EP2611995B1 - Dampfturbinenanlage mit variabler dampfeinspeisung - Google Patents

Dampfturbinenanlage mit variabler dampfeinspeisung Download PDF

Info

Publication number
EP2611995B1
EP2611995B1 EP11771088.9A EP11771088A EP2611995B1 EP 2611995 B1 EP2611995 B1 EP 2611995B1 EP 11771088 A EP11771088 A EP 11771088A EP 2611995 B1 EP2611995 B1 EP 2611995B1
Authority
EP
European Patent Office
Prior art keywords
steam
pressure
feed
inlet
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11771088.9A
Other languages
English (en)
French (fr)
Other versions
EP2611995A1 (de
Inventor
Norbert Pieper
Michael Wechsung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11771088.9A priority Critical patent/EP2611995B1/de
Publication of EP2611995A1 publication Critical patent/EP2611995A1/de
Application granted granted Critical
Publication of EP2611995B1 publication Critical patent/EP2611995B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • F01K23/108Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/18Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbine being of multiple-inlet-pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/18Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbine being of multiple-inlet-pressure type
    • F01K7/20Control means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines

Definitions

  • the invention relates to a steam turbine plant with variable steam feed.
  • Steam turbine plants are usually dimensioned from an economic point of view.
  • steam turbine plants which are used in electrical energy production, is worked to achieve maximum efficiency with very large power units.
  • the efficiency should also be constant over the largest possible power range.
  • it is known to feed a Zudampf, in particular a low-pressure Zudampf, in a medium or low-pressure steam turbine. If the steam turbine is driven, for example, in part-load operation, the Zudampf must be throttled at the feed point, if this is available at constant pressure.
  • WO-A1-2011 / 030285 is a steam turbine plant known with a high pressure, medium pressure and low pressure turbine.
  • the medium-pressure and low-pressure turbines each have a diverting station to be able to vary the amount of steam above the respective turbines.
  • From the DE 102 27 709 A1 is a steam turbine plant with one between high-pressure turbine and medium-pressure or low-pressure turbine arranged reheater known.
  • a check valve is arranged between high-pressure turbine outlet and reheater inlet.
  • a safe and fast startup from the cold state or a load shutdown is made possible by the fact that further provided an overflow, which, bridging the reheater connects the high-pressure exhaust steam line of the high-pressure turbine with the medium-pressure turbine.
  • From the JP 60 166 704 A a steam turbine with a condenser is known in which a circuit is provided to leave the condenser after the shutdown of the steam turbine at low pressure.
  • a control unit is provided, the valves accordingly sets and closes.
  • the invention has for its object to provide a steam turbine plant, in which the above problems are overcome and in particular throttle losses are largely avoided. It is another object of the invention to propose a method for operating the steam turbine plant, in which throttle losses are largely avoided.
  • the Zudampfsammel Arthur is introduced at a Zudampfeinleitstelle the Zudampf effetsabitess in the exhaust steam of the steam turbine and a feed steam device is provided on the steam turbine with a changeover, with the upstream of the Zudampfeinleitstelle the feed steam device is connected to the Zudampf niesabêt and which is switchable such that when the Abdampf réelle is less than a target pressure in the Zudampf niesabterrorism, the Zudampf endeavorsabterrorism is vapor-connected to the feed steam device and is interrupted between the changeover valve and the Zudampfeinleitstelle, and otherwise the feed steam device from the Zudampf effetsabexcellent is disconnected.
  • the changeover valve is switched in the Zudampf founded founded upon by a feed steam via the feed steam device. If the exhaust steam pressure of the steam turbine is equal to or greater than the target value, the feed steam device is separated from the steam exhaust line section and the steam turbine receives no feed steam via the feed steam device.
  • the Zudampf can be introduced via the feed steam device upstream and relaxed in the steam turbine means of Umschaltarmatur.
  • the feed steam device preferably has a plurality of steam feed points at different stages of the steam turbine and the feed steam device can be controlled such that the feed steam is fed in only at that steam feed point at which the pressure at the introduction position within the steam turbine is higher than that of the feed steam itself However, the pressure difference is minimal.
