EP2624427B1 - Ladevorrichtung und Elektrofahrzeug damit - Google Patents
Ladevorrichtung und Elektrofahrzeug damit Download PDFInfo
- Publication number
- EP2624427B1 EP2624427B1 EP13153851.4A EP13153851A EP2624427B1 EP 2624427 B1 EP2624427 B1 EP 2624427B1 EP 13153851 A EP13153851 A EP 13153851A EP 2624427 B1 EP2624427 B1 EP 2624427B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- buck
- boost
- switching element
- converter
- boost converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 claims description 31
- 238000001514 detection method Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 16
- 239000000725 suspension Substances 0.000 description 6
- 238000009499 grossing Methods 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/22—Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1582—Buck-boost converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/12—Buck converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/14—Boost converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/90—Vehicles comprising electric prime movers
- B60Y2200/91—Electric vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/48—The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
- H02M3/1586—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/92—Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present invention relates to a charging apparatus and an electric vehicle including the same, and more particularly to a charging apparatus capable of stably performing charging using alternating current (AC) power and an electric apparatus including the same.
- AC alternating current
- US 2010/002477 A1 discloses a multi-phase voltage converting device including voltage converters.
- WO 2007/066676 A1 discloses a multi-phase converter capable of increasing the passing current amount in accordance with a system state.
- CN 101 540 568 A discloses a high efficiency capturing control device of wind energy and solar energy, which includes a DC/DC converter capable of boosting/reducing voltage for conversion.
- the present invention has been made in view of the above problems, and it is an object of the present invention to provide a charging apparatus capable of stably performing charging using AC power and an electric vehicle including the same.
- a charging apparatus including a rectifier to rectify input alternating current (AC) power in a charging mode, an interleaved buck-boost converter to convert the rectified power into direct current (DC) power to supply the converted DC power to a battery, the interleaved buck-boost converter including a plurality of buck-boost converters, and a converter controller to control the interleaved buck-boost converter, wherein a first buck-boost converter of the interleaved buck-boost converter includes a first buck switching element connected to the rectifier, a first boost switching element, a first inductor connected between the first buck switching element and the first boost switching element, a first diode connected in parallel between the first buck switching element and the first inductor, and a second diode connected between the first boost switching element and an output of the interleaved buck-boo
- an electric vehicle including a battery, a motor, an inverter to convert direct current (DC) power provided from the battery into alternating current (AC) power to drive the motor, in a motor operation mode, and a charging apparatus which includes a rectifier to rectify input AC power in a charging mode, an interleaved buck-boost converter to convert the rectified power into DC power to supply the converted DC power to the battery, the interleaved buck-boost converter including a plurality of buck-boost converters, and a converter controller to control the interleaved buck-boost converter, wherein a first buck-boost converter of the interleaved buck-boost converter includes a first buck switching element connected to the rectifier, a first boost switching element, a first inductor connected between the first buck switching element and the first boost switching element, a first diode connected in parallel between the first buck switching element and the first
- FIG. 1 is a diagram schematically illustrating the body of an electric vehicle according to an exemplary embodiment of the present invention
- an electric vehicle 100 may include a battery 205 for supplying power, a motor driver 200 for receiving the power from the battery 205 and driving a motor 250, the motor 250 driven by the motor driver 200 to rotate, a front wheel 150 and a rear wheel 155 rotating by the motor 250, and a front suspension 160 and a rear suspension 165 for preventing vibrations on roads from being transferred to the vehicle body.
- the electric vehicle 100 may further include a driving gear (not shown) for adjusting the rate of rotation of the motor 250 according to a gear ratio.
- the battery 205 supplies power to the motor driver 200. Specifically, the battery 205 supplies direct current (DC) power to a capacitor (C of FIG. 2 ) of the motor driver 200.
- DC direct current
- the battery 205 may be formed of a set of a plurality of unit cells.
- the plurality of unit cells may be managed by a battery management system (BMS) in order to maintain a constant voltage and may generate the constant voltage by the BMS.
- BMS battery management system
- the BMS may detect a voltage of the battery 205 and transfer the detected voltage to an electronic controller (not shown) or to a controller (230 of FIG. 2 ) in the motor driver 200. If the battery voltage is lowered to a lower limit or less, the BMS may supply the DC power stored in the capacitor (C of FIG. 2 ) in the motor driver 200 to the battery 205. If the battery voltage is raised to an upper limit or more, the BMS may supply the DC power to the capacitor (C of FIG. 2 ) in the motor driver 200.
- the battery 205 is desirably composed of a chargeable or dischargeable secondary cell but is not limited thereto.
- the motor driver 200 receives the DC power from the battery 205 via a power input cable (not shown) in a motor operation mode.
- the motor driver 200 converts the DC power received from the battery 205 into AC power and supplies the AC power to the motor 250.
- the converted AC power may be three-phase AC power.
- the motor driver 200 supplies the three-phase AC power to the motor 250 through a three-phase output cable (not shown) provided in the motor driver 200 in the motor operation mode.
- the motor driver 200 may receive input AC power, convert the input AC power into DC power, and supply the DC power to the battery 205. Accordingly, the motor driver 200 may include a charging apparatus (203 of FIG. 2 ).
- the motor driver 200 includes the charging apparatus (203 of FIG. 2 ), the motor driver 200 may be the same as the charging apparatus. The following description is based on the case in which the motor driver 200 includes the charging apparatus (203 of FIG. 2 ).
- the motor driver 200 according to the exemplary embodiment of the present invention will be described later with reference to FIG. 2 .
- the motor 250 includes a stator 130 of a stationary part and a rotor 135 of a rotating part.
- the motor 250 includes input cables 140 to receive the AC power supplied by the motor driver 200.
- the motor 250 may be, for example, a three-phase motor.
- the rotation speed of the rotor of the motor 250 varies according to supplied frequency when voltage/frequency variable AC power of each phase is supplied to a coil of the stator of each phase.
- the motor 250 may be an induction motor, a brushless DC (BLDC) motor, or a reluctance motor.
- BLDC brushless DC
- the driving gear (not shown) may be installed at one side of the motor 250.
- the driving gear converts the rotation energy of the motor 250 according to a gear ratio.
- the rotation energy generated from the driving gear is transferred to the front wheel 150 and/or the rear wheel 155 to cause the electric vehicle 100 to move.
- the front suspension 160 and the rear suspension 165 support the front wheel 150 and the rear wheel 155, respectively, against the vehicle body.
- the upper and lower directions of the front suspension 160 and the rear suspension 165 are supported by springs or dampers so that road vibration is not transferred to the vehicle body.
- the front wheel 150 may include a steering system (not shown).
- the steering system controls the direction of the front wheel 150 to steer the electric vehicle 100.
- the electric vehicle 100 may further include the electronic controller to control electric devices of the electric vehicle 100.
- the electronic controller controls the operation or display of each device.
- the electronic controller may control the above-described BMS.
- the electronic controller may generate a driving command according to various driving modes (drive mode, reverse mode, neutral mode, park mode, etc.), based on sensing signals from a tilt sensor (not shown) for sensing the tilt of the electric vehicle 100, a speed sensor (not shown) for sensing the speed of the electric vehicle 100, a brake sensor (not shown) for sensing operation of a brake pedal, and an acceleration sensor (not shown) for sensing operation of an accelerator pedal.
- the driving command may be, for example, a torque command or a speed command.
- the electric vehicle 100 may be interpreted as including not only a pure electric vehicle using a battery and a motor but also a hybrid electric vehicle using the battery and motor while using an engine.
- the hybrid electric vehicle may further include a switching means capable of selecting at least one of the battery and the engine and a transmission.
- the hybrid electric vehicle is divided into a series hybrid type for converting mechanical energy output from the engine into electric energy to drive the motor and a parallel hybrid type which simultaneously uses mechanical energy generated from the engine and electric energy generated from the battery.
