EP2632617B1 - Verfahren und anlage zur herstellung eines bauteils aus magnesiumblech - Google Patents

Verfahren und anlage zur herstellung eines bauteils aus magnesiumblech Download PDF

Info

Publication number
EP2632617B1
EP2632617B1 EP11764766.9A EP11764766A EP2632617B1 EP 2632617 B1 EP2632617 B1 EP 2632617B1 EP 11764766 A EP11764766 A EP 11764766A EP 2632617 B1 EP2632617 B1 EP 2632617B1
Authority
EP
European Patent Office
Prior art keywords
semi
finished product
forming tool
die
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11764766.9A
Other languages
English (en)
French (fr)
Other versions
EP2632617A1 (de
Inventor
Sascha Sikora
Franz-Josef Lenze
Thorsten KÖHLER
Ralf Scheitza
Hans-Peter Vogt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
MgF Magnesium Flachstahl GmbH
Original Assignee
ThyssenKrupp Steel Europe AG
MgF Magnesium Flachstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG, MgF Magnesium Flachstahl GmbH filed Critical ThyssenKrupp Steel Europe AG
Publication of EP2632617A1 publication Critical patent/EP2632617A1/de
Application granted granted Critical
Publication of EP2632617B1 publication Critical patent/EP2632617B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • B21D24/04Blank holders; Mounting means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/002Processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/005Processes combined with methods covered by groups B21D1/00 - B21D31/00 characterized by the material of the blank or the workpiece
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • C21D9/0018Details, accessories not peculiar to any of the following furnaces for charging, discharging or manipulation of charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching

