EP2639332A1 - Verfahren zum Metallisieren nichtleitender Kunststoffoberflächen - Google Patents

Verfahren zum Metallisieren nichtleitender Kunststoffoberflächen Download PDF

Info

Publication number
EP2639332A1
EP2639332A1 EP12159652.2A EP12159652A EP2639332A1 EP 2639332 A1 EP2639332 A1 EP 2639332A1 EP 12159652 A EP12159652 A EP 12159652A EP 2639332 A1 EP2639332 A1 EP 2639332A1
Authority
EP
European Patent Office
Prior art keywords
solution
metal
plastic
iodate
plastic surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12159652.2A
Other languages
English (en)
French (fr)
Inventor
Dr. Hermann Middeke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atotech Deutschland GmbH and Co KG
Original Assignee
Atotech Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atotech Deutschland GmbH and Co KG filed Critical Atotech Deutschland GmbH and Co KG
Priority to EP12159652.2A priority Critical patent/EP2639332A1/de
Priority to PL13712718.9T priority patent/PL2825690T3/pl
Priority to PT137127189T priority patent/PT2825690T/pt
Priority to EP13712718.9A priority patent/EP2825690B1/de
Priority to PCT/EP2013/055356 priority patent/WO2013135862A2/en
Priority to KR1020147028815A priority patent/KR101872065B1/ko
Priority to CA2866766A priority patent/CA2866766C/en
Priority to BR112014021995-8A priority patent/BR112014021995B1/pt
Priority to US14/376,857 priority patent/US9181622B2/en
Priority to CN201380014373.8A priority patent/CN104254641B/zh
Priority to JP2014561461A priority patent/JP6150822B2/ja
Priority to ES13712718.9T priority patent/ES2587104T3/es
Publication of EP2639332A1 publication Critical patent/EP2639332A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • C23C18/1621Protection of inner surfaces of the apparatus
    • C23C18/1625Protection of inner surfaces of the apparatus through chemical processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • C23C18/1628Specific elements or parts of the apparatus
    • C23C18/163Supporting devices for articles to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/166Process features with two steps starting with addition of reducing agent followed by metal deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/24Roughening, e.g. by etching using acid aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50

