EP2635381B1 - Pneumatischer flüssigkeitsspender und verfahren - Google Patents

Pneumatischer flüssigkeitsspender und verfahren Download PDF

Info

Publication number
EP2635381B1
EP2635381B1 EP11781942.5A EP11781942A EP2635381B1 EP 2635381 B1 EP2635381 B1 EP 2635381B1 EP 11781942 A EP11781942 A EP 11781942A EP 2635381 B1 EP2635381 B1 EP 2635381B1
Authority
EP
European Patent Office
Prior art keywords
air
solenoid valve
air space
pressure
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11781942.5A
Other languages
English (en)
French (fr)
Other versions
EP2635381A1 (de
Inventor
William Macindoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson Corp
Original Assignee
Nordson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordson Corp filed Critical Nordson Corp
Publication of EP2635381A1 publication Critical patent/EP2635381A1/de
Application granted granted Critical
Publication of EP2635381B1 publication Critical patent/EP2635381B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/004Arrangements for controlling delivery; Arrangements for controlling the spray area comprising sensors for monitoring the delivery, e.g. by displaying the sensed value or generating an alarm
    • B05B12/006Pressure or flow rate sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/02Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/085Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to flow or pressure of liquid or other fluent material to be discharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/085Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to flow or pressure of liquid or other fluent material to be discharged
    • B05B12/087Flow or presssure regulators, i.e. non-electric unitary devices comprising a sensing element, e.g. a piston or a membrane, and a controlling element, e.g. a valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1007Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material
    • B05C11/1013Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material responsive to flow or pressure of liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0225Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work characterised by flow controlling means, e.g. valves, located proximate the outlet