Definitions

  • the invention relates to a method for producing a component from magnesium sheet by forming a semifinished product from magnesium sheet, in particular a semifinished product in the form of a magnesium sheet, in which the semi-finished product before forming to an elevated temperature, preferably heated to a temperature of at least 200 ° C and in a forming tool having a punch and a die is formed, wherein for forming the heated semi-finished product, a forming tool is used without internal heat source, and wherein the heated semi-finished product is placed without direct contact with the punch and the die in the forming tool. Furthermore, the invention relates to a system for producing a component from magnesium sheet.
  • magnesium sheets Due to the hexagonal lattice structure of magnesium, magnesium sheets are difficult to reform at room temperature. In particular, components made of magnesium sheet, which should have a complex three-dimensional shape, must be hot-formed to avoid cracks.
  • magnesium plates are shaped in the heated state using tempered tools.
  • various embodiments of tempered tools for forming magnesium sheets are known. For example, from the Korean patent application 10 2006 00 57 901 A a press for hot forming of magnesium sheet is known, which is equipped with an electrical resistance heater is. The resistance heating device is integrated in an upper tool part (die) and in an associated blank holder.
  • Tempered forming tools require in comparison to conventional tools used in cold forming a higher technical complexity and thus higher investment and higher operating costs. This negatively affects the cost of magnesium components.
  • This device consists of a heating unit in which heat-conducting plates are arranged above and below a metal workpiece. Once the metal workpiece has been passed over transfer devices between the heating plates, the heating plates are pressed onto the metal workpiece to heat it. After heating, the metal workpiece is transferred to a forming machine and formed there.
  • the present invention has for its object to provide a method and a system for producing a three-dimensional component of magnesium sheet, which allow low component costs.
  • the method according to the invention is characterized in that the semifinished product holder is designed as an active sheet metal holder and is positioned above the die associated with the die, and that the heated semifinished product placed on the semifinished product holder is subsequently provided with a Forming speed in the range of 15 mm / s to 500 mm / s is formed.
  • the system according to the invention is accordingly characterized in that the semifinished product holder is designed as an active sheet metal holder which can be positioned above the stamp and on which the heated semifinished product can be placed without direct contact with the stamp and the die in the forming tool, and that the forming tool has a drive . which causes a closing speed of punch and die in the range of 15 mm / s to 500 mm / s.
  • the present invention eliminates the additional expense caused by the temperature of the forming tool by means of an internal heat source.
  • the invention provides for the processing of a heated magnesium semi-finished product in a forming tool without an internal heat source.
  • the tool and operating costs and thus ultimately the component costs can be significantly reduced.
  • in the manufacture of components in relatively small quantities can be achieved by reducing the cost of tools a significant contribution to the efficiency of the component.
  • a three-dimensionally shaped component can be made from a for example heated to 250 ° C magnesium plate in a non-tempered forming tool without cracking, if too high temperature losses are avoided before the actual forming process by a direct deposition of the heated board is prevented on the punch or the die during placement (insertion) of the board in the forming tool, and the subsequent forming takes place at a relatively high forming speed (15 500 mm / s).
  • the average cooling rate for a 2.00 mm thick magnesium sheet, which is heated to a temperature in the range of 200 ° C to 250 ° C, is for example in air at room temperature of 20 ° C between 2 and 12 K / s.
  • This relatively low temperature loss can be ensured in a suitable transfer system that the heated Semifinished product or the heated board has a sufficiently high starting temperature before forming to allow a defect-free, in particular crack-free component at given degrees of deformation.
  • the inventive use of a non-tempered tool for forming heated magnesium plates also has positive effects in terms of dimensional accuracy and the handling of the components thus produced. Because of the significantly reduced temperature that the component has when it is removed from the non-tempered forming tool, the component is dimensionally stable compared to a manufactured in a tempered tool component and thus less prone to unwanted deformations during its removal from the forming tool and the subsequent Handling, which has a favorable effect on the dimensional accuracy of the component. Furthermore, the components produced according to the invention can be handled more easily due to their significantly reduced temperature, which they have when they are removed from the non-tempered forming tool. Here, conventional transfer systems can be used which are not temperature-stable or have a comparatively low temperature stability.
  • an advantageous embodiment of the method according to the invention provides that a forming tool is used as the forming tool, whose punch and / or die have an active cooling device.
  • the removal temperature of the component can be reduced faster, the dimensional accuracy of the component further improved and the handling of the component can be further simplified.
  • This active Cooling of the stamp and / or the die is particularly advantageous when relatively high numbers of pieces are to be formed in a given time, that is, when the desired Umform essence should be relatively high.
  • a heating of the forming tool due to the heated semi-finished product during production can be tolerated, if this does not have a negative impact on the dimensional accuracy of the finished component.
  • the heated magnesium sheet semifinished product is not stored directly on the stamp or the die, but the heated semi-finished product is placed on a forming tool associated Halbzeughalter, so that the essential surface area of the heated semi-finished before the actual forming process between the punch and die and spaced from these cantilevered is arranged in the ambient atmosphere.
  • the ambient atmosphere preferably ambient air, acts as a heat insulator. This ensures that the heated semi-finished undergoes only a very small cooling before the actual forming process.
  • the semifinished product holder is designed as an active sheet metal holder which is positioned above a punch associated with the die.
