EP2616352B1 - Dosierkopf für tropfen und entsprechendes fläschchen - Google Patents

Dosierkopf für tropfen und entsprechendes fläschchen Download PDF

Info

Publication number
EP2616352B1
EP2616352B1 EP20110755118 EP11755118A EP2616352B1 EP 2616352 B1 EP2616352 B1 EP 2616352B1 EP 20110755118 EP20110755118 EP 20110755118 EP 11755118 A EP11755118 A EP 11755118A EP 2616352 B1 EP2616352 B1 EP 2616352B1
Authority
EP
European Patent Office
Prior art keywords
liquid
valve
cavity
delivery head
head according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20110755118
Other languages
English (en)
French (fr)
Other versions
EP2616352A2 (de
Inventor
Alain Defemme
Fabrice Mercier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laboratoires Thea SAS
Original Assignee
Laboratoires Thea SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoires Thea SAS filed Critical Laboratoires Thea SAS
Priority to SI201130240T priority Critical patent/SI2616352T1/sl
Priority to PL11755118T priority patent/PL2616352T3/pl
Publication of EP2616352A2 publication Critical patent/EP2616352A2/de
Application granted granted Critical
Publication of EP2616352B1 publication Critical patent/EP2616352B1/de
Priority to CY20141100706T priority patent/CY1115527T1/el
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D47/00Closures with filling and discharging, or with discharging, devices
    • B65D47/04Closures with discharging devices other than pumps
    • B65D47/06Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages
    • B65D47/18Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages for discharging drops; Droppers
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D34/00Containers or accessories specially adapted for handling liquid toiletry or cosmetic substances, e.g. perfumes
    • A45D34/04Appliances specially adapted for applying liquid, e.g. using roller or ball
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D49/00Arrangements or devices for preventing refilling of containers
    • B65D49/02One-way valves
    • B65D49/04Weighted valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D51/00Closures not otherwise provided for
    • B65D51/16Closures not otherwise provided for with means for venting air or gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D51/00Closures not otherwise provided for
    • B65D51/16Closures not otherwise provided for with means for venting air or gas
    • B65D51/1605Closures not otherwise provided for with means for venting air or gas whereby the interior of the container is maintained in permanent gaseous communication with the exterior
    • B65D51/1616Closures not otherwise provided for with means for venting air or gas whereby the interior of the container is maintained in permanent gaseous communication with the exterior by means of a filter
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D2200/00Details not otherwise provided for in A45D
    • A45D2200/05Details of containers
    • A45D2200/054Means for supplying liquid to the outlet of the container
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7847With leak passage
    • Y10T137/7848Permits flow at valve interface