Definitions

  • the present invention generally relates to dispensers for metering and dispensing accurate amounts of liquid, such as liquids used in various medical fields, high technology, manufacturing operations, or in other areas.
  • pneumatic fluid dispensers that dispense adhesives, sealants, lubricants and other fluids and liquids in a wide range of viscosities are well known.
  • Pneumatic fluid dispensers have historically been favored because, in a manual dispenser, they are light and easy to manipulate, as well as relatively inexpensive to manufacture and operate. Further, pneumatic technology has continued to improve, so that pneumatic fluid dispensers continue to be widely used.
  • applications requiring faster and more precise fluid dispensing in both manual and automated settings continue to grow rapidly. The requirements and specifications for fluid dispensing applications are ever more rigorous. Many applications require that fluids be dispensed in very precise volumes, at very precise locations and at fast cycle (on/off) rates.
  • Pneumatic fluid dispensers commonly utilize pressurized or "shop” air commonly found in a manufacturing environment. Using a manually initiated or automatically generated command signal, the pressurized air is typically directed against a piston in a syringe barrel holding a liquid. In other applications, the pressurized air may be directly applied to the liquid. The resulting force urges the liquid from the syringe.
  • Pneumatic dispensers are known to use air flow regulators to control the pressurized air supplied to the barrel. Such regulators act as flow restrictors and extend the time required to fill the air space in the syringe barrel with the requisite air needed to reach a fully pressurized dispensing condition.
  • vacuum generators on the exhaust side of the dispenser are used for purposes of placing the air space of the syringe barrel under vacuum to prevent dripping.
  • These vacuum generators which may be venturi devices, act as air flow restrictions on the exhaust side and lengthen the time for venting the syringe barrel when stopping a dispense cycle.
  • the effect is an overall increase in the dispense cycle time that may be achieved, i.e., the time necessary to complete one full "on" to "off' cycle of liquid dispensing.
  • Other aspects of typical dispensers that can increase cycle time include locating the pneumatic controls away from the dispensing syringe and directing the pressurized air through a tube coupled between a control unit and the dispensing syringe. The added air volume and restricting effect represented by the tube results in an increased pressurization time at the beginning of each dispense cycle.
  • a device for spouting water is known from WO 2010/029748 A1 .
  • Other systems adapted for dispensing liquid adhesives are disclosed in CH 698 293 B1 and US 5 881 914 A .
  • the invention generally provides a dispenser for dispensing a liquid comprising a barrel including an interior chamber for holding the liquid.
  • the barrel includes a discharge outlet communicating with the interior chamber for discharging the liquid, and an air space for receiving pressurized air for forcing the liquid from the interior chamber through the discharge outlet.
  • the dispenser further includes an air supply solenoid valve and an air exhaust solenoid valve each operatively coupled with the barrel. More specifically, the air supply solenoid valve controls the flow of pressurized air to the air space, and the air exhaust solenoid valve controls the flow of air from the air space to atmosphere.
  • the dispenser further includes a control that selectively activates the air supply solenoid valve and the air exhaust solenoid valve to respectively supply air to the air space and exhaust air from the air space in order to dispense desired amounts of the liquid from the discharge outlet.
  • the claimed system differs from the prior art in that the control is operative to selectively activate the air supply solenoid valve and the air exhaust solenoid valve to isolate the pressurized air space by closing the air supply solenoid valve and the air exhaust solenoid valve to continue dispensing of the liquid from the discharge outlet while the air space is pressurized.
  • the claimed method differs from the prior art in that it comprises the step of actuating both of the air supply solenoid valve and an air exhaust solenoid valve coupled in fluid communication with the air space of the barrel to a closed position to isolate the air space after the air space has been pressurized, thereby causing a continuation of the discharging of the liquid from the interior chamber while the air space is pressurized and isolated.
  • the dispenser includes a barrel adapter coupled to the barrel and including an air inlet passage and an air exhaust passage and includes various pneumatic controls. It will be appreciated that the invention encompasses other embodiments in which the pneumatic controls are located more remote from the barrel.
  • the barrel adapter is directly coupled to the barrel and includes an air passage that opens directly to the air space of the barrel.
  • the air supply solenoid valve is mounted in the barrel adapter and communicates with the air inlet passage for controlling the flow of pressurized air from the air inlet passage to the air space.
  • the air exhaust solenoid valve is mounted in the barrel adapter and communicates with the air exhaust passage for controlling the flow of pressurized air from the air space through the air exhaust passage to atmosphere. Mounting the solenoid valves in the barrel adapter and coupling the barrel adapter to the barrel eliminates tubing and provides for faster cycle times.
  • a vacuum generator is also provided and is preferably mounted in the barrel adapter.
  • the vacuum generator is in fluid communication with the air exhaust passage and may be of the venturi type.
  • the air is exhausted from the air space through the air exhaust passage and is at least partially directed through the vacuum generator.
  • a check valve is also provided and mounted in the barrel adapter. The check valve is coupled in fluid communication with the air exhaust passage. The air exhausted from the air space is directed through the check valve and through the vacuum generator in this embodiment.
  • the check valve provides for fast venting and, therefore, fast transitioning to the "off" condition of the dispenser.
  • the dispenser can also include a pressure transducer positioned in fluid communication with the air space of the barrel and operative to sense an air pressure of the air space.
  • the pressure transducer is electrically connected with the control and supplies a signal to the control based on a pressure reading of the air space in the barrel.
  • the pressure reading is an absolute pressure.
  • the control uses the signal for operating at least one of the solenoid valves to place the air space under a desired pressure for dispensing purposes.
  • the invention also generally provides a method of operating a liquid dispenser including a barrel with an interior chamber holding a liquid and having a discharge outlet communicating with the interior chamber for discharging the liquid and an air space for receiving pressurized air for forcing the liquid from the interior chamber through the discharge outlet.
  • the method comprises supplying pressurized air to an air supply solenoid valve coupled in fluid communication with the air space of the barrel; actuating the air supply solenoid valve to an open position to direct the pressurized air to the air space; actuating the air supply solenoid valve to a closed position to isolate the air space from atmosphere after the air space has been pressurized; discharging the liquid from the interior chamber while the air space is pressurized and isolated from atmosphere; and actuating an air exhaust solenoid valve to an open position to couple the air space to an air exhaust passage while the air supply solenoid valve is in the closed position, thereby decreasing the force on the liquid and stopping the discharge of liquid from the interior chamber.
  • the method can further include maintaining vacuum in the air exhaust passage until the air space is under vacuum and actuating the air exhaust solenoid valve to a closed position to isolate the air space under vacuum.
  • the use of vacuum in this manner provides a force on the liquid that inhibits dripping from the discharge outlet.
  • the step of actuating the air exhaust solenoid valve can further comprise directing air from the air exhaust passage through a check valve.
  • the method can further include sensing the pressure of the air space and, based at least in part on the sensed pressure, operating at least one of the solenoid valves to place the air space under a desired pressure.
  • the method can include placing the air space under vacuum when the dispensing cycle ends.
  • placing the air space under vacuum may further comprise actuating both the air supply solenoid valve and the air exhaust solenoid valve into closed positions to isolate the air space under a vacuum condition.
  • the exhaust solenoid valve may be actuated to an open position after the air space has been pressurized if, for example, the pressure sensor indicates that the desired set point pressure has been exceeded. In this case the air may be exhausted or vented by the exhaust solenoid valve to lower the pressure to the desired set point.