  • a further advantageous embodiment of the method according to the invention is characterized in that a semifinished product holder is used as a semifinished product holder whose surface region touching the heated semifinished product has a surface structure which has porous or recesses.
  • a further advantageous embodiment of the method according to the invention provides that a semifinished product holder is used as a semifinished product holder whose surface area touching the heated semifinished product is formed from a material or has a coating which has a thermal conductivity of not more than 20 W / mK at 30 ° C to 100 ° C ambient temperature. This also makes it possible to reduce the heat or temperature loss caused by heat conduction from the heated semifinished product to the semifinished product holder.
  • a further advantageous embodiment of the method according to the invention is characterized in that a die is used as the die, in the forming surface, which faces the hot semi-finished product, recesses are formed which cause a reduction of the contact surface facing the heated semi-finished product.
  • the depressions or the air contained therein acts heat-insulating, so that can be reduced in this way the heat or temperature loss of the heated semi-finished product.
  • a further advantageous embodiment of the method according to the invention provides that the semifinished product is transported directly into the forming tool by means of a transfer device equipped with a conductive heat source.
  • the semifinished product to be formed can be given a sufficiently high starting temperature before shaping, and at the same time the temperature loss of the semifinished product can be minimized prior to forming.
  • a further advantageous embodiment of the method according to the invention is accordingly characterized in that the semifinished product is simultaneously trimmed during forming with at least one cutting element integrated in the forming tool.
  • FIG. 1 Plant shown essentially comprises a device 1 for heating a semifinished product 2 made of magnesium sheet and a forming tool 3 without internal Heat source for forming the heated semifinished product 2.
  • the semifinished product 2 to be formed may be in the form of a magnesium sheet, for example.
  • the device 1 for heating the semifinished product 2 is designed here as a continuous furnace, preferably as a roller hearth furnace.
  • the continuous furnace or roller hearth furnace 1 is equipped with inductors, radiant heaters, hot air burners and / or recuperative burners.
  • inductors, radiant heaters, hot air burners and / or recuperative burners The use of infrared radiators for heating the semi-finished products 2 to be formed is also conceivable.
  • magnesium sheet blanks 2 to be reshaped are removed from a conveyor belt or a supply stack 4 and heated in the continuous furnace 1 to an elevated temperature, which is selected so that the workpiece temperature at the end of the forming substantially still above 180 ° C to 220 ° C is.
  • the magnesium sheet metal plate or semifinished product 2 to be reshaped is heated, for example, to a temperature in the range of 230 ° C. and 260 ° C.
  • the heated semi-finished product 2 is then inserted by means of a transfer device 5, preferably a robot in the region of the outlet of the continuous furnace into the forming tool 3 without direct contact with the stamp 3.1 and the die 3.2 inserted.
  • the forming tool 3 is provided with a semifinished product holder (blank holder) 3.3, which is positioned above the stamp head in the open state of the forming tool 3, so that the semifinished product 2 deposited thereon neither touches the stamp 3.1 nor the die 3.2.
  • Fig. 1 can be seen that the placed in the forming tool board 2 is initially stored on the semi-finished 3.3 and is arranged both with respect to the stamp 3.1 and with respect to the die 3.2 at a distance. As a result, too fast cooling of the heated magnesium plate 2 is prevented.
  • the tool 3 is closed in order to transform the heated semifinished product into a shape predetermined by the stamp 3.1 and the die 3.2.
  • the deformation takes place with a relatively high deformation rate, so that the temperature loss of the heated workpiece (semifinished product) 2 during the forming is also kept low.
  • the forming tool 3 has a drive (not shown) which effects a closing speed of punch 3.1 and die 3.2 in the range of 15 mm / s to 500 mm / s.
  • the component 2 'thus produced is removed after opening the forming tool 3 by means of a suitable transfer device 6, preferably a robot from the forming tool 3 and optionally stored or stacked on a means of transport, such as a transport pallet or the like.
  • a suitable transfer device 6 preferably a robot from the forming tool 3 and optionally stored or stacked on a means of transport, such as a transport pallet or the like.
  • the tool 3 may consist at least in some areas of materials with lower thermal conductivity and / or have a coating which has a low thermal conductivity.
  • special tool steels can meet these requirements.
  • the stamp 3.1 and / or the die 3.2 of the forming tool 3 may be formed at least in some areas of a material having a maximum thermal conductivity of 20 W / mK at 30 ° C to 100 ° C ambient temperature.
  • the reduction of the thermal conductivity can also be done with a suitable coating.
  • a further preferred embodiment of the system according to the invention consists in that the surface area 3.31 of the semifinished product holder 3.3 contacting the heated semifinished product 2 has a surface structure having porous or depressions 3.32. As a result, the temperature loss of the heated semifinished product 2 is further reduced. Additionally or alternatively, it is provided that the surface area 3.31 of the semifinished product holder 3.3 touching the heated semifinished product 2 is made of a material which has a relatively low thermal conductivity or is coated with such a material.
  • the thermal conductivity of the material used for the semifinished product holder 3.3 or a coating used for the semifinished product holder 3.3 is preferably not more than 20 W / mK at 30 ° C to 100 ° C ambient temperature.
  • Fig. 2 shows a further embodiment of a system according to the invention for producing a three-dimensionally shaped component 2 'of magnesium sheet.
  • This system differs from the system according to Fig. 1 in that the heating of a magnesium sheet metal plate 2 to be formed is not carried out in a continuous furnace but in or with a robot-type transfer device 5 '.
  • the transfer device 5 ' is for this purpose equipped with a heating device or conductive heat source 5.1, so that the heating of the magnesium sheet 2 during its transport from a supply stack 4 or a conveyor belt in the Forming tool 3 takes place.