  • the feed steam is thus fed into the steam turbine such that any necessary throttling of the feed steam is dispensable, whereby the steam turbine plant according to the invention is free from unnecessary throttling losses.
  • the feed steam device is preferably controlled such that, starting from the Dampfeinspeisestelle which is formed on a steam side arranged stage of the steam turbine, the feed steam device controls that Dampfeinspeisestelle formed at an adjacent, upstream stage of the steam turbine.
  • the feed steam device is thus formed in this embodiment, to redirect at load reduction of the medium-pressure steam turbine from the controlled at one stage of the medium-pressure steam turbine steam feed to an adjacent, upstream steam feed.
  • the feed steam device is controlled with load increase of the steam turbine such that, starting from a steam feed, which is formed at an upstream stage of the steam turbine, the feed steam device that steam feed point controls, which is formed on an adjacent, steam side arranged stage of the steam turbine.
  • a medium or low pressure steam turbine is preferably provided as a steam consumer of the steam turbine plant.
  • the feed steam device is designed to control the increase in load of the medium-pressure steam turbine from the steam feed point controlled at one stage of the medium-pressure steam turbine to an adjacent, steam feed point arranged downstream.
  • the opening degree characteristic of the switching valve for connecting and disconnecting the feed steam device and / or the opening degree characteristic for connecting and disconnecting the steam pipe section are preferably linear, progressive or degressive.
  • a method for operating the steam turbine plant preferably has the steps of: providing the steam turbine plant; Setting a target pressure for the steam manifold; Switching the changeover valve so that when the exhaust pressure is lower than the target pressure in the Zudampf niesabites, the Zudampf effetsabites is vapor-connected to the feed steam device and is interrupted between the changeover valve and the Zudampfeinleitstelle; or switching the changeover valve so that when the exhaust steam pressure is equal to or higher than the target pressure in the Zudampf niesabterrorism, the feed steam device is separated from the changeover valve and is conveyed to the Zudampfeinleitstelle Zudampf directly from the Zudampf effet effet.
  • the feed steam device preferably has a plurality of steam feed points at different stages of the steam turbine and the feed steam device is controlled such that the feed steam is fed only at the steam feed point at which the pressure difference between the feed position within the steam turbine and the feed steam is minimal is.
  • the feed steam device is preferably controlled such that, starting from the Dampfeinspeisestelle which is formed on a steam side arranged stage of the steam turbine, the feed steam device controls that Dampfeinspeisestelle formed at an adjacent, upstream stage of the steam turbine.
  • the feed steam device When load of the steam turbine, the feed steam device is preferably controlled such that, starting from a steam feed, which is formed at an upstream stage of the steam turbine, the feed steam device controls that steam feed, which is formed on an adjacent, steam side arranged stage of the steam turbine.
  • a steam turbine plant 1 is shown, which is coupled via a waste heat boiler 2 with a gas turbine plant 3.
  • the waste heat boiler 2 comprises a high pressure steam system 4 with a live steam manifold 14, a medium pressure steam system 5 with a medium pressure steam manifold 15, a low pressure steam system 6 with a low pressure steam manifold 16 and a plurality of heat exchangers 7.
  • the heat energy of the hot exhaust gases of the gas turbine plant 3 is discharged by means of the heat exchanger 7 to a respective associated boiler system 8, 9 and 10 for generating steam.
  • the steam generated in the boiler systems 8, 9 and 10 is used to operate a high pressure steam turbine 11, a medium pressure steam turbine 12 and a low pressure steam turbine 13.
  • the high-pressure steam turbine 11 and the medium-pressure steam turbine 12 are each coupled by means of one of the steam manifolds 14 and 15 with the respectively corresponding steam system 4 and 5 respectively.
  • the medium-pressure Zudampfsammeltechnisch 15 further includes a reheater 20, by means of which a medium-pressure steam to increase the efficiency of the steam turbine plant 1 in the waste heat boiler 2 is overheated.