  • the method can further comprise actuating the air supply solenoid valve to the open position at least one additional time during a dispense cycle to increase the pressure in the air space while discharging the liquid. This can be advantageous during long dispense cycles when the air space pressure falls below a pressure required for proper dispensing.
  • the method can further comprise taking a plurality of pressure readings of the air space while discharging the liquid.
  • a maximum pressure is determined from the plurality of readings and the maximum pressure is maintained in the air space during a subsequent dispensing cycle with the maximum pressure maintained during the subsequent dispense cycle being substantially equal to the maximum pressure determined from the plurality of readings.
  • the plurality of readings may also be added together to determine a Pressure Impulse.
  • the Pressure Impulse is maintained during a subsequent dispense cycle to be substantially equal to the Pressure Impulse determined from the plurality of readings.
  • the step of maintaining the maximum pressure can include adjusting the time that the air supply solenoid valve is in the open position.
  • the step of maintaining the Pressure Impulse can include adjusting a dwell time in which both the air supply solenoid valve and the exhaust solenoid valve are in the closed position.
  • the method can further comprise the steps of sensing a level of vacuum and generating a signal, and in response to the signal, performing one of the following: actuating the air supply solenoid valve to an open position, or actuating the exhaust solenoid valve to an open position.
  • the air supply solenoid valve is in the open position for a time T1
  • the air supply solenoid valve and the air exhaust solenoid valve are in the closed position for a time T2
  • the air exhaust solenoid valve is in the open position for a time T3.
  • the method further comprises the steps of: at the end of time T3 actuating the air exhaust solenoid valve to a closed position and sensing air pressures of the air space during T1, T2, and T3.
  • the method then includes determining whether the sensed pressure is within a proper range and performing one of the following: adjusting the time T3 for the next dispensing cycle, or determining the maximum air pressure from the sensed air pressures and adding the sensed air pressures together to determine a Pressure Impulse.
  • Figs. 1 and 2 respectively illustrate assembled and disassembled views of a dispenser 10 constructed in accordance with an illustrative embodiment of the invention.
  • the dispenser 10 comprises a syringe or cartridge barrel 12 including an interior chamber 14 for holding a liquid 16 and further including a discharge outlet 18 communicating with the interior chamber 14 for discharging the liquid 16.
  • a nozzle or needle (not shown) may be coupled to the outlet 18.
  • An air space 20 is provided at the upper end of the barrel 12 for receiving pressurized air to force the liquid 16 from the interior chamber 14 through the discharge outlet 18.
  • the interior chamber 14 may or may not contain a piston 22. In cases in which a piston 22 is not used, the pressurized air will be applied directly against the liquid 16 in the chamber 14.
  • a barrel adapter 30 is coupled to the barrel 12 by way of a flange 32 attached to the top of the barrel 12. This flange 32 is received in a space defined on a twist-lock clamp element 34 receiving the barrel 12. This twist-lock clamp element 34 then receives a pair of stationary pins 36 rigidly affixed in the bottom of the barrel adapter 30. The pins 36 are received in respective slots 38 (one fully shown) and then the assembly 12, 34 is secured by twisting the barrel 12 onto the pins 36 retained in the slots 38.
  • the barrel adapter 30 generally includes a pressurized air inlet 50, an exhaust fitting 52 with an optional muffler 54, and an electrical connector 56 extending through a cover 58.
  • the barrel adapter 30 further comprises a main body 60 and a cap 62 secured together by a plurality of fasteners 64 extending through holes 62a and into threaded holes 60a.
  • the cover 58 is secured to the cap by a fastener 66.
  • the main body 60 and the cap 62 include passages for controlling pressurized air. These passages are more specifically shown in the schematic figures of Figs. 3A-3C to be described.
  • the main body 60 includes passages 68 (one shown) for receiving cartridge style air supply solenoid valve 70 and an identical cartridge style air exhaust solenoid valve 72.
  • a check valve 74 and a vacuum generator 76 are likewise mounted in respective passages 80, 82.
  • the solenoid valves 70, 72 are "2-2" valves having two positions, one allowing air flow therethrough and one preventing air flow therethrough. Thus, each solenoid valve 70, 72 may be actuated between an open position allowing air flow and a closed position preventing air flow.
  • the energized condition of each solenoid valve 70, 72 corresponds to the open position, whereas the deenergized condition corresponds to the closed position of each solenoid valve 70, 72. It will be appreciated that various types of solenoid valves may be used to carry out the principles disclosed herein.
  • the exhaust fitting 52 in the cap 62 is in fluid communication with the exhaust muffler 54 and also in fluid communication with the check valve 74 and exhaust passage 80 in the main body 60.
  • the solenoid valves 70, 72, check valve 74 and the vacuum generator 76 are in controlled fluid communication with additional passages associated with the pneumatic control of the barrel adapter 30 as will become more apparent in the description of Figs. 3A-3C below.
  • the barrel adapter 30 further comprises a control board 90 including a pressure transducer 92 which, preferably, is of the absolute type.
  • the pressure transducer 92 includes a sensing element 92a that extends into a passage (not shown) of the main body 60 communicating with the air space 20 of the barrel 12, as will be described below.
  • the control board 90 is fastened to the main body 60 and cap 62 by fasteners 94.
  • Figs. 3A, 3B and 3C schematically illustrate the pneumatic control system and passages associated with the barrel adapter 30.
  • pressurized air 96 is supplied to the air inlet 50 and is directed into respective passages 100, 102 that supply pressurized air to the air supply solenoid valve 70 and the vacuum generator 76.
  • the air may be supplied at conventional shop air pressure, such as 100 psi.
  • the pressurized air that is directed through the venturi-type vacuum generator 76 creates vacuum in an exhaust passage 104 for purposes to be described below.
  • the exhaust passage 104 is in fluid communication with the inlet side of the check valve 74.
  • the outlet of the check valve 74 and the outlet of the vacuum generator 76 both communicate with the exhaust port 52 and muffler 54 previously described.
  • the air exhaust solenoid valve 72 is coupled for fluid communication between the exhaust passage 104 and a passage 106 in the barrel adapter 30 fluidly coupled with the air space 20.
  • the pressure transducer 92 and, more specifically, the sensing element 92a is in fluid communication with the same passage 106 leading to the air space 20 of the syringe barrel 12.
  • Fig. 3A specifically shows the condition of the pneumatic control system of the barrel adapter 30 in which the air space 20 of the syringe barrel 12 is being filled or charged with pressurized air.
  • the air supply solenoid valve 70 has been energized to an open position allowing fluid communication between the air inlet port 50 and the air space 20 of the syringe barrel 12.
  • the air exhaust solenoid valve 72 has been deenergized and placed into a closed position preventing air flow from the air space 20 into the exhaust passage 104.
  • the pressure transducer 92 reads the absolute pressure of the air space 20.
  • both solenoid valves 70, 72 With both solenoid valves 70, 72 in their closed position, as shown in Fig. 3C , the air space 20 is isolated from the pneumatic controls and the positive pressure in the air space 20 is retained. At this time, the pressurized air in the air space 20 is acting against the liquid, or optionally against a piston 22, in order to force the liquid from the interior chamber 14 through the discharge outlet 18. The dispensing will actually begin prior to the closing of the air supply solenoid valve 70, as the pressure in the air space 20 exceeds a threshold value. As shown in Fig. 3B , the air exhaust solenoid valve 72 is energized or otherwise actuated to an open position which allows the air pressure in the air space 20 to be vented.
  • the air exhaust solenoid valve 72 may be opened briefly, one or more times, in order to vent the pressure until the pressure transducer 92 indicates that the proper air pressure has been reached. At that time, the air exhaust solenoid valve 72 is actuated to a closed position (i.e., deenergized) to isolate the air space 20 and retain the desired air pressure for the liquid dispense cycle. To end the dispense cycle, the air exhaust solenoid valve 72 is opened to vent the air pressure in the air space 20 fully and reduce the force on the liquid 16 to such a point that the liquid stops discharging from the outlet 18.