  • the conductive heat source or heating device 5.1 is integrated in particular in gripping or holding elements of the transfer device 5 ', with which the magnesium sheet (semifinished product) 2 is gripped or transported to the forming tool 3 and deposited there.
  • the forming tool 3 of in Fig. 2 shown plant is according to the forming tool 3 of the system according to Fig. 1 designed so that so far to avoid repetition of the above description of the Fig. 1 is referenced.
  • a forming tool 3 according to the invention is shown schematically in a vertical sectional view, the example in the Appendix Fig. 1 or 2 can be used.
  • the forming tool shown in the open state in turn has a punch 3.1 and a die 3.2 for forming a magnesium sheet 2.
  • the Umformwerkmaschine 3 contains no internal heat source. It is provided with a semifinished product holder (board holder) 3.3, on which the heated board 2 can be placed without direct contact with the stamp 3.1 and the die 3.2.
  • the as a storage area for the heated board 2 serving surface area 3.31 of the semi-finished 3.3 is initially in the open state of the forming tool 3 above the punch 3.1.
  • the surface area 3.31 of the semifinished product holder 3.3 has a surface structure provided with groove-shaped recesses or depressions 3.32. Furthermore, recesses or depressions 3.21 are also formed in the surface of the die receiving the die head.
  • the recesses or depressions 3.32 and 3.21 define air gaps or air ducts which have a heat-insulating effect and thus prevent rapid heat or temperature loss of the heated blank 2.
  • the plate 2 facing surface of the punch 3.1 which is retracted for forming the board 2 in the trough of the die 3.2, however, contains no air channels forming depressions, since this die surface here represents the actual shaping surface of the forming tool 3.
  • the stamp 3.1 and / or the die 3.2 can also be equipped with active cooling (not shown). Such cooling can be integrated, for example, by a crown construction and / or by cooling channels in the stamp 3.1 and / or the die 3.2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils aus Magnesiumblech durch Umformen eines Halbzeuges aus Magnesiumblech, insbesondere eines Halbzeuges in Form einer Magnesiumblechplatine, bei dem das Halbzeug vor dem Umformen auf eine erhöhte Temperatur, vorzugsweise auf eine Temperatur von mindestens 200°C erwärmt und in einem einen Stempel und eine Matrize aufweisenden Umformwerkzeug umgeformt wird, wobei zum Umformen des erwärmten Halbzeuges ein ohne interne Wärmequelle ausgeführtes Umformwerkzeug verwendet wird, und wobei das erwärmte Halbzeug ohne direkten Kontakt mit dem Stempel und der Matrize in dem Umformwerkzeug platziert wird. Des Weiteren betrifft die Erfindung eine Anlage zur Herstellung eines Bauteils aus Magnesiumblech.
  • Aufgrund der hexagonalen Gitterstruktur des Magnesiums lassen sich Magnesiumbleche bei Raumtemperatur nur schlecht umformen. Insbesondere Bauteile aus Magnesiumblech, die eine komplexe dreidimensionale Form aufweisen sollen, müssen zur Vermeidung von Rissen warm umgeformt werden. Generell werden Magnesiumplatinen im erwärmten Zustand unter Einsatz von temperierten Werkzeugen umgeformt. Im Stand der Technik sind verschiedene Ausgestaltungen von temperierten Werkzeugen zur Umformung von Magnesiumblechen bekannt. Zum Beispiel ist aus der koreanischen Patentanmeldung 10 2006 00 57 901 A eine Presse zum Warmumformen von Magnesiumblech bekannt, die mit einer elektrischen Widerstandsheizvorrichtung ausgestattet ist. Die Widerstandsheizvorrichtung ist dabei in einem oberen Werkzeugteil (Matrize) und in einem zugeordneten Blechhalter integriert.
  • Temperierte Umformwerkzeuge erfordern im Vergleich zu in der Kaltumformung verwendeten konventionellen Werkzeugen einen höheren technischen Aufwand und damit höhere Investitionen sowie höhere Betriebskosten. Hierdurch werden die Kosten von Bauteilen aus Magnesium negativ beeinflusst.
  • Des Weiteren ist aus der WO 03/076096 A1 eine Vorrichtung sowie ein Verfahren zur Erwärmung von formbaren Metallen, insbesondere von Magnesiumlegierungen, bekannt. Diese Vorrichtung besteht aus einer Heizeinheit, in der ober- und unterhalb eines Metallwerkstückes wärmeleitende Platten angeordnet sind. Sobald das Metallwerkstück über Transfervorrichtungen zwischen die Heizplatten geführt worden ist, werden die Heizplatten auf das Metallwerkstück gedrückt, um dieses aufzuheizen. Nach dem Aufheizen wird das Metallwerkstück in eine Umformmaschine transferiert und dort umgeformt.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren sowie eine Anlage zur Herstellung eines dreidimensionalen Bauteils aus Magnesiumblech anzugeben, die geringe Bauteilkosten ermöglichen.
  • Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 bzw. durch eine Anlage mit den Merkmalen des Anspruchs 8 gelöst.
  • Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, dass und der Halbzeughalter als aktiver Blechhalter ausgeführt ist und oberhalb des der Matrize zugeordneten Stempels positioniert wird, und dass das erwärmte, auf dem Halbzeughalter platzierte Halbzeug anschließend mit einer Umformgeschwindigkeit im Bereich von 15 mm/s bis 500 mm/s umgeformt wird.
  • Die erfindungsgemäße Anlage ist dementsprechend dadurch gekennzeichnet, dass der Halbzeughalter als aktiver Blechhalter ausgebildet ist, der oberhalb des Stempels positionierbar ist und auf dem das erwärmte Halbzeug ohne direkten Kontakt mit dem Stempel und der Matrize im Umformwerkzeug platzierbar ist, und dass das Umformwerkzeug einen Antrieb aufweist,
    der eine Schließgeschwindigkeit von Stempel und Matrize im Bereich von 15 mm/s bis 500 mm/s bewirkt.
  • Durch die vorliegende Erfindung entfällt der zusätzliche Aufwand, der durch die Temperierung des Umformwerkzeug mittels einer internen Wärmequelle verursacht wird. Die Erfindung sieht die Verarbeitung eines erwärmten Magnesiumhalbzeuges in einem Umformwerkzeug ohne interne Wärmequelle vor. Dadurch lassen sich die Werkzeug- und Betriebskosten und somit letztlich die Bauteilkosten erheblich verringern. Insbesondere bei der Herstellung von Bauteilen in relativ geringen Stückzahlen lässt sich durch die Verringerung der Werkzeugkosten ein wesentlicher Beitrag zur Wirtschaftlichkeit des Bauteils erzielen.
  • Durch Versuche konnten die Erfinder belegen, dass sich ein dreidimensional geformtes Bauteil aus einer zum Beispiel auf 250°C erwärmten Magnesiumplatine in einem nicht temperierten Umformwerkzeug rissfrei herstellen lässt, wenn zu hohe Temperaturverluste vor dem eigentlichen Umformprozess vermieden werden, indem ein direktes Ablegen der erwärmten Platine auf dem Stempel bzw. der Matrize beim Platzieren (Einlegen) der Platine im Umformwerkzeug verhindert wird, und die anschließende Umformung mit relativ hoher Umformgeschwindigkeit (15 500 mm/s) stattfindet.