Definitions

  • Flasks of this type have been described under several concrete embodiments in different prior patents of the same plaintiff company.
  • a bifunctional membrane is disposed at one end of the expulsion channel, upstream of the path of the expelled liquid, to allow alternation between the passage of the expelled liquid and the passage of the incoming air.
  • the same membrane serves as an anti-bacterial membrane, preventing the passage of impurities during the return of air into the bottle.
  • a constant objective of the applicant is to provide bottles allowing no external contamination of the liquid contained in the tank.
  • the invention aims to provide a dispensing head which is more efficient in its role dropper and in the preservation of the sterility of the liquid while being particularly simple construction and inexpensive to manufacture.
  • the invention of equipping the dispensing head with a tip pierced with a liquid expulsion channel through which is also performed the air return in the opposite direction on the path of which is disposed a valve shutter freely movable under the effect of the fluid pressures exerted on it in said channel which is mounted to operate as a non-return valve with respect to the circulation of the expelled liquid and which is designed so as to allow it to pass through selectively by the admitted air from the outside when it is applied to its seat in the position closing said channel to the circulation of the liquid.
  • the passage selectivity of the gas stream in the presence of an aqueous liquid is advantageously obtained by producing the shutter in the form of a porous mass of a hydrophobic material.
  • the hydrophobic nature of the material prevents the shutter of the valve from being impregnated with liquid in the closed position of the channel remains impregnated by the liquid passing in contact with it during the liquid expulsion step, which could cause its obstruction to to the air return.
  • said shutter is made microporous in the mass and consists of a hydrophobic material whose porosity is sufficiently fine so that the shutter then provides an anti-bacterial filtration of the air. crossing. It is remarkable that under the usual operating conditions of ophthalmic droplet bottles, for example, the presence of a valve thus designed, as proposed by the invention, makes it possible at the same time to control the suction of the outside air in the nozzle channel after the expulsion of a dose of liquid and to prevent that there is a risk of bacterial contamination by the penetrating air and the internal side.
  • the end of the nozzle comprises a droplet liquid expulsion orifice which is surrounded externally by a peripheral bead. In a manner in itself conventional, thereby ensures the stall of the drop of liquid output of the nozzle, allowing a repeatable calibration of successive drops.
  • the nozzle comprises a cavity formed in the path of the expulsion channel in which the shutter is housed, at least in part.
  • the shutter is thus retained in the dispensing head during its movements between the open position of the valve for the passage of the liquid being expelled and closed position, allowing only the air sucked back.
  • centripetal channels are hollowed out superficially in the walls of the receiving cavity of the shutter, all around the expulsion orifice. Their role is to pass the liquid around the shutter in the open valve position, ensuring the distribution of the liquid flow for the formation of a drop to be delivered. They are provided away from the surface forming the seat on which the shutter is applied when the valve is in the closed position, so as not to interfere with the role of the valve vis-à-vis the air flow, which consists to prohibit the passage to any return of outside air other than through the shutter.
  • the solution proposed by the invention is advantageously combined with the presence of an anti-bacterial filter membrane interposed at the base of the nozzle across the dispensing head.
  • an anti-bacterial filter membrane interposed at the base of the nozzle across the dispensing head.
  • Such a membrane is conventionally used in the ophthalmic drop bottles of the Applicant to prevent contamination of the liquid contained in reserve in the flask by bacteria from outside.
  • the valve proposed here in the case of an obturator filtering antibacterial, performs a filtration complementary to the air for the one that enters the part of the dispensing head which is located in the dropper tip, in downstream of the filter membrane (the downstream side being defined with respect to the direction of circulation of the liquid at the expulsion).
  • the flap contributes on the other hand to the alternation between liquid flow and air flow provided by a diaphragm mounted upstream, at the base of the nozzle, across the passage of the incoming air and the expelled liquid, when it is made in part hydrophilic and partly hydrophobic, as it is in itself conventional for this purpose.
  • the dispensing head according to the invention makes it possible to have a valve which ensures both this alternation of the flows and the anti-bacterial filtration on the path of the re-entering air after the expulsion of the liquid, in a manner complementary to the same functions implemented by an antibacterial membrane made partially hydrophilic and partially hydrophobic.
  • the invention also relates to a drip liquid distribution head having a flux regulator pad housed in the body of a head mounting insert.
  • dispenser in the neck of a bottle and preceding the dropper tip on the expulsion path of the liquid, and a bottle for packaging a liquid to be dispensed drop by drop, comprising such a dispensing head and a liquid storage tank whose peripheral walls are elastically reversible deformation to cause the expulsion of liquid from the tank and allow the suction of outside air to replace the liquid expelled from the tank.
  • the flux regulator buffer not only acts to regulate the flow of liquid pushed out of the reservoir during the compression of the deformable walls, but it also effect on the airflow during the return of the walls to their original state concerning the balancing of the pressures between upstream side and downstream side. Therefore, its presence also contributes to the proper functioning of the valve provided by the invention, when the shutter moves from the closed position to the open position under the effect of the pressure of the liquid pushed out of the bottle and when it is moves from the open position to the closed position under the effect of the depression created upstream, in the bottle, which sucks the outside air.
  • a bottle for packaging a liquid to be dispensed drop by drop is illustrated on the Figures 1 and 1A in the form of a bottle intended more particularly for the packaging of an eye drop.
  • the composition of the latter may advantageously meet a formula devoid of preservative, because of the quality of the antibacterial preservation provided according to the invention.
  • This bottle comprises a receptacle 2 providing inside a liquid storage tank 8, and a liquid dispensing head 4 mounted in a neck 10 of the container at one end of said tank by closing the latter.
  • a removable cap 6 is provided to cover the dispensing head when the user does not use the bottle.
  • the neck 10 has on its outer surface a thread adapted to cooperate with a thread of the removable cap to allow the closure of the bottle.