  • the air space 20 of the barrel 12 is coupled for fluid communication to the vacuum portion of the pneumatic control system, i.e., passage 104.
  • This causes the pressure in the air space 20 of the barrel 12 to drop and the pressure in the vacuum portion (i.e., passage 104) to increase above atmospheric pressure.
  • This causes the check valve 74 to open, connecting the vacuum portion of the system to atmosphere. This allows the barrel pressure to more quickly reach atmospheric pressure.
  • the vacuum generator 76 continues to operate, due to the flow of inlet air at 50, to bring the vacuum portion of the system back to the maximum vacuum condition.
  • the air exhaust solenoid valve 72 remains open for a time sufficient to establish the desired final vacuum level in the air space 20.
  • the air exhaust solenoid valve 72 is then actuated to a closed position to isolate the air space 20 in the barrel 12 under the established vacuum condition. This provides a force on the liquid 16 tending to withdraw the liquid 16 away from the discharge outlet 18 to prevent dripping.
  • the pressure transducer 92 may then be used to actively monitor the vacuum pressure in the air space 20 and, as necessary to maintain the desired vacuum level, open and closed the solenoid valve 72 to adjust the vacuum level.
  • Fig. 4 illustrates an electrical control system 110, which may be operated under a standard PID control scheme.
  • the pressure transducer 92 and the solenoid valves 70, 72 are each in electrical communication with a central control 112, such as a digital signal processor on the board 90 or in a remote location.
  • Figs. 4A and 4B illustrate respective control flow diagrams for implementing software associated with the central control 112.
  • the control uses the pressure transducer 92 to gather pressure readings throughout a dispensing cycle. Two pieces of information are used from these air pressure readings, the maximum air pressure reached (Pmax), and the sum or aggregate of all pressure readings (Pressure Impulse). These two outputs or readings during each dispense cycle are used as process variables measured for statistical process control purposes.
  • a fixed number or “window” of these process outputs are evaluated to determine the trend of the outputs.
  • the process inputs are adjusted, as needed, to maintain Pmax and Pressure Impulse constant.
  • the two process inputs are the "on" time of the air supply solenoid valve 70 and the “dwell” time, which is the time during which both solenoid valves 70, 72 are closed and dispensing continues to occur.
  • the "on" time of the air supply solenoid valve 70 is adjusted to maintain the maximum air pressure or Pmax constant and the "dwell” time is adjusted to keep the Pressure Impulse (i.e., the sum of all pressure readings during the window), constant. This effectively adjusts for a full-to-empty effect that would otherwise occur causing undesirable variation in the dispensed volume.
  • a main loop 120 illustrating the function or operation of the software is shown and runs at any time that the control system is activated and a dispense cycle is not being run.
  • a vacuum reading is taken at 122 by the pressure transducer or sensor 92 ( Figs. 3A-3C ) to read the level of vacuum or negative pressure in the air space 20.
  • a query is made at 124 to determine if the vacuum level is too high. If the vacuum level is too high, the process moves to step 126 and the air supply solenoid valve 70 is opened for n seconds.
  • the number of seconds (n), or fraction thereof, that the air supply solenoid valve 70 is opened is predetermined and may, for example, be of very short time duration for purposes of slightly reducing the vacuum by adding a small amount of positive pressure to the air space 20.
  • the process then moves to another query at 128 to determine whether the settings or process inputs have been changed. These settings include the air fill time T1, the dwell time T2 (i.e., the time that valves 70, 72 are closed) and the vacuum setting or VAC i . If any of these settings have been changed then the affected inputs are reset and a change flag is set at 130. T3, or the exhaust solenoid valve on time is then recalculated based on the inputs at 132.
  • step 134 asking whether a dispense cycle has been initiated by the user. If a dispense cycle has not been initiated, the control reverts to the initial step 122 of reading the vacuum and determining whether the vacuum level is too high or too low and opening the appropriate solenoid valve 70 or 72 to adjust the vacuum level. If the vacuum level is not too high then the process moves to step 136. If the vacuum level is determined to be too low at 136, then the vent or exhaust valve 72 is opened for n seconds at 138, again predetermined similar to the corresponding step 126 implemented for the high vacuum situation. If the vacuum level is neither too high nor too low, then the process moves to step 128 as described. If a dispense cycle has been initiated by the user, the control software runs the process illustrated in Fig. 4B .
  • the air supply solenoid valve 70 is opened for T1 seconds at step 142.
  • the air supply solenoid valve 70 is closed and, at 144, the control implements a dwell time for T2 seconds during which each valve 70, 72 is closed and dispensing occurs.
  • the control opens the exhaust solenoid valve 72 for T3 seconds.
  • pressure readings are made by the pressure transducer 92 and stored by the control 112 ( Fig. 4 ).
  • pressure readings for example, 1000 pressure readings per second
  • the pressure transducer 92 reads the vacuum level at step 150.
  • a query is made at 152 to determine whether the vacuum level is within the proper range, that is, whether the detected vacuum level VAC minus the initial or desired target vacuum level VAC i is either too high or too low. If it is too high or too low then T3 is adjusted higher or lower at step 154 to adjust the vacuum level in the appropriate direction based on whether the detected vacuum level was too high or too low. If the detected vacuum level is within an acceptable range then, at step 156, Pmax and Pressure Impulse are calculated from the pressure readings taken in step 148.
  • step 158 the control determines whether the change flag has been set. If so, the target maximum pressure value Pmax i is set to equal Pmax and the target aggregate pressure valve Pressure Impulse i is set to equal Pressure Impulse, and the change flag is turned off at 160. If the change flag is not set at step 158, then a query is made at 162 as to whether Pmax minus Pmax i is less than or greater than an acceptable error value range. If it is less than or greater than an acceptable error value range, then T1 is adjusted at step 164. If Pmax minus Pmax i is within the acceptable error value range, then the software implements the next query at step 166 to determine whether the Pressure Impulse value minus Pressure Impulse i is less than or greater than an acceptable error value range.
  • T2 is adjusted in the appropriate direction at 168. If it is not less than or greater than an acceptable error value range, then the control returns to the main loop at 170.
  • a moving window of readings taken at step 148 over the course of a number prior dispense cycles is used for purposes of determining Pmax i and Pressure Impulse i . It will be appreciated, that this control maintains the appropriate level of vacuum when the system is not dispensing any liquid, so that dripping is prevented, and effectively adjusts for the full-to-empty effect by maintaining the maximum air pressure Pmax constant, as well as the Pressure Impulse or the sum of all pressure readings made during a specific time window, constant from dispense cycle to dispense cycle.
  • Fig. 5 graphically illustrates one dispense cycle plotting air pressure versus time.
  • the pressure is shown to increase along a line 180a from time “t" equal to 0 until the pressure reaches 100 psig or any other suitable operating pressure.
  • a vertical line 182 the syringe barrel is isolated as shown in Fig. 3C and the liquid dispense cycle continues with liquid dispensing from the discharge outlet 18 until the exhaust solenoid valve 72 is opened as shown at the vertical line 184.
  • the air pressure during this second portion of the cycle typically decreases due to thermodynamic effects by approximately 10% as indicated by line 180b. This effect could be offset by active, closed-loop control of barrel pressure, using the pressure transducer and air supply solenoid valve.
  • the exhaust solenoid valve 72 is then opened as shown at the vertical line 184. Venting rapidly occurs such that the pressure drops quickly as indicated by line 180c and, ultimately, a vacuum condition is reached as previously discussed. The air space 20 is then isolated under vacuum. As the graph illustrates, the fill and vent portions of the full on/off cycle are rapid, and this results in the ability to more rapidly cycle the dispenser between on and off conditions and more accurately dispense liquid, especially in small amounts, during each liquid dispense cycle.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Claims (21)

