification de produits ligno-cellulosiques et dispositif pour sa mise en oeuvre
JP5379957B2 (ja) 熱分解処理方法及び熱分解処理システム
CN1358220A (zh) 有机物或有机物混合物热解和气化的方法和设备
EP0485255B1 (fr) Procédé et dispositif de production d'un combustible solide à partir de déchets combustibles
CN113877940B (zh) 一种医疗废物处理工艺
EP0009026A1 (fr) Procede non polluant de carbonisation du bois
US7950339B2 (en) Pyrolysis apparatus with transverse oxygenation
WO1995023317A1 (fr) Procede et installation de traitement de dechets par sechage, sublimation, oxydation et combustion
JP2009161845A (ja) スクラップの事前処理方法
WO2011014094A1 (fr) Procédé et dispositif de recyclage de déchets humides contenant des matériaux organiques
CN112393247A (zh) 一种低温薄层速热梯级绝氧热解系统及基于该系统的固废热解系统
FR2827609A1 (fr) Procede et installation de production de gaz combustibles a partir de gaz issus de la conversion thermique d'une charge solide
JPS6322874B2 (fr)
FR2762613A1 (fr) Installation pour le traitement par thermolyse et pour la valorisation energetique des dechets
JPH039990A (ja) 固形有機物の乾溜方法
CA1194301A (fr) Procede de chauffage pour un four de cimenterie et installation pour le realiser
TWI604039B (zh) Regenerative fuel production methods
CN112094658A (zh) 一种生活垃圾及固体废弃物的热裂解系统及方法
EP3649400A1 (fr) Installation de thermolyse optimisée et procédé de mise en oeuvre
OA19445A (fr) Installation de thermolyse optimisée et procédé de mise en œuvre.
CZ2019231A3 (cs) Zařízení pro termický rozklad a způsob provádění termického rozkladu

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480029026.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
B Later publication of amended claims

Effective date: 20050414

WWE Wipo information: entry into national phase

Ref document number: 2004767811

Country of ref document: EP

Ref document number: 1148/DELNP/2006

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2004767811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004266869

Country of ref document: AU

ENP Entry into the national phase

Ref document number: PI0413322

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2004266869

Country of ref document: AU

Date of ref document: 20040729

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004266869

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2576071

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007106710

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 11659123

Country of ref document: US