  • the reservoir 8 comprises a cylindrical peripheral wall with reversible elastic deformation. This allows a distribution of the liquid from a manual compression exerted on the wall by the user, the wall returning spontaneously to its original shape by admission of air after this compression. The return of air to compensate for each drop of liquid expelled is effected in the reverse path of this expulsion through the dispensing head mounted in the neck of the bottle, passing in particular a same central channel for the circulation of air and the circulation of liquid. No other air intake is possible; in particular, there is no pressure equalizing hole through the outer wall of the bottle opening into the liquid reservoir.
  • the drip liquid dispensing head comprises a part internal to the bottle, formed by an insert 12 which is disposed inside the neck 10, and an external part forming a drop delivery nozzle 14 (or tip drops).
  • a flux regulating pad 16 is interposed across the central duct passing through the dispensing head, into the hollow body of the insert 12, while an antibacterial filter membrane 18, also interposed across the central duct, is disposed to the base of the mouthpiece; it is enclosed at its periphery between the insert and the tip.
  • the insert 12 is a mounting bracket for the buffer 16 and the membrane 18, and that it is itself fixed and sealed mounting on the bottle.
  • a peripheral ring 17 which acts as a translation stop stop during assembly by force-fitting the insert inside the neck of the bottle. This is made possible by the slight capacity of elastic deformation of the material constituting the insert.
  • the tightness at the interlocking connection is completed by the presence of circular ring rods 15, called gadroons, formed at the periphery of the insert. These rods are preferably integral with the insert, in the same step of manufacturing by molding. They ensure the sealing of contact with the inner wall of the neck and they ensure the tight fitting of the insert mentioned above.
  • the insert has a generally cylindrical shape and houses in its inner recess the flux regulating pad 16, which is shaped cylindrical wedding that of the recess.
  • the junction between the two parts is tight as explained above, both with respect to the liquid and with respect to the air.
  • the pad 16 is made of a microporous material based on a hydrophobic material, which is in particular in the form of a felt having a polyethylene frame. As a result, it is not impregnated by the liquid that passes through it and it does not tend to retain within it traces of liquid that would clog its pores by closing them to the subsequent air circulation.
  • the membrane may be made of a polymeric material, based for example on polyether sulfone, which is normally hydrophilic but rendered hydrophobic on a only part of the surface of the membrane. It has a mesh size of the order of 0.1 to 0.2 micrometers.
  • the cap 6 is adapted to be screwed in a known manner on the neck of the bottle, and it closes in this screwed position the end of the expulsion channel.
  • the cap 6 is formed of a hollow cylinder closed at one end and having inside the cylinder a central pin 61 projecting from the radial end wall 62.
  • the cap further comprises two concentric chimneys 63 and 64 between the central pin and the peripheral side wall 65.
  • the central pin is intended to cooperate with the terminal orifice of the expulsion channel of the nozzle to close it while the chimneys 63 and 64 are intended to bear against the surfaces external of this nozzle, one bearing radially on the periphery of its slender axial portion, the other bearing axially on the transverse face of its base.
  • the tip 14 is pierced at its center with an axial duct 22 which extends from its base 23 to an expulsion orifice 24 of the liquid, situated at the end of its slender axial portion, in the end wall. upper 25, when we consider the bottle placed vertically.
  • the base of the tip is hollowed on its inner face with grooves 3 which facilitate the drainage of the liquid from the entire surface of the membrane 18 to the expulsion orifice.
  • a peripheral bead 29 is formed at the end of the tip, projecting from the upper end wall outwardly of the tip, around the expulsion orifice.
  • the peripheral bead is used to promote the stall of the drop, more particularly to repeatedly obtain a calibrated drop at each delivery.
  • a central core 30 extends inside the body of the nozzle from the base 23 towards the upper end wall.
  • This core has a shape complementary to that of the axial duct in which it is housed, that is to say a circular section, generally cylindrical or frustoconical. Its outer diameter is adjusted to the inner diameter of the tip body, where it is forced back, so that there can not circulate here air or liquid around him. It is against pierced along its central axis to form the expulsion channel 32 through which the liquid is delivered drop by drop in operation.
  • the axial dimension of the core is smaller than the axial dimension of the central conduit, so that the upper end surface of the core extends away from the upper end wall of the hub when the core is in place in the tip.
  • a spherical cavity 33 is then formed, delimited by the inner surface of the walls of the tip body and by that of its inner core at its upper end.
  • the cavity is arranged on the path of the expulsion channel 32, close to the expulsion orifice 24.
  • the cavity opens upstream on the central channel and downstream on the expulsion orifice, so that the liquid expelled from the bottle by the expulsion channel is passed through this cavity, as well as the air brought to enter the bottle in compensation.
  • the tip is equipped with a ball valve 28 which is constituted at the end of the expulsion channel and which has a ball valve freely movable in the cavity 33. It is observed that the upper end surface of the core 30 has a spherical profile adapted to form a valve seat 36, adapted to cooperate with a spherical ball constituting the movable shutter of the valve, by sealing contact on an annular zone around the mouth of the channel.
  • the shutter of the ball valve has the shape of a real ball of spherical shape which is fully housed in the cavity.
  • This ball is movable in the cavity between two end positions, axially opposite, a first position or closed position of closure in which the ball rests on the valve seat formed by the end surface of the core, the upstream side of the cavity 33, and a second position or open dispensing position in which the ball is in abutment against the upper end wall of the nozzle, the downstream side of the cavity.
  • the shutter of the valve is made of a porous material of hydrophobic nature.
  • the pore diameter is here less than 0.2 microns, allowing anti-bacterial filtration of the air brought to pass through the shutter.
  • it may also be provided, in a variant, to impart to the valve an anti-bacterial treatment by the use of a polymeric material with intrinsic bactericidal effect, as may be especially polymeric materials incorporating silver ions.
  • the ball is adapted to rest on the valve seat 36 formed at the bottom of the cavity (the bottle being considered placed vertically) when no pressure is exerted on the walls with reversible elastic deformation of the container.
  • the valve seat has a curved radius profile adapted to that of the ball so that there is no air passage possible between the ball and the upper end surface of the core when the ball is in support on his seat. This complementarity of the spherical shapes is particularly interesting in the present case of a ball shutter freely movable in any direction in the cavity, without any other solicitation than the effects of fluid pressure.
  • the valve By moving from open position to closed position and vice versa, the valve already ensures by itself, at the level of the dropper tip, the alternation between liquid flow and air flow. The same alternation is ensured by the bifunctional membrane.
  • the valve also has the effect, by the fineness of the chosen porosity, to block the bacteria present in the outside air while allowing the filtered air to pass, just as the bifunctional membrane is made to do further.