Definitions

  • the present invention relates to a method of metallizing electrically non-conductive plastic surfaces of articles.
  • the rack mounting the said objects is treated with an iodine-containing solution to prevent metallization of the rack.
  • the articles can be metallized by known methods.
  • the frame remains free of metal.
  • Articles made of electrically non-conductive plastic can be metallized with an electroless metallization process.
  • the article is first cleaned and pickled, then treated with a precious metal and finally metallized.
  • the pickling is typically carried out by means of chromic acid.
  • the etching serves to make the surface of the object susceptible to the subsequent metallization, so that the surfaces of the objects in the subsequent treatment steps are well wetted with the respective solutions and the deposited metal finally adheres sufficiently firmly to the surface.
  • the surface of articles of, for example, acrylonitrile-butadiene-styrene copolymer (ABS copolymer) is etched using chromosulfuric acid, so that superficially microcaverns form, in which metal is deposited and subsequently adheres firmly there.
  • ABS copolymer acrylonitrile-butadiene-styrene copolymer
  • the plastic for electroless metallization by means of an activator containing a noble metal, activated and then electroless metallized. Subsequently, a thicker metal layer can be applied electrolytically.
  • permanganates in alkaline medium for the metallization of printed circuit boards as a carrier of electronic circuits has long been established. Since the hexavalent (manganate) formed in the oxidation is water-soluble and has sufficient stability in the alkaline state, the manganate can be electrolytically re-oxidized similarly to the trivalent chromium to the original oxidant, in this case the permanganate.
  • permanganate is also described for the metallization of plastics other than printed circuit board material.
  • a solution of alkaline permanganate has not proved to be suitable, since in this way a reliable, sufficient adhesive strength between metal layer and plastic substrate could not be produced. This adhesive strength is determined in the peel test. It should have at least a value of 0.4 N / mm.
  • EP 1 0010 52 is an acidic permanganate solution which is said to be suitable for use in plastic plating. EP 1 0010 52 does not report the bond strengths achievable with this pretreatment. Our own tests have shown that the adhesive strengths are below a value of 0.4 N / mm. In addition, the in EP 1 0010 52 not stable solutions described. A constant quality of the metallization can therefore not be achieved.
  • WO 2009/023628 A2 strongly acidic solutions containing an alkali permanganate salt proposed.
  • the solution contains about 20 g / l alkali permanganate salt in 40-85% by weight phosphoric acid.
  • Such solutions form colloidal manganese (IV) species that are difficult to separate.
  • the WO 2009/023628 A2 lead the colloids after a short time to a coating of sufficient quality is no longer possible.
  • sources of manganese (VII) that contain no alkali or alkaline earth ions.
  • the preparation of such manganese (VII) sources is expensive.
  • the toxic chromosulfuric acid is still used for the etching treatment of plastics.
  • the objects are usually attached to racks.
  • racks These are metal carrier systems that allow the simultaneous treatment of a large number of objects with the successive solutions of the individual process steps and last steps for the electrolytic deposition of one or more metal layers.
  • the racks are usually self-coated with plastic. Therefore, the racks in principle also represent a substrate for metallization processes on plastic surfaces.
  • the additional metallization of the racks is undesirable because the metal layers must be removed from the racks after the articles have been coated. This means an additional expense for the removal associated with additional consumption of chemicals.
  • the productivity of the metallization plant is lower in this case, since the racks must first be demetallised before re-loading with objects. If the demetallization has to take place with half-concentrated hydrochloric acid and / or with nitric acid, vapors and aerosols are produced, which lead to corrosion in the environment.
  • chromic acid stains significantly reduces this problem.
  • the chromic acid also penetrates during the pickling in the plastic coating of the racks and diffuses during the subsequent process steps out of this and thus prevents the metallization of the frame.
  • patent DE 195 10 855 C2 describes a method for selective or partial electrolytic metallization of non-conductive materials. This is the simultaneous Metallization of the frames prevented by treatment steps with adsorption-promoting solutions, so-called conditioners, is dispensed with. However, it is emphasized that the metallization process of non-conductive materials in DE 195 10 855 C2 only suitable for direct metallization.
  • the present invention is therefore based on the problem that it is not yet possible to avoid the metallization of the racks and at the same time to achieve a metallization of objects made of electrically non-conductive plastic with sufficient process reliability and adhesion of the subsequently applied metal layers.
  • articles are understood to mean objects which are made of at least one electrically non-conductive plastic or which are covered with at least one layer of at least one electrically non-conductive plastic.
  • the objects thus have surfaces of at least one electrically non-conductive plastic.
  • plastic surfaces are understood as meaning said surfaces of the objects.
  • process steps of the present invention are carried out in the order given, but not necessarily immediately consecutively. It is possible to carry out further process steps and, in each case, additional rinsing steps, preferably with water, between the steps.
  • the rack according to the invention By treating the rack according to the invention with a solution containing a source of iodate ions, the metallization of the rack is avoided, while the electrically non-conductive plastic surfaces of objects are coated with metal.
  • the frame thus remains free of metal during the process according to the invention.
  • the racks can be returned directly to the production cycle without further treatment and used to metallize further objects.
  • the plastic surfaces are made of at least one electrically non-conductive plastic.
  • the at least one electrically nonconducting plastic is selected from the group comprising an acrylonitrile-butadiene-styrene copolymer (ABS copolymer), a polyamide (PA), a polycarbonate (PC) and a mixture of an ABS copolymer with at least one other polymer.
  • the electrically non-conductive plastic is an ABS copolymer or a mixture of an ABS copolymer with at least one further polymer.
  • the at least one further polymer is particularly preferably polycarbonate (PC), that is to say particularly preferred are ABS / PC mixtures.
  • the treatment according to the invention of the rack with a solution containing a source of iodate ions is also referred to below as protecting the rack.
  • the protection of the frame can take place at different times during the method according to the invention.
  • treating the rack with a solution containing a source of iodate ions takes place prior to step A).
  • the frame alone, without the objects, is treated with the solution containing a source of iodate ions.
  • Step A) of the method according to the invention is the attachment of the objects in racks, which allow the simultaneous treatment of a large number of objects with the successive solutions of the individual process steps as well as the electrical contacting during the last steps for the electrolytic deposition of one or more metal layers.
  • the treatment of the articles according to the method of the invention is preferably carried out in a conventional dipping process by successively immersing the articles in solutions in containers in which the respective treatment takes place.
  • the articles can either be attached to racks or filled with drums into the solutions.
  • An attachment to racks is preferred.
  • the racks are usually self-coated with plastic.
  • the plastic is usually polyvinyl chloride (PVC).
  • the further process step A i) is also referred to as a pretreatment step.
  • this pretreatment step the adhesion strength between the plastic of the article and the metal layer is increased.
  • a glycol compound is understood as meaning compounds of the following general formula (I): wherein n is an integer between 1 and 4; and R 1 and R 2, independently of one another, denote -H, -CH 3 , -CH 2 -CH 3 , -CH 2 -CH 2 -CH 3 , -CH (CH 3 ) -CH 3 , -CH 2 -CH 2 -CH 2 - CH 3 , -CH (CH 3 ) -CH 2 -CH 3 , -CH 2 -CH (CH 3 ) -CH 3 , -CH 2 -CH 2 -CH 2 -CH 2 -CH 3 , -CH (CH 3 ) -CH 2 -CH 2 -CH 3 , -CH 2 -CH (CH 3 ) -CH 2 -CH 3 , -CH 2 -CH (CH 3 ) -CH 2 -CH 3 , -CH 2 -CH 2 -CH 3 , -CH 2 -CH
  • the glycol compounds include the glycols themselves as well as glycol derivatives.
  • the glycol derivatives, the glycol esters and the glycol ether esters are calculated as glycol derivatives.
  • the glycol compounds are solvents.
  • Preferred glycol compounds are ethylene glycol, diethylene glycol, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, ethylene glycol acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monopropyl ether acetate, butyl glycol, ethylene glycol monobutyl ether, ethylene glycol diacetate and mixtures thereof.
  • the water concentration of the solution containing a glycol compound also has an influence on the hydrolysis of the glycol esters and glycol ether esters.
  • the solution must contain water for two reasons: on the one hand to obtain a non-flammable treatment solution and on the other hand to adjust the strength of the attack on the plastic surface can.
  • a pure solvent, ie 100% of a glycol compound would dissolve most uncrosslinked polymers or leave at least one unacceptable surface. It has therefore been found to be very advantageous to buffer the solution of a glycol ester or glycol ether ester and thus to keep it in the neutral pH range, which means to trap the protons produced by hydrolysis of the solvent.
  • a phosphate buffer mixture has proven to be sufficiently suitable for this purpose. The readily soluble potassium phosphates allow sufficiently high concentrations with good buffer capacity at solvent concentrations up to 40% vol.
  • the optimal treatment time of the plastic surface depends on the plastic used, the temperature and the type and concentration of the glycol compound.
  • the treatment parameters have an influence on the adhesion between the treated plastic surface and the metal layer applied in subsequent process steps. Higher temperatures or concentrations of the glycol compounds also affect the texture of the plastic surface. In any case, it should be possible for the subsequent pickling step B) to remove the solvent from the plastic matrix again, because otherwise the subsequent steps of the process, in particular the activation according to process step C), will be disturbed.
  • Adhesive strengths of at least 0.8 N / mm are obtained with the method according to the invention, which is significantly above the required minimum value of 0.4 N / mm.
  • the treatment duration in process step A i) is between 1 and 30 minutes, preferably between 5 and 20 minutes and more preferably between 7 and 15 minutes.
  • the treatment temperature is between 20 ° C and 70 ° C, depending on the type of solvent or solvent mixture used.
  • a treatment temperature between 20 ° C and 50 ° C, more preferably a treatment temperature between 20 ° C and 45 ° C.
  • the treatment of the plastic surfaces according to process step A i) can be carried out in an aqueous solution containing a glycol compound or in an aqueous solution containing two or more different glycol compounds.
  • the total concentration of glycol compounds in the aqueous solution is 5% vol. -50% vol., Preferably 10% vol. - 40% vol., And more preferably 20% vol. - 40% vol.
  • the concentration data for the glycol compound / glycol compounds in% always means a concentration in% vol.
  • treating the rack with a solution containing a source of iodate ions takes place between method steps A) and B).
  • the treatment of the frame with a solution containing a source of iodate ions between the method steps A) and A i) take place or between the method steps A i) and B).
  • the frame is therefore treated together with the objects with the solution containing a source of iodate ions.
  • the terms "treating the rack with a solution containing a source of iodate ions" and “treating the rack with a solution containing a source of iodate ions” in the context of this invention mean that the guarding of the rack can take place alone, without the objects (e.g. when protecting the rack occurs prior to step A) or that the rack may be protected together with the items (for example, if the rack is protected at any time after step A)).
  • the protection of the rack takes place on its own or together with the objects, it provides special protection of the plastic casing of the racks prior to metal deposition, while the objects which are mounted in the racks during process step A) are metallised.
  • the protection of the frame ensures that the plastic coating of the frames in the later process steps C) to D) is not metallized, that is, the racks remain free of metal. This effect is particularly pronounced on a PVC sheathing of the racks.
  • the pickling treatment according to process step B) is carried out in a pickling solution.
  • the pickling solution contains a source of permanganate ions.
  • the source of permanganate ions is selected from the group of alkali metal permanganates containing potassium permanganate and sodium permanganate.
  • the source of permanganate ions is present in the pickling solution at a concentration of between 30 g / l and 250 g / l, preferably between 30 g / l and 180 g / l, more preferably between 90 g / l and 180 g / l and more preferably 100 g / l.
  • Potassium permanganate may be due to its Solubility in a concentration of up to 70 g / l contained in the pickling solution.
  • Sodium permanganate can be contained in the pickling solution at a concentration of up to 250 g / l.
  • the lower concentration limit of each of these two salts is typically 30 g / l.
  • the content of sodium permanganate is preferably between 90 g / l and 180 g / l.
  • the pickling solution is preferably acidic, that is it preferably contains an acid.
  • alkaline permanganate solutions which are routinely used in the printed circuit board industry as a pickling solution, are not suitable for the present invention because they do not provide sufficient adhesion between the plastic surface and the metal layer.
  • Acids used in the pickling solution are preferably inorganic acids.
  • the inorganic acid in the pickling solution according to process step B) is selected from the group comprising sulfuric acid, nitric acid and phosphoric acid.
  • the acid concentration must not be too high, otherwise the pickling solution will not be stable.
  • the acid concentration is between 0.02-0.6 mol / l based on a monobasic acid. It is preferably between 0.06 and 0.45 mol / l, more preferably between 0.07 and 0.30 mol / l in each case based on a monobasic acid.
  • Sulfuric acid is preferably used in a concentration between 0.035 and 0.15 mol / l, which corresponds to an acid concentration between 0.07 and 0.30 mol / l based on a monobasic acid.
  • the pickling solution can be operated at temperatures between 30 ° C and 90 ° C, preferably between 55 ° C to 75 ° C. Although it has been found that sufficiently high bond strengths between metal layers and plastic surfaces can be achieved even at low temperatures between 30 ° C and 55 ° C. However, it can then not be ensured that all solvent of the treatment with glycol compound according to process step A i) is removed from the plastic surface. This is especially true for pure ABS. Thus, if step A i) is carried out in the process according to the invention, the temperatures in the subsequent process step B) are to be higher, namely in the range of 55 ° C to 90 ° C, preferably in the range of 55 ° C to 75 ° C.
  • the optimal treatment time depends on the treated plastic surface and the selected temperature of the pickling solution.
  • the best adhesion is between Plastic surface and then applied metal layer at a treatment time of between 5 and 30 minutes achieved, preferably between 10 and 25 minutes and more preferably between 10 and 15 minutes.
  • a longer treatment time than 30 minutes usually does not lead to an improvement in the adhesive strength.
  • An acidic permanganate solution is very reactive at elevated temperatures, for example at 70 ° C. It then form by the oxidation reaction with the plastic surface much manganese (IV) species, which precipitate out. These manganese (IV) species are predominantly manganese (IV) oxides or oxide hydrates and are referred to below simply as manganese dioxide.
  • the manganese dioxide precipitate interferes with the subsequent metallization when it remains on the plastic surface. During activation according to method step C), it ensures that areas of the plastic surface are not covered with metal colloid or generates unacceptable roughness of the metal layer to be applied in later method steps.
  • the pickling solution contains no chromium or chromium compounds; the pickling solution contains neither chromium (III) ions nor chromium (VI) ions.
  • the pickling solution according to the invention is thus free of chromium or chromium compounds; the pickling solution is free of chromium (III) ions and chromium (VI) ions.
  • the articles are cleaned by rinsing off excess permanganate solution. The rinsing takes place in one or more, preferably three, rinsing steps with water.
  • the further process step B i) is also referred to as a reduction treatment.
  • This reduction treatment manganese dioxide adhering to the plastic surfaces is reduced to water-soluble manganese (II) ions.
  • the reduction treatment is carried out after the permanganate treatment according to process step B) and optionally after rinsing off.
  • an acidic solution of a reducing agent is used.
  • the reducing agent is selected from the group consisting of hydroxylammonium sulfate, hydroxylammonium chloride and hydrogen peroxide.
  • Preferred is an acidic solution of hydrogen peroxide because hydrogen peroxide is neither toxic nor complexing.
  • the content of hydrogen peroxide in the solution of reduction treatment is between 25 ml / l and 35 ml / l of a 30% hydrogen peroxide solution (wt%), preferably 30 ml / l of a 30% hydrogen peroxide solution (wt. -%).
  • the acid used in the reduction solution is an inorganic acid, preferably sulfuric acid.
  • the acid concentration is 0.5 mol / l to 5.0 mol / l, preferably 1.0 mol / l to 3.0 mol / l, particularly preferably 1.0 mol / l to 2.0 mol / l in each case based on a monobasic acid.
  • concentrations of 50 g / l of 96% sulfuric acid to 100 g / l of 96% sulfuric acid are particularly preferred, resulting in an acid concentration of 1.0 mol / l to 2.0 mol / l based on a monobasic Acid corresponds.
  • the reduction treatment removes the manganese dioxide precipitate, which has a disruptive effect on the metallization of the objects.
  • the reduction treatment of process step B i) thereby promotes the uniform continuous coverage of the articles with the desired metal layer and promotes the adhesion and smoothness of the metal layer applied to the articles.
  • the reduction treatment according to process step B i) also has an advantageous effect on the metallization of the plastic coating of the frame.
  • the unwanted occupancy of the plastic coating with palladium during process step C) is suppressed. This effect is particularly pronounced when the reducing solution contains a strong inorganic acid, preferably sulfuric acid. Hydrogen peroxide is also preferred over hydroxylammonium sulfate or chloride in the reducing solution because it better suppresses framework metallization.
  • the reduction treatment according to process step B i) is carried out at a temperature between 30 ° C and 50 ° C, preferably at 40 ° C to 45 ° C.
  • the Reduction treatment is carried out for a period of between 1 and 10 minutes, preferably between 3 to 6 minutes. In order to achieve sufficient protection of the racks prior to activation, it is advantageous to increase the treatment time in the reducing solution to 3 to 10 minutes, preferably to 3 to 6 minutes.
  • the reducing agent hydrogen peroxide used must be replenished from time to time.
  • the consumption of hydrogen peroxide can be calculated from the amount of manganese dioxide bound on the plastic surfaces. In practice, it is sufficient to observe the evolution of gas in the reduction reaction during process step B i) and to meter the original amount of hydrogen peroxide, for example 30 ml / l of a 30% solution, as the gas evolution subsides.
  • elevated operating temperature of the reducing solution for example at 40 ° C, the reaction is completed quickly and after one minute at the latest.
  • the treatment of the rack with a solution containing a source of iodate ions takes place between the method steps B) and C), particularly preferably between the method steps B i) and B ii).
  • FIG. 2A shows a part of a frame after a plastic surface of a plate-shaped object, which is fixed in the frame has been coppered.
  • the method for applying the copper layer corresponded to the metallization method according to the invention with the deviation that the protection of the frame was not performed.
  • the part of the frame that came into contact with the different treatment solutions of the metallization process is completely covered by a layer of copper.
  • FIG. 2B shows a corresponding part of a frame after a plastic surface of a plate-shaped object which is mounted in the frame, including the protection of the frame was coppered.
  • the plastic surface of the article carries a uniform copper layer, while the plastic sheath of the frame was not coppered.
  • the plastic coating of the frame continues to bear the black-green color, which is caused by long use of the frame.
  • the treatment with iodate ions is particularly advantageous if the process step C ii) according to one embodiment of the invention consists of an electroless plating of the objects in a metallization solution.
  • the iodate ions are sufficiently stable in aqueous solution and are consumed only by extraction.
  • the effect of protecting the rack increases with increasing concentration of iodate ions and with increasing operating temperature.
  • a determination of the optimum concentration will be described in Embodiment 1.
  • the protection of the frame is carried out at a temperature of 20 ° C to 70 ° C, more preferably from 45 ° C to 55 ° C.
  • Suitable sources of iodate ions are selected from the group of metal iodates containing sodium iodate, potassium iodate, magnesium iodate, calcium iodate and their hydrates.
  • the concentration of the metal iodates is between 5 g / l and 50 g / l, preferably from 15 g / l to 25 g / l.
  • the duration of treatment of the frame with iodate ions is between 1 to 20 minutes, preferably between 2 to 15 minutes and particularly preferably between 5 to 10 minutes.
  • the solution containing a source of iodate ions may further contain an acid.
  • the inorganic acids are selected from the group comprising sulfuric acid and phosphoric acid, preferably sulfuric acid.
  • the acid concentration is 0.02 mol / l to 2.0 mol / l, preferably 0.06 mol / l to 1.5 mol / l, particularly preferably 0.1 mol / l to 1.0 mol / l in each case based on a monobasic acid.
  • concentrations of 5 g / l of 96% sulfuric acid to 50 g / l of 96% sulfuric acid are particularly preferred, resulting in an acid concentration of 0.1 mol / l to 1.0 mol / l based on a monobasic Acid corresponds.
  • composition of the solution containing a source of iodate ions and the temperature and duration of the treatment of the frame apply regardless of the time in the inventive process, takes place to protect the frame.
  • treating the rack with a solution containing a source of iodate ions shows a storage effect.
  • a metallization cycle is understood as meaning a metallization process which contains the process steps A) to D) already described, but not the treatment of the framework with a solution containing a source of iodate ions.
  • non-metallized articles are mounted in the racks and metallized articles are produced therefrom.
  • the inventive method comprising treating the rack with a solution containing a source of iodate ions is carried out and then one to four Metallmaschineszyklen be performed.
  • the rack is not metallized during the process of the invention nor during the subsequent metallization cycles, although the metallization cycles do not involve treating the rack with a solution containing a source of iodate ions. Treating the rack with a solution containing a source of iodate ions during the process of the invention is sufficient to avoid metalization of the rack during one to four subsequent metallization cycles.
  • the process of the present invention further includes process step C) wherein a plastic surface is treated with a solution of a metal colloid or a compound of a metal.
  • the metal of the metal colloid or of the metal compound is selected from the group comprising the metals of subgroup I of the Periodic Table of the Elements (PSE) and subgroup VIII of the PSE.
  • the VIII subgroup metal of the PSE is selected from the group consisting of palladium, platinum, iridium, rhodium and a mixture of two or more of these metals.
  • the metal of the 1st subgroup of the PSE is selected from the group containing gold, silver and a mixture of these metals.
  • the metal of the metal colloid palladium is preferred.
  • the metal colloid is stabilized with a protective colloid.
  • the protective colloid is selected from the group comprising metallic protective colloids, organic protective colloids and other protective colloids.
  • metallic protective colloid tin ions are preferable.
  • the organic protective colloid is selected from the group comprising polyvinyl alcohol, polyvinylpyrrolidone and gelatin, polyvinyl alcohol is preferred.
  • the solution of the metal colloid in process step C) is an activator solution with a palladium / tin colloid.
  • This colloid solution is generated from a palladium salt, a stannous salt and an inorganic acid.
  • palladium salt palladium chloride is preferred.
  • stannous salt tin (II) chloride is preferred.
  • the inorganic acid may consist of hydrochloric acid or sulfuric acid, preferably hydrochloric acid.
  • the colloid solution is formed by reduction of the palladium chloride to palladium with the aid of stannous chloride. The conversion of the palladium chloride into the colloid is complete, therefore the colloid solution no longer contains palladium chloride.
  • the concentration of palladium is 5 mg / l-100 mg / l, preferably 20 mg / l-50 mg / l and particularly preferably 30 mg / l-45 mg / l, based on Pd 2+ .
  • the concentration of tin (II) chloride 0.5 g / l - 10 g / l, preferably 1 g / L - 5 g / l, and most preferably 2 g / l - 4 g / l, based on Sn 2+.
  • the concentration of hydrochloric acid is 100 ml / l - 300 ml / l (37 wt% HCl).
  • a palladium / tin colloidal solution additionally contains tin (IV) ions, which are formed by oxidation of tin (II) ions.
  • the temperature of the colloid solution during process step C) is 20 ° C-50 ° C and preferably 35 ° C-45 ° C.
  • the treatment time with the activator solution is 0.5 min-10 min, preferably 2 min-5 min and particularly preferably 3 min-5 min.
  • the solution of a compound of a metal is used instead of the metal colloid.
  • a solution of a metal compound a solution containing an acid and a metal salt is used.
  • the metal of the metal salt consists of one or more of the above listed metals of the I. and VIII. Subgroup of the PSE.
  • the metal salt may be a palladium salt, preferably palladium chloride, palladium sulfate or palladium acetate, or a silver salt, preferably silver acetate.
  • the acid is preferably in hydrochloric acid.
  • a metal complex can also be used, for example a palladium complex salt, such as a salt of a palladium-aminopyridine complex.
  • the metal compound is present in process step C) in a concentration of 40 mg / l to 80 mg / l, based on the metal.
  • the solution of the metal compound can be operated at a temperature of 25 ° C to 70 ° C, preferably at 25 ° C.
  • the Treatment time with the solution of a metal compound is 0.5 min - 10 min, preferably 2 min - 6 min and more preferably 3 min - 5 min.
  • process step B ii) is carried out between process steps B i) and C). If in the method according to the invention at method step B i) the protection of the racks followed, method step B ii) is particularly preferably carried out between protecting the racks and method step C).
  • the treatment of the plastic surfaces according to process step B ii) is also referred to as pretreatment and the aqueous acidic solution used as a pre-dip solution.
  • the pre-dip solution has the same composition as the colloid solution in step C), without containing the metal of the colloid and its protective colloid.
  • the pre-dip solution contains exclusively hydrochloric acid if the colloid solution also contains hydrochloric acid. For pre-dipping a brief immersion in the pre-dipping solution at ambient temperature is sufficient. Without rinsing the plastic surfaces, they are further treated directly after treatment in the pre-dip solution with the colloid solution of process step C).
  • Process step B ii) is preferably carried out if process step C) consists of treating a plastic surface with a solution of a metal colloid. Process step B ii) can also be carried out if process step C) consists of treating a plastic surface with a solution of a compound of a metal.
  • Table 1 Embodiment of plastic metallization step ingredients duration temperature A) Attach --- --- --- A i) Pretreatment Glycol compound as an organic solvent in water 2-15 min 35-50 ° C B) pickling 100 g / l sodium permanganate, 10 g / l 96% sulfuric acid 5-15 min 70 ° C B i) Reduce 100 g / l 96% sulfuric acid, 30 ml / l hydrogen peroxide, 30% by weight 1 min 45 ° C Protect the frame 20 g / l potassium iodate 2-5 min 40-60 ° C B ii) Prelude Hydrochloric acid, about 10% by weight 1 min 20 ° C C) Activate Hydrochloric acid palladium / tin colloid 3-6 min 20-45 ° C C i) Accelerate Sulfuric acid (5%) 2-6 min 40-50 ° C C ii) electrolessly deposit metal Chemically reductive nickel plating or copper plating 6-20 min
  • the plastic surfaces are treated with an accelerator solution in order to remove constituents of the colloid of the colloid solution, for example a protective colloid, from the plastic surfaces.
  • an aqueous solution of an acid is preferably used as accelerator solution.
  • the acid is selected, for example, from the group comprising sulfuric acid, hydrochloric acid, citric acid and tetrafluoroboric acid.
  • the accelerator solution is used to remove the tin compounds which serve as a protective colloid.
  • step C i) a reduction treatment is carried out if in step C) a solution of a metal compound has been used instead of a metal colloid for the activation.
  • the reducing agent solution used therefor contains hydrochloric acid and stannous chloride.
  • the reductant solution may also contain another reducing agent, such as NaH 2 PO 2 or else a borane or borohydride, such as an alkali or alkaline earth borane or dimethylaminoborane.
  • NaH 2 PO 2 is used in the reductor solution.
  • the plastic surfaces can first be rinsed.
  • Process step C i) and optionally one or more rinsing steps are followed by process step C ii), in which the plastic surfaces are electrolessly metallized.
  • electroless nickel plating for example, a conventional nickel bath containing, among others, nickel sulfate, a hypophosphite, for example, sodium hypophosphite, as a reducing agent, and organic chelating agents and pH adjusting agents (for example, a buffer) is used.
  • Dimethylaminoborane or a mixture of hypophosphite and dimethylaminoborane can likewise be used as the reducing agent.
  • electroless copper plating may be carried out using an electroless copper bath, typically a copper salt, for example, copper sulfate or copper hypophosphite, a reducing agent such as formaldehyde or a hypophosphite salt, for example an alkali or ammonium salt, or hypophosphorous acid, or one or more complexing agents such as tartaric acid and a pH adjusting agent such as sodium hydroxide.
  • a copper salt for example, copper sulfate or copper hypophosphite
  • a reducing agent such as formaldehyde or a hypophosphite salt, for example an alkali or ammonium salt, or hypophosphorous acid
  • complexing agents such as tartaric acid and a pH adjusting agent such as sodium hydroxide.
  • the surface thus rendered conductive can then be metallized further electrolytically to obtain a functional or decorative surface.
  • Step D) of the process according to the invention is the metallization of the plastic surface with a metallization solution.
  • the metallizing according to process step D) can be carried out electrolytically.
  • any metal deposition baths can be used, for example for the deposition of nickel, copper, silver, gold, tin, zinc, iron, lead or their Alloys.
  • Such deposition baths are familiar to the person skilled in the art.
  • As a bright nickel bath typically a Watts nickel bath is used, which contains nickel sulfate, nickel chloride and boric acid and saccharin as an additive.
  • a composition which contains copper sulfate, sulfuric acid, sodium chloride, and organic sulfur compounds in which the sulfur is in a low oxidation state, for example, organic sulfides or disulfides, as additives.
  • the metallization of the plastic surface in process step D) results in that the plastic surface is coated with metal, wherein the metal is selected from the above-mentioned metals for the electrodeposition baths.
  • protecting the frame means that the frame or racks are not covered with metal and thus remain free of metal.
  • the adhesion strength between metal and plastic substrate increases in the first time after the application of the metal layer. At room temperature, this process is completed in about three days. This can be significantly accelerated by storage at elevated temperature. The process is completed at 80 ° C after about an hour. It is believed that the initial low adhesion is caused by a thin layer of water located at the interface between metal and nonconductive substrate and hindering the formation of electrostatic forces.
  • the treatment of the metallized plastic surfaces at elevated temperature is therefore advantageous.
  • Such a step may be to treat a copper-metallized ABS plastic article for a period of between 5 minutes and 60 minutes at elevated temperature in the range of 50 ° C to 80 ° C, preferably at a temperature of 70 ° C in a water bath, so that the water can be distributed at the boundary layer of metal - plastic in the plastic matrix.
  • the treatment or storage of the metallized plastic surfaces at elevated temperature leads to a initial, lower adhesive strength is further enhanced, so that after the process step D i) an adhesive strength of the applied to the plastic surface metal layer is achieved, which is in the desired range of at least or greater than 0.8 N / mm.
  • the method according to the invention therefore makes it possible to avoid the metallization of the frames and at the same time to achieve metallization of electrically non-conductive plastic surfaces of objects with good process reliability and excellent adhesion of the subsequently applied metal layers.
  • the adhesive strength of the metal layers applied to plastic surfaces reaches values of 0.8 N / mm and higher.
  • the adhesive strengths achieved are also significantly higher than those which can be obtained according to the prior art.
  • the method of the invention is not only suitable for metallizing planar plastic surfaces but also for irregularly shaped plastic surfaces, such as e.g. shower heads, whereby the metallization of the racks is successfully avoided.
  • the treatment of the plastic surfaces according to the method of the invention is preferably carried out in a conventional dipping process by immersing the articles successively in solutions in containers in which the respective treatment takes place.
  • the articles can either be attached to racks or filled with drums into the solutions. An attachment to racks is preferred.
  • the articles can also be treated in so-called continuous installations, for example by lying on trays and being conveyed continuously through the installations in a horizontal direction.
  • An ABS molded part (shower head) was attached to a PVC coated support frame (step A)).
  • a PVC coated support frame For this example, an old support frame was selected which had a particularly strong tendency to frame metallization.
  • the molded article was immersed with the holder for ten minutes in a solution of 15% 2- (2-ethoxyethoxy) ethyl acetate and 10% butoxyethanol adjusted to pH 7 with a potassium phosphate buffer and maintained in a thermostat at 45 ° C (Process step A i)). It was then rinsed under running water for one minute and then treated in a bath of 100 g / l sodium permanganate and 10 g / l 96% sulfuric acid kept at 70 ° C (step B)).
  • step B i After a treatment time of ten minutes, rinsing under water again and adhering manganese dioxide in a solution of 50 g / l 96% sulfuric acid and 30 ml / l 30% hydrogen peroxide was removed (step B i), see Table 2). Following this reduction, the rack with the ABS molded article in a solution with various concentrations of potassium iodate (0, 5, 10, 20, 40 g / l) in 50 g / l 96% sulfuric acid at 50 ° C ten Treated for minutes (protecting the frame).
  • step C ii) and then rinsed.
  • the ABS molded part was then completely and faultlessly covered with a light gray nickel layer.
  • the PVC coating of the support rack was differently coated with nickel as shown in FIG. 1 is illustrated. While without iodate treatment (0 g / l KlO 3 in FIG. 1 ) an occupancy of the frame with nickel of 75% of the surface of the frame can be observed, the treatment of the frame with 40 g / l KlO 3 already leads to a negligible occupancy of nickel of 2% of the surface of the frame.
  • Example 2 The sequence of the process steps in Example 1 is summarized in Table 2.
  • valve caps round moldings about 7 cm in diameter
  • plastic Novodur P2MC ABS
  • process step A i a solution of 10% ethylene glycol diacetate and 10% ethylene glycol monobutyl ether was used in process step A i). This solution was held at 45 ° C, the valve caps were treated for five minutes. Subsequently, all the process steps of Example 1 were carried out. Following the reduction (step B i)), the rack was treated with the valve caps in a solution containing 20 g / l potassium iodate in 50 g / l 96% sulfuric acid at 50 ° C for ten minutes.
  • step D After electroless nickel plating, an additional 70 minutes of copper plating (Cupracid HT Fa. Atotech, 3.5 A / dm 2 , room temperature, step D)). After rinsing, the valve caps were stored at 80 ° C for 30 minutes (step D i)). Subsequently, the metal layer was removed from the plastic with a tensile testing machine (Instron) ( ASTM B 533 1985 Reapproved 2009 ) and so determines the adhesion. Adhesive strengths of the metal layers to the plastic of the valve caps of 1.14 N / mm and 1.17 N / mm were determined. The occupancy of the frame with metal was 4% of the frame surface and was therefore negligible.
  • Instron tensile testing machine
  • Bayblend T45 plates were treated at 45 ° C. for a varying time in a 15% solution of 2- (2-ethoxyethoxy) ethyl acetate and 10% butoxyethanol adjusted to pH 7 with a potassium phosphate buffer.
  • the plates were then rinsed under running water for about one minute and then placed in a bath of 100 g / l sodium permanganate and 10 g / l 96% sulfuric acid kept at 70 ° C. After a treatment period of ten minutes, rinsing again under water for one minute and then cleaning the dark brown plates in a solution of 50 g / l 96% sulfuric acid and 30 ml / l of 30% hydrogen peroxide from deposited manganese dioxide.
  • the plates were three minutes in a colloidal activator based on a palladium colloid (Adhemax activator PL Fa. Atotech, 25 ppm palladium) at 45 ° C. activated.
  • Adhemax activator PL Fa. Atotech 25 ppm palladium
  • the protective sheaths of the palladium particles were removed for five minutes at 50 ° C. (Adhemax Accelerator ACC1 from Atotech).
  • the plates were then electroless nickel-plated for 10 minutes (Adhemax LFS, Atotech.) At 45 ° C, rinsed and copper-plated at 3.5 A / dm 2 for 70 minutes at room temperature (Cupracid HT, Fa. Atotech). After rinsing, the plates were stored at 80 ° C for 1 hour. Subsequently, a strip about 1 cm wide of the respective metallized plastic plate was cut out with a knife and the metal layer was removed from the plastic using a tensile testing machine (Instron) ( ASTM B 533 1985 Reapproved 2009 ). The adhesive strengths of the metal layers are in FIG. 3 shown.
  • the residence time of the plastic surfaces in the solution of the glycol compounds has an influence on the adhesive strength of the applied metal layers. Without treatment with glycol compounds (residence time 0 min in FIG. 3 ) only an adhesive strength of 0.25 N / mm was obtained. After only 5 minutes of treatment with glycol compounds, on the other hand, a good adhesive strength of 0.9 N / mm was already achieved, which continues to increase with longer treatment time.
  • Sheets of ABS plastic (Novodur P2MC), as described in Example 3, variously treated with a 15% solution of 2- (2-ethoxyethoxy) ethyl acetate and 10% butoxyethanol, subjected to the further metallization process and the adhesive strengths of the applied Metal layer determined.
  • the adhesive strengths of the metal layer as a function of the treatment time with the solution of the glycol compounds are in FIG. 4 shown. Again, the influence of treatment duration (in FIG. 4 referred to as residence time in the Vorbeizates) on the adhesion of the deposited metal layers clearly visible. Without treatment with glycol compounds (residence time 0 min in FIG. 4 ) only an adhesive strength of 0.25 N / mm was obtained. After only 5 minutes of treatment with glycol compounds, on the other hand, a very good adhesive strength of 1.4 N / mm was already achieved, which continues to increase with longer treatment time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Metallisieren elektrisch nichtleitender Kunststoffoberflächen von Gegenständen. Während des Verfahrens wird das Gestell, in dem die besagten Gegenstände befestigt sind, einer Behandlung zum Schutz vor Metallisierung unterzogen. Anschließend werden die Gegenstände mittels bekannter Verfahren metallisiert, wobei die Gestelle von Metall frei bleiben.