- FIG. 2 is a block diagram illustrating the internal configuration of a motor driver in FIG. 1 and FIG. 3 is a circuit diagram illustrating a charging apparatus in the motor driver of FIG. 2 .
- the motor driver 200 may include a charging apparatus 203, a battery 205, an inverter 420, an inverter controller 430, and a DC/DC converter 445.
- the DC/DC converter 445 is an optional element.
- the charging apparatus 203 receives input AC power 201, converts the AC power 201 into DC power, and supplies the converted DC power to the battery 205.
- the charging apparatus 203 may include a rectifier 405, a converter 410, and a converter controller 415.
- the rectifier 405 rectifies the received input AC power 201. While the rectifier 405 for single-phase AC power in which four diodes D a , D b , D c , and D d are used in a bridge form is illustrated in FIG. 3 , the rectifier 405 may take various forms.
- the converter 410 converts the rectified power received from the rectifier 405 into the DC power and supplies the converted DC voltage to the battery 205.
- the converter 410 uses an interleaved buck-boost converter including a plurality of buck-boost converters 410a, 410b,...
- the plurality of buck-boost converters 410a, 410b,..., in the interleaved buck-boost converter 410 are connected in parallel with each other to perform an interleaving operation.
- the plurality of buck-boost converters connected in parallel with each other performs voltage control caused by current distribution through interleaving. Therefore, durability of circuit elements in the interleaved buck-boost converter 410 can be improved.
- each of the plurality of buck-boost converters 410a, 410b,... performs an interleaving operation and turn-on timings of buck switching elements in the respective buck-boost converters 410a, 410b,..., partially overlap. Accordingly, a low output voltage can be compensated during an interleaving operation. Namely, the battery can be charged by stably converting input AC power into DC power.
- FIG. 3 illustrates the first buck-boost converter 410a and the second buck-boost converter 410b among the plurality of buck-boost converters of the converter 410.
- a description will be given of the first buck-boost converter 410a and the second buck-boost converter 410b among the plurality of buck-boost converters.
- the first buck-boost converter 410a may include a first boost switching element S 2 , a first buck switching element S 1 connected to the rectifier 405, an inductor L 1 connected between the first buck switching element S1 and the first boost switching element S 2 , a first diode D 1 connected in parallel between the first buck switching element S 1 and the inductor L 1 , and a second diode D 2 connected between the first boost switching element S 2 and an output of the converter 410.
- the second buck-boost converter 410b may include a second boost switching element S 4 , a second buck switching element S 3 connected to the rectifier 405, an inductor L 2 connected between the second buck switching element S 3 and the second boost switching element S 4 , a third diode D 3 connected in parallel between the second buck switching element S 3 and the inductor L 2 , and a fourth diode D 4 connected between the second boost switching element S 4 and the output of the converter 410.
- Each of the first buck-boost converter 410a and the second buck-boost converter 410b may operate in a buck mode, a boost mode, or a buck-boost mode. This will be described with reference to FIGs. 4A and 4B .
- the first buck-boost converter 410a and the second buck-boost converter 410b use the common inductors L 1 and L 2 for storing energy while operating in the buck mode, boost mode, or buck-boost mode. Accordingly, the internal circuit of the charging apparatus 203 is simplified and the charging apparatus 203 has effects of volume reduction and efficiency improvement.
- the charging apparatus 203 has a simplified internal circuit, leading to reduction in volume and manufacturing costs.
- the charging apparatus 203 may further include a first capacitor C1 connected to an output of the rectifier 405 and a second capacitor C2 connected to an output of the interleaved buck-boost converter 410.
- the charging apparatus 203 may further include an input voltage detector A for detecting an output voltage of the rectifier 405, an output voltage detector B for detecting an output voltage of the interleaved buck-boost converter 410, and current detectors F1 and F2 for detecting current flowing into the inductors L 1 and L 2 in the interleaved buck-boost converter 410.
- the input voltage detector A may detect the output voltage of the rectifier 405. Especially, the input voltage detector A may detect a voltage V c1 across both terminals of the capacitor C 1 . To this end, the input voltage detector A may include a resistor, an amplifier, etc. The detected voltage V c1 may be input to the converter controller 415 as a discrete signal of a pulse form.
- the output voltage detector B may detect the output voltage of the interleaved buck-boost converter 410. Especially, the output voltage detector B may detect a voltage V c2 across both terminals of the capacitor C 2 . Since the capacitor C 2 is connected in parallel with the battery 205, the detected output voltage V c2 may correspond to a voltage of the battery 205. The detected output voltage V c2 may be input to the converter controller 415 as a discrete signal of a pulse form.
- the first current detector F1 may detect current i L1 flowing into the inductor L 1 in the first buck-boost converter 410 and the second current detector F2 detects current i L2 flowing into the inductor L 2 in the second buck-boost converter 410.
- Current transformers, shunt resistors, etc. may be used for the first and second current detectors F1 and F2.
- the detected input currents i L1 and i L2 may be input to the converter controller 415 as discrete signals of a pulse form.
- the converter controller 415 may determine a turn-on duty of the first buck switching element S 1 in the first buck-boost converter 410a and a turn-on duty of the second buck switching element S 3 in the second buck-boost converter 410b, based on an output voltage V c2 of the converter 410 sensed by the output voltage detector B, and on a target output voltage V* c2 . This will be described later with reference to FIG. 5B .
- the converter controller 415 may increase the turn-on duty of the first buck switching element S 1 and the turn-on duty of the second buck switching element S 3 in order to raise the output voltage V c2 . If the output voltage V c2 of the converter 410 sensed by the output voltage detector B is high, the converter controller 415 may decrease the turn-on duty of the first buck switching element S 1 and the turn-on duty of the second buck switching element S 3 in order to lower the output voltage V c2 .
- the converter controller 415 may determine a turn-on duty of the first boost switching element S 2 , based on the output voltage V c2 of the converter 410 sensed by the output voltage detector B, the target output voltage V* c2 , the input voltage V c1 of the converter 410 sensed by the input voltage detector A, and the current i L1 flowing into the first inductor L 1 in the first buck-boost converter 410a. This will be described later with reference to FIG. 5B .
- the converter controller 415 may determine a turn-on duty of the second boost switching element S 4 , based on the output voltage V c2 of the converter 410 sensed by the output voltage detector B, the target output voltage V* c2 , the input voltage V c1 of the converter 410 sensed by the input voltage detector A, and the current i L2 flowing into the second inductor L 2 in the second buck-boost converter 410b. This will be described later with reference to FIG. 5B .
- the converter controller 415 may increase or decrease the turn-on duty of the first boost switching element S 2 and the turn-on duty of the second boost switching element S 4 in order to reduce the phase difference.
- the converter controller 415 may control the first buck switching element S 1 and the first boost switching element S 2 in the first buck-boost converter 410a to be independently operated and may control the second buck switching element S 3 and the second boost switching element S 4 in the second buck-boost converter 410b to be independently operated, in the buck mode or buck-boost mode. This will be described later with reference to FIG. 5B .
- the converter controller 415 outputs a converter switching control signal Scc to the converter 410 in order to control the switching elements S 1 and S 2 in the first buck-boost converter 410a and the switching elements S 3 and S 4 in the second buck-boost converter 410b.
- the converter switching control signal Scc is a switching control signal of a pulse width modulation (PWM) scheme and is generated based on the output voltage V c2 sensed by the output voltage detector B, the input voltage V c1 sensed by the input voltage detector A, and the currents i L1 and i L2 sensed by the current detectors F1 and F2.
- PWM pulse width modulation
- the inverter 420 may include a plurality of inverter switching elements to convert a DC voltage Vdc smoothed by an turn on/off operation of the switching elements into three-phase AC voltages va, vb, and vc which are input to the three-phase synchronization motor 250.