  • Die mittlere Abkühlgeschwindigkeit für ein 2,00 mm dickes Magnesiumblech, das auf eine Temperatur im Bereich von 200°C bis 250°C erwärmt ist, beträgt beispielsweise an Luft bei Raumtemperatur von 20°C zwischen 2 und 12 K/s. Durch diesen relativ geringen Temperaturverlust kann bei einem geeigneten Transfersystem sichergestellt werden, dass das erwärmte Halbzeug bzw. die erwärmte Platine eine ausreichend hohe Starttemperatur vor der Umformung aufweist, um ein fehlerfreies, insbesondere rissfreies Bauteil bei gegebenen Umformgraden zu ermöglichen.
  • Durch den erfindungsgemäßen Einsatz eines nicht temperierten Werkzeuges zur Umformung von erwärmten Magnesiumplatinen ergeben sich zudem positive Effekte hinsichtlich der Maßhaltigkeit und des Handlings der so hergestellten Bauteile. Denn aufgrund der deutlich verringerten Temperatur, die das Bauteil bei seiner Entnahme aus dem nicht temperierten Umformwerkzeug besitzt, ist das Bauteil im Vergleich zu einem in einem temperierten Werkzeug hergestellten Bauteil formstabiler und damit weniger anfällig für ungewollte Verformungen bei seiner Entnahme aus dem Umformwerkzeug und beim anschließenden Handling, was sich günstig auf die Maßhaltigkeit des Bauteils auswirkt. Des Weiteren lassen sich die erfindungsgemäß hergestellten Bauteile aufgrund ihrer deutlich verringerten Temperatur, die sie bei ihrer Entnahme aus dem nicht temperierten Umformwerkzeug besitzen, einfacher handhaben. Hier können konventionelle Transfersysteme zum Einsatz kommen, die nicht temperaturstabil sind bzw. eine vergleichsweise geringe Temperaturstabilität besitzen.
  • In diesem Zusammenhang sieht eine vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens vor, dass als Umformwerkzeug ein Umformwerkzeug verwendet wird, dessen Stempel und/oder Matrize eine aktive Kühleinrichtung aufweisen. Hierdurch kann die Entnahmetemperatur des Bauteils schneller gesenkt, die Maßhaltigkeit des Bauteils weiter verbessert sowie das Handling des Bauteils weiter vereinfacht werden. Diese aktive Kühlung des Stempels und/oder der Matrize ist insbesondere dann vorteilhaft, wenn vergleichsweise hohe Stückzahlen in einer vorgegebenen Zeit umgeformt werden sollen, d.h. wenn die gewünschte Umformleistung relativ hoch sein soll. Allerdings kann auch ein Aufheizen des Umformwerkzeuges aufgrund des erwärmten Halbzeuges während der Produktion toleriert werden, wenn sich dadurch keine negativen Auswirkungen auf die Maßhaltigkeit des fertigen Bauteils ergeben.
  • Erfindungsgemäß wird das erwärmte Magnesiumblechhalbzeug nicht direkt auf dem Stempel bzw. der Matrize abgelegt, sondern das erwärmte Halbzeug wird auf einem dem Umformwerkzeug zugeordneten Halbzeughalter platziert, so dass der wesentliche Flächenbereich des erwärmten Halbzeuges vor dem eigentlichen Umformprozess zwischen Stempel und Matrize und beabstandet von diesen freitragend in der Umgebungsatmosphäre angeordnet ist. Die Umgebungsatmosphäre, vorzugsweise Umgebungsluft, wirkt dabei als Wärmeisolator. Dadurch wird sichergestellt, dass das erwärmte Halbzeug vor dem eigentlichen Umformprozess nur eine sehr geringe Abkühlung erfährt. Der Halbzeughalter ist dabei erfindungsgemäß als aktiver Blechhalter ausgeführt, der oberhalb eines der Matrize zugeordneten Stempels positioniert wird.
  • Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass als Halbzeughalter ein Halbzeughalter verwendet wird, dessen das erwärmte Halbzeug berührender Oberflächenbereich eine poröse oder Vertiefungen aufweisende Oberflächenstruktur aufweist. Dadurch wird der durch Wärmeleitung von dem erwärmten Halbzeug auf den Halbzeughalter bedingte Wärme- bzw. Temperaturverlust des erwärmten Halbzeuges verringert.
  • Zusätzlich oder alternativ sieht eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens vor, dass als Halbzeughalter ein Halbzeughalter verwendet wird, dessen das erwärmte Halbzeug berührender Oberflächenbereich aus einem Werkstoff gebildet oder mit einer Beschichtung ist, der/die eine Wärmeleitfähigkeit von maximal 20 W/mK bei 30°C bis 100°C Umgebungstemperatur aufweist. Auch dadurch lässt sich der durch Wärmeleitung von dem erwärmten Halbzeug auf den Halbzeughalter bedingte Wärme- bzw. Temperaturverlust verringern.
  • Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass als Matrize eine Matrize verwendet wird, in deren dem umzuformenden, erwärmten Halbzeug zugewandeten Formfläche Vertiefungen ausgebildet sind, die eine Reduzierung der dem erwärmten Halbzeug zugewandten Kontaktfläche bewirken. Die Vertiefungen bzw. die darin enthaltene Luft wirkt wärmeisolierend, so dass sich auf diese Weise der Wärme- bzw. Temperaturverlust des erwärmten Halbzeuges reduzieren lässt.
  • Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass das Halbzeug mittels einer mit einer konduktiven Wärmequelle ausgestatteten Transfervorrichtung unmittelbar in das Umformwerkzeug transportiert wird. Dadurch kann dem umzuformenden Halbzeug eine ausreichend hohe Starttemperatur vor der Umformung gegeben und zugleich der Temperaturverlust des Halbzeuges vor der Umformung minimiert werden.
  • Durch den Einsatz eines nicht temperierten Umformwerkzeuges ist auch ein kostengünstiger integrierter Bauteilbeschnitt bei der Umformung des aus Magnesiumblech bestehenden Halbzeuges denkbar. Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens ist dementsprechend dadurch gekennzeichnet, dass das Halbzeug beim Umformen zugleich mit mindestens einem im Umformwerkzeug integrierten Schneidelement beschnitten wird.
  • Weitere bevorzugte und vorteilhafte Ausgestaltungen der erfindungsgemäßen Anlage sind in den Unteransprüchen angegeben.
  • Nachfolgend wird die Erfindung anhand einer mehrere Ausführungsbeispiele darstellenden Zeichnung näher erläutert. Es zeigen schematisch:
  • Fig. 1
    eine Anlage bzw. Prozesslinie zur Herstellung von dreidimensional geformten Bauteilen aus Magnesiumhalbzeugen;
    Fig. 2
    ein weiteres Ausführungsbeispiel einer Prozesslinie zur Herstellung von dreidimensional geformten Bauteilen aus Magnesiumhalbzeugen; und
    Fig. 3
    ein erfindungsgemäßes Umformwerkzeug in Vertikalschnittansicht.
  • Die in Fig. 1 dargestellte Anlage umfasst im Wesentlichen eine Vorrichtung 1 zum Erwärmen eines Halbzeuges 2 aus Magnesiumblech und ein Umformwerkzeug 3 ohne interne Wärmequelle zum Umformen des erwärmten Halbzeuges 2. Das umzuformende Halbzeug 2 kann beispielsweise in Form einer Magnesiumblechplatine vorliegen.
  • Die Vorrichtung 1 zum Erwärmen des Halbzeuges 2 ist hier als Durchlaufofen, vorzugsweise als Rollenherdofen ausgeführt. Der Durchlaufofen bzw. Rollenherdofen 1 ist mit Induktoren, Heizstrahlern, Heißluftbrennern und/oder Rekuperatorbrennern ausgestattet. Auch der Einsatz von Infrarotstrahlern zur Erwärmung der umzuformenden Halbzeuge 2 ist denkbar.
  • In dem gezeigten Ausführungsbeispiel werden umzuformende Magnesiumblechplatinen 2 von einem Förderband oder einem Vorratsstapel 4 entnommen und in dem Durchlaufofen 1 auf eine erhöhte Temperatur erwärmt, die so gewählt wird, dass die Werkstücktemperatur am Ende der Umformung im Wesentlichen noch oberhalb von 180°C bis 220°C liegt. Hierzu wird die umzuformende Magnesiumblechplatine bzw. das Halbzeug 2 beispielsweise auf eine Temperatur im Bereich von 230°C und 260°C erwärmt.