  1. Eine Vorrichtung zum Steuern der Abgabe einer Flüssigkeit (16) von einem Spritzenkörper (12) mit einer inneren Kammer (14), die die Flüssigkeit (16) beinhaltet, einem Abgabeauslass (18), der mit der inneren Kammer (14) zur Abgabe der Flüssigkeit (16) in Verbindung steht und einem Luftraum (20) zum Aufnehmen von Druckluft zum Treiben der Flüssigkeit (16) von der inneren Kammer (14) durch den Abgabeauslass (18), wobei die Vorrichtung aufweist:
    ein Luftzufuhr-Solenoidventil (70) und ein Luftablass-Solenoidventil (72), welche dazu eingerichtet sind, operativ mit dem Spritzenkörper (12) gekoppelt zu werden, wobei das Luftzufuhr-Solenoidventil (70) dazu eingerichtet ist, den Fluss von Druckluft zu dem Luftraum (20) zu steuern und wobei das Luftabgabe-Solenoidventil (72) dazu eingerichtet ist, den Luftfluss von dem Luftraum (20) zu der Atmosphäre zu steuern;
    einen Vakuumgenerator (76), der fluidleitend mit dem Luftablass-Solenoidventil (72) gekoppelt ist;
    eine Steuerung (112), die dazu eingerichtet ist, das Luftzufuhr-Solenoidventil (70) und das Luftablass-Solenoidventil (72) selektiv zu aktivieren, um dem Luftraum (20) Druckluft bereitzustellen durch Öffnung des Luftzufuhr-Solenoidventils (70), um damit den Luftraum (20) mit Druck zu beaufschlagen und eine Abgabe der Flüssigkeit (16) von dem Abgabeauslass (18) zu bewirken und Luft aus dem Luftraum (20) auszustoßen durch Öffnen des Luftablass-Solenoidventils (72), um damit ein Vakuum von dem Vakuumgenerator (76) auf dem Luftraum (20) anzuwenden, um den Luftdruck in dem Luftraum (20) zu evakuieren und die Abgabe der Flüssigkeit (16) aus dem Abgabeauslass (18) zu stoppen, dadurch gekennzeichnet, dass die Steuerungseinheit (12) dazu eingerichtet ist, dass Luftzufuhr-Solenoidventil (70) und das Luftablass-Solenoidventil (72) selektiv zu aktivieren, um den druckbeaufschlagten Luftraum (20) durch Schließen des Luftzufuhr-Solenoidventils (70) und des Luftablass-Solenoidventils (72) zu isolieren, um die Abgabe der Flüssigkeit (16) von dem Abgabeauslass (18) fortzuführen, während er Luftraum (20) druckbeaufschlagt ist.
  2. Die Vorrichtung nach Anspruch 1, weiterhin aufweisend:
    einen Spritzenkörper-Adapter (30), der dazu eingerichtet ist, mit dem Spritzenkörper (12) gekoppelt zu werden mit einer Lufteinlasspassage (100) und einer Luftablasspassage (104), wobei das Luftzufuhr-Solenoidventil (70) in dem Spritzenkörper-Adapter (30) befestigt ist und mit der Lufteinlasspassage (100) verbunden ist, um den Fluss von Druckluft von der Lufteinlasspassage (100) zu dem Luftraum (20) zu steuern und wobei das Luftablass-Solenoidventil (72) in dem Spritzenkörper-Adapter (30) befestigt ist und mit der Luftablasspassage (104) verbunden ist, um den Fluss von Druckluft von dem Luftraum (20) durch die Luftablasspassage (104) zu der Atmosphäre zu steuern.
  3. Die Vorrichtung nach Anspruch 2, wobei der Vakuumgenerator (76) in dem Spritzenkörper-Adapter (30) befestigt ist und wobei die Luft, die von dem Luftraum (20) durch die Luftablasspassage (104) abgelassen wird, zumindest teilweise durch den Vakuumgenerator (76) geführt wird.
  4. Die Vorrichtung nach Anspruch 3, weiterhin aufweisend:
    ein Rückschlagventil (74), welches in dem Spritzenkörper-Adapter (30) befestigt ist und in fluidleitender Verbindung mit der Luftablasspassage (104) und dem Vakuumgenerator (76) steht, wobei die Luft, die von dem Luftraum (20) durch die Luftablasspassage (104) abgelassen wird, durch den Vakuumgenerator (76) und durch das Rückschlagventil (74) geführt wird.
  5. Die Vorrichtung nach Anspruch 1, weiterhin aufweisend:
    ein Rückschlagventil (74) in fluidleitender Verbindung mit dem Luftablass-Solenoidventil (72), wobei die Luft, die von dem Luftraum (20) abgelassen wird, durch das Rückschlagventil (74) geführt wird.
  6. Die Vorrichtung nach Anspruch 1, weiterhin aufweisend:
    einen Druckwandler (92), der in fluidleitender Verbindung mit dem Luftraum (20) positioniert ist und dazu eingerichtet ist, einen Luftdruck in dem Luftraum (20) zu sensieren, wobei der Druckwandler (92) weiterhin elektrisch mit der Steuerung (112) verbunden ist und dazu eingerichtet ist, ein Signal der Steuerungseinheit (112) bereitzustellen und wobei die Steuerung (112) weiterhin dazu eingerichtet ist, das Signal zur Betätigung von mindestens einem der Solenoidventile (70, 72) zu verwenden, um den Luftraum (20) mit einem gewünschten Druck zu versehen.
  7. Einen Dispenser (10), der die Vorrichtung und den Spritzenkörper (12) nach Anspruch 1 aufweist.
  8. Der Dispenser (10) nach Anspruch 7, weiterhin aufweisend:
    einen Spritzenkörper-Adapter (30), der mit dem Spritzenkörper (12) gekoppelt ist, und eine Lufteinlasspassage (100) und eine Luftablasspassage (104) aufweist, wobei das Luftzufuhr-Solenoidventil (70) in dem Spritzenkörper-Adapter (30) befestigt ist und in Verbindung mit der Lufteinlasspassage (100) steht zur Steuerung des Flusses von Druckluft von der Lufteinlasspassage (100) zu dem Luftraum (20) und wobei das Luftablass-Solenoidventil (72) in dem Spritzenkörper-Adapter (30) befestigt ist und mit der Luftablasspassage (104) verbunden ist zur Steuerung des Flusses von Druckluft von dem Luftraum (20) durch die Luftablasspassage (104) zu der Atmosphäre.
  9. Der Dispenser (10) nach Anspruch 8, wobei ein Rückschlagventil (74) und ein Druckwandler (92) in dem Spritzenkörper-Adapter (30) befestigt sind.
  10. Der Dispenser (10) nach Anspruch 9, weiterhin aufweisend:
    einen Vakuumgenerator (76), der in dem Spritzenkörper-Adapter (30) befestigt ist und in Fluidleitung mit der Luftablasspassage (104) steht, wobei die Luft, die von dem Luftraum (20) durch die Luftablasspassage (104) abgelassen wird durch den Vakuumgenerator (76) geführt wird.
  11. Ein Verfahren zum Betrieb eines Flüssigkeits-Dispensers (10), welcher einen Spritzenkörper (12) mit einer inneren Kammer (14) aufweist, welche eine Flüssigkeit (16) beinhaltet, und einen Abgabeauslass (18) aufweist, der mit der inneren Kammer (14) verbunden ist, zur Abgabe der Flüssigkeit (16) und einen Luftraum (20) zum Empfang von Druckluft, um die Flüssigkeit (16) von der inneren Kammer (14) durch den Abgabeauslass (18) zu treiben, wobei das Verfahren aufweist:
    Bereitstellung von Druckluft zu einem Luftzufuhr-Solenoidventil (70), welches fluidleitend mit dem Luftraum (20) des Spritzenkörpers (12) verbunden ist;