  • the medium-pressure steam is composed of the medium-pressure Zudampf generated in the boiler system 9 and the exhaust steam of the high-pressure steam turbine 11. From the reheater 20, the superheated medium-pressure steam flows via the medium-pressure steam manifold 22 to the medium-pressure steam turbine 12th
  • the low-pressure Zudampf flows from the boiler system 10 to a changeover valve 17.
  • the pressure of Zudampfs in the low-pressure Zudampfsammeltechnisch 16 is presently 4.2 bar.
  • the pressure of the low-pressure Zudampfs is increased such that condensation of sulfurous acid on the heat transfer surfaces of the heat exchanger 7 and thus corroding the heat exchanger surfaces is prevented. This results in the low-pressure steam manifold 16, a pressure of, for example, 8 bar.
  • the low-pressure steam collecting line 16 also has a low-pressure Zudampf niethylcholine 19, on which a Zudampfeinleitstelle 21 is formed. Via the Zudampfeinleitstelle 21 of the low-pressure Zudampf is fed via the low-pressure Zudampf effetsabites 19 with the exhaust steam of the medium-pressure turbine 12.
  • the reversing valve 17 is associated with a control device (not shown) which is set to switch the change-over valve 17 in such a way when the exhaust pressure of the medium-pressure steam turbine 12 falls below a predetermined desired value, for example 4 bar, caused in particular by a partial load operation of the medium-pressure steam turbine 12 in that the exhaust steam flows via the changeover valve 17 to a feed steam device 18. If, for example, the operating state of the medium-pressure steam turbine 12 drops from a full-load operation to a partial-load operation of 60% of the full load, the exhaust-steam pressure also drops accordingly, ie the exhaust-steam pressure drops to 60% of the exhaust-steam pressure at full load.
  • a control device not shown
  • the desired value is undershot and the change-over valve 17 is switched, whereby the spent steam flows to the feed steam device 18, via which it flows as feed steam into the medium-pressure turbine 12.
  • the Zudampf from the pressure level in the low-pressure Zudampfsammeltechnisch 16 is relaxed to the pressure level at the Zudampfeinleitstelle 21 in the medium-pressure turbine 12 and thus energetically utilized.
  • the feed steam device 18 has a plurality of steam feed points (not shown), of which only a maximum of one is activated. That is, the steam is always supplied only at a Dampfeinspeisestelle. In this case, that steam feed point is controlled, at which the pressure of the steam turbine process steam is approximately equal to the pressure of the feed steam. This allows almost unthrottled feeding the feed steam, whereby an additional throttle loss is avoided by throttling. Due to flow losses, the Zudampf after passing the changeover valve 17 at the Dampfeinspeisestelle a slightly lower pressure than in the low pressure Zudampfsammeltechnisch 16, for example, 4 bar.
  • the changeover valve 17 is switched such that the exhaust steam flow flows via the low-pressure Zudampf Obersabites 19 to the low-pressure steam turbine 13.
  • the low-pressure Zudampf nieitstelle 21 of the exhaust steam of the medium-pressure turbine 12 which was previously relaxed to 4 bar
  • the steam of the low pressure Zudampfsammeltechnisch 16 which in this case also has a pressure of 4 bar together and to the low-pressure turbine thirteenth ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

  • Die Erfindung betrifft eine Dampfturbinenanlage mit variabler Dampfeinspeisung.
  • Dampfturbinenanlagen werden in der Regel unter ökonomischen Gesichtspunkten dimensioniert. Insbesondere bei Dampfturbinenanlagen, die in der elektrischen Energieerzeugung eingesetzt werden, wird zum Erreichen höchster Wirkungsgrade mit sehr großen Leistungseinheiten gearbeitet. Der Wirkungsgrad soll zudem über einen möglichst großen Leistungsbereich konstant sein. Dazu ist es bekannt einen Zudampf, insbesondere einen Niederdruck-Zudampf, in eine Mittel- oder NiederdruckDampfturbine einzuspeisen. Wird die Dampfturbine beispielsweise im Teillastbetrieb gefahren, muss der Zudampf an der Einspeisestelle angedrosselt werden, sofern dieser bei konstantem Druck zur Verfügung steht.