  • Das erwärmte Halbzeug 2 wird dann mittels einer Transfervorrichtung 5, vorzugsweise eines Roboters im Bereich des Auslasses des Durchlaufofens ergriffen in das Umformwerkzeug 3 ohne direkten Kontakt mit dem Stempel 3.1 und der Matrize 3.2 eingelegt. Hierzu ist das Umformwerkzeug 3 mit einem Halbzeughalter (Blechhalter) 3.3 versehen, der im geöffneten Zustand des Umformwerkzeuges 3 oberhalb des Stempelkopfes positioniert wird, so dass das darauf abgelegte Halbzeug 2 weder den Stempel 3.1 noch die Matrize 3.2 berührt. In Fig. 1 ist zu erkennen, dass die im Umformwerkzeug platzierte Platine 2 zunächst auf dem Halbzeughalter 3.3 abgelegt ist und dabei sowohl gegenüber dem Stempel 3.1 als auch gegenüber der Matrize 3.2 mit Abstand angeordnet ist. Dadurch wird zu schnelles Abkühlen der erwärmten Magnesiumplatine 2 verhindert.
  • Sodann wird das Werkzeug 3 geschlossen, um das erwärmte Halbzeug in eine durch den Stempel 3.1 und die Matrize 3.2 vorgegebene Form umzuformen. Die Umformung erfolgt mit relativ hoher Umformgeschwindigkeit, so dass der Temperaturverlust des erwärmten Werkstückes (Halbzeuges) 2 während der Umformung ebenfalls gering gehalten wird. Zur Erzielung einer entsprechend hohen Umformgeschwindigkeit weist das Umformwerkzeug 3 einen Antrieb (nicht gezeigt) auf, der eine Schließgeschwindigkeit von Stempel 3.1 und Matrize 3.2 im Bereich von 15 mm/s bis 500 mm/s bewirkt.
  • Das so hergestellte Bauteil 2' wird nach Öffnen des Umformwerkzeuges 3 mittels einer geeigneten Transfervorrichtung 6, vorzugsweise einem Roboter aus dem Umformwerkzeug 3 entnommen und gegebenenfalls auf einem Transportmittel, beispielsweise einer Transportpalette oder dergleichen abgelegt bzw. gestapelt.
  • Falls der Temperaturverlust für die jeweilige Bauteilgeometrie bzw. den jeweiligen Umformungsgrad aufgrund des Einsatzes konventioneller Werkzeugstähle zu hoch sein sollte, kann das Werkzeug 3 zumindest in Teilbereichen aus Werkstoffen mit geringerer Wärmeleitfähigkeit bestehen und/oder eine Beschichtung aufweisen, die eine geringe Wärmeleitfähigkeit besitzt. Neben Keramiken können auch spezielle Werkzeugstähle diese Anforderungen erfüllen. Beispielsweise können der Stempel 3.1 und/oder die Matrize 3.2 des Umformwerkzeuges 3 zumindest in Teilbereichen aus einem Werkstoff gebildet sein, der eine Wärmeleitfähigkeit von maximal 20 W/mK bei 30°C bis 100°C Umgebungstemperatur aufweist. Alternativ kann die Reduzierung der Wärmeleitfähigkeit auch mit einer geeigneten Beschichtung erfolgen.
  • Eine weitere bevorzugte Ausgestaltung der erfindungsgemäßen Anlage besteht darin, dass der das erwärmte Halbzeug 2 berührende Oberflächenbereich 3.31 des Halbzeughalters 3.3 eine poröse oder Vertiefungen 3.32 aufweisende Oberflächenstruktur aufweist. Dadurch wird der Temperaturverlust des erwärmten Halbzeugs 2 weiter verringert. Zusätzlich oder alternativ ist vorgesehen, dass der das erwärmte Halbzeug 2 berührende Oberflächenbereich 3.31 des Halbzeughalters 3.3 aus einem Werkstoff gefertigt ist, der eine relativ geringe Wärmeleitfähigkeit besitzt, bzw. mit einem solchen Werkstoff beschichtet ist. Die Wärmeleitfähigkeit des für den Halbzeughalter 3.3 verwendeten Werkstoffs bzw. einer für den Halbzeughalter 3.3 verwendeten Beschichtung beträgt vorzugsweise maximal 20 W/mK bei 30°C bis 100°C Umgebungstemperatur.
  • Fig. 2 zeigt ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Anlage zur Herstellung eines dreidimensional geformten Bauteils 2' aus Magnesiumblech. Diese Anlage unterscheidet sich von der Anlage gemäß Fig. 1 dadurch, dass die Erwärmung einer umzuformenden Magnesiumblechplatine 2 nicht in einem Durchlaufofen, sondern in bzw. mit einer roboterartigen Transfervorrichtung 5' durchgeführt wird. Die Transfervorrichtung 5' ist hierzu mit einer Heizeinrichtung bzw. konduktiven Wärmequelle 5.1 ausgestattet, so dass die Erwärmung des Magnesiumblechs 2 während dessen Transports von einem Vorratsstapel 4 oder eines Förderbandes in das Umformwerkzeug 3 erfolgt. Die konduktive Wärmequelle bzw. Heizeinrichtung 5.1 ist dabei insbesondere in Greif- oder Halteelementen der Transfervorrichtung 5' integriert, mit denen das Magnesiumblech (Halbzeug) 2 ergriffen bzw. zum Umformwerkzeug 3 transportiert und dort abgelegt wird.
  • Das Umformwerkzeug 3 der in Fig. 2 dargestellten Anlage ist entsprechend dem Umformwerkzeug 3 der Anlage gemäß Fig. 1 ausgebildet, so dass insoweit zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung der Fig. 1 verwiesen wird.
  • Bei den in den Figuren 1 und 2 schematisch dargestellten Anlagen handelt es sich um im Wesentlichen kontinuierlich arbeitende Prozesslinien. Nicht dargestellt ist, dass auch eine Abarbeitung vom Coil möglich ist, d.h. dass von einem Coil das Material abgehaspelt wird und je nach bestehender Prozesslinie entweder Rechteckplatinen abgelängt werden, beispielsweise wenn ein Beschnitt während oder nach dem Umformen erfolgt, oder Formzuschnitte, deren Konturenden Sollmaßen des fertigen Bauteils im Wesentlichen entsprechen.
  • In Fig. 3 ist ein erfindungsgemäßes Umformwerkzeug 3 schematisch in Vertikalschnittansicht gezeigt, das beispielsweise in der Anlage gemäß Fig. 1 oder 2 zum Einsatz kommen kann. Das im geöffneten Zustand gezeigte Umformwerkzeug weist wiederum einen Stempel 3.1 und eine Matrize 3.2 zum Umformen einer Magnesiumblechplatine 2 auf. Das Umförmwerkzeug 3 enthält keine interne Wärmequelle. Es ist mit einem Halbzeughalter (Platinenhalter) 3.3 versehen, auf dem die erwärmte Platine 2 ohne direkten Kontakt mit dem Stempel 3.1 und der Matrize 3.2 platzierbar ist. Der als Ablagefläche für die erwärmte Platine 2 dienende Oberflächenbereich 3.31 des Halbzeughalter 3.3 befindet sich im geöffneten Bestückungszustand des Umformwerkzeuges 3 zunächst oberhalb des Stempels 3.1. Der Oberflächenbereich 3.31 des Halbzeughalters 3.3 weist eine mit nutförmigen Ausnehmungen oder Vertiefungen 3.32 versehene Oberflächenstruktur auf. Des Weiteren sind auch in der Oberfläche der den Stempelkopf aufnehmenden Mulde der Matrize 3.2 Ausnehmungen oder Vertiefungen 3.21 ausgebildet. Die Ausnehmungen bzw. Vertiefungen 3.32 und 3.21 definieren Luftspalte bzw. Luftkanäle, die wärmeisolierend wirken und somit einen schnellen Wärme- bzw. Temperaturverlust der erwärmten Platine 2 verhindern. Die der Platine 2 zugewandte Oberfläche des Stempels 3.1, der zum Umformen der Platine 2 in die Mulde der Matrize 3.2 eingefahren wird, enthält dagegen keine Luftkanäle bildenden Vertiefungen, da diese Stempeloberfläche hier die eigentliche formgebende Oberfläche des Umformwerkzeuges 3 darstellt.
  • Um bei höheren Stückzahlen von aus Magnesiumblech herzustellen Bauteilen 2' die Temperatur des jeweiligen aus dem Umformwerkzeug 3 zu entnehmenden Bauteils 2' gering zu halten, können der Stempel 3.1 und/oder die Matrize 3.2 auch mit einer aktiven Kühlung (nicht gezeigt) ausgerüstet sein. Eine solche Kühlung kann beispielsweise durch eine Kronenbauweise und/oder durch Kühlkanäle in dem Stempel 3.1 und/oder der Matrize 3.2 integriert sein.