- the inverter 420 includes a pair of serially connected upper arm switching elements Sa, Sb, and Sc and serially connected lower arm switching elements S'a, S'b, and S'c. A total of three pairs of the upper and lower arm switching elements Sa and S'a, Sb and S'b, and Sc and S'c are connected in parallel with each other. Diodes are connected in reverse parallel with the respective switching elements Sa, S'a, Sb, S'b, Sc, and S'c.
- the switching elements in the inverter 420 perform turn on/off operations based on an inverter switching control signal Sic supplied by the inverter controller 430.
- the inverter 420 converts DC power generated from the battery 205 into AC power in an operation mode of the motor 250 to drive the motor 250.
- the inverter controller 430 may control the operations of the switching elements in the inverter 420.
- the inverter controller 430 may receive output currents i o detected by an output current detector (E shown in FIG. 8 ) .
- the inverter controller 430 outputs the switching control signal Sic to the inverter 420 in order to control the switching operation of the inverter 420.
- the inverter switching control signal Sic is a switching control signal of a PWM scheme and is generated based on the output current values I o detected from the output current detector E.
- the output current detector (E shown in FIG. 8 ) may detect the output current I o flowing between the inverter 420 and the three-phase motor 250. That is, the output current detector detects current flowing into the motor 250.
- the output current detector E may detect output currents i a , i b , and i c of all phases or may detect two-phase output currents using three-phase equilibrium.
- the output current detector may be positioned between the inverter 420 and the motor 250.
- Current transformers, shunt resistors, etc. may be used for current detection.
- three shunt resistors may be connected between the inverter 420 and the motor 250 or one ends of the three shunt resistors may be connected to the three lower arm switching elements S'a, S'b, and S'c, respectively. Meanwhile, two shunt resistors may be used using three-phase equilibrium. If one shunt resistor is used, the corresponding shunt resistor may be connected between the above-described capacitor C and the inverter 420.
- the detected output current i o is a discrete signal of a pulse form and may be applied to the controller 430.
- the inverter switching control signal Sic is generated based on the detected output current i o .
- the following description will be given under the assumption that the detected output current i o is the three-phase output currents i a , i b , and i c .
- the DC/DC converter 445 may convert the level of the DC power stored in the battery 205 and output the level-converted DC power to the inverter 420.
- the DC/DC converter 445 may not be included in the driver 200 as described earlier.
- the capacitor C for storing the DC power may be connected between the inverter 420 and the battery 205.
- the capacitor C may operate as a smoothing capacitor for smoothing and storing input power.
- a plurality of smoothing capacitors may be provided to guarantee stability of circuit elements.
- the capacitor C is connected between the inverter 420 and the DC/DC converter 445.
- both terminals may be called DC terminals or DC link terminals.
- the driver 200 may further include a DC-terminal voltage detector (not shown) for detecting a voltage across both terminals of the capacitor C.
- the DC-terminal voltage detector may detect a DC-terminal voltage Vdc across both terminals of the smoothing capacitor C.
- the DC-terminal voltage detector may include a resistor, an amplifier, etc.
- the detected DC-terminal voltage Vdc is a discrete signal of a pulse form and may be input to the inverter controller 430.
- the DC-terminal voltage Vdc detected from the DC-terminal voltage detector may correspond to the battery voltage V BAT .
- the converter 410, the rectifier 405, and the converter controller 415 in the charging apparatus 203 may be formed on the same circuit board. This may be called an on board charger (OBC). If the converter 410, the rectifier 405, and the converter controller 415 in the charging circuit 203 are formed on the same circuit board, the charging apparatus 203 may be implemented with a small size.
- OBC on board charger
- FIGs. 4A to 4E are diagrams explaining operation of the first buck-boost converter illustrated in FIG. 3 .
- FIGs. 4A and 4B illustrate an exemplary operation of the first buck-boost converter 410a in a boost mode.
- the first buck switching element S 1 and the first boost switching element S 2 in the first buck-boost converter 410a are turned on, a closed loop is formed by the first buck switching element S 1 , the first inductor L 1 , and the first boost switching element S 2 so that current I 1 flows. Then energy is accumulated in the inductor L 1 based on the current I 1 .
- the second diode D 2 is not turned on.
- the first buck switching element S 1 in the first buck-boost converter 410a is continuously turned on and the first boost switching element S 2 performs a turn on/off operation, i.e. a PWM operation.
- FIGs. 4C and 4D illustrate an exemplary operation of the first buck-boost converter 410a in a buck mode.
- the first buck switching element S 1 in the first buck-boost converter 410a performs a turn on/off operation, i.e. a PWM operation and the first boost switching element S2 is kept off.
- the converter controller 415 may determine whether to operate in the boost mode, buck mode, or buck-boost mode, based on the output voltage V c2 of the converter 410 sensed by the output voltage detector B, the target output voltage V* c2 , and the input voltage V c1 of the converter 410 sensed by the input voltage detector A.
- the converter controller 415 may control the converter 410 to operate in the boost mode. That is, the converter controller 415 may control operation of the converter 410 as illustrated in FIGs. 4A and 4B .
- the converter controller 415 may control the converter 410 to operate in the buck mode. That is, the converter controller 415 may control operation of the converter 410 as illustrated in FIGs. 4C and 4D .
- FIGs. 4E and 4F illustrate an exemplary operation of the first buck-boost converter 410a in the buck-boost mode.
- the first buck switching element S 1 and the first boost switching element S 2 in the first buck-boost converter 410a are turned on as illustrated in FIG. 4A , a closed loop is formed by the first buck switching element S 1 , the first inductor L 1 , and the first boost switching element S 2 so that the current I 1 flows. Then energy is accumulated in the inductor L 1 based on the current I 1 .
- the second diode D 2 is not turned on.
- the first buck switching element S 1 and the first boost switching element S 2 in the first buck-boost converter 410a perform a turn on/off operation, i.e. a PWM operation.
- operation of the second buck-boost converter 410b may be performed in the same manner as illustrated in FIGs. 4A to 4E .
- the converter controller 415 may control the first buck switching element S 1 and the first boost switching element S 2 in the first buck-boost converter 410a to be independently operated and may control the second buck switching element S 3 and the second boost switching element S 4 in the second buck-boost converter 410b to be independently operated, in the buck mode or buck-boost mode.
- FIGs. 5A and 5B are block diagrams illustrating various examples of the internal configuration of the converter controller in FIG. 3 .
- FIGs. 6A to 6C are diagrams illustrating waveforms of the converter controller of FIG. 5A
- FIGs. 7A to 7C are diagrams illustrating waveforms of the converter controller of FIG. 5B .
- a first unit 310 of the converter controller 415 calculates a difference between the output voltage V C2 of the converter 410 sensed by the output voltage detector B and the target output voltage V* c2 .
- a proportional integral (PI) controller 315 performs PI control with respect to the difference.
- a limiter 320 limits an upper value and a lower value of a PI control value to prescribed ranges.
- a second unit 325 calculates the magnitude of the input voltage V C1 of the converter 410 sensed by the input voltage detector A and a third unit 330 multiplies the magnitude of the input voltage V C1 by an output value of the limiter 320.
- a fourth unit 335 multiplies a proportional constant by an output value of the third unit 335 to generate an inductor current command value I* L .
- the fifth unit 340 calculates a difference between the inductor current command value I* L and the current I L1 detected by the first current detector.
- a PI controller 350 performs PI control with respect to the difference between the inductor current command value I* L and the current I L1 .
- a limiter 360 limits an upper value and a lower value of a PI control value to prescribed ranges.
- a comparator 370 compares an output value W 1 of the limiter 360 with a reference waveform W re and generates a first buck switching control signal G BUCK1 , which controls the first buck switching element S 1 , and a first boost switching control signal G BOOST1 , which controls the first boost switching element S 2 .
- a sixth unit 345 calculates a difference between the inductor current command value I* L and the current i L2 sensed by the second current detector.
- a PI controller 355 performs PI control with respect to the difference between the inductor current command value I* L and the current i L2 .
- a limiter 365 limits an upper value and a lower value of a PI control value to prescribed ranges.