Description

    Gebiet der Erfindung
  • Die vorliegende Erfindung betrifft ein Verfahren zum Metallisieren elektrisch nichtleitender Kunststoffoberflächen von Gegenständen. Während des Verfahrens wird das Gestell, in dem die besagten Gegenstände befestigt sind, mit einer lodationen-haltigen Lösung behandelt, um die Metallisierung des Gestells zu verhindern. Nach der Behandlung mit der lodationen-haltigen Lösung können die Gegenstände mittels bekannter Verfahren metallisiert werden. Dabei bleibt das Gestell frei von Metall.
  • Hintergrund der Erfindung
  • Gegenstände aus elektrisch nichtleitendem Kunststoff können mit einem stromlosen Metallisierungsverfahren metallisiert werden. Bei diesem Verfahren wird der Gegenstand zunächst gereinigt und gebeizt, dann mit einem Edelmetall behandelt und schließlich metallisiert. Die Beizung wird typischerweise mittels Chromschwefelsäure vorgenommen. Die Beizung dient dazu, die Oberfläche des Gegenstandes für die nachfolgende Metallisierung empfänglich zu machen, sodass die Oberflächen der Gegenstände in den nachfolgenden Behandlungsschritten mit den jeweiligen Lösungen gut benetzt werden und das abgeschiedene Metall schließlich auf der Oberfläche ausreichend fest haftet.
  • Zur Beizung wird die Oberfläche von Gegenständen beispielsweise aus Acrylnitril-Butadien-Styrol-Copolymer (ABS-Copolymer) unter Verwendung von Chromschwefelsäure geätzt, sodass sich oberflächlich Mikrokavernen bilden, in denen sich Metall abscheidet und dort anschließend fest haftet. Im Anschluss an die Beizung wird der Kunststoff für die stromlose Metallisierung mittels eines Aktivators, der ein Edelmetall enthält, aktiviert und danach stromlos metallisiert. Anschließend kann auch eine dickere Metallschicht elektrolytisch aufgebracht werden.
  • Beizlösungen auf Basis von Chromschwefelsäure sind jedoch toxisch und sollen deshalb möglichst ersetzt werden.
  • In der Literatur sind Versuche beschrieben, Beizlösungen auf Basis von Chromschwefelsäure durch solche enthaltend Permanganatsalze zu ersetzen.
  • Die Verwendung von Permanganaten in alkalischem Medium zur Metallisierung von Leiterplatten als Träger elektronischer Schaltungen ist seit langem etabliert. Da die sechswertige Stufe (Manganat), die bei der Oxidation entsteht, wasserlöslich ist und im Alkalischen eine ausreichende Stabilität aufweist, kann das Manganat ähnlich wie auch das dreiwertige Chrom zu dem ursprünglichen Oxidationsmittel, in diesem Fall dem Permanganat, wieder elektrolytisch zurück oxidiert werden. In der Schrift DE 196 11 137 A1 ist die Verwendung des Permanganats auch zur Metallisierung anderer Kunststoffe als Leiterplattenmaterial beschrieben. Für die Metallisierung von ABS Kunststoffen hat sich eine Lösung aus alkalischem Permanganat als nicht geeignet erwiesen, da auf diese Weise eine verlässliche, ausreichende Haftfestigkeit zwischen Metallschicht und Kunststoffsubstrat nicht erzeugt werden konnte. Diese Haftfestigkeit wird im Streifenabzugstest ("peel test") ermittelt. Sie sollte mindestens einen Wert von 0,4 N/mm aufweisen.
  • In EP 1 0010 52 ist eine saure Permanganatlösung, die zur Verwendung bei der Kunststoffgalvanisierung geeignet sein soll, offenbart. EP 1 0010 52 berichtet nicht über die mit dieser Vorbehandlung erzielbaren Haftfestigkeiten. Eigene Versuche haben gezeigt, dass die Haftfestigkeiten unter einem Wert von 0,4 N/mm liegen. Außerdem sind die in EP 1 0010 52 beschriebenen Lösungen nicht stabil. Eine konstante Qualität der Metallisierung kann deshalb nicht erreicht werden.
  • Als Alternative zur Chromschwefelsäure werden in WO 2009/023628 A2 stark saure Lösungen enthaltend ein Alkalipermanganat-Salz vorgeschlagen. Die Lösung enthält etwa 20 g/l Alkalipermanganat-Salz in 40 - 85 Gew.-% Phosphorsäure. Solche Lösungen bilden kolloidale Mangan(IV)spezies, die sich schwer abtrennen lassen. Gemäß der WO 2009/023628 A2 führen die Kolloide bereits nach kurzer Zeit dazu, dass eine Beschichtung ausreichender Qualität nicht mehr möglich ist. Zur Lösung des Problems schlägt die WO 2009/023628 A2 vor, Mangan(VII)-Quellen einzusetzen, die keine Alkali-oder Erdalkaliionen enthalten. Die Herstellung solcher Mangan(VII)-Quellen ist jedoch aufwendig.
  • Nach wie vor wird deshalb die toxische Chromschwefelsäure zur Ätzbehandlung von Kunststoffen eingesetzt.
  • Für die großtechnische Anwendung der Metallisierung von Kunststoffoberflächen werden die Gegenstände für gewöhnlich an Gestellen befestigt. Dabei handelt es sich um metallene Trägersysteme, die die gleichzeitige Behandlung einer großen Zahl von Gegenständen mit den aufeinanderfolgenden Lösungen der einzelnen Verfahrensschritte sowie letzte Schritte zur elektrolytischen Abscheidung einer oder mehrerer Metallschichten erlauben. Die Gestelle sind in der Regel selbst mit Kunststoff beschichtet. Daher stellen die Gestelle prinzipiell ebenfalls ein Substrat für Metallisierungsverfahren auf Kunststoffoberflächen dar.
  • Die zusätzliche Metallisierung der Gestelle ist jedoch unerwünscht, da die Metallschichten von den Gestellen nach der Beschichtung der Gegenstände wieder entfernt werden müssen. Dies bedeutet einen zusätzlichen Aufwand für die Entfernung verbunden mit einem zusätzlichen Verbrauch von Chemikalien. Weiter ist die Produktivität der Metallisierungs- anlage in diesem Fall geringer, da die Gestelle vor dem erneuten Bestücken mit Gegenständen erst entmetallisiert werden müssen. Muss das Entmetallisieren mit halbkonzentrierter Salzsäure und/oder mit Salpetersäure stattfinden, entstehen Dämpfe und Aerosole, die in der Umgebung zur Korrosion führen.
  • Ein weiteres Problem ist, dass bei Auftreten von Gestellmetallisierung es nicht mehr reproduzierbar möglich ist, eine definierte Stromdichte zu erzielen, weil das Ausmaß der Gestellbelegung meist nicht bekannt ist und die exakte Fläche der Gestelle ebenfalls nicht. Meist ist dann als Folge auf den galvanisierten Kunststoffgegenständen die aufgebrachte Metallschicht zu dünn.
  • Bei dem Einsatz von chromsäurehaltigen Beizen ist dieses Problem deutlich reduziert. Die Chromsäure dringt während des Beizens auch in die Kunststoffummantelung der Gestelle ein und diffundiert während der nachfolgenden Verfahrensschritte wieder aus dieser hinaus und verhindert so die Metallisierung des Gestells.
  • Will man also die toxische Chromschwefelsäure zur Ätzbehandlung von Kunststoffen durch ökologisch unbedenkliche Verfahrensschritte ersetzen, wird es erforderlich, die unerwünschte Metallisierung der Gestelle zu verhindern.
  • Patent DE 195 10 855 C2 beschreibt ein Verfahren zum selektiven oder partiellen elektrolytischen Metallisieren von nichtleitenden Materialien. Dabei wird die gleichzeitige Metallisierung der Gestelle verhindert, indem auf Behandlungsschritte mit adsorptionsfördernden Lösungen, sogenannten Konditionierern, verzichtet wird. Allerdings wird betont, dass das Metallisierungsverfahren von nichtleitenden Materialien in DE 195 10 855 C2 nur zur Direktmetallisierung geeignet ist.
  • Beschreibung der Zeichnungen
    • Figur 1: Einfluss der Iodatbehandlung auf die Gestellmetallisierung
    • Figur 2A: Gestell nach Metallisierungsverfahren ohne Iodat-Behandlung
    • Figur 2B: Gestell nach Metallisierungsverfahren mit Iodat-Behandlung
    • Figur 3: Einfluss der Behandlungsdauer von Gegenständen aus einer ABS/PC-Mischung mit Glykolverbindungen auf die Haftfestigkeit
    • Figur 4: Einfluss der Behandlungsdauer von Gegenständen aus ABS mit Glykolverbindungen auf die Haftfestigkeit
    Beschreibung der Erfindung
  • Der vorliegenden Erfindung liegt von daher das Problem zugrunde, dass es bisher nicht möglich ist, die Metallisierung der Gestelle zu vermeiden und gleichzeitig mit ausreichender Prozesssicherheit und Haftfestigkeit der nachfolgend aufgebrachten Metallschichten eine Metallisierung von Gegenständen aus elektrisch nichtleitendem Kunststoff zu erreichen.
  • Es besteht daher die Aufgabe, die Metallisierung der Gestelle verhindern, während elektrisch nichtleitende Kunststoffoberflächen von Gegenständen metallisiert werden.
  • Diese Aufgabe wird mit dem folgenden erfindungsgemäßen Verfahren gelöst: Verfahren zum Metallisieren von elektrisch nichtleitenden Kunststoffoberflächen von Gegenständen, umfassend die Verfahrensschritte:
    1. A) Befestigen des Gegenstands in einem Gestell,
    2. B) Beizen der Kunststoffoberfläche mit einer Beizlösung,
    3. C) Behandeln der Kunststoffoberfläche mit einer Lösung eines Metall-Kolloids oder einer Verbindung eines Metalls, wobei das Metall ausgewählt ist aus den Metallen der I. Nebengruppe des Periodensystems der Elemente und der VIII. Nebengruppe des Periodensystems der Elemente, und
    4. D) Metallisieren der Kunststoffoberfläche mit einer Metallisierungslösung;
    dadurch gekennzeichnet, dass das Gestell mit einer Lösung enthaltend eine Quelle für Iodationen behandelt wird.
  • Unter Gegenständen werden im Rahmen dieser Erfindung Gegenstände verstanden, die aus mindestens einem elektrisch nichtleitenden Kunststoff gefertigt sind oder die mit mindestens einer Schicht mindestens eines elektrisch nichtleitenden Kunststoffs bedeckt sind. Die Gegenstände weisen also Oberflächen aus mindestens einem elektrisch nichtleitenden Kunststoff auf. Unter Kunststoffoberflächen werden im Rahmen dieser Erfindung diese besagten Oberflächen der Gegenstände verstanden.
  • Die Verfahrensschritte der vorliegenden Erfindung werden in der angegebenen Reihenfolge, nicht notwendigerweise aber unmittelbar aufeinander folgend durchgeführt. Es können weitere Verfahrensschritte und zusätzlich jeweils Spülschritte, vorzugsweise mit Wasser, zwischen den Schritten durchgeführt werden.
  • Durch das erfindungsgemäße Behandeln des Gestells mit einer Lösung enthaltend eine Quelle für Iodationen wird das Metallisieren des Gestells vermieden, während die elektrisch nichtleitenden Kunststoffoberflächen von Gegenständen mit Metall überzogen werden. Das Gestell bleibt also während des erfindungsgemäßen Verfahrens frei von Metall. Mit dem erfindungsgemäßen Verfahren ist es nicht notwendig, die Gestelle nach dem Gebrauch wieder vom Metall zu befreien, da die Gestelle durch das erfindungsgemäße Behandeln mit Iodationen nicht metallisiert werden und also von Metall frei bleiben. Die Gestelle können also nach dem Durchführen des Metallisierungsverfahrens und dem Entfernen der metallisierten Gegenstände aus den Gestellen ohne weitere Behandlung unmittelbar wieder in den Produktionskreislauf zurück geführt werden und zur Metallisierung weiterer Gegenstände eingesetzt werden.
  • Es sind keine zusätzlichen Reinigungs- und Ätzschritte zum Entmetallisieren der Gestelle notwendig. Dadurch wird auch der Aufwand für die Abwasserentsorgung reduziert. Außerdem werden weniger Chemikalien verbraucht. Auch die Produktivität der Metallisierungsanlage wird gesteigert, da bei gegebener Anzahl von vorhandenen Gestellen eine größere Anzahl von zu metallisierenden Gegenständen behandelt werden kann.
  • Die Kunststoffoberflächen sind aus mindestens einem elektrisch nichtleitenden Kunststoff gefertigt. In einer Ausführungsform der vorliegenden Erfindung wird der mindestens eine elektrisch nichtleitende Kunststoff ausgewählt aus der Gruppe enthaltend ein Acrylnitril-Butadien-Styrol-Copolymer (ABS-Copolymer), ein Polyamid (PA), ein Polycarbonat (PC) und eine Mischung eines ABS-Copolymers mit mindestens einem weiteren Polymer.
    In einer bevorzugten Ausführungsform der Erfindung ist der elektrisch nichtleitende Kunststoff ein ABS-Copolymer oder eine Mischung eines ABS-Copolymers mit mindestens einem weiteren Polymer. Besonders bevorzugt ist das mindestens eine weitere Polymer Polycarbonat (PC), das heißt besonders bevorzugt sind ABS/PC-Mischungen.
  • Das erfindungsgemäße Behandeln des Gestells mit einer Lösung enthaltend eine Quelle für Iodationen wird im Folgenden auch als Schützen des Gestells bezeichnet. Das Schützen des Gestells kann zu verschiedenen Zeitpunkten während des erfindungsgemäßen Verfahrens stattfinden. In einer bevorzugten Ausführungsform der vorliegenden Erfindung findet das Behandeln des Gestells mit einer Lösung enthaltend eine Quelle für Iodationen vor Verfahrensschritt A) statt.
  • Zu diesem Zeitpunkt sind die Gegenstände noch nicht in dem Gestell befestigt. Das Gestell wird also allein, ohne die Gegenstände, mit der Lösung enthaltend eine Quelle für Iodationen behandelt.
  • Schritt A) des erfindungsgemäßen Verfahrens ist das Befestigen der Gegenstände in Gestellen, die die gleichzeitige Behandlung einer großen Zahl von Gegenständen mit den aufeinanderfolgenden Lösungen der einzelnen Verfahrensschritte ermöglichen sowie die elektrische Kontaktierung während der letzten Schritte zur elektrolytischen Abscheidung einer oder mehrerer Metallschichten herstellen. Die Behandlung der Gegenstände gemäß dem erfindungsgemäßen Verfahren wird vorzugsweise in einem herkömmlichen Tauchverfahren durchgeführt, indem die Gegenstände nacheinander in Lösungen in Behältern eingetaucht werden, in denen die jeweilige Behandlung stattfindet. In diesem Falle können die Gegenstände entweder an Gestellen befestigt oder in Trommeln eingefüllt in die Lösungen eingetaucht werden. Eine Befestigung an Gestellen ist bevorzugt. Die Gestelle sind in der Regel selbst mit Kunststoff beschichtet. Bei dem Kunststoff handelt es sich meist um Polyvinylchlorid (PVC).
  • In einer weiteren Ausführungsform der Erfindung wird zwischen den Verfahrensschritten A) und B) folgender weiterer Verfahrensschritt durchgeführt:
    • A i) Behandeln der Kunststoffoberfläche in einer wässrigen Lösung enthaltend mindestens eine Glykolverbindung.
  • Der weitere Verfahrensschritt A i) wird auch als Vorbehandlungsschritt bezeichnet. Durch diesen Vorbehandlungsschritt wird die Haftfestigkeit zwischen dem Kunststoff des Gegenstands und der Metallschicht erhöht.
  • Unter einer Glykolverbindung werden Verbindungen der folgenden allgemeinen Formel (I) verstanden:
    Figure imgb0001
    worin
    n eine ganze Zahl zwischen 1 und 4 bedeutet; und
    R1 und R2 unabhängig voneinander bedeuten -H, -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-CH2-CH2-CH3, -CH(CH3)-CH2-CH3, -CH2-CH(CH3)-CH3, -CH2-CH2-CH2-CH2-CH3, -CH(CH3)-CH2-CH2-CH3, -CH2-CH(CH3)-CH2-CH3, -CH2-CH2-CH(CH3)-CH3, -CH(CH2-CH3)-CH2-CH3, -CH2-CH(CH2-CH3)-CH3, -CO-CH3, -CO-CH2-CH3, -CO-CH2-CH2-CH3, -CO-CH(CH3)-CH3, -CO-CH(CH3)-CH2-CH3, -CO-CH2-CH(CH3)-CH3, -CO-CH2-CH2-CH2-CH3.
  • Entsprechend der allgemeinen Formel (I) gehören zu den Glykolverbindungen die Glykole selbst sowie Glykolderivate. Zu den Glykolderivaten werden die Glykolether, die Glykolester und die Glykoletherester gerechnet. Bei den Glykolverbindungen handelt es sich um Lösungsmittel.