  • In kombinierten Gas- und Dampfturbinenanlagen wird Dampf auf mehreren Druckstufen erzeugt, beispielsweise Frischdampf, Mitteldruck-Zudampf und Niederdruck-Zudampf beim Drei-Druck-Prozess. Häufig wird dabei ein Brennstoff mit einem hohen Schwefelgehalt verwendet. Dabei kann es notwendig sein, den Druck des Niederdruck-Zudampfs zu erhöhen, um ein Auskondensieren von schwefliger Säure an den Wärmeübertragerflächen eines Dampferzeugers aufgrund des hohen Schwefelgehalts des Brennstoffs zu verhindern. Im Gegenzug muss der Niederdruck-Zudampf entsprechend an der Einspeisestelle angedrosselt werden. Nachteilig dabei ist, dass mit dem Androsseln des Zudampfs Energie vernichtet wird, also die Fähigkeit des Dampfs abnimmt im Kreisprozess Arbeit zu verrichten, wodurch der Wirkungsgrad des gesamten Dampfkraftprozesses sinkt.
  • Aus der WO-A1-2011/030285 ist eine Dampfturbinenanlage bekannt mit einer Hochdruck-, Mitteldruck- und Niederdruck-Turbine. Die Mitteldruck- und Niederdruck-Turbinen haben jeweils eine Umleitstation um die Dampfmenge über den jeweiligen Turbinen variieren zu können.
  • Aus der DE 102 27 709 A1 ist eine Dampfturbinenanlage mit einem zwischen Hochdruckturbine und Mitteldruck- oder Niederdruckturbine angeordneten Zwischenüberhitzer bekannt. Dabei ist zwischen Hochdruckturbinenaustritt und Zwischenüberhitzereintritt ein Rückschlagventil angeordnet. Ein sicheres und schnelles Hochfahren aus dem kalten Zustand respektive eine Lastabschaltung wird dadurch ermöglicht, dass weiterhin eine Überströmleitung vorgesehen ist, welche, den Zwischenüberhitzer überbrückend, die Hochdruck-Abdampfleitung der Hochdruckturbine mit der Mitteldruckturbine verbindet. Aus der JP 60 166 704 A ist eine Dampfturbine mit einem Kondensator bekannt, bei der eine Schaltung vorhanden ist, den Kondensator nach dem Abfahren der Dampfturbine auf niedrigem Druck zu belassen. Dazu ist ein Steuergerät vorhanden, das Ventile entsprechend setuert un schließt. Es ist eine zum Kondensator führende Dampfsammelleitung vorhanden.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Dampfturbinenanlage zu schaffen, bei der die oben genannten Probleme überwunden sind und insbesondere Drosselverluste weitestgehend vermieden sind. Ferner ist es Aufgabe der Erfindung ein Verfahren zum Betreiben der Dampfturbinenanlage vorzuschlagen, bei dem insbesondere Drosselverluste weitestgehend vermieden werden.
  • Die Aufgabe ist erfindungsgemäß mit einer Dampfturbinenanlage gemäß Anspruch 1 gelöst. Ferner ist die Aufgabe mit einem Verfahren gemäß Anspruch 6 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen beschrieben.
  • Bei einer Dampfturbinenanlage mit einer Dampfturbine und einer einen Zudampfleitungsabschnitt aufweisenden Zudampfsammelleitung zur Versorgung eines Dampfverbrauchers ist die Zudampfsammelleitung an einer Zudampfeinleitstelle des Zudampfleitungsabschnitts in den Abdampfstrom der Dampfturbine eingeleitet und eine Einspeisedampfvorrichtung ist an der Dampfturbine mit einer Umschaltarmatur vorgesehen, mit der stromauf der Zudampfeinleitstelle die Einspeisedampfvorrichtung an den Zudampfleitungsabschnitt angeschlossen ist und die derart umschaltbar ist, dass, wenn der Abdampfdruck kleiner einem Soll-Druck in dem Zudampfleitungsabschnitt ist, der Zudampfleitungsabschnitt mit der Einspeisedampfvorrichtung dampfleitend verbunden und zwischen der Umschaltarmatur und der Zudampfeinleitstelle unterbrochen ist, sowie sonst die Einspeisedampfvorrichtung von dem Zudampfleitungsabschnitt getrennt ist.