  • the ball is adapted to move from a closed position against the seat of the valve to an open position of the liquid expulsion conduit in which the ball abuts against the wall of the valve. upper end of the tip against the expulsion port.
  • the size of the cavity 33 and the dimension of the ball are determined so that the displacement of the ball from one position to the other remains low, just sufficient to perform the valve function, in a compromise advantageous with the need for a quick return of the ball on its seat to close the way to the outside air.
  • Centripetal channels 38 are formed by grooves cut in the wall delimiting the cavity, inside the tip. They are present in the upper half of this cavity, that is to say the half near the expulsion orifice, and they open on the expulsion orifice. In this way, these channels are intended to ensure distribution of the liquid outlet flow all around the valve ball when the ball is positioned in front of the orifice. Due to their small section and the effects of capillarity, they hardly allow air to enter prematurely after being filled with liquid. As illustrated on the figure 3 these channels are angularly distributed over the entire cavity.
  • the constituent elements of the dispensing head are generally made of a plastic material compatible with the application for the preservation of an ophthalmic solution. They are each made of polymer of the family of polyethylenes.
  • the tip incorporates in the mass a polymer carrying ions with bactericidal effect.
  • the latter is chosen to be compatible with the conventional plastic material of the tip. For this reason alone, it is preferably based on polyethylene. It is commercially available in the form of powder or granules or beads, ready to be incorporated into the molding composition of the tip.
  • the bactericidal agent is preferably composed of silver ions, which are carried by the polymer macromolecules.
  • the tip according to the invention is manufactured according to a conventional molding process.
  • the bactericidal agent is present throughout the mass of the tip, and in particular both on its external surface may come into contact with the eyes or the hands of the user, as on its internal surface delimiting its central channel.
  • the central core of the tip is made by a molding process, from the same base material, especially polyethylene, that the body of the tip that surrounds it. Since the valve disposed downstream of the core blocks the return of liquid and provides anti-bacterial filtration on the air return in compensation, it is conceivable not to perform an antibacterial treatment of the core. However, such a treatment can be performed and the nucleus then advantageously comprises a bactericidal agent different from that contained in the body to have effect on the outer surface of the tip.
  • This bactericidal agent is, for example, triclosan, a compound which has a broad anti-bacterial spectrum.
  • the ball is mounted inside the nozzle, inserting it by the base and making it go up through the axial duct.
  • the ball is brought into abutment against the inner face of the upper end wall of the tip.
  • the core is then inserted into the conduit by force engagement.
  • An annular groove (not shown) formed at the base of the core comes opposite a boss (also not shown) complementary shape to the shape of the groove. The two elements cooperate by an elastic latching effect, to ensure a solid retention of the core inside the channel.
  • the cavity of the ball valve is thus formed, delimited by the upper end wall and the side walls of the nozzle and the end surface of the core.
  • the ball is trapped in the cavity, freely movable between the two axially opposite end positions in the path of the central channel where it abuts against the wall of the cavity.
  • the membrane is positioned on the base of the nozzle and the membrane is welded to its periphery, before welding the assembly thus formed to the insert.
  • the vial thus formed is used for the drip distribution of a liquid.
  • the user removes the cap and then presses the walls of the tank to let out the drops of liquid. After use, the cap is put back in place.
  • the cap contributes by its central pin 61 which closes the expulsion orifice to bring and maintain the shutter of the valve against its seat.
  • a dispensing nozzle 114 is substantially similar to the nozzle 14 previously described except that the shape of the valve 128 differs.
  • the ball of the valve is replaced by a pin 40 with a head 42 adapted to be housed in the cavity and a frustoconical portion 44 which cooperates with the outer face of the expulsion orifice.
  • the expulsion orifice has a section different from the section of the orifice of the embodiment described above, with the walls defining this orifice which are bevelled and which are thus adapted to cooperate with the frustoconical portion of the valve.
  • valve 128 (more accurately its movable shutter) is by press fitting through the expulsion orifice until the head is found in the cavity.
  • no core is provided in the mouthpiece, as has been shown in FIG. figure 4 , the expulsion channel being formed directly by a bore in the center of the tip.
  • the cavity 33 is thus formed solely by internal walls of the nozzle, without the presence of a core.
  • the head Since the head has only an abutment role, its shape and dimension are less important than in the embodiment previously described.
  • the ovoid shape of the head represented on the figure 4 makes it easier to press fit into the expulsion orifice, the diameter being sufficient to form a stop against the wall when the head is in the cavity and the head being flattened to reduce the weight of the assembly. It is observed here that the shutter of the valve is linearly guided in its movements, this to its crossing of the wall of the nozzle at the orifice of expulsion.
  • the shutter of the valve moves as before following pressure effects only, an overpressure on the upstream side to eject liquid tending to push it out of its seat, and conversely, the appearance of a suction vacuum l Outside air tends to press the valve into sealed contact against its seat, forcing the air drawn in from outside to pass through the shutter.
  • the closed position is obtained by the contact of the frustoconical portion 44 of the movable shutter on the bevelled walls 126 defining the orifice while the dispensing position is obtained by the contact of the head against the face. internal of the upper end wall of the nozzle, which forms a stop means to move the valve shutter.
  • the valve is also made of a hydrophobic porous material.
  • the porosity fineness is chosen to ensure the bacterial filtration of the outside air entering the bottle, while the hydrophobic nature of the material makes it possible to ensure that the valve in the closed position of the channel can be traversed by the return air flow.
  • the tip also differs in that no bead is provided for the stall and the calibration of the drop. This is the valve shutter in its outer frustoconical portion that provides this function.
  • valve in the expulsion orifice implies a different form of cap, shown in dashed lines on the figure 4 .
  • the cap does not have a central pin.
  • the pressure of the inner chimney against the outer wall of the nozzle on its periphery tends to push the air sucked inwardly of the bottle and to press the shutter against its seat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Closures For Containers (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Nozzles (AREA)
  • Lift Valve (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Coating Apparatus (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Claims (12)