  • Bevorzugte Glykolverbindungen sind Ethylenglykol, Diethylenglykol, Ethylenglykolmonomethyletheracetat, Ethylenglykolmonoethyletheracetat, Ethylenglykolmonopropyletheracetat, Ethylenglykolacetat, Diethylenglykolmonoethyletheracetat, Diethylenglykolmonomethyletheracetat, Diethylenglykolmonopropyletheracetat, Butylglykol, Ethylenglykolmonobutylether, Ethylenglykoldiacetat und Mischungen davon. Besonders bevorzugt sind Diethylenglykolmonoethyletheracetat, Ethylenglykolacetat, Ethylenglykoldiacetat, Butylglykol und Mischungen davon.
  • Bei Verwendung von Glykolestern und Glykoletherestern ist es sinnvoll, den pH-Wert der wässrigen Lösung der Glykolverbindung durch geeignete Maßnahmen im neutralen Bereich zu halten, um die Hydrolyse zum Alkohol und zur Carbonsäure soweit wie möglich zurück zu drängen. Ein Beispiel ist die Hydrolyse des Diethylenglykolmonoethyletheracetats:
    • CH3-CO-O-CH2CH2-O-CH2CH2-O-CH2CH3 + H2O →
    • CH3-COOH + HO-CH2CH2-O-CH2CH2-O-CH2CH3
  • Die Wasserkonzentration der Lösung enthaltend eine Glykolverbindung hat ebenfalls einen Einfluss auf die Hydrolyse der Glykolester und Glykoletherester. Allerdings muss die Lösung aus zwei Gründen Wasser enthalten: einerseits um eine unbrennbare Behandlungslösung zu erhalten und andererseits, um die Stärke des Angriffs auf die Kunststoffoberfläche einstellen zu können. Ein reines Lösungsmittel, also 100 % einer Glykolverbindung, würde die meisten unvernetzten Polymere auflösen oder mindestens eine unakzeptable Oberfläche hinterlassen. Es hat sich deshalb als sehr vorteilhaft erwiesen, die Lösung eines Glykolesters oder Glykoletheresters zu puffern und so im neutralen pH-Bereich zu halten, was bedeutet, die durch Hydrolyse des Lösungsmittels erzeugten Protonen abzufangen. Ein Phosphatpuffergemisch hat sich dafür als ausreichend geeignet erwiesen. Die gut löslichen Kaliumphosphate erlauben ausreichend hohe Konzentrationen mit guter Pufferkapazität bei Lösungsmittelkonzentrationen bis zu 40% Vol.
  • Die optimale Behandlungsdauer der Kunststoffoberfläche ist abhängig vom verwendeten Kunststoff, der Temperatur sowie der Art und Konzentration der Glykolverbindung. Die Behandlungsparameter haben einen Einfluss auf die Haftung zwischen der behandelten Kunststoffoberfläche und der in nachfolgenden Prozessschritten aufgebrachten Metallschicht. Höhere Temperaturen oder Konzentrationen der Glykolverbindungen beeinflussen ferner die Textur der Kunststoffoberfläche. In jedem Fall sollte es dem nachfolgenden Beizschritt B) möglich sein, das Lösungsmittel wieder aus der Kunststoffmatrix zu entfernen, weil sonst die Folgeschritte des Verfahrens, ganz besonders die Aktivierung gemäß Verfahrensschritt C), gestört werden.
  • Mit dem erfindungsgemäßen Verfahren werden Haftfestigkeiten von mindestens 0,8 N/mm erhalten, was deutlich über dem geforderten Mindestwert von 0,4 N/mm liegt. Die Behandlungsdauer in Verfahrensschritt A i) beträgt zwischen 1 und 30 Minuten, bevorzugt zwischen 5 und 20 Minuten und besonders bevorzugt zwischen 7 bis 15 Minuten.
  • Die Behandlungstemperatur liegt zwischen 20°C und 70°C, abhängig von der Art des verwendeten Lösungsmittels oder Lösungsmittelgemisches. Bevorzugt ist eine Behandlungstemperatur zwischen 20°C und 50°C, besonders bevorzugt ist eine Behandlungstemperatur zwischen 20°C und 45°C.
  • Die Behandlung der Kunststoffoberflächen gemäß Verfahrensschritt A i) kann in einer wässrigen Lösung enthaltend eine Glykolverbindung durchgeführt werden oder in einer wässrigen Lösung, die zwei oder mehr verschiedene Glykolverbindungen enthält. Die Gesamtkonzentration an Glykolverbindungen in der wässrigen Lösung beträgt 5 % Vol.-50 % Vol., bevorzugt 10 % Vol. - 40 % Vol. und besonders bevorzugt 20 % Vol.- 40 % Vol. Wenn die besagte Lösung eine Glykolverbindung enthält, entspricht die Gesamtkonzentration der Konzentration dieser einen Glykolverbindung. Wenn die besagte Lösung zwei oder mehr verschiedene Glykolverbindungen enthält, entspricht die Gesamtkonzentration der Summe der Konzentrationen aller enthaltenen Glykolverbindungen. Im Zusammenhang mit der Lösung enthaltend mindestens eine Glykolverbindung ist unter den Konzentrationsangaben für die Glykolverbindung/Glykolverbindungen in % immer eine Konzentration in % Vol. zu verstehen.
  • So hat sich zur Vorbehandlung von ABS Kunststoffoberflächen eine Lösung von 15% Vol. Diethylenglykolmonoethyletheracetat im Gemisch mit 10% Vol. Butylglykol bei 45°C als vorteilhaft erwiesen (siehe Beispiel 4). Dabei dient das erste Lösungsmittel der Erzeugung der Haftfestigkeit, während das zweite als nichtionisches Tensid die Benetzbarkeit erhöht und dabei hilft, eventuell vorhandene Verschmutzungen von der Kunststoffoberfläche zu entfernen.
  • Zur Vorbehandlung von ABS/PC-Mischungen, zum Beispiel Bayblend T45 oder Bayblend T65PG, hat sich eine Lösung aus 40% Vol. Diethylenglykolmonoethyletheracetat in Wasser bei Raumtemperatur als vorteilhafter erwiesen, weil sie bei diesen Kunststoffen eine höhere Haftfestigkeit der aufgebrachten Metallschichten erlaubt (siehe Beispiel 5).
  • In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung findet das Behandeln des Gestells mit einer Lösung enthaltend eine Quelle für Iodationen zwischen den Verfahrensschritten A) und B) statt. Dabei kann das Behandeln des Gestells mit einer Lösung enthaltend eine Quelle für Iodationen zwischen den Verfahrensschritten A) und A i) stattfinden oder zwischen den Verfahrensschritten A i) und B).
  • Zu diesen Zeitpunkten sind die Gegenstände bereits in dem Gestell befestigt. Das Gestell wird also gemeinsam mit den Gegenständen mit der Lösung enthaltend eine Quelle für Iodationen behandelt.
    Die Formulierungen "das Gestell mit einer Lösung enthaltend eine Quelle für Iodationen behandelt" und "Behandeln des Gestells mit einer Lösung enthaltend eine Quelle für Iodationen" bedeuten im Rahmen dieser Erfindung, dass das Schützen des Gestells allein, ohne die Gegenstände, stattfinden kann (beispielsweise, wenn das Schützen des Gestells vor Verfahrensschritt A) stattfindet) oder dass das Schützen des Gestells gemeinsam mit den Gegenständen stattfinden kann (beispielsweise, wenn das Schützen des Gestells zu irgendeinem Zeitpunkt nach Verfahrensschritt A) stattfindet).
    Unabhängig davon, ob das Schützen des Gestells allein oder gemeinsam mit den Gegenständen stattfindet, führt es zu einem speziellen Schutz der Kunststoffummantelung der Gestelle vor der Metallabscheidung, während die Gegenstände, die während Verfahrensschritt A) in den Gestellen befestigt werden, metallisiert werden. Das Schützen des Gestells sorgt dafür, dass die Kunststoffummantelung der Gestelle in den späteren Verfahrensschritten C) bis D) nicht metallisiert wird, das heißt die Gestelle bleiben frei von Metall. Dieser Effekt ist besonders ausgeprägt auf einer PVC-Ummantelung der Gestelle.
  • Die Beizbehandlung gemäß Verfahrensschritt B) wird in einer Beizlösung durchgeführt. Die Beizlösung enthält eine Quelle für Permanganationen. Die Quelle für Permanganationen wird ausgewählt aus der Gruppe von Alkalimetall-Permanganaten enthaltend Kaliumpermanganat und Natriumpermanganat. Die Quelle für Permanganationen liegt in der Beizlösung in einer Konzentration zwischen 30 g/l und 250 g/l vor, bevorzugt zwischen 30 g/l und 180 g/l, weiter bevorzugt zwischen 90 g/l und 180 g/l und besonders bevorzugt 100 g/l. Kaliumpermanganat kann aufgrund seiner Löslichkeit in einer Konzentration von bis zu 70 g/l in der Beizlösung enthalten sein. Natriumpermanganat kann in einer Konzentration von bis zu 250 g/l in der Beizlösung enthalten sein. Die untere Konzentrationsgrenze jedes dieser beiden Salze beträgt typischerweise 30 g/l. Bevorzugt liegt der Gehalt an Natriumpermanganat zwischen 90 g/l und180 g/l.
  • Die Beizlösung ist bevorzugt sauer, das heißt sie enthält bevorzugt eine Säure. Überraschenderweise sind alkalische Permanganatlösungen, wie sie routinemäßig in der Leiterplattenindustrie als Beizlösung verwendet werden, für die vorliegende Erfindung nicht geeignet, da sie keine ausreichende Haftfestigkeit zwischen Kunststoffoberfläche und Metallschicht bietet.
  • Säuren, die in der Beizlösung verwendet werden, sind bevorzugt anorganische Säuren. Die anorganische Säure in der Beizlösung gemäß Verfahrensschritt B) wird ausgewählt aus der Gruppe enthaltend Schwefelsäure, Salpetersäure und Phosphorsäure. Die Säurekonzentration darf nicht zu hoch sein, da die Beizlösung andernfalls nicht stabil ist. Die Säurekonzentration beträgt zwischen 0,02 - 0,6 mol/l bezogen auf eine einbasige Säure. Bevorzugt liegt sie zwischen 0,06 und 0,45 mol/l, besonders bevorzugt zwischen 0,07 und 0,30 mol/l jeweils bezogen auf eine einbasige Säure. Bevorzugt wird Schwefelsäure in einer Konzentration zwischen 0,035 und 0,15 mol/l eingesetzt, was einer Säurekonzentration zwischen 0,07 und 0,30 mol/l bezogen auf eine einbasige Säure entspricht.
  • Die Beizlösung kann bei Temperaturen zwischen 30°C und 90°C, bevorzugt zwischen 55°C bis 75°C betrieben werden. Zwar wurde gefunden, dass ausreichend hohe Haftfestigkeiten zwischen Metallschichten und Kunststoffoberflächen auch bei niedrigen Temperaturen zwischen 30°C und 55°C erzielt werden können. Es kann dann aber nicht sichergestellt werden, dass sämtliches Lösungsmittel der Behandlung mit Glykolverbindung gemäß Verfahrensschritt A i) aus der Kunststoffoberfläche entfernt ist. Dies gilt in besonderem Maße für reines ABS. Wenn also der Schritt A i) im erfindungsgemäßen Verfahren ausgeführt wird, sind die Temperaturen im nachfolgenden Verfahrensschritt B) höher zu wählen, nämlich im Bereich von 55°C bis 90°C, bevorzugt im Bereich von 55°C bis 75°C. Die optimale Behandlungsdauer hängt von der behandelten Kunststoffoberfläche und der gewählten Temperatur der Beizlösung ab. Für ABS- und ABS/PC- Kunststoffoberflächen wird die beste Haftfestigkeit zwischen Kunststoffoberfläche und anschließend aufgebrachter Metallschicht bei einer Behandlungsdauer zwischen 5 und 30 Minuten erreicht, bevorzugt zwischen 10 und 25 Minuten und besonders bevorzugt zwischen 10 und 15 Minuten. Eine längere Behandlungszeit als 30 Minuten führt in der Regel zu keiner Verbesserung der Haftfestigkeiten mehr.
  • Eine saure Permanganatlösung ist bei erhöhten Temperaturen, zum Beispiel bei 70°C, sehr reaktiv. Es bilden sich dann durch die Oxidationsreaktion mit der Kunststoffoberfläche viel Mangan(IV)-Spezies, die als Niederschlag ausfallen. Diese Mangan(IV)-Spezies sind überwiegend Mangan(IV)oxide oder Oxidhydrate und werden im Folgenden einfach als Mangandioxid bezeichnet.
  • Der Mangandioxid-Niederschlag wirkt auf die nachfolgende Metallisierung störend, wenn er auf der Kunststoffoberfläche verbleibt. Er sorgt während des Aktivierens gemäß Verfahrensschritt C) dafür, dass Bereiche der Kunststoffoberfläche nicht mit Metall-Kolloid bedeckt werden oder erzeugt nicht akzeptable Rauheiten der in späteren Verfahrensschritten aufzubringenden Metallschicht.
  • Die Beizlösung enthält kein Chrom oder Chromverbindungen; die Beizlösung enthält weder Chrom(III)ionen noch Chrom(VI)ionen. Die erfindungsgemäße Beizlösung ist also frei von Chrom oder Chromverbindungen; die Beizlösung ist frei von Chrom(III)ionen und Chrom(VI)ionen.
    In einer weiteren Ausführungsform werden die Gegenstände im Anschluss an die Permanganatbehandlung gemäß Verfahrensschritt B) durch Abspülen von überschüssiger Permanganatlösung gereinigt. Das Abspülen erfolgt in einem oder mehreren, vorzugsweise drei, Spülschritten mit Wasser.
  • In einer weiteren Ausführungsform der Erfindung wird zwischen den Verfahrensschritten B) und C) folgender weiterer Verfahrensschritt durchgeführt:
    • B i) Behandeln der Kunststoffoberfläche in einer Lösung enthaltend ein Reduktionsmittel für Mangandioxid.
  • Der weitere Verfahrensschritt B i) wird auch als Reduktionsbehandlung bezeichnet. Durch diese Reduktionsbehandlung wird an den Kunststoffoberflächen anhaftendes Mangandioxid zu wasserlöslichen Mangan(II)ionen reduziert. Die Reduktionsbehandlung wird nach der Permanganatbehandlung gemäß Verfahrensschritt B) sowie gegebenenfalls nach dem Abspülen durchgeführt. Hierzu wird eine saure Lösung eines Reduktionsmittels eingesetzt. Das Reduktionsmittel wird ausgewählt aus der Gruppe enthaltend Hydroxylammoniumsulfat, Hydroxylammoniumchlorid und Wasserstoffperoxid. Bevorzugt ist eine saure Lösung von Wasserstoffperoxid, weil Wasserstoffperoxid weder toxisch noch komplexbildend ist. Der Gehalt an Wasserstoffperoxid in der Lösung der Reduktionsbehandlung (Reduktionslösung) beträgt zwischen 25 ml/l und 35 ml/l einer 30%-igen Wasserstoffperoxidlösung (Gew.-%), bevorzugt 30 ml/l einer 30 %-igen Wasserstoffperoxidlösung (Gew.-%).
  • Als Säure wird in der Reduktionslösung eine anorganische Säure eingesetzt, bevorzugt Schwefelsäure. Die Säurekonzentration beträgt 0,5 mol/l bis 5,0 mol/l, bevorzugt 1,0 mol/l bis 3,0 mol/l, besonders bevorzugt 1,0 mol/l bis 2,0 mol/l jeweils bezogen auf eine einbasige Säure. Bei Verwendung von Schwefelsäure sind Konzentrationen von 50 g/l 96%-iger Schwefelsäure bis 100 g/l 96%-iger Schwefelsäure besonders bevorzugt, was einer Säurekonzentration von 1,0 mol/l bis 2,0 mol/l bezogen auf eine einbasige Säure entspricht.
  • Durch die Reduktionsbehandlung wird der für die Metallisierung der Gegenstände störend wirkende Mangandioxid-Niederschlag entfernt. Die Reduktionsbehandlung des Verfahrensschritts B i) fördert dadurch die gleichmäßige durchgängige Belegung der Gegenstände mit der gewünschten Metallschicht und fördert die Haftfestigkeit und Glätte der auf die Gegenstände aufgebrachten Metallschicht.
  • Die Reduktionsbehandlung gemäß Verfahrensschritt B i) wirkt sich ebenfalls vorteilhaft auf die Metallisierung der Kunststoffummantelung des Gestells aus. Die unerwünschte Belegung der Kunststoffummantelung mit Palladium während des Verfahrensschritts C) wird zurückgedrängt. Dieser Effekt ist besonders ausgeprägt, wenn die Reduktionslösung eine starke anorganische Säure, vorzugsweise Schwefelsäure, enthält. Wasserstoffperoxid ist gegenüber Hydroxylammoniumsulfat oder -chlorid in der Reduktionslösung außerdem deshalb bevorzugt, weil es die Gestellmetallisierung besser unterdrückt.
  • Die Reduktionsbehandlung gemäß Verfahrensschritt B i) wird bei einer Temperatur zwischen 30 °C und 50 °C durchgeführt, bevorzugt bei 40 °C bis 45 °C. Die Reduktionsbehandlung wird für einen Zeitraum zwischen 1 und 10 Minuten durchgeführt, bevorzugt zwischen 3 bis 6 Minuten. Um einen ausreichenden Schutz der Gestelle vor Aktivierung zu erzielen, ist es vorteilhaft, die Behandlungszeit in der Reduktionslösung auf 3 bis 10 Minuten zu erhöhen, bevorzugt auf 3 bis 6 Minuten.