  • Erfindungsgemäß wird die Umschaltarmatur bei einem Unterschreiten des Soll-Drucks in dem Zudampfleitungsabschnitt derart geschaltet, dass die Dampfturbine mit einem Einspeisedampf via die Einspeisedampfvorrichtung beaufschlagt wird. Entspricht der Abdampfdruck der Dampfturbine dem Soll-Wert, oder liegt er darüber, ist die Einspeisedampfvorrichtung von dem Zudampfleitungsabschnitt getrennt und die Dampfturbine erhält keinen Einspeisedampf via die Einspeisedampfvorrichtung. Wird die Dampfturbinenanlage in Teillast betrieben, wodurch der Druck im Dampfturbineninneren entsprechend abfällt, oder wird ein stark schwefelhaltiger Brennstoff beim Betrieb einer an die Dampfturbinenanlage gekoppelten Gasturbinenanlage verwendet, wobei der Niederdruckdampfdruck in der Regel erhöht wird, um ein Auskondensieren von schwefliger Säure und somit ein Korrodieren von Bauteilen des Abhitzekessels zu verhindern, kann mittels der Umschaltarmatur der Zudampf über die Einspeisedampfvorrichtung stromauf eingeleitet und in der Dampfturbine entspannt werden.
  • Die Einspeisedampfvorrichtung weist bevorzugt eine Mehrzahl an Dampfeinspeisestellen an unterschiedlichen Stufen der Dampfturbine auf und die Einspeisedampfvorrichtung ist derart ansteuerbar, dass die Einspeisung des Einspeisedampfes nur an derjenigen Dampfeinspeisestelle erfolgt, an der der Druck an der Einleitposition innerhalb der Dampfturbine zwar höher ist als der des Einspeisedampfs selbst, die Druckdifferenz jedoch minimal ist. Der Einspeisedampf wird folglich derart in die Dampfturbine eingespeist, dass eine gegebenenfalls erforderliche Drosselung des Einspeisedampfs entbehrlich ist, wodurch die erfindungsgemäße Dampfturbinenanlage frei von unnötigen Drosselverlusten ist.
  • Bei Lastabsenkung der Dampfturbine ist die Einspeisedampfvorrichtung bevorzugt derart angesteuert, dass ausgehend von der Dampfeinspeisestelle, die an einer abdampfseitig angeordneten Stufe der Dampfturbine ausgebildet ist, die Einspeisedampfvorrichtung diejenige Dampfeinspeisestelle ansteuert, die an einer angrenzenden, stromauf angeordneten Stufe der Dampfturbine ausgebildet ist.
  • Die Einspeisedampfvorrichtung ist bei dieser Ausführungsform also ausgebildet, bei Lastabsenkung der Mitteldruckdampfturbine von der an einer Stufe der Mitteldruckdampfturbine angesteuerten Dampfeinspeisestelle auf eine angrenzende, stromauf angeordnete Dampfeinspeisestelle umzusteuern.
  • Bevorzugtermaßen ist die Einspeisedampfvorrichtung bei Lastzunahme der Dampfturbine derart angesteuert, dass ausgehend von einer Dampfeinspeisestelle, die an einer stromauf angeordneten Stufe der Dampfturbine ausgebildet ist, die Einspeisedampfvorrichtung diejenige Dampfeinspeisestelle ansteuert, die an einer angrenzenden, abdampfseitig angeordneten Stufe der Dampfturbine ausgebildet ist. Als Dampfverbraucher der Dampfturbinenanlage ist bevorzugt eine Mittel- oder Niederdruckdampfturbine vorgesehen.