  1. Dosierkopf für Tropfen, der einen Aufsatz (14; 114) aufweist, der von einem Kanal zum Ausstoßen von Flüssigkeit (32) durchbohrt ist, durch den auch die Rückströmung von Luft in umgekehrter Richtung erfolgt, der auf Höhe des Aufsatzes ein Ventil aufweist, das als Rückflussverhinderer funktioniert, indem es den Kanal gegenüber der Flüssigkeitszirkulation verschließt, wobei das Ventil ein Verschlusseinrichtung (34; 40) aufweist, die in einem aufnehmenden Hohlraum (33) zurückgehalten wird, der im Verlauf des Kanals ausgebildet ist, und die in Bezug auf einen Sitz (36; 126) beweglich ist, an dem sie in der Schließstellung der Ventils allein unter der Wirkung der auf sie ausgeübten Druckunterschiede anliegt, dadurch gekennzeichnet, dass die Verschlusseinrichtung so ausgeführt ist, dass sie sich selektiv von der Luft durchqueren lässt, wenn sie an dem Sitz anliegt.
  2. Dosierkopf für Tropfen nach Anspruch 1, dadurch gekennzeichnet, dass die Verschlusseinrichtung des Ventils (34; 40) aus einem porösen Werkstoff mit einer solchen Feinheit ausgeführt ist, dass sie einen antibakteriellen Filter bildet.
  3. Dosierkopf nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Verschlusseinrichtung des Ventils (34; 40) aus einem hydrophoben Werkstoff ausgeführt ist.
  4. Dosierkopf nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Ende des Aufsatzes eine Ausstoßöffnung (24) zum tropfenweisen Ausstoßen von Flüssigkeit aufweist, die von einem Randwulst (29) umgeben ist.
  5. Dosierkopf nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verschlusseinrichtung des Ventils (34; 40) geeignet ist, sich axial in dem Hohlraum (33) zu bewegen.
  6. Dosierkopf nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verschlusseinrichtung des Ventils die Form einer Kugel (34) aufweist, die in Gänze in dem Hohlraum (33) untergebracht ist, in dem sie in alle Richtungen frei beweglich ist.
  7. Dosierkopf nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verschlusseinrichtung des Ventils die Form eines Zapfens (40) aufweist, der einen Kopf (42) aufweist, der in dem Hohlraum (33) untergebracht werden kann, und einen kegelstumpfförmigen Teil (44), der sich außerhalb des Hohlraums erstreckt und mit dem Ende des Ansatzes zusammenwirkt.
  8. Dosierkopf nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zentripetale Nuten (38) in den Wänden des Hohlraums (33) ausgebildet sind, um kapillare Kanäle zu bilden, die die Flüssigkeit durchlassen, wenn die Verschlusseinrichtung in der offenen Stellung der Ventils an die Wand des Hohlraums anschlägt.
  9. Dosierkopf nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine bifunktionale Membran (18), die zum Teil hydrophil und zum Teil hydrophob ist, an der Unterseite des Aufsatzes (14; 114) angebracht ist, wobei die Membran vorzugsweise eine antibakterielle Filterwirkung für die Außenluft hat.
  10. Dosierkopf nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kopf einen Stopfen (16) zur Regelung des Durchflusses umfasst, der im Körper eines dem Aufsatz (14) vorgelagerten Einsatzes (12) auf dem Ausstoßweg der Flüssigkeit untergebracht ist, wobei der Stopfen vorteilhafterweise aus einem hydrophoben Werkstoff ausgeführt ist.
  11. Dosierkopf nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hohlraum zum Zurückhalten des Verschlusseinrichtung zwischen dem freien Ende des mit einer Öffnung zum Ausstoßen der Tropfen durchbohrten Aufsatzes und einem zentralen Kern ausgebildet ist, der den Innenraum des Körpers des Aufsatzes belegt, der axial mit dem Kanal zum Ausstoßen von Flüssigkeit durchbohrt ist.
  12. Fläschchen für eine tropfenweise abzugebende Flüssigkeit, dadurch gekennzeichnet, dass es einen Dosierkopf nach Anspruch 10 und einen Flüssigkeitsaufbewahrungsbehälter (2) aufweist, dessen Umfangswände elastisch reversibel verformbar sind, um das Ausstoßen von Flüssigkeit aus dem Behälter zu begünstigen und das Rückströmen von Luft als Ersatz für die ausgestoßene Flüssigkeit in diesen Behälter zu ermöglichen, wobei der Stopfen (16) eine Regulierung der beim Zusammendrücken der verformbaren Wände aus dem Behälter ausgestoßenen Flüssigkeitsmenge gewährleistet und einen Rückgang der Belastung auf das Zurückströmen von Luft zum Ausgleich der Drücke zwischen dem Innenraum und dem Außenraum des Fläschchens bewirkt.
EP20110755118 2010-07-30 2011-07-28 Dosierkopf für tropfen und entsprechendes fläschchen Active EP2616352B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI201130240T SI2616352T1 (sl) 2010-07-30 2011-07-28 Razdeljevalna glava za dajanje kapljic in pripadajoč vsebnik
PL11755118T PL2616352T3 (pl) 2010-07-30 2011-07-28 Głowica do dozowania płynu kroplami i odpowiedni flakon do konfekcjonowania
CY20141100706T CY1115527T1 (el) 2010-07-30 2014-09-03 Κεφαλη διανομης υγρου σταγδην