- a comparator 375 compares an output value W 2 of the limiter 365 with a reference waveform W' re with a 180-degree phase delay and generates a second buck switching control signal G BUCK2 to control the second buck switching element S 3 and a second boost switching control signal G BOOST2 to control the second boost switching element S 4 .
- first buck switching control signal G BUCK1 and first boost switching control signal G BOOST1 are generated through the comparator 370 and the same second buck switching control signal G BUCK2 and second boost switching control signal G BOOST2 are generated through the comparator 375.
- first buck switching control signal G BUCK1 and first boost switching control signal G BOOST1 may be the same and the second buck switching control signal G BUCK2 and second boost switching control signal G BOOST2 may be the same, as illustrated in FIGs. 6A and 6B .
- FIGs. 6A and 6B illustrate, in the buck-boost mode, the first buck switching control signal G BUCK1 , first boost switching control signal G BOOST1 , second buck switching control signal G BUCK2 , and second boost switching control signal G BOOST2 .
- the first boost switching control signal G BOOST1 and the second boost switching control signal G BOOST2 may be low level signals rather than PWM signals.
- the first buck switching control signal G BUCK1 and the second buck switching control signal G BUCK2 are complementarily turned on/turned off.
- the first buck-boost converter 410a and the second buck-boost converter 410b perform an interleaving operation so that the turn-on duty of the first buck-boost converter 410a and the turn-on duty of the second buck-boost converter 410b do not overlap. Then, voltages can be controlled by current distribution caused by the interleaving operation. Accordingly, a current level flowing into internal circuit elements is lowered and thus durability of the circuit elements is improved. As a result, charging can be stably performed.
- FIG. 6C illustrates ripples of the current I L1 flowing into the first inductor L 1 and the current I L2 flowing into the second inductor L 2 , by the turnedon/turned-off operations which do not overlap. It can be appreciated that the ripples are formed based on an input current I ac .
- current flowing into the capacitor C 2 via the first inductor L 1 and the second inductor L 2 is the sum of the current I L1 flowing into the first inductor L 1 and the current I L2 flowing into the second inductor L 2 according to interleaving driving and may correspond to the input current Iac. That is, the ripples are considerably reduced.
- switching control signals as illustrated in FIGs. 7A to 7C are generated by the configuration of the converter controller 415 as illustrated in FIG. 5B .
- a first unit 310 in the converter controller 415 calculates a difference between the output voltage V C2 of the converter 410 sensed by the output voltage detector B and the target output voltage V* c2 .
- a PI controller 315 performs PI control with respect to the difference between the output voltage V C2 and the target output voltage V* C2 .
- a limiter 320 limits an upper value and a lower value of a PI control value to prescribed ranges.
- a comparator 322 compares an output value W a of the limiter 320 with a reference waveform W re and generates the first buck switching control signal G BUCK1 to control the first buck switching element S 1 .
- a comparator 324 compares the output value W a of the limiter 320 with a reference waveform W' re with a 180-degree phase delay and generates the second buck switching control signal G BUCK2 to controlling the second buck switching element S 3 .
- the converter controller 415 independently generates the first buck switching control signal G BUCK1 and the second buck switching control signal G BUCK2 .
- a second unit 325 calculates the magnitude of the input voltage V C1 of the converter 410 sensed by the input voltage detector A and a third unit 330 multiplies the magnitude of the input voltage V C1 by the output value W a of the limiter 320.
- a fourth unit 335 multiplies a proportional constant by an output value of the third unit 335 to generate the inductor current command value I* L .
- a seventh unit 342 calculates a difference between the inductor current command value I* L and the current i L1 detected by the first current detector.
- a PI controller 352 performs PI control with respect to the difference between the inductor current command value I* L and the current i L1 .
- a limiter 362 limits an upper value and a lower value of a PI control value to prescribed ranges.
- a comparator 372 compares an output value W b1 of the limiter 362 with the reference waveform W re and generates the first boost switching control signal G BOOST1 to control the first boost switching element S 2 .
- An eighth unit 347 calculates a difference between the inductor current command value I* L and the current i L2 sensed by the second current detector and a PI controller 357 performs PI control with respect to the difference between the inductor current command value I* L and the current i L2 .
- a limiter 367 limits an upper value and a lower value of a PI control value to prescribed ranges.
- a comparator 377 compares an output value W b2 of the limiter 367 with the reference waveform W' re with a 180-degree phase delay and generates a second boost switching control signal G BOOST2 to control the second boost switching element S4.
- the converter controller 415 independently generates the first boost switching control signal G BOOST1 and the second boost switching control signal G BOOST2 .
- the converter controller 415 independently generates the first buck switching control signal G BUCK1 , the second buck switching control signal G BUCK2 , the first boost switching control signal G BOOST1 , and the second boost switching control signal G BOOST2 .
- the first buck switching control signal G BUCK1 and the second buck switching control signal G BUCK2 are alternately turned on/turned off and partially overlap as illustrated in FIG. 7A .
- timings of the first buck switching element S 1 and the second buck switching element S 3 partially overlap and thus current sharing occurs between the first buck-boost converter 410a and the second buck-boost converter 410b. Therefore, an output voltage level can be improved. Furthermore, an interleaving operation in the buck mode or buck-boost mode in which an output voltage is low can be improved. That is, the battery can be charged by stably converting input AC power into DC power.
- the first boost switching control signal G BOOST1 and the second boost switching control signal G BOOST2 are alternately turned on/turned off.
- interleaved buck-boost converter 410 operates in the buck mode or buck-boost mode as illustrated in FIG. 7A , timings of the first buck switching element S 1 and the second buck switching element S 3 partially overlap. Then ripples of the current I L1 flowing into the first inductor L 1 and the current I L2 flowing into the second inductor L 2 are considerably reduced as illustrated in FIG. 7C and, especially, are remarkably lower than the input current I ac from input AC power. Accordingly, stability of circuit elements in the interleaved buck-boost converter 410 is improved.
- FIG. 8 is a block diagram illustrating the internal configuration of the inverter controller in FIG. 2 .
- the inverter controller 430 may include an axis converter 510, a speed calculator 520, a current command generator 530, a voltage command generator 540, an axis converter 550, and a switching control signal generator 560.
- the axis converter 510 receives three-phase output currents i a , i b , and i c detected by an output current detector E and converts the three-phase output currents i a , i b , and i c into two-phase currents i ⁇ and i ⁇ of a stationary coordinate system.
- the axis converter 510 may convert the two-phase currents i ⁇ and i ⁇ of the stationary coordinate system into two-phase currents i d and i q of a rotating coordinate system.
- the speed calculator 520 may calculate a speed ⁇ r based on a position signal H of the rotor input from a position sensor 235. Namely, the speed may be calcualted by dividing the position signal by time.
- the position sensor 235 may sense the position of the rotor of the motor 230.
- the POSITION SENSOR may include a hall sensor.
- the speed calculator 520 may generate a calculated position ⁇ r and a calculated speed ⁇ r .
- the current command generator 530 calculates a speed command value ⁇ * r based on the calculated speed ⁇ r and a target speed ⁇ and generates a current command value i* q based on the speed command value ⁇ * r .
- the current command generator 530 may perform PI control through the PI controller 535, based on the speed command value ⁇ * r which is a difference between the calculated speed ⁇ r and the target speed ⁇ and generate the current command value i* q .
- the q-axis current command i* q is illustrated as a current command value in FIG. 8 , it is possible to generate a d-axis current command value i* d as well.
- the d-axis current command value i* d may be set to 0.
- the current command generator 530 may further include a limiter (not shown) to limit a current level so that the current command value i* q does not exceed an allowed range.
- the voltage command generator 540 generates d-axis and q-axis voltage command values v* d and v* q based on d-axis and q-axis currents i d and i q which are axis-converted into a two-phase rotating coordinate system by the axis converter 550 and on the current command values i* d and i* q generated from the current command generator 530.