    Betätigen des Luftzufuhr-Solenoidventils (70) zu einer geöffneten Position, um die Druckluft zu dem Luftraum (20) zu führen und eine Abgabe der Flüssigkeit (16) aus der inneren Kammer (14) zu bewirken;
    Betätigen des Luftablass-Solenoidventils (72) zu einer offenen Position, um den Luftraum (20) mit einer Luftablasspassage (104), die fluidleitend mit einem Vakuumgenerator (76) gekoppelt ist, zu koppeln, während das Luftzufuhr-Solenoidventil (70) sich in einer geschlossenen Position befindet, womit die Druckluft von dem Luftraum (20) evakuiert wird und die Abgabe der Flüssigkeit (16) von der inneren Kammer (14) stoppt; gekennzeichnet durch den Schritt der Aktuierung des Luftzufuhr-Solenoidventils (70) und eines Luftablass-Solenoidventils (72), welche fluidleitend mit dem Luftraum (20) des Spritzenkörpers (12) gekoppelt sind, in eine geschlossene Position, um den Luftraum (20) zu isolieren, nachdem der Luftraum (20) druckbeaufschlagt worden ist, womit eine Fortführung der Abgabe der Flüssigkeit (16) von der inneren Kammer (14) bewirkt wird, während der Luftraum (20) druckbeaufschlagt und isoliert ist.
  12. Das Verfahren nach Anspruch 11, weiterhin aufweisend:
    Beibehalten eines Vakuums in der Luftablasspassage (104) mit dem Vakuumgenerator (76), bis der Luftraum (20) unter Vakuum steht; und
    Betätigen des Luftablass-Solenoidventils (72) zu einer geschlossenen Position, um den Luftraum (20) unter Vakuum zu isolieren.
  13. Das Verfahren nach Anspruch 12, wobei der Schritt des Betätigens des Luftablass-Solenoidventils (72) weiter aufweist:
    Leiten von Luft von der Luftablasspassage (104) durch ein Rückschlagventil (74).
  14. Das Verfahren nach Anspruch 11, wobei der Schritt des Betätigens des Luftablass-Solenoidventils (72) weiterhin aufweist:
    Leiten von Luft von dem Luftraum (20) durch eine Luftablasspassage (104), die fluidleitend mit einem Rückschlagventil (74) verbunden ist; und
    Öffnen des Rückschlagventils (74) mit der Druckluft von dem Luftraum (20).
  15. Das Verfahren nach Anspruch 11, wobei der Dispenser (10) weiterhin einen Druckwandler (92) aufweist, der fluidleitend mit dem Luftraum (20) positioniert ist und dazu eingerichtet ist, einen Luftdruck des Luftraums (20) zu sensieren, wobei das Verfahren weiterhin aufweist:
    Sensieren des Druckes des Luftraums (20) und, basierend zumindest teilweise auf dem sensierten Druck, Betrieb von mindestens einem der Solenoidventile (70, 72), um den Luftraum (20) mit dem gewünschten Druck zu beaufschlagen.
  16. Das Verfahren nach Anspruch 11, weiterhin aufweisend:
    Setzen des Luftraums (20) unter Vakuum, während die Abgabe der Flüssigkeit (16) gestoppt ist, um damit ein Tropfen aus dem Abgabeauslass (18) zu verhindern.
  17. Das Verfahren nach Anspruch 16, wobei das Setzen des Luftraums (20) unter Vakuum weiterhin aufweist:
    Betätigen sowohl des Luftzufuhr-Solenoidventils (70) als auch des Luftablass-Solenoidventils (72) in geschlossene Positionen, um den Luftraum (20) unter einer Vakuum-Bedingung zu isolieren.
  18. Das Verfahren gemäß der dritten Alternative von Anspruch 11, weiterhin aufweisend mindestens einen der nachfolgenden Schritte:
    Betätigen des Ablass-Solenoidventils (72) nachdem der Luftraum (20) druckbeaufschlagt wurde, um damit den Druck auf einem gewünschten Soll-Wert abzusenken; und/oder
    Betätigen des Luftzufuhr-Solenoidventils (70) auf eine geöffneten Position mindestens ein zusätzliches Mal während eines Abgabezyklus, um den Druck in dem Luftraum (20) während der Abgabe der Flüssigkeit (16) zu erhöhen; und/oder
    Aufnahme einer Mehrzahl von Druckwerten vom Luftraum (20) während der Abgabe der Flüssigkeit (16);
    Bestimmung eines Maximaldruckes von der Mehrzahl der Messungen; und
    Einhaltung des Maximaldruckes in dem Luftraum (20) während eines nachfolgenden Abgabezyklus, welcher im Wesentlichen gleich ist mit dem Maximaldruck, der durch die Mehrzahl von Messungen ermittelt worden ist, und/oder
    Aufzeichnung einer Mehrzahl von Druckmessungen im Luftraum (20) während der Abgabe der Flüssigkeit (16);
    Zusammenfügen der Mehrzahl von Messungen, um einen Druckimpuls zu bestimmen; und
    Beibehaltung des Druckimpulses in dem Luftraum (20) während eines nachfolgenden Abgabezyklus im Wesentlichen gleich zu dem Druckimpuls, der durch die Mehrzahl der Messungen ermittelt worden ist.
  19. Das Verfahren nach Anspruch 18, wobei der Schritt der Einhaltung des Maximaldrucks die Anpassung der Zeit aufweist, in der sich das Luftzufuhr-Solenoidventil (70) in der offenen Position befindet, um die Druckluft zu dem Luftraum (20) zu führen.
  20. Das Verfahren nach Anspruch 19, wobei der Schritt der Einhaltung des Druckimpulses eine Anpassung einer Verweilzeit aufweist, während der sich sowohl das Luftzufuhr-Solenoidventil (70) als auch das Luftablass-Solenoidventil (72) in einer geschlossenen Position befinden.
  21. Das Verfahren nach Anspruch 11, aufweisend mindestens einen der Schritte:
    a) Sensierung eines Vakuumlevels und Generierung eines Signals;
    b) in Antwort auf das Signal, Durchführung eines der folgenden:
    (i) Betätigen des Luftzufuhr-Solenoidventils (70) zu einer offenen Position; oder
    (ii) Betätigen des Ablass-Solenoidventils (72) zu einer offenen Position; und/oder
    wobei das Luftzufuhr-Solenoidventil (70) in einer offenen Position für eine Zeit T1 ist;
    das Luftzufuhr-Solenoidventils (70) und das Luftablass-Solenoidventil (72) sich in einer geschlossenen Position für eine Zeit T2 befinden;
    das Luftablass-Solenoidventil (72) sich in einer offenen Position für eine Zeit T3 befindet und weiterhin die Schritte aufweist:
    am Ende der Zeit T3 Betätigen des Luftablass-Solenoidventils (72) zu einer geschlossenen Position;
    Sensierung des Luftdrucks des Luftraums (20) während T1, T2 und T3;
    Bestimmung, ob der sensierte Druck sich innerhalb eines geeigneten Bereiches befindet und Durchführung eines der folgenden Schritte:
    a) Anpassung der Zeit T3 für den nächsten Dispensierzyklus; oder
    b) Bestimmung eines Maximalluftdruckes von dem sensierten Luftdruck und Zusammenfügen des sensierten Luftdrucks, um einen Druckimpuls zu bestimmen.
EP11781942.5A 2010-11-02 2011-11-01 Pneumatischer flüssigkeitsspender und verfahren Not-in-force EP2635381B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/917,978 US8608025B2 (en) 2010-11-02 2010-11-02 Pneumatic liquid dispensing apparatus and method
PCT/US2011/058724 WO2012061347A1 (en) 2010-11-02 2011-11-01 Pneumatic liquid dispensing apparatus and method