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1003233A FR2963329B1 (fr) 2010-07-30 2010-07-30 Tete de distribution d'un liquide goutte a goutte
PCT/IB2011/001741 WO2012014050A2 (fr) 2010-07-30 2011-07-28 Tete de distribution d'un liquide goutte a goutte

Publications (2)

Publication Number Publication Date
EP2616352A2 EP2616352A2 (de) 2013-07-24
EP2616352B1 true EP2616352B1 (de) 2014-06-18

Family

ID=43708893

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110755118 Active EP2616352B1 (de) 2010-07-30 2011-07-28 Dosierkopf für tropfen und entsprechendes fläschchen

Country Status (31)

Country Link
US (1) US8690019B2 (de)
EP (1) EP2616352B1 (de)
JP (1) JP5897568B2 (de)
KR (1) KR101791087B1 (de)
CN (1) CN103038142B (de)
AR (1) AR082421A1 (de)
AU (1) AU2011284419B2 (de)
BR (1) BR112013001352A2 (de)
CA (1) CA2806512C (de)
CL (1) CL2013000276A1 (de)
CO (1) CO6650388A2 (de)
CY (1) CY1115527T1 (de)
DK (1) DK2616352T3 (de)
EA (1) EA022373B1 (de)
EG (1) EG27130A (de)
ES (1) ES2493215T3 (de)
FR (1) FR2963329B1 (de)
HK (1) HK1183467A1 (de)
HR (1) HRP20140758T1 (de)
IL (1) IL224459A (de)
MA (1) MA34486B1 (de)
MX (1) MX2013001193A (de)
PL (1) PL2616352T3 (de)
PT (1) PT2616352E (de)
RS (1) RS53471B (de)
SG (1) SG187245A1 (de)
SI (1) SI2616352T1 (de)
SM (1) SMT201400122B (de)
TW (1) TWI551280B (de)
UA (1) UA107246C2 (de)
WO (1) WO2012014050A2 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2980378B1 (fr) * 2011-09-22 2016-02-26 Rexam Healthcare La Verpillier Dispositif de distribution de liquide sous forme de gouttes
FR2988015B1 (fr) * 2012-03-19 2015-12-11 Rexam Healthcare La Verpillier Dispositif de distribution de liquide muni d'un capuchon amovible
CN102910354B (zh) * 2012-10-23 2017-04-26 孙德善 瓶盖
CN104249851A (zh) * 2013-06-28 2014-12-31 颜晋钦 一种茶叶罐密封盖
FR3018704B1 (fr) * 2014-03-20 2016-03-18 Rexam Healthcare La Verpillier Dispositif de distribution de liquide comprenant un capuchon de protection.
US9604238B2 (en) * 2014-07-03 2017-03-28 Stephen F. C. Geldard Multiple input dip tube
FR3029507B1 (fr) * 2014-12-04 2017-01-13 Karine Courtin Embout de distribution de fluide a proprietes bactericides/bacteriostatiques
WO2017044872A1 (en) 2015-09-09 2017-03-16 Purebacco USA LLC Bottle neck insert
TW201733558A (zh) * 2016-01-06 2017-10-01 賽諾菲阿凡提斯德意志有限公司 藥劑容器及其製造方法
RU168297U1 (ru) * 2016-02-15 2017-01-27 Общество с ограниченной ответственностью "Дубна-Биофарм" Флакон-капельница для жидких лекарственных форм
EP3323753B1 (de) * 2016-11-17 2019-08-07 Aptar Radolfzell GmbH Austragkopf und flüssigkeitsspender mit einem solchen austragkopf
DE102016222682B3 (de) * 2016-11-17 2017-10-05 Aptar Radolfzell Gmbh Austragkopf für einen Flüssigkeitsspender und Flüssigkeitsspender mit einem solchen Austragkopf
KR101985746B1 (ko) 2017-11-13 2019-06-05 김대근 토출 및 오염 방지 기능을 갖는 액상물 용기
CN108357805B (zh) * 2018-03-27 2023-05-12 郭思治 一种能够调节给药量的眼药水药瓶的使用方法
US10932947B2 (en) 2018-04-11 2021-03-02 Paul Enemark Micro drop adapter for dropper bottles
US11872157B2 (en) 2018-04-11 2024-01-16 Nanodropper, Inc. Micro drop adapter for dropper bottles
KR102076658B1 (ko) * 2019-05-31 2020-02-13 임종수 튜브용기 내의 액상 내용물을 방울 형태로 배출시키는 배출장치
USD1017797S1 (en) 2019-09-11 2024-03-12 Nanodropper, Inc. Microdrop dispensing adapter for eye dropper bottle
USD1025353S1 (en) 2019-09-11 2024-04-30 Nanodropper, Inc. Microdrop dispensing adapter for eye dropper bottle
US11679026B2 (en) * 2019-12-10 2023-06-20 Obbjectives, Llc Systems and devices, and methods for replacing an eye dropper tip on an eyedropper bottle with a replacement eyedropper tip
CN110963187A (zh) * 2019-12-31 2020-04-07 上海英宇塑料制品有限公司 一种yyi-00037针式滴管
EP3785545B1 (de) * 2020-05-25 2023-06-07 Serve Sterile PC Produkt mit alkoholfreiem getränk und verfahren zur konservierung des getränks
CN117582335B (zh) * 2024-01-18 2024-04-02 张家港众辉医用塑料科技有限公司 眼药水滴液瓶中的防堵塞无菌滴液头
CN118415813A (zh) * 2024-07-03 2024-08-02 张家港众辉医用塑料科技有限公司 一种阻气式可对残液进行外置处理的无菌滴液瓶