- the voltage command generator 540 performs PI control through the PI controller 544 based on a difference between the q-axis current i q and the q-axis current command value i* q and may generate the q-axis voltage command value v* q .
- the voltage command generator 540 performs PI control through the PI controller 548 based on a difference between the d-axis current i d and the d-axis current command value i* d and may generate the d-axis voltage command value v* d .
- the d-axis voltage command value v* d may be set to 0 in correspondence to the case in which the d-axis current value i* d is set to 0.
- the voltage command generator 540 may further include a limiter (not shown) to limit a voltage level so that the d-axis and q-axis voltage command values v* d and v* q do not exceed an allowed range.
- a limiter (not shown) to limit a voltage level so that the d-axis and q-axis voltage command values v* d and v* q do not exceed an allowed range.
- the generated d-axis and q-axis voltage commands v* d and v* q are input to the axis converter 550.
- the axis converter 550 receives the position value ⁇ r calculated by the speed calcualtor 520 and the d-axis and q-axis voltage command values v* d and v* q and performs axis conversion.
- the axis converter 550 converts the two-phase rotating coordinate system into the two-phase stationary coordinate system.
- the position value ⁇ r calculated by the speed calculator 520 may be used.
- the axis converter 550 converts the two-phase stationary coordinate system into the three-phase stationary coordinate system to generate three-phase output voltage command values v* a , v* b , and v* c .
- the switching control signal generator 560 generates an inverter switching control signal S ic according to a PWM scheme based on the three-phase output voltage command values v* a , v* b , and v* c .
- the generated inverter switching control circuit S ic may be converted into a gate driving signal by a gate driver (not shown) and input to a gate of each switching element in the inverter 420. Then switching elements Sa, S'a, Sb, S'b, Sc, and S'c in the inverter 420 perform a switching operation.
- the charging apparatus and the electric vehicle including the same can control voltage by current distribution caused by an interleaving operation by using the interleaved buck-boost converter which DC power is charged to the battery.
- the buck-boost converter includes the first boost switching element, the first buck switching element connected to the rectifier, the inductor connected between the first buck switching element and the first boost switching element, the first diode connected in parallel between the first buck switching element and the inductor, and the second diode connected between the first boost switching element and the output of the converter, the capacitor having a large rated voltage need not be used between the first buck switching element and the first boost switching element. Accordingly, internal circuit configuration of the apparatus is simplified and volume and manufacturing costs are reduced.
- a turn-on timing of the first buck switching element in the first buck-boost converter and a turn-on timing of the second buck switching element in the second buck-boost converter partially overlap, an interleaving operation in the buck mode or buck-boost mode having a low output voltage can be improved. That is, the battery can be charged by stably converting input AC power into DC power.
- each buck-boost converter is independently operated so that the battery can be charged by stably converting AC power into DC power.
- each buck-boost converter uses a common inductor in a buck mode or boost mode, internal circuit configuration of the charging apparatus is simplified, volume of the changing apparatus is reduced, and efficiency is improved.
- the operating method of the charging apparatus of the present invention may be implemented using a recording medium which can be read by a processor included in the charging apparatus as code which can be read by the processor.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Dc-Dc Converters (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Claims (12)
- Motortreiber (200), der aufweist:einen Gleichrichter (405), um eine Eingangs-Wechselstrom (AC) Leistung in einem Lademodus gleichzurichten;einen verschachtelten Abwärts/Aufwärtswandler (410), um die gleichgerichtete Leistung in Gleichstrom (DC) Leistung umzuwandeln, um die umgewandelte DC-Leistung im Lademodus einer Batterie (205) zuzuführen, wobei der verschachtelte Abwärts/Aufwärtswandler mehrere Abwärts/Aufwärtswandlern aufweist,eine Wandlersteuerung (415) zum Steuern des verschachtelten Abwärts/Aufwärtswandlers;die Batterie (205), um die umgewandelte DC-Leistung vom verschachtelten Abwärts/Aufwärtswandler (410) im Lademodus zu speichern;einen DC/DC-Wandler (445), um den Pegel der in der Batterie (205) gespeicherten DC-Leistung umzuwandeln und die pegel gewandelte DC-Leistung in einem Motorbetriebsmodus an einen Wechselrichter (420) abzugeben;den Wechselrichter (420), um die vom DC/DC-Wandler (445) gelieferte DC-Leistung in Wechselstrom (AC) umzuwandeln, um einen Motor (250) im Motorbetriebsmodus anzutreiben;einen ersten Kondensator (C1), der mit einem Ausgang des Gleichrichters (405) verbunden ist,einen zweiten Kondensator (C2), der mit einem Ausgang des verschachtelten Abwärts/Aufwärtswandlers (410) verbunden ist,wobei ein erster Abwärts/Aufwärtswandler (410a) des verschachtelten Abwärts/Aufwärtswandlers aufweist:ein erstes Abwärtsschaltelement (S1), das mit dem Gleichrichter (405) verbunden ist,ein erstes Aufwärtsschaltelement (S2),eine erste Induktivität (L1), die zwischen dem ersten Abwärtsschaltelement (S1) und dem ersten Aufwärtsschaltelement (S2) geschaltet ist,eine erste Diode (D1), die mit einem ersten Knoten zwischen dem ersten Abwärtsschaltelement (S1) und der ersten Induktivität (L1) verbunden ist, undeine zweite Diode (D2), die mit einem zweiten Knoten zwischen dem ersten Aufwärtsschaltglied (S2) und einem Ausgang des verschachtelten Abwärts-Aufwärtswandlers verbunden ist,wobei im Aufwärtsmodus, wenn das erste Abwärtsschaltelement (S1) und das erste Aufwärtsschaltelement (S2) eingeschaltet sind, basierend auf einem ersten Strom, der durch das erste Abwärtsschaltelement (S1), das erste Aufwärtsschaltelement (S2) und die erste Induktivität (L1) fließt, Energie in der ersten Induktivität (L1) gesammelt wird,wobei im Aufwärtsmodus, wenn das erste Abwärtsschaltelement (S1) eingeschaltet ist und das erste Aufwärtsschaltelement (S2) eingeschaltet ist und das erste Aufwärtsschaltelement (S2) ausgeschaltet ist, die in der ersten Induktivität (L1) gesammelte Energie im zweiten Kondensator (C2) durch einen zweiten Strom gespeichert wird, der durch das erste Abwärtsschaltelement (S1), die erste Induktivität (L1) und die zweite Diode (D2) fließt,wobei im Abwärtsmodus, wenn das erste Abwärtsschaltelement (S1) eingeschaltet und das erste Aufwärtsschaltelement (S2) ausgeschaltet ist, eine DC-Leistung im zweiten Kondensator (C2) durch einen dritten Strom gespeichert wird, der durch das erste Abwärtsschaltelement (S1), die erste Induktivität (L1) und die zweite Diode (D2) fließt,wobei im Abwärtsmodus, wenn das erste Abwärtsschaltelement (S1) und das erste Aufwärtsschaltelement (S2) ausgeschaltet sind, die in der ersten Induktivität (L1) gesammelte Energie im zweiten Kondensator (C2) durch einen vierten Strom gespeichert wird, der durch die erste Diode (D1), die erste Induktivität (L1) und die zweite Diode (D2) fließt.
- Motortreiber nach Anspruch 1, wobei jeder der mehreren Abwärts/Aufwärtswandler (410a, 410b) einen Verschachtelungsvorgang durchführt und ein Einschaltzeitpunkt des ersten Abwärtsschaltelements und ein Einschaltzeitpunkt eines zweiten Abwärtsschaltelements in einem zweiten Abwärts/Aufwärtswandler des verschachtelten Abwärts/Aufwärtswandlers sich in einem Abwärtsmodus oder einem Aufwärts/Aufwärtsmodus teilweise überlappen.