Claims (15)

  1. Verfahren zur Herstellung eines Bauteils (2') aus Magnesiumblech durch Umformen eines Halbzeuges (2) aus Magnesiumblech, insbesondere eines Halbzeuges in Form einer Magnesiumblechplatine, bei dem das Halbzeug (2) vor dem Umformen auf eine erhöhte Temperatur, vorzugsweise eine Temperatur von mindestens 200°C erwärmt und in einem einen Stempel (3.1) und eine Matrize (3.2) aufweisenden Umformwerkzeug (3) umgeformt wird, wobei zum Umformen des erwärmten Halbzeuges (2) ein ohne interne Wärmequelle ausgeführtes Umformwerkzeug (3) verwendet wird, und wobei das erwärmte Halbzeug (2) ohne direkten Kontakt mit dem Stempel (3.1) und der Matrize (3.2) auf einem dem Umformwerkzeug (3) zugeordneten Halbzeughalter (3.3) platziert wird, dadurch gekennzeichnet, dass der Halbzeughalter (3.3) als aktiver Blechhalter ausgeführt ist und oberhalb des der Matrize (3.2) zugeordneten Stempels (3.1) positioniert wird, und dass das erwärmte, auf dem Halbzeughalter (3.3) platzierte Halbzeug (2) anschließend mit einer Umformgeschwindigkeit im Bereich von 15 mm/s bis 500 mm/s umgeformt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Halbzeughalter ein Halbzeughalter (3.3) verwendet wird, dessen das erwärmte Halbzeug berührender Oberflächenbereich (3.31) eine poröse oder Vertiefungen (3.32) aufweisende Oberflächenstruktur aufweist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Halbzeughalter ein Halbzeughalter (3.3) verwendet wird, dessen das erwärmte Halbzeug (2) berührender Oberflächenbereich (3.31) aus einem Werkstoff gebildet oder mit einer Beschichtung versehen ist, der/die eine Wärmeleitfähigkeit von maximal 20 W/mK bei 30°C bis 100°C Umgebungstemperatur aufweist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Matrize eine Matrize (3.2) verwendet wird, in deren dem umzuformenden, erwärmten Halbzeug (2) zugewandten Formfläche Vertiefungen (3.21) ausgebildet sind, die eine Reduzierung der dem erwärmten Halbzeug (2) zugewandten Kontaktfläche bewirken.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Umformwerkzeug ein Umformwerkzeug (3) verwendet wird, dessen Stempel (3.1) und/oder Matrize (3.2) eine aktive Kühleinrichtung aufweisen.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Halbzeug (2) mittels einer mit einer konduktiven Wärmequelle (5.1) ausgestatteten Transfervorrichtung (5') unmittelbar in das Umformwerkzeug (3) transportiert wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Halbzeug (2) beim Umformen zugleich mit mindestens einem im Umformwerkzeug (3) integrierten Schneidelement beschnitten wird.
  8. Anlage zur Herstellung eines Bauteils (2') aus Magnesiumblech mit einem einen Stempel (3.1) und eine Matrize (3.2) aufweisenden Umformwerkzeug (3) zum Umformen eines Halbzeuges (2) aus Magnesiumblech, insbesondere eines Halbzeuges in Form einer Magnesiumblechplatine, wobei das Umformwerkzeug (3) ohne interne Wärmequelle ausgeführt ist, und mit einer Vorrichtung (1, 5.1) zum Erwärmen des Halbzeugs (2) vor dem Umformen auf eine erhöhte Temperatur, vorzugsweise auf eine Temperatur von mindestens 200°C, wobei das Umformwerkzeug (3) mit einem Halbzeughalter (3.3) versehen ist, dadurch gekennzeichnet, dass der Halbzeughalter (3.3) als aktiver Blechhalter ausgebildet ist, der oberhalb des Stempels (3.1) positionierbar und auf dem das erwärmte Halbzeug (2) ohne direkten Kontakt mit dem Stempel (3.1) und der Matrize (3.2) im Umformwerkzeug (3) platzierbar ist, und dass das Umformwerkzeug (3) einen Antrieb aufweist, der eine Schließgeschwindigkeit von Stempel und Matrize im Bereich von 15 mm/s bis 500 mm/s bewirkt.
  9. Anlage nach Anspruch 8, dadurch gekennzeichnet, dass der das erwärmte Halbzeug (2) berührende Oberflächenbereich (3.31) des Halbzeughalters (3.3) eine poröse oder Vertiefungen (3.32) aufweisende Oberflächenstruktur aufweist.
  10. Anlage nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der das erwärmte Halbzeug (2) berührende Oberflächenbereich (3.31) des Halbzeughalters (3.3) aus einem Werkstoff gebildet oder mit einer Beschichtung versehen ist, der/die eine Wärmeleitfähigkeit von maximal 20 W/mK bei 30°C bis 100°C Umgebungstemperatur aufweist.
  11. Anlage nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass der Stempel (3.1) und/oder die Matrize (3.2) des Umformwerkzeuges (3) zumindest in Teilbereichen aus einem Werkstoff gebildet oder mit einer Beschichtung versehen ist, der/die eine Wärmeleitfähigkeit von maximal 20 W/mK bei 30°C bis 100°C Umgebungstemperatur aufweist.
  12. Anlage nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass der Stempel (3.1) und/oder die Matrize (3.2) des Umformwerkzeuges (3) eine aktive Kühleinrichtung aufweisen.
  13. Anlage nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass dem Umformwerkzeug (3) eine mit einer konduktiven Wärmequelle (5.1) ausgestattete Transfervorrichtung (5') zugeordnet ist, mit der das umzuformende Halbzeug (2) unmittelbar auf den Halbzeughalter (3.3) platzierbar ist.
  14. Anlage nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass in der Matrize (3.2) Vertiefungen (3.21) ausgebildet sind, die eine Reduzierung der dem erwärmten Halbzeug (2) zugewandten Kontaktfläche bewirken.
  15. Anlage nach einem der Ansprüche 8 bis 14, dadurch gekennzeichnet, dass das Umformwerkzeug (3) mit mindestens einem Schneidelement versehen ist.
EP11764766.9A 2010-10-27 2011-10-07 Verfahren und anlage zur herstellung eines bauteils aus magnesiumblech Active EP2632617B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010060207A DE102010060207A1 (de) 2010-10-27 2010-10-27 Verfahren und Anlage zur Herstellung eines Bauteils aus Magnesiumblech
PCT/EP2011/067526 WO2012055688A1 (de) 2010-10-27 2011-10-07 Verfahren und anlage zur herstellung eines bauteils aus magnesiumblech