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1762059A (en) * 1927-01-28 1930-06-03 Jones George Sevicke Means for controlling the discharge of liquids from containers
US2168297A (en) * 1937-02-05 1939-08-01 Voke Carl Edward Closure
US2321369A (en) * 1941-01-29 1943-06-08 Dubilier William Dropper
US3149758A (en) * 1961-11-01 1964-09-22 Millipore Filter Corp Combination filter and flow divider for gas and liquid
US3189223A (en) * 1964-05-18 1965-06-15 Halkey Roberts Corp Liquid dispensing device
US3520330A (en) * 1968-03-21 1970-07-14 Acf Ind Inc Porous ball valve or the like
US3826281A (en) * 1969-10-29 1974-07-30 Us Navy Throttling ball valve
US3794213A (en) * 1972-04-17 1974-02-26 G Schwartzman Tube mounted applicator
DE8321798U1 (de) * 1983-07-29 1983-12-01 Mauser-Werke GmbH, 5040 Brühl Verschluss mit Entgasungsventil
US5033647A (en) * 1990-03-09 1991-07-23 Allergan, Inc. Value controlled squeezable fluid dispenser
US5507417A (en) * 1990-09-11 1996-04-16 Webb Garth T Device for storing and dispensing sterile liquids
US5238153A (en) * 1991-02-19 1993-08-24 Pilkington Visioncare Inc. Dispenser for dispersing sterile solutions
DE69411816T2 (de) * 1993-06-25 1998-12-03 Alcon Cusi, S.A., El Masnou, Barcelona Neue Verwendung von polymeren Membranen zum Ausgeben von pharmazeutischen Lösungen, die quarternäre, als Konserviermittel dienende Ammoniumverbindungen enthalten und entsprechender Dosierbehälter
US5611464A (en) * 1995-05-30 1997-03-18 Ciba Geigy Corporation Container for preserving media in the tip of a solution dispenser
US5609759A (en) * 1995-06-02 1997-03-11 Innova Pure Water Inc. Bottle filter cap
WO1998014279A1 (fr) * 1996-10-03 1998-04-09 Pentel Kabushiki Kaisha Recipient d'ejection de liquide
FR2761665B1 (fr) * 1997-04-02 1999-06-25 Sofab Dispositif pour la distribution et le conditionnement de produits liquides steriles
US6286725B1 (en) * 1997-09-19 2001-09-11 Waterfall Company, Inc. Contamination-safe multi-dose dispensing and delivery system for flowable materials
FR2770495B1 (fr) * 1997-11-04 1999-12-24 Transphyto Sa Dispositif de conditionnement pour liquide a distribuer goutte a goutte
FR2816600B1 (fr) * 2000-11-13 2003-03-21 Michel Faurie Dispositif distributeur de liquides goutte a goutte
JP2003081296A (ja) * 2001-09-10 2003-03-19 Katsutoshi Masuda チューブ型容器
DE10217655B4 (de) * 2002-04-19 2004-05-27 Gaplast Gmbh Einwegventil zur Abgabe eines fließfähigen Materials
JP2004083013A (ja) * 2002-06-26 2004-03-18 Katsutoshi Masuda 弁機構
US7140517B2 (en) * 2002-08-20 2006-11-28 Masatoshi Masuda Valve mechanism for tube shaped fluid container
JP4037792B2 (ja) * 2002-09-06 2008-01-23 住友ゴム工業株式会社 容器の逆流防止口栓および容器ならびに注出装置
US6981516B1 (en) * 2002-09-24 2006-01-03 The United States Of America As Represented By The United States Department Of Energy Fail save shut off valve for filtering systems employing candle filters
DE10251803A1 (de) * 2002-11-07 2004-11-11 Luk Fahrzeug-Hydraulik Gmbh & Co Kg Kompressor
JP4321702B2 (ja) * 2003-04-28 2009-08-26 株式会社吉野工業所 注出栓付き容器
JP4405775B2 (ja) * 2003-10-09 2010-01-27 大成化工株式会社 フィルター付き吐出容器
US7427355B2 (en) * 2004-05-14 2008-09-23 Yiu Chau Chau Water treatment unit for bottle or pitcher
DE202004009721U1 (de) * 2004-06-21 2004-08-26 Filtertek B.V. Vorrichtung zur Abgabe von Flüssigkeiten in Form von Tropfen
FR2872137B1 (fr) * 2004-06-24 2009-01-23 Thea Sa Lab Recipient pour le conditionnement d'un liquide a distributeur goutte a goutte, a deformation reversible par admission d'air
FR2897599B1 (fr) * 2006-02-23 2010-08-27 Rexam Pharma Ensemble de conditionnement et de distribution de liquide.
US7758553B2 (en) * 2006-04-03 2010-07-20 Insight Vision Incorporated Drop dispenser for the delivery of uniform droplets of viscous liquids
AU2008331300B2 (en) * 2007-11-29 2014-01-09 Glaxo Group Limited A dispensing device
DE102009048476B3 (de) * 2009-10-07 2010-09-16 Gaplast Gmbh Einwegventil