- Motortreiber nach Anspruch 1 oder 2, wobei der erste Abwärts/Aufwärtswandler (410a) die erste Induktivität (L1) während des Betriebs in einem Abwärtsmodus und des Betriebs in einem Aufwärtsmodus gemeinsam verwendet.
- Motortreiber nach Anspruch 1, 2 oder 3, wobei die Wandlersteuerung (415) eine Einschaltbetriebszeit des ersten Abwärtsschaltelements einstellt, um eine von dem ersten Abwärts-Aufwärtswandler erzeugte Ausgangsspannung zu steuern, und eine Einschaltbetriebszeit des ersten Aufwärtsschaltelements einstellt, um den Leistungsfaktor einer Ausgangsspannung oder eines Ausgangsstroms zu steuern, die vom ersten Abwärts-Aufwärtswandler erzeugt werden.
- Motortreiber nach einem der Ansprüche 1 bis 4, wobei die Wandlersteuerung (415) eine Einschaltbetriebszeit jedes Abwärtsschaltelements der mehreren Abwärtswandler einstellt, um von den mehreren Abwärtswandlern erzeugte Ausgangsspannungen zu steuern, und eine Einschaltbetriebszeit jedes Aufwärtsschaltelements der mehreren Abwärtswandler einstellt, um jeden Leistungsfaktor der von den mehreren Abwärtswandlern erzeugten Ausgangsspannungen oder Ausgangsströme zu steuern.
- Motortreiber nach einem der Ansprüche 1 bis 5, der ferner aufweist:einen Eingangsspannungsdetektor (A), um eine Ausgangsspannung des Gleichrichters zu erfassen;einen Ausgangsspannungsdetektor (B) um eine Ausgangsspannung des verschachtelten Abwärts/Aufwärtswandlers zu erfassen; undeinen Stromdetektor (F1, F2) um einen Strom zu erfassen, der in jeder Induktivität in den mehreren Abwärtswandlern des verschachtelten Abwärtswandlers fließt.
- Motortreiber nach einem der Ansprüche 1 bis 6, wobei in einem Abwärtsmodus oder einem Abwärts/Aufwärtsmodus das erste Abwärtsschaltelement und das erste Aufwärtsschaltelement unabhängig betrieben werden und ein zweites Abwärtsschaltelement und ein zweites Aufwärtsschaltelement in einem zweiten Abwärts/Aufwärtswandler, der parallel zu dem ersten Abwärts/Aufwärtswandler geschaltet ist, unabhängig betrieben werden.
- Motortreiber nach einem der Ansprüche 1 bis 7, wobei die Wandlersteuerung (415) eine Einschaltbetriebszeit des ersten Abwärtsschaltelements im ersten Abwärts/Aufwärtswandler und eine Einschaltbetriebszeit eines zweiten Abwärtsschaltelements in einem zweiten Abwärts/Aufwärtswandler, der parallel zum ersten Abwärts/Aufwärtswandler geschaltet ist, basierend auf einer Ausgangsspannung des verschachtelten Abwärts/Aufwärtswandler und einer Ziel-Ausgangsspannung bestimmt.
- Motortreiber nach einem der Ansprüche 1 bis 8, wobei die Wandlersteuerung (415) bestimmt:eine Einschaltbetriebszeit des ersten Aufwärtsschaltelements, basierend auf einer Ausgangsspannung des verschachtelten Abwärts/Aufwärtswandlers, einer Ziel-Ausgangsspannung, einer Eingangsspannung des verschachtelten Abwärts/Aufwärtswandlers und einem Strom, der in die erste Induktivität im ersten Abwärts/Aufwärtswandler fließt, undeine Einschaltbetriebszeit eines zweiten Aufwärtsschaltelements in einem zweiten Abwärts/Aufwärts-Wandler, der parallel zum ersten Abwärts/Aufwärts-Wandler geschaltet ist, basierend auf der Ausgangsspannung des verschachtelten Abwärts/Aufwärts-Wandlers, der Ziel-Ausgangsspannung, der Eingangsspannung des verschachtelten Abwärts/Aufwärts-Wandlers und dem Strom, der in eine zweite Induktivität in dem zweiten Abwärts/Aufwärts-Wandler fließt.
- Motortreiber nach einem der Ansprüche 1 bis 9, wobei ein zweiter Abwärts/Aufwärtswandler (410b), der parallel zu dem ersten Abwärts/Aufwärtswandler geschaltet ist, aufweist:ein zweites Aufwärtsschaltelement (S4),ein zweites Abwärtsschaltelement (S3), das mit dem Gleichrichter verbunden ist,eine zweite Induktivität (L2), die zwischen dem zweiten Abwärtsschaltelement und dem zweiten Aufwärtsschaltelement geschaltet ist,eine dritte Diode (D3), die mit einem dritten Knoten zwischen dem zweiten Abwärtsschaltelement und der zweiten Induktivität verbunden ist, undeine vierte Diode (D4), die mit einem vierten Knoten zwischen dem zweiten Aufwärtswandler-Schaltelement und dem Ausgang des verschachtelten Aufwärtswandlers verbunden ist.
- Elektrofahrzeug, das aufweist:einen Motor (250); undden Motortreiber (200) nach einem der Ansprüche 1 bis 10.
- Elektrofahrzeug nach Anspruch 11, wobei der Motortreiber (200) ferner aufweist:eine Wechselrichtersteuerung (430), um den Wechselrichter zu steuern,wobei die Wechselrichtersteuerung (430) aufweist,einen Geschwindigkeitsrechner (520) zum Berechnen von Geschwindigkeitsinformationen eines Rotors des Motors, basierend auf einem Erfassungsstrom, der in den Motor fließt, oder einem Positionssignal des Rotors des Motors,einen Strombefehlsgenerator (530), um einen Strombefehlswert basierend auf den Geschwindigkeitsinformationen und einem Geschwindigkeitsbefehlswert zu erzeugen,einen Spannungsbefehlsgenerator (540), um einen Spannungsbefehlswert basierend auf dem Strombefehlswert und dem Erfassungsstrom zu erzeugen; undeinen Schaltsteuersignalgenerator (560) zum Erzeugen eines Schaltsteuersignals, um den Wechselrichter basierend auf dem Spannungsbefehlswert anzusteuern.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120011989A KR101387717B1 (ko) | 2012-02-06 | 2012-02-06 | 전기 자동차의 배터리 충전 장치 및 이를 포함한 전기 자동차 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2624427A2 EP2624427A2 (de) | 2013-08-07 |
EP2624427A3 EP2624427A3 (de) | 2017-10-04 |
EP2624427B1 true EP2624427B1 (de) | 2023-06-07 |
Family
ID=47632919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13153851.4A Active EP2624427B1 (de) | 2012-02-06 | 2013-02-04 | Ladevorrichtung und Elektrofahrzeug damit |
Country Status (4)
Country | Link |
---|---|
US (1) | US9242567B2 (de) |
EP (1) | EP2624427B1 (de) |
KR (1) | KR101387717B1 (de) |
CN (1) | CN103248102B (de) |
Families Citing this family (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2540416C2 (ru) * | 2011-05-17 | 2015-02-10 | Хонда Мотор Ко., Лтд. | Инверторный генератор |