Publications (2)

Publication Number Publication Date
EP2635381A1 EP2635381A1 (de) 2013-09-11
EP2635381B1 true EP2635381B1 (de) 2017-03-29

Family

ID=44936566

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11781942.5A Not-in-force EP2635381B1 (de) 2010-11-02 2011-11-01 Pneumatischer flüssigkeitsspender und verfahren

Country Status (6)

Country Link
US (1) US8608025B2 (de)
EP (1) EP2635381B1 (de)
JP (1) JP5911500B2 (de)
KR (1) KR101879172B1 (de)
CN (1) CN103269804B (de)
WO (1) WO2012061347A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2241378A3 (de) * 2006-05-09 2015-03-25 Nordson Corporation .steuersystem zur beschichtung von dosen
JP6055785B2 (ja) * 2012-02-06 2017-01-11 武蔵エンジニアリング株式会社 液体材料の吐出装置および吐出方法
US9393586B2 (en) * 2012-11-21 2016-07-19 Nordson Corporation Dispenser and method of dispensing and controlling with a flow meter
US9847265B2 (en) 2012-11-21 2017-12-19 Nordson Corporation Flow metering for dispense monitoring and control
CN103831208B (zh) * 2013-12-27 2016-08-24 广州奥迪通用照明有限公司 一种上胶机构
CN104148242B (zh) * 2014-08-27 2017-01-25 江汉大学 用于液滴细分的同轴双孔针头、装置及方法
US9579678B2 (en) 2015-01-07 2017-02-28 Nordson Corporation Dispenser and method of dispensing and controlling with a flow meter
JP6541489B2 (ja) * 2015-07-24 2019-07-10 武蔵エンジニアリング株式会社 液体材料吐出装置
DE102015119014A1 (de) * 2015-11-05 2017-05-11 Martin Gmbh Kopfdispenser
CN105413971A (zh) * 2016-01-04 2016-03-23 京东方科技集团股份有限公司 胶材涂布装置
KR102580650B1 (ko) * 2018-01-22 2023-09-20 삼성전자주식회사 디스펜서용 언더필 용액 공급 장치, 이를 갖는 디스펜서 및 이를 이용한 반도체 모듈의 제조 방법
DE102018130079A1 (de) * 2018-11-28 2020-05-28 Bühnen GmbH & Co. KG Messsystem zur Erfassung eines Füllstands eines Klebstofftanks und Klebepistole mit einem solchen Messsystem
CN109566145B (zh) * 2018-12-17 2021-05-04 山东省烟台市农业科学研究院 一种嵌入式果树输药树钉
PL3991855T3 (pl) * 2019-06-25 2024-03-04 Changzhou Mingseal Robot Technology Co., Ltd. Urządzenie sterujące dozowaniem kleju i sposób sterowania wylotem kleju
TWI755001B (zh) * 2019-08-16 2022-02-11 馬來西亞商毅成威自動系有限公司 分配微量液體的設備
CN112895722B (zh) * 2021-01-12 2022-04-01 华中科技大学 一种气动式单液滴发生器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881914A (en) * 1996-10-01 1999-03-16 Fuji Machine Mfg. Co., Ltd. Adhesive dispenser