Also Published As

Publication number Publication date
TW201206405A (en) 2012-02-16
KR101791087B1 (ko) 2017-10-27
EA201390161A1 (ru) 2013-07-30
PL2616352T3 (pl) 2014-12-31
DK2616352T3 (da) 2014-09-08
CA2806512C (fr) 2018-05-22
RS53471B (en) 2014-12-31
PT2616352E (pt) 2014-09-01
WO2012014050A3 (fr) 2012-08-23
FR2963329A1 (fr) 2012-02-03
JP2013533180A (ja) 2013-08-22
IL224459A (en) 2016-09-29
AR082421A1 (es) 2012-12-05
JP5897568B2 (ja) 2016-03-30
UA107246C2 (uk) 2014-12-10
TWI551280B (zh) 2016-10-01
MX2013001193A (es) 2013-02-21
CY1115527T1 (el) 2017-01-04
CL2013000276A1 (es) 2013-05-03
FR2963329B1 (fr) 2013-06-28
AU2011284419B2 (en) 2014-12-18
WO2012014050A2 (fr) 2012-02-02
ES2493215T3 (es) 2014-09-11
US8690019B2 (en) 2014-04-08
EP2616352A2 (de) 2013-07-24
EG27130A (en) 2015-07-29
SMT201400122B (it) 2014-11-10
HRP20140758T1 (hr) 2014-10-24
KR20130099018A (ko) 2013-09-05
HK1183467A1 (en) 2013-12-27
CA2806512A1 (fr) 2012-02-02
SG187245A1 (en) 2013-03-28
CO6650388A2 (es) 2013-04-15
MA34486B1 (fr) 2013-08-01
CN103038142A (zh) 2013-04-10
CN103038142B (zh) 2015-04-01
US20130134186A1 (en) 2013-05-30
EA022373B1 (ru) 2015-12-30
BR112013001352A2 (pt) 2021-03-23
SI2616352T1 (sl) 2014-10-30
AU2011284419A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
EP2616352B1 (de) Dosierkopf für tropfen und entsprechendes fläschchen
EP2321191B1 (de) Flasche zur verpackung einer tropfenweise abzugebenden flüssigkeit mit antibakteriellem schutz
CA2310116C (fr) Dispositif de conditionnement pour liquide a distribuer goutte a goutte
CA2786658C (fr) Flacon de conditionnement d'un liquide a tete de distribution goutte a goutte
CA2248232C (fr) Tete de distribution a reprise d'air amelioree, et ensemble de conditionnement et de distribution equipe d'une telle tete
CA2572048C (fr) Recipient pour le conditionnement d'un liquide a distribuer goutte a goutte, a deformation reversible par admission d'air
CA2428494C (fr) Distributeur de liquides goutte a goutte
EP2879966B1 (de) Tropfenspenderausgabekopf
CA2405042C (fr) Dispositif de conditionnement d'un produit liquide ou en poudre
EP0995976A1 (de) Dosieransatz und ein Behälter mit einem solchen Ansatz
FR2873358A1 (fr) Dispositif de conditionnement et distribution d'un produit avec flacon filtre sterile muni d'un embout
EP0606783A1 (de) Tropfgerät-Ansatzstück
EP4301522A1 (de) Verpackungsvorrichtung mit integriertem belüftungssystem
FR2896775A1 (fr) Dispostif de conservation et de distribution d'un produit dans un recipient muni d'un filtre
BE451799A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130226

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140107

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DEFEMME, ALAIN

Inventor name: MERCIER, FABRICE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LABORATOIRES THEA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 673195

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011007823

Country of ref document: DE

Effective date: 20140731

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20140758

Country of ref document: HR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER AND PARTNER PATENTANWAELTE AG, CH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20140819

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140902

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2493215

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140911

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20140401684

Country of ref document: GR

Effective date: 20140930

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20140758

Country of ref document: HR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20140618

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 17143

Country of ref document: SK

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E009711

Country of ref document: EE

Effective date: 20140904

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011007823

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: EIGERSTRASSE 2 POSTFACH, 3000 BERN 14 (CH)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602011007823

Country of ref document: DE

Representative=s name: BISCHOF & PARTNER RECHTSANWAELTE PARTNERSCHAFT, DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150319

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E022369

Country of ref document: HU

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MK

Payment date: 20170616

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20140758

Country of ref document: HR

Payment date: 20190624

Year of fee payment: 9

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20140758

Country of ref document: HR

Payment date: 20200619

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: LABORATOIRES THEA, FR

Free format text: FORMER OWNER: LABORATOIRES THEA, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SM

Payment date: 20200930

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AL

Payment date: 20200629

Year of fee payment: 10

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20140758

Country of ref document: HR

Payment date: 20210701

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20220629

Year of fee payment: 12

Ref country code: RO

Payment date: 20220624

Year of fee payment: 12

Ref country code: PT

Payment date: 20220620

Year of fee payment: 12

Ref country code: NO

Payment date: 20220621

Year of fee payment: 12

Ref country code: LT

Payment date: 20220629

Year of fee payment: 12

Ref country code: EE

Payment date: 20220629

Year of fee payment: 12

Ref country code: DK

Payment date: 20220623

Year of fee payment: 12

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20140758

Country of ref document: HR

Payment date: 20220708

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20220621

Year of fee payment: 12

Ref country code: LV

Payment date: 20220628

Year of fee payment: 12

Ref country code: GR

Payment date: 20220622

Year of fee payment: 12

Ref country code: FI

Payment date: 20220621

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220726

Year of fee payment: 12

Ref country code: MT

Payment date: 20220621

Year of fee payment: 12

Ref country code: IS

Payment date: 20220620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220705

Year of fee payment: 12

Ref country code: SE

Payment date: 20220728

Year of fee payment: 12

Ref country code: LU

Payment date: 20220728

Year of fee payment: 12

Ref country code: HR

Payment date: 20220708

Year of fee payment: 12

Ref country code: CZ

Payment date: 20220630

Year of fee payment: 12

Ref country code: BG

Payment date: 20220630

Year of fee payment: 12

Ref country code: AT

Payment date: 20220726

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20220620

Year of fee payment: 12

Ref country code: RS

Payment date: 20220714

Year of fee payment: 12

Ref country code: MC

Payment date: 20220727

Year of fee payment: 12

Ref country code: HU

Payment date: 20220625

Year of fee payment: 12

Ref country code: BE

Payment date: 20220727

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220727

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CY

Payment date: 20220617

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20140758

Country of ref document: HR

Effective date: 20230728

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E009711

Country of ref document: EE

Effective date: 20230731

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20230728

Ref country code: DK

Ref legal event code: EBP

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230801

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 17143

Country of ref document: SK

Effective date: 20230728

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 673195

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230728

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230728

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230801

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230728

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230729

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240207

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230728

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230728

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230728

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230728

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240129

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230729

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230729

Ref country code: RS

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230728

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230728

Ref country code: HR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230728

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20240426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240624

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240729

Year of fee payment: 14

Ref country code: IE

Payment date: 20240729

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240724

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240911

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240729

Year of fee payment: 14