  • Das verwendete Reduktionsmittel Wasserstoffperoxid muss von Zeit zu Zeit nachdosiert werden. Der Verbrauch von Wasserstoffperoxid lässt sich aus der Menge an auf den Kunststoffoberflächen gebundenem Mangandioxid berechnen. In der Praxis reicht es aus, die Gasentwicklung bei der Reduktionsreaktion während Verfahrensschritt B i) zu beobachten und die ursprüngliche Menge an Wasserstoffperoxid, zum Beispiel 30 ml/l einer 30%igen Lösung, zu dosieren, wenn die Gasentwicklung nachlässt. Bei erhöhter Betriebstemperatur der Reduktionslösung, zum Beispiel bei 40°C, ist die Reaktion rasch und nach spätestens einer Minute abgeschlossen.
  • In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung findet das Behandeln des Gestells mit einer Lösung enthaltend eine Quelle für Iodationen zwischen den Verfahrensschritten B) und C) statt, besonders bevorzugt zwischen den Verfahrensschritten B i) und B ii).
  • Unabhängig davon zu welchem der beschriebenen Zeitpunkte in dem erfindungsgemäßen Verfahren das Schützen des Gestells stattfindet, führt es zu einem speziellen Schutz der Kunststoffummantelung der Gestelle vor der Metallabscheidung, während die Gegenstände, die während Verfahrensschritt A) in den Gestellen befestigt werden, metallisiert werden.
  • Die Wirkung des Schützens des Gestells auf die Metallisierung der Gestelle wird auch in Figuren 2A und 2B dargestellt. Figur 2A zeigt einen Teil eines Gestells nachdem eine Kunststoffoberfläche eines plattenförmigen Gegenstands, welcher in dem Gestell befestigt ist, verkupfert wurde. Das Verfahren zum Aufbringen der Kupferschicht entsprach dabei dem erfindungsgemäßen Metallisierungsverfahren mit der Abweichung, dass das Schützen des Gestells nicht durchgeführt wurde. Der Teil des Gestells, der mit den verschiedenen Behandlungslösungen des Metallisierungsverfahrens in Berührung kam, ist komplett von einer Kupferschicht überzogen. Figur 2B zeigt einen entsprechenden Teil eines Gestells nachdem eine Kunststoffoberfläche eines plattenförmigen Gegenstands, welcher in dem Gestell befestigt ist, unter Einbeziehung des Schützens des Gestells verkupfert wurde. Die Kunststoffoberfläche des Gegenstands trägt eine gleichmäßige Kupferschicht, während die Kunststoffummantelung des Gestells nicht verkupfert wurde. Die Kunststoffummantelung des Gestells trägt weiterhin die schwarz-grüne Färbung, die durch langen Gebrauch des Gestells verursacht wird.
  • Die Behandlung mit Iodationen ist besonders vorteilhaft, wenn der Verfahrensschritt C ii) gemäß einer Ausführungsform der Erfindung aus einem stromlosen Metallisieren der Gegenstände in einer Metallisierungslösung besteht.
  • Die Iodationen sind in wässriger Lösung ausreichend stabil und werden nur durch Ausschleppung verbraucht. Generell steigt die Wirkung des Schützens des Gestells mit steigender Konzentration der Iodationen und mit steigender Betriebstemperatur. Eine Ermittlung der optimalen Konzentration wird in Ausführungsbeispiel 1 beschrieben. Das Schützen des Gestells wird bei einer Temperatur von 20°C bis 70°C ausgeführt, besonders bevorzugt von 45°C bis 55°C. Geeignete Quellen für Iodationen werden ausgewählt aus der Gruppe von Metalliodaten enthaltend Natriumiodat, Kaliumiodat, Magnesiumiodat, Calciumiodat und deren Hydrate. Die Konzentration der Metalliodate beträgt zwischen 5 g/l und 50 g/l, bevorzugt von 15 g/l bis 25 g/l. Die Dauer der Behandlung des Gestells mit Iodationen liegt zwischen 1 bis 20 Minuten, bevorzugt zwischen 2 bis 15 Minuten und besonders bevorzugt zwischen 5 bis 10 Minuten.
  • Die Lösung enthaltend eine Quelle für Iodationen kann weiter eine Säure enthalten. Bevorzugt sind anorganische Säuren. Die anorganischen Säuren werden ausgewählt aus der Gruppe enthaltend Schwefelsäure und Phosphorsäure, bevorzugt Schwefelsäure. Die Säurekonzentration beträgt 0,02 mol/l bis 2,0 mol/l, bevorzugt 0,06 mol/l bis 1,5 mol/l, besonders bevorzugt 0,1 mol/l bis 1,0 mol/l jeweils bezogen auf eine einbasige Säure. Bei Verwendung von Schwefelsäure sind Konzentrationen von 5 g/l 96%-iger Schwefelsäure bis 50 g/l 96%-iger Schwefelsäure besonders bevorzugt, was einer Säurekonzentration von 0,1 mol/l bis 1,0 mol/l bezogen auf eine einbasige Säure entspricht.
  • Die beschriebene Zusammensetzung der Lösung enthaltend eine Quelle für Iodationen sowie Temperatur und Dauer der Behandlung des Gestells gelten unabhängig von dem Zeitpunkt im erfindungsgemäßen Verfahren, zu dem das Schützen des Gestells stattfindet.
  • Weiter zeigt das Behandeln des Gestells mit einer Lösung enthaltend eine Quelle für Iodationen einen Vorratseffekt. Die Wirkung des Schützens der Gestelle, nämlich das Vermeiden der Metallabscheidung auf den Gestellen, hält während eines oder mehrerer Metallisierungszyklen an. Unter einem Metallisierungszyklus wird im Rahmen dieser Erfindung ein Metallisierungsverfahren verstanden, welches die bereits beschriebenen Verfahrensschritte A) bis D) enthält, aber nicht das Behandeln des Gestells mit einer Lösung enthaltend eine Quelle für Iodationen. In jedem Metallisierungszyklus werden nicht-metallisierte Gegenstände in den Gestellen befestigt und daraus metallisierte Gegenstände erzeugt. Das erfindungsgemäße Verfahren enthaltend das Behandeln des Gestells mit einer Lösung enthaltend eine Quelle für Iodationen wird durchgeführt und anschließend werden ein bis vier Metallisierungszyklen durchgeführt. Während des erfindungsgemäßen Verfahrens und während der Metallisierungszyklen werden Gegenstände metallisiert. Das Gestell wird weder während des erfindungsgemäßen Verfahrens noch während der nachfolgenden Metallisierungszyklen metallisiert, obwohl die Metallisierungszyklen das Behandeln des Gestells mit einer Lösung enthaltend eine Quelle für Iodationen nicht enthalten. Das Behandeln des Gestells mit einer Lösung enthaltend eine Quelle für Iodationen während des erfindungsgemäßen Verfahrens ist ausreichend, um auch während ein bis vier nachfolgender Metallisierungszyklen eine Metallisierung der Gestelle zu vermeiden.
  • Das Verfahren der vorliegenden Erfindung enthält weiter den Verfahrensschritt C), in dem eine Kunststoffoberfläche mit einer Lösung eines Metall-Kolloids oder einer Verbindung eines Metalls behandelt wird.
  • Das Metall des Metall-Kolloids oder der Metall-Verbindung wird ausgewählt aus der Gruppe enthaltend die Metalle der I. Nebengruppe des Periodensystems der Elemente (PSE) und der VIII. Nebengruppe des PSE.
  • Das Metall der VIII. Nebengruppe des PSE wird ausgewählt aus der Gruppe enthaltend Palladium, Platin, Iridium, Rhodium und eine Mischung aus zweien oder mehreren dieser Metalle. Das Metall der I. Nebengruppe des PSE wird ausgewählt aus der Gruppe enthaltend Gold, Silber und einer Mischung dieser Metalle.
  • Als Metall des Metall-Kolloids wird Palladium bevorzugt. Das Metall-Kolloid wird mit einem Schutzkolloid stabilisiert. Das Schutzkolloid wird ausgewählt aus der Gruppe enthaltend metallische Schutzkolloide, organische Schutzkolloide und andere Schutzkolloide. Als metallisches Schutzkolloid werden Zinnionen bevorzugt. Das organische Schutzkolloid wird ausgewählt aus der Gruppe umfassend Polyvinylalkohol, Polyvinylpyrrolidon und Gelatine, bevorzugt ist Polyvinylalkohol.
  • In einer bevorzugten Ausführungsform der Erfindung ist die Lösung des Metall-Kolloids in Verfahrensschritt C) eine Aktivatorlösung mit einem Palladium/Zinn-Kolloid. Diese Kolloidlösung wird erzeugt aus einem Palladiumsalz, einem Zinn(II)salz und einer anorganischen Säure. Als Palladiumsalz wird Palladiumchlorid bevorzugt. Als Zinn(II)salz wird Zinn(II)chlorid bevorzugt. Die anorganische Säure kann bestehen in Salzsäure oder Schwefelsäure, bevorzugt Salzsäure. Die Kolloidlösung entsteht durch Reduktion des Palladiumchlorids zu Palladium mit Hilfe des Zinn(II)chlorid. Die Umwandlung des Palladiumchlorids in das Kolloid ist vollständig, daher enthält die Kolloidlösung kein Palladiumchlorid mehr. Die Konzentration von Palladium beträgt 5 mg/l - 100 mg/l, bevorzugt 20 mg/l - 50 mg/l und besonders bevorzugt 30 mg/l - 45 mg/l, bezogen auf Pd2+. Die Konzentration von Zinn(II)chlorid beträgt 0,5 g/l - 10 g/l, bevorzugt 1 g/l - 5 g/l und besonders bevorzugt 2 g/l - 4 g/l, bezogen auf Sn2+. Die Konzentration von Salzsäure beträgt 100 ml/l - 300 ml/l (37 Gew.-% HCl). Außerdem enthält eine Palladium/Zinn-Kolloidlösung zusätzlich Zinn(IV)ionen, die durch Oxidation der Zinn(II)ionen entstehen. Die Temperatur der Kolloidlösung während des Verfahrensschritts C) beträgt 20°C - 50°C und bevorzugt 35°C - 45°C. Die Behandlungsdauer mit der Aktivatorlösung beträgt 0,5 min - 10 min, bevorzugt 2 min - 5 min und besonders bevorzugt 3 min - 5 min.
  • In einer weiteren Ausführungsform der Erfindung wird in Verfahrensschritt C) die Lösung einer Verbindung eines Metalls an Stelle des Metall-Kolloids eingesetzt. Als Lösung einer Metallverbindung wird eine Lösung verwendet, die eine Säure und ein Metallsalz enthält. Das Metall des Metallsalzes besteht in einem oder mehreren der oben aufgeführten Metalle der I. und VIII. Nebengruppe des PSE. Das Metallsalz kann ein Palladiumsalz sein, vorzugsweise Palladiumchlorid, Palladiumsulfat oder Palladiumacetat, oder ein Silbersalz, vorzugsweise Silberacetat. Die Säure besteht bevorzugt in Salzsäure. Alternativ kann auch ein Metallkomplex eingesetzt werden, beispielsweise ein Palladiumkomplexsalz, wie ein Salz eines Palladium-Aminopyridin-Komplexes. Die Metallverbindung liegt in Verfahrensschritt C) in einer Konzentration von 40 mg/l bis 80 mg/l, bezogen auf das Metall vor. Die Lösung der Metallverbindung kann bei einer Temperatur von 25°C bis 70°C betrieben werden, bevorzugt bei 25°C. Die Behandlungsdauer mit der Lösung einer Metallverbindung beträgt 0,5 min - 10 min, bevorzugt 2 min - 6 min und besonders bevorzugt 3 min - 5 min.
  • Zwischen den Verfahrensschritten B) und C) kann folgender weiterer Verfahrensschritt durchgeführt werden:
    • B ii) Behandeln der Kunststoffoberfläche in einer wässrigen sauren Lösung.
  • Bevorzugt wird Verfahrensschritt B ii) zwischen den Verfahrensschritten B i) und C) durchgeführt. Wenn sich im erfindungsgemäßen Verfahren an Verfahrensschritt B i) das Schützen der Gestelle anschloss, wird Verfahrensschritt B ii) besonders bevorzugt zwischen dem Schützen der Gestelle und Verfahrensschritt C) durchgeführt.
  • Das Behandeln der Kunststoffoberflächen gemäß Verfahrensschritt B ii) wird auch als Vortauchen bezeichnet und die eingesetzte wässrige saure Lösung als Vortauchlösung. Die Vortauchlösung hat dieselbe Zusammensetzung wie die Kolloidlösung in Verfahrensschritt C), ohne dass das Metall des Kolloids und dessen Schutzkolloid enthalten sind. Die Vortauchlösung enthält im Falle des Einsetzens einer Palladium/Zinn-Kolloidlösung in Verfahrensschritt C) ausschließlich Salzsäure, wenn die Kolloidlösung ebenfalls Salzsäure enthält. Zum Vortauchen reicht ein kurzes Eintauchen in die Vortauchlösung bei Umgebungstemperatur aus. Ohne die Kunststoffoberflächen zu spülen, werden diese nach der Behandlung in der Vortauchlösung direkt mit der Kolloidlösung des Verfahrensschritts C) weiter behandelt.
  • Verfahrensschritt B ii) wird bevorzugt durchgeführt, wenn Verfahrensschritt C) in dem Behandeln einer Kunststoffoberfläche mit einer Lösung eines Metall-Kolloids besteht. Verfahrensschritt B ii) kann auch durchgeführt werden, wenn Verfahrensschritt C) in dem Behandeln einer Kunststoffoberfläche mit einer Lösung einer Verbindung eines Metalls besteht.
  • Nach der Behandlung der Kunststoffoberflächen mit dem Metall-Kolloid oder der Metallverbindung gemäß Verfahrensschritt C) können diese gespült werden.
    In einer weiteren Ausführungsform der Erfindung werden zwischen den Verfahrensschritten C) und D) folgende weitere Verfahrensschritte durchgeführt:
    • C i) Behandeln der Kunststoffoberfläche in einer wässrigen sauren Lösung und
    • C ii) Stromloses Metallisieren der Kunststoffoberfläche in einer Metallisierungslösung.
  • Die Ausführungsform ist in Tabelle 1 schematisch dargestellt. Tabelle 1: Ausführungsform der Kunststoffmetallisierung
    Verfahrensschritt Inhaltsstoffe Dauer Temperatur
    A) Befestigen --- --- ---
    A i) Vorbehandeln Glykolverbindung als organisches Lösungsmittel in Wasser 2-15 min 35-50°C
    B) Beizen 100 g/l Natriumpermanganat, 10 g/l 96%-iger Schwefelsäure 5-15 min 70°C
    B i) Reduzieren 100 g/l 96%-iger Schwefelsäure, 30ml/l Wasserstoffperoxid, 30 Gew.% 1 min 45°C
    Gestell schützen 20 g/l Kaliumiodat 2-5 min 40-60°C
    B ii) Vortauchen Salzsäure, etwa 10 Gew.% 1 min 20°C
    C) Aktivieren Salzsaures Palladium / Zinn Kolloid 3-6 min 20-45°C
    C i) Beschleunigen Schwefelsäure (5%) 2-6 min 40-50°C
    C ii) stromlos Metall abscheiden Chemisch reduktive Vernickelung oder Verkupferung 6-20 min 30-50°C
    D) Metall abscheiden Zum Beispiel elektrochemisches Verkupfern oder Vernickeln 15-70 min 20-35°C
  • Diese weiteren Verfahrensschritte C i) und C ii) werden dann angewendet, wenn die Gegenstände mit einem stromlosen Metallisierungsverfahren metallisiert werden sollen, das heißt dass eine erste Metallschicht mit einem stromlosen Verfahren auf die Kunststoffoberflächen aufgebracht werden soll.
  • Wenn in Verfahrensschritt C) die Aktivierung mit einem Metall-Kolloid durchgeführt wurde, werden in Verfahrensschritt C i) die Kunststoffoberflächen mit einer Beschleunigerlösung behandelt, um Bestandteile des Kolloids der Kolloidlösung, beispielsweise eines Schutzkolloids, von den Kunststoffoberflächen zu entfernen. Falls das Kolloid der Kolloidlösung gemäß Verfahrensschritt C) ein Palladium/Zinn-Kolloid ist, wird als Beschleunigerlösung vorzugsweise eine wässrige Lösung einer Säure verwendet. Die Säure wird beispielsweise ausgewählt aus der Gruppe enthaltend Schwefelsäure, Salzsäure, Citronensäure und Tetrafluoroborsäure. Im Fall eines Palladium/Zinn-Kolloids werden mit Hilfe der Beschleunigerlösung die Zinnverbindungen entfernt, welche als Schutzkolloid dienten.
  • Alternativ wird in Verfahrensschritt C i) eine Reduktorbehandlung durchgeführt, wenn in Verfahrensschritt C) für die Aktivierung eine Lösung einer Metallverbindung an Stelle eines Metall-Kolloids eingesetzt wurde. Die dazu verwendete Reduktorlösung enthält dann, wenn die Lösung der Metallverbindung in einer salzsauren Lösung von Palladiumchlorid oder einer sauren Lösung eines Silbersalzes bestand, Salzsäure und Zinn(II)chlorid. Die Reduktorlösung kann auch ein anderes Reduktionsmittel enthalten, wie NaH2PO2 oder auch ein Boran oder Borhydrid, wie ein Alkali- oder Erdalkaliboran oder Dimethylaminoboran. Bevorzugt wird in der Reduktorlösung NaH2PO2 eingesetzt.
  • Nach der Beschleunigung oder Behandlung mit der Reduktorlösung gemäß Verfahrensschritt C i) können die Kunststoffoberflächen zunächst gespült werden.