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397259A (ja) * 1986-10-14 1988-04-27 Shinkawa Ltd ペ−スト吐出装置
JPS6390080U (de) * 1986-11-29 1988-06-11
JPH03290715A (ja) 1990-04-07 1991-12-20 Iwashita Eng Kk 圧力センサを有する定量吐出装置の圧力変更型吐出量安定ディスペンス制御装置
DE4092642C1 (de) * 1990-07-10 1995-11-23 Musashi Engineering Inc Flüssigkeitsausgabevorrichtung
US5199607A (en) 1990-12-03 1993-04-06 Musashi Engineering, Inc. Liquid dispensing apparatus
DE19611533B4 (de) * 1996-03-23 2005-11-03 Itw Gema Ag Vorrichtung zur Pulverbeschichtung
DE29824060U1 (de) * 1998-09-03 2000-04-27 Grämer, Gert-Volker, 39326 Glindenberg Einrichtung zum Fördern und Dosieren von Flüssigkeiten
JP3630650B2 (ja) * 2001-07-31 2005-03-16 株式会社 日立インダストリイズ ペースト塗布機
WO2005036294A1 (en) * 2003-10-06 2005-04-21 Nordson Corporation Compensating pressure controller for fluid dispenser and method
CN1311913C (zh) * 2004-10-28 2007-04-25 博奥生物有限公司 一种微量液体喷射系统
JP2006192371A (ja) * 2005-01-13 2006-07-27 Shinwa Shokai:Kk 液体定量吐出装置及びその制御方法
CH698293B1 (de) 2006-12-20 2009-07-15 Esec Ag Verfahren zum Auftragen von Klebstoff auf ein Substrat.
US8220661B2 (en) * 2008-08-04 2012-07-17 Asm Assembly Automation Ltd Apparatus for dispensing measured quantities of liquid
JP5033921B2 (ja) * 2008-09-12 2012-09-26 株式会社ケーディエフ 噴水装置
CN101607238B (zh) * 2009-07-17 2012-08-29 何启烽 一种喷射液体的装置及其使用方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881914A (en) * 1996-10-01 1999-03-16 Fuji Machine Mfg. Co., Ltd. Adhesive dispenser

Also Published As

Publication number Publication date
EP2635381A1 (de) 2013-09-11
US20120104033A1 (en) 2012-05-03
KR20130100343A (ko) 2013-09-10
KR101879172B1 (ko) 2018-08-17
CN103269804A (zh) 2013-08-28
WO2012061347A1 (en) 2012-05-10
JP5911500B2 (ja) 2016-04-27
CN103269804B (zh) 2016-05-25
JP2014500789A (ja) 2014-01-16
US8608025B2 (en) 2013-12-17

Similar Documents

Publication Publication Date Title
EP2635381B1 (de) Pneumatischer flüssigkeitsspender und verfahren
US5435462A (en) Liquid cartridge storage case for use with liquid dipenser
EP1795270B1 (de) Vorrichtung zur abgabe einer festen flüssigkeitsmenge
US8096327B2 (en) Aerosol can filling system
US6799698B2 (en) Liquid material supply system
US7284564B2 (en) Gas storage and dispensing system for variable conductance dispensing of gas at constant flow rate
US10913279B2 (en) Method and device for filling of liquid material
US4530465A (en) Method and device for calibrating a regulated flow spraying apparatus
EP1123750B1 (de) Verfahren zum konstanten flüssigkeitsaustrag
CN107921467B (zh) 液体材料吐出装置
US5699934A (en) Dispenser and method for dispensing viscous fluids
JP2003522079A (ja) 圧力制御装置を含む圧縮容器
CN106999966A (zh) 具有改善的压力控制的液体分配系统
KR101351207B1 (ko) 액체 계량 분배용 공압 장치의 작동 방법 및 공압 장치
US7066352B2 (en) Material supply system
US7681588B2 (en) Pressure regulator
CA2369928A1 (en) Pressure activated calibration system for chemical sensors
JPH059074Y2 (de)
JPH0647092B2 (ja) 液だれ防止装置
CN114439651A (zh) 可调喷注器智能自适应标定系统及标定方法
JP2000135465A (ja) 液体定量吐出装置
JP2000335505A5 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130603

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141001

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 12/00 20060101ALI20160920BHEP

Ipc: B05B 9/04 20060101AFI20160920BHEP

Ipc: B05C 5/02 20060101ALI20160920BHEP

Ipc: B05B 12/08 20060101ALI20160920BHEP

Ipc: B05C 11/10 20060101ALI20160920BHEP

Ipc: B05B 12/02 20060101ALI20160920BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161028

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 879236

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011036480

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WEINMANN ZIMMERLI AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170630

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170329

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 879236

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011036480

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171101

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191120

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20191121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191120

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011036480

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601