DE102012002089A1 (de) * | 2012-02-06 | 2013-08-08 | Sew-Eurodrive Gmbh & Co. Kg | Antriebssystem mit Energiespeicher und Verfahren zum Betreiben eines Antriebssystems |
JP6271522B2 (ja) * | 2012-05-10 | 2018-01-31 | シングル ブイ ムーリングス インコーポレイテッド | 連続電流によるeap変換効率の向上 |
WO2014173293A1 (en) * | 2013-04-22 | 2014-10-30 | Mediatek Inc. | Switching mode charger for charging system |
CN103475233B (zh) * | 2013-08-20 | 2017-01-18 | 国家电网公司 | 一种电能转换效率高的开关电源 |
CN103441659B (zh) * | 2013-09-18 | 2016-05-25 | 矽力杰半导体技术(杭州)有限公司 | 应用于交错并联式开关电源的控制电路 |
JP6084914B2 (ja) * | 2013-09-24 | 2017-02-22 | トヨタ自動車株式会社 | 電力供給システム |
US10476283B2 (en) * | 2013-09-27 | 2019-11-12 | Intel Corporation | Bi-directional charger for battery device with control logic based on sensed voltage and device type |
US9425648B2 (en) * | 2013-11-14 | 2016-08-23 | StrongVolt, Inc. | Mobile device solar powered charging apparatus, method, and system |
KR101500206B1 (ko) | 2013-11-26 | 2015-03-06 | 현대자동차주식회사 | 2상 인터리브 컨버터 및 이의 제어 방법 |
JP6301240B2 (ja) * | 2014-02-07 | 2018-03-28 | 本田技研工業株式会社 | 車両用バッテリ充電装置 |
KR101601549B1 (ko) * | 2014-02-27 | 2016-03-08 | 단국대학교 산학협력단 | 배터리 충전 제어 방법 및 장치 |
WO2016011656A1 (zh) * | 2014-07-25 | 2016-01-28 | 中山大洋电机股份有限公司 | 电动汽车驱动与充电集成控制方法及其应用的电动汽车 |
KR101592743B1 (ko) | 2014-07-28 | 2016-02-12 | 현대자동차주식회사 | 친환경 차량용 충전기의 충전 제어 방법 |
EP3026812B1 (de) * | 2014-11-27 | 2017-05-03 | Carel Industries S.p.A. | Vorrichtung zum betreiben eines elektromotors und verfahren zum betreiben einer antriebsvorrichtung |
KR102350484B1 (ko) | 2014-12-01 | 2022-01-17 | 삼성전자주식회사 | 모터 구동 장치, 이를 포함하는 공기조화기 및 그의 제어방법 |
KR101832841B1 (ko) | 2015-04-08 | 2018-04-13 | 스마클(주) | 통합형 모터 구동회로 |
KR101679964B1 (ko) | 2015-04-23 | 2016-11-25 | 현대자동차주식회사 | 친환경 차량의 전원장치 |
KR102422899B1 (ko) * | 2015-06-26 | 2022-07-19 | 엘지전자 주식회사 | 전력변환장치 및 이를 구비하는 공기조화기 |
KR101755823B1 (ko) | 2015-08-12 | 2017-07-07 | 현대자동차주식회사 | 친환경 차량용 충전 장치 및 이의 제어 방법 |
JP6459868B2 (ja) * | 2015-09-04 | 2019-01-30 | トヨタ自動車株式会社 | 充電装置 |
KR101776403B1 (ko) * | 2015-10-08 | 2017-09-07 | 현대자동차주식회사 | 환경차량용 배터리충전기의 운전 방법 |
CN105244982B (zh) * | 2015-10-09 | 2018-01-19 | 上海交通大学 | 一种低成本的电机驱动‑电池充电一体化装置及控制方法 |
DE102015221101B4 (de) * | 2015-10-28 | 2022-12-08 | Dialog Semiconductor (Uk) Limited | Batterieladeregler, Ladegerät zum Laden einer Batterie, tragbare elektronische Vorrichtung mit Ladegerät und Verfahren für einen Betrieb eines Ladegeräts |
US10300791B2 (en) * | 2015-12-18 | 2019-05-28 | Ge Global Sourcing Llc | Trolley interfacing device having a pre-charging unit |
DE102016200682A1 (de) * | 2016-01-20 | 2017-07-20 | Robert Bosch Gmbh | Elektrisch antreibbares Fortbewegungsmittel, elektrischer Antriebsstrang und Anordnung zum Laden, Invertieren und Rückspeisen |
WO2017193259A1 (zh) * | 2016-05-09 | 2017-11-16 | 广东欧珀移动通信有限公司 | 用于控制输出电压的方法和装置以及适配器 |
JP6642296B2 (ja) * | 2016-06-20 | 2020-02-05 | トヨタ自動車株式会社 | コンバータの異常判定方法 |
KR101846682B1 (ko) * | 2016-06-28 | 2018-04-09 | 현대자동차주식회사 | 전기차량의 충전제어방법 및 그 시스템 |
CN106059301A (zh) * | 2016-08-15 | 2016-10-26 | 北京飞跃新能科技有限公司 | 变换电压的装置 |
KR101886053B1 (ko) * | 2016-08-22 | 2018-08-07 | 서울과학기술대학교 산학협력단 | 벅 부스트 컨버터 |
EP3316274B1 (de) | 2016-10-28 | 2018-09-26 | Samsung SDI Co., Ltd. | Treiberschaltung zum betrieb eines relais |
CN106379199A (zh) * | 2016-11-01 | 2017-02-08 | 南通濠诚文化传媒有限公司 | 一种廉价型简易电动汽车 |
KR101961146B1 (ko) * | 2016-11-18 | 2019-03-25 | 현대자동차주식회사 | 차량, 차량 충전 장치, 차량 충전 시스템 및 차량의 충전 방법 |
CN106451710A (zh) * | 2016-11-24 | 2017-02-22 | 湖北文理学院 | 充电桩、充电系统及充电控制方法 |
JP6531751B2 (ja) * | 2016-12-13 | 2019-06-19 | トヨタ自動車株式会社 | 電力システム |
KR102657321B1 (ko) | 2016-12-15 | 2024-04-12 | 현대자동차주식회사 | 충전기 |
KR102657324B1 (ko) | 2016-12-15 | 2024-04-12 | 현대자동차주식회사 | 차량의 충전 소요 시간 예측 방법 및 이를 적용한 예약 충전 방법 |
KR101904101B1 (ko) * | 2016-12-26 | 2018-10-05 | 효성중공업 주식회사 | Mmc 컨버터 출력단 직류성분 제거방법 |
JP6740934B2 (ja) * | 2017-03-09 | 2020-08-19 | トヨタ自動車株式会社 | 制御装置 |
WO2018195604A1 (en) * | 2017-04-28 | 2018-11-01 | Reto Truninger | Power converter |
KR102478091B1 (ko) * | 2017-06-13 | 2022-12-16 | 현대자동차주식회사 | 차량용 배터리 충전 제어 시스템 및 방법 |
JP6911689B2 (ja) * | 2017-10-06 | 2021-07-28 | トヨタ自動車株式会社 | 電源装置 |
KR102518248B1 (ko) | 2017-10-12 | 2023-04-07 | 현대자동차주식회사 | 차량 탑재형 충전 시스템 |
KR102491650B1 (ko) * | 2017-12-04 | 2023-01-26 | 삼성전자주식회사 | 전압을 조정하기 위한 전자 장치 및 그의 동작 방법 |
TWI695560B (zh) * | 2018-06-15 | 2020-06-01 | 群光電能科技股份有限公司 | 電源供應系統及電源轉換器 |
DE102018116486A1 (de) | 2018-07-06 | 2020-01-09 | HELLA GmbH & Co. KGaA | Kopplungsvorrichtung |
US10250143B1 (en) * | 2018-08-07 | 2019-04-02 | Monolithic Power Systems, Inc. | AC-DC converting apparatus and method thereof |
US10698465B1 (en) * | 2019-05-13 | 2020-06-30 | Quanta Computer Inc. | System and method for efficient energy distribution for surge power |
EP3772152B1 (de) * | 2019-08-02 | 2023-10-04 | ABB E-mobility B.V. | Batterieladegerätevorrichtung und zugehöriges lastverlustschutzverfahren |
AU2020336469A1 (en) | 2019-08-28 | 2022-04-07 | SparkCharge, Inc. | Electric vehicle charging apparatus, system and methods |
KR20210034133A (ko) | 2019-09-18 | 2021-03-30 | 현대자동차주식회사 | 차량용 배터리 충전 시스템 및 그 제어 방법 |
JP2021048696A (ja) * | 2019-09-18 | 2021-03-25 | 株式会社東芝 | 充放電装置 |
CN111555614A (zh) * | 2020-04-14 | 2020-08-18 | 中南大学 | 汽车双电源系统的交错dc-dc变换器及其控制方法 |
CN111682615A (zh) * | 2020-06-18 | 2020-09-18 | 格力博(江苏)股份有限公司 | 充电控制电路、充电装置及充电系统 |
CN112248849A (zh) * | 2020-10-11 | 2021-01-22 | 苏州青众创业服务有限公司 | 一种充电桩的防护结构 |
KR20220153401A (ko) | 2021-05-11 | 2022-11-18 | 현대자동차주식회사 | 전기구동 모빌리티의 전력 변환 시스템 및 그 제어 방법 |
US12088213B2 (en) * | 2021-05-19 | 2024-09-10 | Hi-Power Solutions Inc. | Power supply unit for vehicle charging |
CN113485501A (zh) * | 2021-06-28 | 2021-10-08 | 宁畅信息产业(北京)有限公司 | 电压调节装置和电压调节方法 |
CN118219882A (zh) * | 2024-03-27 | 2024-06-21 | 阿维塔科技(重庆)有限公司 | 升压充电控制方法、电路、装置、设备和存储介质 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101540568A (zh) * | 2009-04-13 | 2009-09-23 | 北京凯华网联技术有限公司 | 高效率风光互补发电控制装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7170268B2 (en) * | 2004-08-09 | 2007-01-30 | Lite-On Technology Corporation | DC to DC converter with high frequency zigzag transformer |