  • Verfahrensschritt C i) und gegebenenfalls ein oder mehrere Spülschritte werden von Verfahrensschritt C ii) gefolgt, in dem die Kunststoffoberflächen stromlos metallisiert werden. Zum stromlosen Vernickeln dient beispielsweise ein herkömmliches Nickelbad, das unter anderem Nickelsulfat, ein Hypophosphit, beispielsweise Natriumhypophosphit, als Reduktionsmittel sowie organische Komplexbildner und pH-Einstellmittel (beispielsweise einen Puffer) enthält. Als Reduktionsmittel können ebenfalls Dimethylaminoboran oder ein Gemisch aus Hypophosphit und Dimethylaminoboran eingesetzt werden.
  • Alternativ kann zum stromlosen Verkupfern ein stromloses Kupferbad eingesetzt werden, das typischerweise ein Kupfersalz, beispielsweise Kupfersulfat oder Kupferhypophosphit, ferner ein Reduktionsmittel, wie Formaldehyd oder ein Hypophosphitsalz, beispielsweise ein Alkali- oder Ammoniumsalz, oder hypophosphorige Säure, ferner einen oder mehrere Komplexbildner, wie Weinsäure, sowie ein pH-Einstellmittel, wie Natriumhydroxid, enthält.
  • Die so leitfähig gemachte Oberfläche kann anschließend elektrolytisch weiter metallisiert werden, um eine funktionelle oder dekorative Oberfläche zu erhalten.
  • Schritt D) des erfindungsgemäßen Verfahrens ist das Metallisieren der Kunststoffoberfläche mit einer Metallisierungslösung. Das Metallisieren gemäß Verfahrensschritt D) kann elektrolytisch erfolgen. Zur elektrolytischen Metallisierung können beliebige Metallabscheidungsbäder eingesetzt werden, beispielsweise zur Abscheidung von Nickel, Kupfer, Silber, Gold, Zinn, Zink, Eisen, Blei oder von deren Legierungen. Derartige Abscheidungsbäder sind dem Fachmann geläufig. Als Glanznickelbad wird typischerweise ein Watts-Nickelbad eingesetzt, das Nickelsulfat, Nickelchlorid und Borsäure sowie Saccharin als Additiv enthält. Als Glanzkupferbad wird beispielsweise eine Zusammensetzung verwendet, die Kupfersulfat, Schwefelsäure, Natriumchlorid sowie organische Schwefelverbindungen, in denen der Schwefel in einer niedrigen Oxidationsstufe vorliegt, beispielsweise organische Sulfide oder Disulfide, als Additive enthält.
  • Das Metallisieren der Kunststoffoberfläche in Verfahrensschritt D) führt dazu, dass die Kunststoffoberfläche mit Metall überzogen wird, wobei das Metall ausgewählt ist aus den oben aufgeführten Metallen für die elektrolytischen Abscheidungsbäder. Gleichzeitig bewirkt das Schützen des Gestells, dass das Gestell oder die Gestelle nicht mit Metall überzogen werden und also von Metall frei bleiben.
  • In einer weiteren Ausführungsform der Erfindung wird nach Verfahrensschritt D) folgender weiterer Verfahrensschritt durchgeführt:
    • D i) Lagern der metallisierten Kunststoffoberfläche bei erhöhter Temperatur.
  • Wie bei allen galvanischen Prozessen, in denen ein Nichtleiter nasschemisch mit Metall beschichtet wird, nimmt in der ersten Zeit nach dem Aufbringen der Metallschicht die Haftfestigkeit zwischen Metall und Kunststoff-Substrat zu. Bei Raumtemperatur ist dieser Vorgang nach etwa drei Tagen abgeschlossen. Das lässt sich durch Lagerung bei erhöhter Temperatur erheblich beschleunigen. Der Vorgang ist bei 80°C nach etwa einer Stunde abgeschlossen. Es wird angenommen, dass die zunächst geringe Haftfestigkeit durch eine dünne Wasserschicht verursacht wird, die an der Grenzschicht zwischen Metall und nichtleitendem Substrat liegt und die Ausbildung elektrostatischer Kräfte behindert.
  • Das Behandeln der metallisierten Kunststoffoberflächen bei erhöhter Temperatur ist also vorteilhaft. Ein solcher Schritt kann darin bestehen, einen mit Kupfer metallisierten Gegenstand aus ABS-Kunststoff für einen Zeitraum zwischen 5 Minuten und 60 Minuten bei erhöhter Temperatur im Bereich von 50°C bis 80°C, zu behandeln, bevorzugt bei einer Temperatur von 70°C, in einem Wasserbad, damit sich das Wasser an der Grenzschicht Metall - Kunststoff in der Kunststoffmatrix verteilen kann. Das Behandeln oder Lagern der metallisierten Kunststoffoberflächen bei erhöhter Temperatur führt dazu, dass eine anfängliche, geringere Haftfestigkeit weiter verstärkt wird, so dass nach dem Verfahrensschritt D i) eine Haftfestigkeit der auf die Kunststoffoberfläche aufgebrachten Metallschicht erreicht wird, die im gewünschten Bereich von mindestens oder größer als 0,8 N/mm liegt.
  • Das erfindungsgemäße Verfahren ermöglicht also die Metallisierung der Gestelle zu vermeiden und gleichzeitig mit guter Prozesssicherheit und ausgezeichneter Haftfestigkeit der nachfolgend aufgebrachten Metallschichten eine Metallisierung von elektrisch nichtleitenden Kunststoffoberflächen von Gegenständen zu erreichen. Die Haftfestigkeit der auf Kunststoffoberflächen aufgebrachten Metallschichten erreicht dabei Werte von 0,8 N/mm und höher. Damit liegen die erzielten Haftfestigkeiten auch deutlich über denen, die gemäß des Stands der Technik erhalten werden können. Darüber hinaus ist das erfindungsgemäße Verfahren nicht nur geeignet planare Kunststoffoberflächen zu metallisieren, sondern auch ungleichmäßig geformte Kunststoffoberflächen, wie z.B. Duschbrausen, wobei das Metallisieren der Gestelle erfolgreich vermieden wird.
  • Die Behandlung der Kunststoffoberflächen gemäß dem erfindungsgemäßen Verfahren wird vorzugsweise in einem herkömmlichen Tauchverfahren durchgeführt, indem die Gegenstände nacheinander in Lösungen in Behälter eingetaucht werden, in denen die jeweilige Behandlung stattfindet. In diesem Falle können die Gegenstände entweder an Gestellen befestigt oder in Trommeln eingefüllt in die Lösungen eingetaucht werden. Eine Befestigung an Gestellen ist bevorzugt. Alternativ können die Gegenstände auch in so genannten Durchlaufanlagen, indem sie beispielsweise auf Horden liegen und in horizontaler Richtung kontinuierlich durch die Anlagen befördert werden, behandelt werden.
  • Ausführungsbeispiele
  • Die nachfolgend beschriebenen Ausführungsbeispiele sollen die Erfindung näher erläutern.
  • Beispiel 1: erfindungsgemäßes Beispiel
  • Ein ABS-Formteil (Duschbrause) wurde an einem PVC beschichteten Halte-Gestell befestigt (Verfahrensschritt A)). Es wurde für dieses Beispiel ein altes Haltegestell ausgewählt, das eine besonders starke Tendenz zur Gestellmetallisierung aufwies. Das Formteil wurde mit dem Haltegestell zehn Minuten lang in eine Lösung aus 15 % 2-(2-Ethoxyethoxy)-ethylacetat und 10 % Butoxyethanol getaucht, die mit einem Kaliumphosphatpuffer auf pH = 7 eingestellt war und in einem Thermostaten bei 45 °C gehalten wurde (Verfahrensschritt A i)). Anschließend wurde eine Minute lang unter fließendem Wasser abgespült und dann in einem Bad aus 100 g/l Natriumpermanganat sowie 10 g/l 96%-iger Schwefelsäure behandelt, das bei 70 °C gehalten wurde (Verfahrensschritt B)). Nach einer Behandlungsdauer von zehn Minuten wurde wieder unter Wasser gespült und anhaftendes Mangandioxid in einer Lösung aus 50 g/l 96%-iger Schwefelsäure und 30 ml/l 30 %-igem Wasserstoffperoxid entfernt (Verfahrensschritt B i), siehe Tabelle 2). Im Anschluss an diese Reduktion wurde das Gestell mit dem ABS-Formteil in einer Lösung mit verschiedenen Konzentrationen an Kaliumiodat (0, 5, 10, 20, 40 g/l) in 50 g/l 96%-iger Schwefelsäure bei 50 °C zehn Minuten lang behandelt (Schützen des Gestells).
    Nach anschließendem Spülen und kurzem Tauchen in eine Lösung aus 300 ml/l 36 %-iger Salzsäure (Verfahrensschritt B ii)) wurde drei Minuten lang in einem kolloidalen Aktivator auf Basis eines Palladiumkolloids (Adhemax Aktivator PL der Fa. Atotech, 25 ppm Palladium) aktiviert (Verfahrensschritt C), siehe Tabelle 2). Nach anschließendem Spülen wurden fünf Minuten lang bei 50 °C die Schutzhüllen der Palladiumpartikel entfernt (Adhemax Beschleuniger ACC1 der Fa. Atotech, Verfahrensschritt C i), siehe Tabelle 2). Das ABS-Formteil wurde anschließend zehn Minuten lang bei 45 °C außenstromlos vernickelt (Adhemax LFS, Fa. Atotech, Verfahrensschritt C ii)) und dann gespült.
    Das ABS-Formteil war danach komplett und fehlerfrei mit einer hellgrauen Nickelschicht belegt. Abhängig von der Konzentration an Kaliumiodat in der oben beschriebenen Iodatlösung war die PVC-Beschichtung des Halte-Gestells unterschiedlich stark mit Nickel beschichtet, wie dies in Figur 1 illustriert ist. Während ohne Iodatbehandlung (0 g/l KlO3 in Figur 1) eine Belegung des Gestells mit Nickel von 75 % der Oberfläche des Gestells zu beobachten ist, führt die Behandlung des Gestells mit 40 g/l KlO3 bereits zu einer vernachlässigbaren Belegung mit Nickel von 2 % der Oberfläche des Gestells.
  • Die Abfolge der Verfahrensschritte in Beispiel 1 ist in Tabelle 2 zusammengefasst. Tabelle 2: Abfolge der Verfahrensschritte in Beispiel 1
    Verfahrensschritt Chemie Dauer Temperatur
    A) Befestigen --- --- ---
    A i) Vorbehandeln 15 % 2-(2-Ethoxyethoxy)-ethylacetat und 10 % Butoxyethanol in Wasser, Kaliumphosphat-puffer, pH = 7 10 min 45°C
    B) Beizen 100 g/l Natriumpermanganat, 10 g/l 96%-iger Schwefelsäure 10 min 70°C
    B i) Reduzieren 50 g/l 96%-iger Schwefelsäure, 30ml/l Wasserstoffperoxid, 30 Gew.% 1 min 45°C
    Gestell Schützen 0, 5, 10, 20, 40 g/l Kaliumiodat in 50 g/l 96%-iger Schwefelsäure 10 min 50°C
    B ii) Vortauchen Salzsäure, etwa 10 Gew.% 1 min 20°C
    C) Aktivieren Palladiumkolloid, 25 ppm Palladium 3 min 45°C
    C i) Beschleunigen Schwefelsäure 5% 5 min 50°C
    C ii) stromlos Metall abscheiden Chemisch reduktive Vernickelung, Adhemax LFS, Fa. Atotech 10 min 45°C
  • Beispiel 2: erfindungsgemäßes Beispiel
  • Zwei sogenannte Ventilkappen (runde Formteile mit etwa 7 cm Durchmesser) aus dem Kunststoff Novodur P2MC (ABS) wurden an einem Halte-Gestell befestigt und wie in Beispiel 1 beschrieben behandelt. Anders als in Beispiel 1 wurde im Verfahrensschritt A i) eine Lösung aus 10 % Ethylenglykoldiacetat und 10 % Ethylenglykolmonobutylether angewendet. Diese Lösung wurde auf 45 °C gehalten, die Ventilkappen wurden darin fünf Minuten behandelt. Anschließend wurden alle Verfahrensschritte des Beispiels 1 durchgeführt. Im Anschluss an die Reduktion (Verfahrensschritt B i)) wurde das Gestell mit den Ventilkappen in einer Lösung mit 20 g/l Kaliumiodat in 50 g/l 96%-iger Schwefelsäure bei 50 °C zehn Minuten lang behandelt.
    Nach dem stromlosen Vernickeln wurde zusätzlich 70 Minuten lang galvanisch verkupfert (Cupracid HT der Fa. Atotech, 3,5 A/dm2, Raumtemperatur, Verfahrensschritt D)). Nach dem Spülen wurden die Ventilkappen 30 Minuten lang bei 80 °C gelagert (Verfahrensschritt D i)). Anschließend wurde mit einer Zugprüfmaschine (Fa. Instron) die Metallschicht vom Kunststoff abgezogen (ASTM B 533 1985 Reapproved 2009) und so die Haftfestigkeit bestimmt. Es wurden Haftfestigkeiten der Metallschichten zum Kunststoff der Ventilkappen von 1,14 N/mm und 1,17 N/mm ermittelt.
    Die Belegung des Gestells mit Metall betrug 4 % der Gestell-Oberfläche und war damit ebenfalls vernachlässigbar.
  • Beispiel 3: Einfluss der Glykolbehandlung auf die Haftfestigkeit der aufgebrachten Metalle
  • Platten aus Bayblend T45 wurden in einer 15%igen Lösung aus 2-(2-Ethoxyethoxy)-ethylacetat und 10% Butoxyethanol, die mit einem Kaliumphosphatpuffer auf pH = 7 eingestellt war, verschieden lange bei 45°C behandelt. Anschließend wurden die Platten etwa eine Minute lang unter fließendem Wasser abgespült und dann in ein Bad aus 100 g/l Natriumpermanganat sowie 10 g/l 96%-iger Schwefelsäure gebracht, das bei 70°C gehalten wurde. Nach einer Behandlungsdauer von zehn Minuten wurde wieder eine Minute lang unter Wasser gespült und die nun dunkelbraunen Platten in einer Lösung aus 50 g/l 96%-iger Schwefelsäure und 30 ml/l 30 %-igem Wasserstoffperoxid von abgeschiedenem Braunstein gereinigt. Nach anschließendem Spülen und kurzem Tauchen in eine Lösung aus 300 ml/l 36 %-iger Salzsäure wurden die Platten drei Minuten lang in einem kolloidalen Aktivator auf Basis eines Palladiumkolloids (Adhemax Aktivator PL der Fa. Atotech, 25 ppm Palladium) bei 45 °C aktiviert.
    Nach anschließendem Spülen wurden fünf Minuten lang bei 50 °C die Schutzhüllen der Palladiumpartikel entfernt (Adhemax Beschleuniger ACC1 der Fa. Atotech). Die Platten wurden anschließend zehn Minuten lang außenstromlos vernickelt (Adhemax LFS, Fa. Atotech) bei 45 °C, gespült und bei 3,5 A/dm2 70 Minuten lang bei Raumtemperatur verkupfert (Cupracid HT, Fa. Atotech). Nach dem Spülen wurden die Platten 1 Stunde lang bei 80 °C gelagert. Anschließend wurde mit einem Messer ein etwa 1 cm breiter Streifen der jeweiligen metallisierten Kunststoffplatte ausgeschnitten und mit einer Zugprüfmaschine (Fa. Instron) die Metallschicht vom Kunststoff abgezogen (ASTM B 533 1985 Reapproved 2009).
    Die Haftfestigkeiten der Metallschichten sind in Figur 3 dargestellt. Die Verweildauer der Kunststoffoberflächen in der Lösung der Glykolverbindungen (Verfahrensschritt A i)) hat einen Einfluss auf die Haftfestigkeit der aufgebrachten Metallschichten. Ohne Behandlung mit Glykolverbindungen (Verweildauer 0 min in Figur 3) wurde lediglich eine Haftfestigkeit von 0,25 N/mm erhalten. Nach einer nur 5 minütigen Behandlung mit Glykolverbindungen dagegen wurde bereits eine gute Haftfestigkeit von 0,9 N/mm erzielt, die mit längerer Behandlungsdauer weiter ansteigt.
  • Beispiel 4: Einfluss der Glykolbehandlung auf die Haftfestigkeit der aufgebrachten Metalle
  • Platten aus ABS-Kunststoff (Novodur P2MC) wurden, wie in Beispiel 3 beschrieben, verschieden lange mit einer 15%igen Lösung aus 2-(2-Ethoxyethoxy)-ethylacetat und 10% Butoxyethanol behandelt, dem weiteren Metallisierungsverfahren unterworfen und die Haftfestigkeiten der aufgebrachten Metallschicht bestimmt.
    Die Haftfestigkeiten der Metallschicht in Abhängigkeit von der Behandlungsdauer mit der Lösung der Glykolverbindungen sind in Figur 4 dargestellt. Auch hier ist der Einfluss der Behandlungsdauer (in Figur 4 als Verweildauer in der Vorbeizlösung bezeichnet) auf die Haftfestigkeit der aufgebrachten Metallschichten klar ersichtlich. Ohne Behandlung mit Glykolverbindungen (Verweildauer 0 min in Figur 4) wurde lediglich eine Haftfestigkeit von 0,25 N/mm erhalten. Nach einer nur 5 minütigen Behandlung mit Glykolverbindungen dagegen wurde bereits eine sehr gute Haftfestigkeit von 1,4 N/mm erzielt, die mit längerer Behandlungsdauer weiter ansteigt.
  • Beispiel 5: Einfluss der Glykolbehandlung auf die Haftfestigkeit der aufgebrachten Metalle
  • Zwei Platten aus Bayblend T45 (5,2 x 14,9 x 0,3 cm, ABS/PC-Mischung) wurden in einer 40 %-igen Lösung aus 2-(2-Ethoxyethoxy)-ethylacetat zehn Minuten lang bei Raumtemperatur behandelt. Die Platten wurden nach dem Abspülen, wie in Beispiel 3 beschrieben, dem weiteren Metallisierungsverfahren unterworfen und die Haftfestigkeiten der aufgebrachten Metallschicht bestimmt. Es wurden die folgenden Haftfestigkeiten gefunden:
    Platte 1 Vorderseite: 1,09 N/mm. Rückseite: 1,27 N/mm
    Platte 2 Vorderseite: 1,30 N/mm. Rückseite: 1,32 N/mm