Publications (2)

Publication Number Publication Date
EP2632617A1 EP2632617A1 (de) 2013-09-04
EP2632617B1 true EP2632617B1 (de) 2014-08-13

Family

ID=44759700

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11764766.9A Active EP2632617B1 (de) 2010-10-27 2011-10-07 Verfahren und anlage zur herstellung eines bauteils aus magnesiumblech

Country Status (7)

Country Link
US (1) US20130283882A1 (de)
EP (1) EP2632617B1 (de)
JP (1) JP2013540594A (de)
KR (1) KR101870932B1 (de)
CA (1) CA2816172A1 (de)
DE (1) DE102010060207A1 (de)
WO (1) WO2012055688A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2630978B1 (de) * 2012-02-22 2018-10-31 Biotronik AG Implantat und verfahren zur herstellung desselben
DE102012218159B4 (de) * 2012-10-04 2018-02-08 Ebner Industrieofenbau Gmbh Handhabungseinrichtung
KR101427918B1 (ko) * 2012-10-05 2014-08-08 현대자동차 주식회사 핫 스탬핑 성형 장치 및 그 방법
JP5808724B2 (ja) * 2012-10-31 2015-11-10 アイシン高丘株式会社 アルミニウム合金材のダイクエンチ装置およびダイクエンチ方法
DE102013021478B3 (de) * 2013-12-17 2015-05-28 Aweba Werkzeugbau Gmbh Aue Herstellverfahren für Blechteile aus Magnesium und hochfestem Aluminium
EP2886216B1 (de) 2013-12-17 2016-05-11 AWEBA Werkzeugbau GmbH Herstellverfahren für Blechteile aus Magnesium und hochfestem Aluminium
DE102014102127A1 (de) * 2014-02-19 2015-08-20 Mgf Magnesium Flachprodukte Gmbh Verfahren zur Herstellung eines Magnesium aufweisenden Bauteils
JP2018089649A (ja) * 2016-12-02 2018-06-14 株式会社ワイテック プレス加工装置
WO2019015928A1 (de) 2017-07-21 2019-01-24 Adval Tech Holding Ag Verfahren und vorrichtung zum umformen von magnesiumblech sowie damit hergestellte bauteile
KR102185912B1 (ko) * 2018-12-24 2020-12-03 (주)광진기계 자동차용 마그네슘 부품의 제조방법
US20220105553A1 (en) * 2019-02-13 2022-04-07 Magna International Inc. Method and system for using air gaps in hot-stamping tools to form tailor tempered properties
CN112222271B (zh) * 2020-09-24 2023-03-24 中国航发贵州黎阳航空动力有限公司 一种分流器外壳的热拉伸成形方法
KR102297154B1 (ko) * 2021-04-09 2021-09-02 성화산업 주식회사 배관 클램프 자동 열간 성형장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB666330A (en) * 1948-12-21 1952-02-13 Redwing Ltd Apparatus for pressing, bending, spinning or other metal forming operation and its application to the forming of light alloy
DE10128199B4 (de) * 2001-06-11 2007-07-12 Benteler Automobiltechnik Gmbh Vorrichtung zur Umformung von Metallblechen
SG106066A1 (en) * 2002-03-14 2004-09-30 Singapore Inst Of Mfg Technolo A heating apparatus for formable metals
DE102004026762A1 (de) * 2004-06-02 2006-02-09 Bayerische Motoren Werke Ag Umform- und/oder Trennwerkzeug
DE102004035043A1 (de) * 2004-07-20 2006-04-13 Daimlerchrysler Ag Verfahren zum Umformen eines Leichtmetall-Blechs und entsprechendes Leichtmetall-Blechbauteil
KR20060057901A (ko) 2004-11-24 2006-05-29 현대자동차주식회사 펀치 프레스 장치
TR200805253T2 (tr) * 2006-01-18 2008-09-22 Terzi̇akin Mehmet Sıcak presleme işlemlerinde soğuma ve sertleşme etkileri kontrolü için takım.
JP2007268608A (ja) * 2006-03-08 2007-10-18 Kobe Steel Ltd アルミニウム合金板のプレス成形方法およびプレス装置
FR2902356B1 (fr) * 2006-06-15 2008-09-26 Peugeot Citroen Automobiles Sa Emboutissage a tiede d'un flan d'alliage leger.
DE102006037637A1 (de) * 2006-08-10 2008-02-14 Müller Weingarten AG Verfahren und Vorrichtung zum konduktiven Erwärmen von Metallblechen
US8567226B2 (en) * 2008-10-06 2013-10-29 GM Global Technology Operations LLC Die for use in sheet metal forming processes
JP2010167480A (ja) * 2009-01-26 2010-08-05 Honda Motor Co Ltd プレス成形用金型及びプレス成形方法
US8459084B2 (en) * 2009-02-05 2013-06-11 Usamp Elevated temperature forming method and preheater apparatus

Also Published As

Publication number Publication date
WO2012055688A1 (de) 2012-05-03
JP2013540594A (ja) 2013-11-07
US20130283882A1 (en) 2013-10-31
KR20140027909A (ko) 2014-03-07
KR101870932B1 (ko) 2018-06-25
EP2632617A1 (de) 2013-09-04
CA2816172A1 (en) 2012-05-03
DE102010060207A1 (de) 2012-05-03

Similar Documents

Publication Publication Date Title
EP2632617B1 (de) Verfahren und anlage zur herstellung eines bauteils aus magnesiumblech
EP3266543B1 (de) Verfahren und anlage zur kombiniert additiven und umformenden fertigung
EP2324938B1 (de) Verfahren und Warmumformanlage zur Herstellung eines gehärteten, warm umgeformten Werkstücks
DE2942738C2 (de) Vorrichtung zum Biegen von Glastafeln
EP2989220B1 (de) Vorrichtung zum presshaerten von bauteilen
EP3212585B1 (de) Werkzeug für einen glasbiegeprozess
DE112011102398B4 (de) Verfahren zum Formen eines Stahlblechs durch Heißpressen
WO1986005820A1 (en) Process and installation to permit the assembly line thermo-mechanical working, with little deformation of workpieces; also application of the process
DE202014010318U1 (de) Wärmebehandlungsvorrichtung
DE102009060388A1 (de) Mehrstufiges direktes Formhärten
DE102014201259A1 (de) Wärmebehandlungsvorrichtung
DE102013222242A1 (de) Anlage zur Herstellung von Bauteilen mit Warmumformung und Verfahren
DE102016111105B4 (de) Mehrfach-warmumformvorrichtung und mehrfach-warmumformverfahren unter verwendung derselben
WO2016020148A1 (de) Verfahren zur herstellung von warmumgeformten bauteilen
DE102018206343A1 (de) Verfahren und Anlage zur Serienfertigung warmumgeformter Blechformteile aus einem Stahlblechband
EP2886216B1 (de) Herstellverfahren für Blechteile aus Magnesium und hochfestem Aluminium
WO2020089133A1 (de) Verfahren und vorrichtung zum biegen von scheiben
DE741506C (de) Verfahren und Vorrichtung zum Herstellen masshaltiger Formkoerper aus warmformbaren Kunststoffzuschnitten
DE202018006728U1 (de) Vorrichtung zum Biegen von Scheiben
DE202018006729U1 (de) Vorrichtung zum Biegen von Scheiben
DE102019113458B4 (de) Thermoformmaschine zum Verformen von thermoplastischen Kunststoffplatten
DE202020005546U1 (de) Vorrichtung zum Biegen von Scheiben
DE102010027439C5 (de) Turmofen zum Erhitzen von härtbaren Blechplatinen
EP3639950A1 (de) Vorrichtung zur herstellung metallischer oder keramischer teile
DE102013021478B3 (de) Herstellverfahren für Blechteile aus Magnesium und hochfestem Aluminium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140326

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 681887

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011004063

Country of ref document: DE

Effective date: 20140925

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140813

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141215

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141213

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011004063

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141007

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

26N No opposition filed

Effective date: 20150515

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111007

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151007

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 681887

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191021

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200827

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011004063

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501