EP1805880A2 (de) * | 2004-10-20 | 2007-07-11 | Ballard Power Systems Corporation | Verfahren und vorrichtung für ein energiesystem |
US7211984B2 (en) | 2004-11-09 | 2007-05-01 | General Motors Corporation | Start-up and restart of interior permanent magnet machines |
JP2007159315A (ja) * | 2005-12-07 | 2007-06-21 | Toyota Motor Corp | 多相コンバータ、ハイブリッド燃料電池システム、及び電源制御方法 |
JP4687656B2 (ja) * | 2007-01-24 | 2011-05-25 | トヨタ自動車株式会社 | 多相電圧変換装置、車両および多相電圧変換装置の制御方法 |
CH701165B1 (de) * | 2007-10-01 | 2010-12-15 | Dirk Schekulin | Wechselrichter-Schaltungsanordnug mit Gleichspannungszwischenkreis. |
JP4339916B2 (ja) * | 2008-02-28 | 2009-10-07 | ファナック株式会社 | モータ駆動装置 |
JP4512145B2 (ja) * | 2008-03-21 | 2010-07-28 | ファナック株式会社 | モータ制御装置 |
JP5310172B2 (ja) * | 2009-03-24 | 2013-10-09 | サンケン電気株式会社 | インターリーブコンバータ |
KR100944528B1 (ko) * | 2009-12-02 | 2010-03-05 | (주)인텍에프에이 | 전기자동차 배터리 충전용 전력변환장치 및 그 제어 방법 |
JP5593729B2 (ja) * | 2010-02-18 | 2014-09-24 | 株式会社村田製作所 | Pfcコンバータ |
JP2012050207A (ja) * | 2010-08-25 | 2012-03-08 | Denso Corp | マルチフェーズ型dc/dcコンバータ回路 |
US9190899B2 (en) * | 2011-09-28 | 2015-11-17 | General Electric Company | Power factor correction (PFC) circuit configured to control high pulse load current and inrush current |
US8829869B2 (en) * | 2011-11-08 | 2014-09-09 | Lincoln Global, Inc. | Dynamic power factor correction and dynamic control for converter in power supply |
FR2983006B1 (fr) * | 2011-11-22 | 2014-01-10 | Thales Sa | Systeme d'alimentation continue securisee et regulee a entrees multiples |
-
2012
- 2012-02-06 KR KR1020120011989A patent/KR101387717B1/ko active IP Right Grant
-
2013
- 2013-02-04 EP EP13153851.4A patent/EP2624427B1/de active Active
- 2013-02-05 US US13/759,169 patent/US9242567B2/en active Active
- 2013-02-06 CN CN201310047338.8A patent/CN103248102B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101540568A (zh) * | 2009-04-13 | 2009-09-23 | 北京凯华网联技术有限公司 | 高效率风光互补发电控制装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103248102A (zh) | 2013-08-14 |
EP2624427A3 (de) | 2017-10-04 |
EP2624427A2 (de) | 2013-08-07 |
US20130271077A1 (en) | 2013-10-17 |
CN103248102B (zh) | 2016-03-16 |
KR20130090678A (ko) | 2013-08-14 |
KR101387717B1 (ko) | 2014-04-24 |
US9242567B2 (en) | 2016-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2624427B1 (de) | Ladevorrichtung und Elektrofahrzeug damit | |
US9789776B2 (en) | Charging apparatus and electric vehicle including the same | |
AU2019410616B2 (en) | Charging method for power battery, motor control circuit and vehicle | |
US9376025B2 (en) | Charging apparatus and electric vehicle including the same | |
US7164253B2 (en) | Motor drive control apparatus | |
US8035252B2 (en) | Power supply system, vehicle with the same, temperature increase control method for power storage device and computer-readable recording medium bearing program for causing computer to execute temperature increase control of power storage device | |
KR101147286B1 (ko) | 전동기 제어장치, 구동장치 및 하이브리드 구동장치 | |
US7511447B2 (en) | Motor drive apparatus | |
US8593101B2 (en) | Power converting device with reduced switching loss | |
EP2322376A2 (de) | Vorrichtung des elektrischen Antriebs eines Elektrofahrzeuges | |
KR101695693B1 (ko) | 전기 자동차 및 이의 구동 방법 | |
CN101803176A (zh) | 可变磁通驱动系统 | |
US20120262096A1 (en) | Electric vehicle and operating method of the same | |
Saha et al. | Solar PV integration to e-rickshaw with regenerative braking and sensorless control | |
KR101643590B1 (ko) | 전기자동차용 배터리의 충전장치 및 충전 방법 | |
KR101563866B1 (ko) | 충전 장치, 및 이를 구비하는 전기 차량 | |
KR101563867B1 (ko) | 충전 장치, 및 이를 구비하는 전기 차량 | |
Chinmaya et al. | A plug-in electric vehicle (PEV) with compact bidirectional CuK converter and sturdier induction motor drive | |
KR20210090957A (ko) | 전력 변환 장치, 및 이를 구비하는 차량 | |
KR101627221B1 (ko) | 전기 자동차의 모터 구동장치 | |
Huang et al. | Efficient energy management for electrical scooters | |
KR20110053083A (ko) | 전기 자동차의 모터 구동장치 | |
KR20120121267A (ko) | 전기 자동차 및 이의 구동 방법 | |
KR20150015165A (ko) | 액티브 브릿지 정류기를 이용하는 자동차용 발전기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130227 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H02M 3/158 20060101AFI20170829BHEP Ipc: H02J 7/02 20160101ALI20170829BHEP |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
R17P | Request for examination filed (corrected) |
Effective date: 20130227 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210728 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LG MAGNA E-POWERTRAIN CO., LTD. |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013083889 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H02M0003158000 Ipc: B60L0053220000 Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: H02M0003158000 Ipc: B60L0053220000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H02M 3/158 20060101ALI20221214BHEP Ipc: H02J 7/02 20060101ALI20221214BHEP Ipc: B60L 53/22 20190101AFI20221214BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230301 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1574018 Country of ref document: AT Kind code of ref document: T Effective date: 20230615 Ref country code: DE Ref legal event code: R096 Ref document number: 602013083889 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230907 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1574018 Country of ref document: AT Kind code of ref document: T Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231009 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231007 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013083889 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240105 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
26N | No opposition filed |
Effective date: 20240308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240204 |