Claims (13)

  1. Verfahren zum Metallisieren von elektrisch nichtleitenden Kunststoffoberflächen von Gegenständen, umfassend die Verfahrensschritte:
    A) Befestigen des Gegenstands in einem Gestell,
    B) Beizen der Kunststoffoberfläche mit einer Beizlösung,
    C) Behandeln der Kunststoffoberfläche mit einer Lösung eines Metall-Kolloids oder einer Verbindung eines Metalls, wobei das Metall ausgewählt ist aus den Metallen der I. Nebengruppe des Periodensystems der Elemente und der VIII. Nebengruppe des Periodensystems der Elemente, und
    D) Metallisieren der Kunststoffoberfläche mit einer Metallisierungslösung;
    dadurch gekennzeichnet, dass das Gestell mit einer Lösung enthaltend eine Quelle für Iodationen behandelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Behandeln des Gestells mit einer Lösung enthaltend eine Quelle für Iodationen
    vor dem Verfahrensschritt A) stattfindet oder
    zwischen den Verfahrensschritten A) und B) stattfindet oder
    zwischen den Verfahrensschritten B) und C) stattfindet.
  3. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zwischen den Verfahrensschritten A) und B) folgender weiterer Verfahrensschritt durchgeführt wird:
    A i) Behandeln der Kunststoffoberfläche in einer wässrigen Lösung enthaltend mindestens eine Glykolverbindung.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die mindestens eine Glykolverbindung ausgewählt wird aus Verbindungen gemäß allgemeiner Formel (I)
    Figure imgb0002
    worin
    n eine ganze Zahl zwischen 1 und 4 bedeutet; und
    R1 und R2 unabhängig voneinander bedeuten -H, -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-CH2-CH2-CH3, -CH(CH3)-CH2-CH3, -CH2-CH(CH3)-CH3, -CH2-CH2-CH2-CH2-CH3, -CH(CH3)-CH2-CH2-CH3, -CH2-CH(CH3)-CH2-CH3, -CH2-CH2-CH(CH3)-CH3, -CH(CH2-CH3)-CH2-CH3, -CH2-CH(CH2-CH3)-CH3, -CO-CH3, -CO-CH2-CH3, -CO-CH2-CH2-CH3, -CO-CH(CH3)-CH3, -CO-CH(CH3)-CH2-CH3, -CO-CH2-CH(CH3)-CH3, -CO-CH2-CH2-CH2-CH3.
  5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Kunststoffoberfläche aus mindestens einem elektrisch nichtleitenden Kunststoff gefertigt ist und der mindestens eine elektrisch nichtleitende Kunststoff ausgewählt ist aus der Gruppe enthaltend ein Acrylnitril-Butadien-Styrol-Copolymer, ein Polyamid, ein Polycarbonat und eine Mischung eines Acrylnitril-Butadien-Styrol-Copolymers mit mindestens einem weiteren Polymer.
  6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zwischen den Verfahrensschritten B) und C) folgender weiterer Verfahrensschritt durchgeführt wird:
    B i) Behandeln der Kunststoffoberfläche in einer Lösung enthaltend ein Reduktionsmittel für Mangandioxid.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Reduktionsmittel für Mangandioxid ausgewählt wird aus der Gruppe enthaltend Hydroxylammoniumsulfat, Hydroxylammoniumchlorid und Wasserstoffperoxid.
  8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Quelle für Iodationen ausgewählt wird aus der Gruppe von Metalliodaten enthaltend Natriumiodat, Kaliumiodat, Magnesiumiodat, Calciumiodat und deren Hydrate.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Konzentration der Metalliodate zwischen 5 g/l und 50 g/l beträgt.
  10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Lösung enthaltend eine Quelle für Iodationen weiter eine anorganische Säure enthält.
  11. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Behandeln des Gestells mit einer Lösung enthaltend eine Quelle für Iodationen zwischen 1 und 20 Minuten dauert.
  12. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Behandeln des Gestells mit einer Lösung enthaltend eine Quelle für Iodationen bei einer Temperatur zwischen 20°C und 70°C ausgeführt wird.
  13. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zwischen den Verfahrensschritten C) und D) folgende weitere Verfahrensschritte durchgeführt werden:
    C i) Behandeln der Kunststoffoberfläche in einer wässrigen sauren Lösung und
    C ii) Stromloses Metallisieren der Kunststoffoberfläche in einer Metallisierungslösung.
EP12159652.2A 2012-03-15 2012-03-15 Verfahren zum Metallisieren nichtleitender Kunststoffoberflächen Withdrawn EP2639332A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP12159652.2A EP2639332A1 (de) 2012-03-15 2012-03-15 Verfahren zum Metallisieren nichtleitender Kunststoffoberflächen
PL13712718.9T PL2825690T3 (pl) 2012-03-15 2013-03-15 Sposób metalizowania powierzchni nieprzewodzących tworzyw sztucznych
PT137127189T PT2825690T (pt) 2012-03-15 2013-03-15 Processo para a metalização de superfícies plásticas não condutoras
EP13712718.9A EP2825690B1 (de) 2012-03-15 2013-03-15 Verfahren zum metallisieren elektrisch nichtleitenden kunststoffoberflächen
PCT/EP2013/055356 WO2013135862A2 (en) 2012-03-15 2013-03-15 Process for metallizing nonconductive plastic surfaces
KR1020147028815A KR101872065B1 (ko) 2012-03-15 2013-03-15 비전도성 플라스틱 표면의 금속화 방법
CA2866766A CA2866766C (en) 2012-03-15 2013-03-15 Process for metallizing nonconductive plastic surfaces
BR112014021995-8A BR112014021995B1 (pt) 2012-03-15 2013-03-15 Processo para metalização de superfícies de plástico não condutor
US14/376,857 US9181622B2 (en) 2012-03-15 2013-03-15 Process for metallizing nonconductive plastic surfaces
CN201380014373.8A CN104254641B (zh) 2012-03-15 2013-03-15 将非电导塑料表面金属化的方法
JP2014561461A JP6150822B2 (ja) 2012-03-15 2013-03-15 非導電性プラスチック表面の金属化方法
ES13712718.9T ES2587104T3 (es) 2012-03-15 2013-03-15 Proceso para metalizar superficies plásticas no conductoras

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12159652.2A EP2639332A1 (de) 2012-03-15 2012-03-15 Verfahren zum Metallisieren nichtleitender Kunststoffoberflächen

Publications (1)

Publication Number Publication Date
EP2639332A1 true EP2639332A1 (de) 2013-09-18

Family

ID=48013942

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12159652.2A Withdrawn EP2639332A1 (de) 2012-03-15 2012-03-15 Verfahren zum Metallisieren nichtleitender Kunststoffoberflächen
EP13712718.9A Active EP2825690B1 (de) 2012-03-15 2013-03-15 Verfahren zum metallisieren elektrisch nichtleitenden kunststoffoberflächen

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13712718.9A Active EP2825690B1 (de) 2012-03-15 2013-03-15 Verfahren zum metallisieren elektrisch nichtleitenden kunststoffoberflächen

Country Status (11)

Country Link
US (1) US9181622B2 (de)
EP (2) EP2639332A1 (de)
JP (1) JP6150822B2 (de)
KR (1) KR101872065B1 (de)
CN (1) CN104254641B (de)
BR (1) BR112014021995B1 (de)
CA (1) CA2866766C (de)
ES (1) ES2587104T3 (de)
PL (1) PL2825690T3 (de)
PT (1) PT2825690T (de)
WO (1) WO2013135862A2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170008309A (ko) 2014-07-10 2017-01-23 오꾸노 케미칼 인더스트리즈 컴파니,리미티드 수지 도금 방법
US9506150B2 (en) 2014-10-13 2016-11-29 Rohm And Haas Electronic Materials Llc Metallization inhibitors for plastisol coated plating tools
FR3027923B1 (fr) * 2014-11-04 2023-04-28 Pegastech Procede de metallisation de pieces plastiques
EP3059277B2 (de) 2015-02-23 2022-03-30 MacDermid Enthone Inc. Inhibitorzusammensetzung für Gestelle bei Verwendung chromfreier Ätzmittel in einem Plattierungsverfahren auf Kunststoffen
EP3181726A1 (de) 2015-12-18 2017-06-21 ATOTECH Deutschland GmbH Ätzlösung zur behandlung nichtleitenden kunststoffoberflächen und verfahren zum ätzen nichtleitender kunststoffoberflächen
EP3228729A1 (de) * 2016-04-04 2017-10-11 COVENTYA S.p.A. Verfahren zur metallisierung eines artikels mit einer kunststoffoberfläche mit vermeidung der metallisierung des gestells, das den artikel in dem plattierungsbad fixiert
GB2587662A (en) * 2019-10-04 2021-04-07 Macdermid Inc Prevention of unwanted plating on rack coatings for electrodeposition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3248000A1 (de) * 1981-12-30 1983-07-07 Occidental Chemical Corp., 48089 Warren, Mich. Verfahren fuer vorbehandlung von kunststoffsubstraten fuer die stromlose metallisierung
US4448811A (en) * 1981-12-30 1984-05-15 Omi International Corporation Oxidizing agent for acidic accelerator in electroless metal plating process
DE19611137A1 (de) 1996-03-21 1997-09-25 Lpw Anlagen Gmbh Verfahren zur galvanotechnischen Direktmetallisierung einer Kunststoffoberfläche
DE19510855C2 (de) 1995-03-17 1998-04-30 Atotech Deutschland Gmbh Verfahren zum selektiven oder partiellen elektrolytischen Metallisieren von Substraten aus nichtleitenden Materialien
EP1001052A2 (de) 1998-11-13 2000-05-17 LPW-Chemie GmbH Verfahren zur Metallisierung einer Kunststoffoberfläche
EP1942207A1 (de) * 2006-12-08 2008-07-09 Atotech Deutschland Gmbh Vorbehandlungslösung und Verfahren zur Bildung einer Beschichtungsmetallschicht auf einer Kunststoffoberfläche mit einem Substrat
WO2009023628A2 (en) 2007-08-10 2009-02-19 Enthone Inc. Chromium-free pickle for plastic surfaces

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610895A (en) * 1984-02-01 1986-09-09 Shipley Company Inc. Process for metallizing plastics
US4948630A (en) * 1984-06-07 1990-08-14 Enthone, Inc. Three step process for treating plastics with alkaline permanganate solutions
EP0309243B1 (de) * 1987-09-25 1993-08-18 Engelhard Technologies Limited Vorätzbehandlung eines Plastiksubstrats
US5286530A (en) * 1993-01-13 1994-02-15 General Electric Company Method for providing adherent metal coatings on cyanate ester polymer surfaces
US5591354A (en) * 1994-10-21 1997-01-07 Jp Laboratories, Inc. Etching plastics with nitrosyls
JP2002530529A (ja) * 1998-11-13 2002-09-17 エントン・オーエムアイ・インコーポレイテッド プラスチック面の金属化処理プロセス
JP4849420B2 (ja) * 2007-06-20 2012-01-11 奥野製薬工業株式会社 エッチング液の電解処理方法
JP5131683B2 (ja) * 2007-07-04 2013-01-30 奥野製薬工業株式会社 樹脂成形体のめっき処理に用いるめっき用治具
JP2009203505A (ja) * 2008-02-27 2009-09-10 Murata Mfg Co Ltd 無電解めっき方法と電子部品
CN101654564B (zh) * 2008-08-23 2012-05-30 比亚迪股份有限公司 一种塑料组合物及其表面选择性金属化工艺
EP2639334A1 (de) * 2012-03-15 2013-09-18 Atotech Deutschland GmbH Verfahren zum Metallisieren nichtleitender Kunststoffoberflächen
EP2639333A1 (de) * 2012-03-15 2013-09-18 Atotech Deutschland GmbH Verfahren zum Metallisieren nichtleitender Kunststoffoberflächen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3248000A1 (de) * 1981-12-30 1983-07-07 Occidental Chemical Corp., 48089 Warren, Mich. Verfahren fuer vorbehandlung von kunststoffsubstraten fuer die stromlose metallisierung
US4448811A (en) * 1981-12-30 1984-05-15 Omi International Corporation Oxidizing agent for acidic accelerator in electroless metal plating process
DE19510855C2 (de) 1995-03-17 1998-04-30 Atotech Deutschland Gmbh Verfahren zum selektiven oder partiellen elektrolytischen Metallisieren von Substraten aus nichtleitenden Materialien
DE19611137A1 (de) 1996-03-21 1997-09-25 Lpw Anlagen Gmbh Verfahren zur galvanotechnischen Direktmetallisierung einer Kunststoffoberfläche
EP1001052A2 (de) 1998-11-13 2000-05-17 LPW-Chemie GmbH Verfahren zur Metallisierung einer Kunststoffoberfläche
EP1942207A1 (de) * 2006-12-08 2008-07-09 Atotech Deutschland Gmbh Vorbehandlungslösung und Verfahren zur Bildung einer Beschichtungsmetallschicht auf einer Kunststoffoberfläche mit einem Substrat
WO2009023628A2 (en) 2007-08-10 2009-02-19 Enthone Inc. Chromium-free pickle for plastic surfaces

Also Published As

Publication number Publication date
KR101872065B1 (ko) 2018-06-27
CN104254641A (zh) 2014-12-31
CN104254641B (zh) 2016-05-18
EP2825690A2 (de) 2015-01-21
EP2825690B1 (de) 2016-05-18
CA2866766C (en) 2020-03-10
PT2825690T (pt) 2016-07-28
US20150001177A1 (en) 2015-01-01
WO2013135862A2 (en) 2013-09-19
BR112014021995B1 (pt) 2020-12-15
JP6150822B2 (ja) 2017-06-21
ES2587104T3 (es) 2016-10-20
WO2013135862A3 (en) 2013-11-07
KR20140138286A (ko) 2014-12-03
US9181622B2 (en) 2015-11-10
PL2825690T3 (pl) 2016-11-30
CA2866766A1 (en) 2013-09-19
JP2015513617A (ja) 2015-05-14

Similar Documents

Publication Publication Date Title
EP2639333A1 (de) Verfahren zum Metallisieren nichtleitender Kunststoffoberflächen
EP2639334A1 (de) Verfahren zum Metallisieren nichtleitender Kunststoffoberflächen
EP2639332A1 (de) Verfahren zum Metallisieren nichtleitender Kunststoffoberflächen
DE60109486T2 (de) Verfahren zur chemischen vernickelung
EP3126547B1 (de) Zusammensetzung und verfahren zur metallisierung von nichtleitenden kunststoffoberflächen
EP0081129A1 (de) Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung
EP2360294B1 (de) Verfahren zum Metallisieren von an der Oberfläche mindestens zwei verschiedene Kunststoffe aufweisenden Gegenständen
DE2541896C3 (de) Verfahren zum Behandeln einer Substratoberfläche von polymeren! Kunststoffmaterial vor der stromlosen Metallbeschichtung und Lösung zur Durchführung des Verfahrens
DE19822075C2 (de) Verfahren zur metallischen Beschichtung von Substraten
EP2855731B1 (de) Verfahren zur metallisierung von nichtleitenden kunststoffoberflächen
EP0815292B1 (de) Verfahren zum selektiven oder partiellen elektrolytischen metallisieren von oberflächen von substraten aus nichtleitenden materialien
DE102010012204A1 (de) Verbessertes Verfahren zur Direktmetallisierung von nicht leitenden Substraten
EP1441045B1 (de) Verfahren zur Aktivierung von Substraten für die Kunststoffgalvanisierung
DE3121015A1 (de) Verfahren zur aktivierung von gebeizten oberflaechen und loesung zur durchfuehrung desselben
DE20221901U1 (de) Lösung zur Vorbehandlung einer zu metallisierenden Kunstoffoberfläche
EP1763594B1 (de) Verfahren zur verbesserung der lötbarkeit von nickelüberzügen
EP0650537B1 (de) Metallisierung von kunststoffen
EP0772700A1 (de) Palladiumkolloid-lösung und deren verwendung
DE202023107029U1 (de) Gegenstand mit einer gebeizten Oberfläche aus einem nichtleitenden Kunststoff
DE29923736U1 (de) Vorbereitung nichtleitender Oberflächen für eine anschließende Galvanisierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140319