  • Die Einspeisedampfvorrichtung ist bei dieser Ausführungsform also ausgebildet, bei Lasterhöhung der Mitteldruckdampfturbine von der an einer Stufe der Mitteldruckdampfturbine angesteuerten Dampfeinspeisestelle auf eine angrenzende, stromab angeordnete Dampfeinspeisestelle umzusteuern.
  • Ferner sind bevorzugt die Öffnungsgradkennlinie der Umschaltarmatur für das Verbinden und Trennen der Einspeisedampfvorrichtung und/oder die Öffnungsgradkennlinie für das Verbinden und Trennen des Zudampfleitungsabschnitts linear, progressiv oder degressiv.
  • Ein Verfahren zum Betreiben der Dampfturbinenanlage weist bevorzugt die Schritte auf: Bereitstellen der Dampfturbinenanlage; Festlegen eines Soll-Drucks für die Zudampfsammelleitung; Schalten der Umschaltarmatur so, dass, wenn der Abdampfdruck kleiner dem Soll-Druck in dem Zudampfleitungsabschnitt ist, der Zudampfleitungsabschnitt mit der Einspeisedampfvorrichtung dampfleitend verbunden und zwischen der Umschaltarmatur und der Zudampfeinleitstelle unterbrochen ist; oder Schalten der Umschaltarmatur so, dass, wenn der Abdampfdruck gleich oder größer dem Soll-Druck in dem Zudampfleitungsabschnitt ist, die Einspeisedampfvorrichtung von der Umschaltarmatur getrennt und an die Zudampfeinleitstelle Zudampf direkt von dem Zudampfleitungsabschnitt gefördert wird.
  • Bei dem Verfahren weist ferner bevorzugt die Einspeisedampfvorrichtung eine Mehrzahl an Dampfeinspeisestellen an unterschiedlichen Stufen der Dampfturbine auf und die Einspeisedampfvorrichtung wird derart angesteuert, dass die Einspeisung des Einspeisedampfes nur an derjenigen Dampfeinspeisestelle erfolgt, an der die Druckdifferenz zwischen der Einspeiseposition innerhalb der Dampfturbine und dem Einspeisedampf minimal ist. Dabei wird bei Lastabsenkung der Dampfturbine die Einspeisedampfvorrichtung bevorzugt derart angesteuert, dass ausgehend von der Dampfeinspeisestelle, die an einer abdampfseitig angeordneten Stufe der Dampfturbine ausgebildet ist, die Einspeisedampfvorrichtung diejenige Dampfeinspeisestelle ansteuert, die an einer angrenzenden, stromauf angeordneten Stufe der Dampfturbine ausgebildet ist. Bei Lastzunahme der Dampfturbine wird die Einspeisedampfvorrichtung bevorzugt derart angesteuert, dass ausgehend von einer Dampfeinspeisestelle, die an einer stromauf angeordneten Stufe der Dampfturbine ausgebildet ist, die Einspeisedampfvorrichtung diejenige Dampfeinspeisestelle ansteuert, die an einer angrenzenden, abdampfseitig angeordneten Stufe der Dampfturbine ausgebildet ist.
  • Im Folgenden wird eine bevorzugte Ausführungsform einer erfindungsgemäßen Gas- und Dampfturbinenanlage anhand der beigefügten schematischen Zeichnung erläutert. Es zeigt die Figur eine Gas- und Dampfturbinenanlage mit variabler Dampfeinspeisung.
  • In der Figur ist eine Dampfturbinenanlage 1 gezeigt, die via einen Abhitzekessel 2 mit einer Gasturbinenanlage 3 gekoppelt ist. Der Abhitzekessel 2 umfasst ein Hochdruckdampfsystem 4 mit einer Frischdampfsammelleitung 14, ein Mitteldruckdampfsystem 5 mit einer Mitteldruck-Zudampfsammelleitung 15, ein Niederdruckdampfsystem 6 mit einer Niederdruck-Zudampfsammelleitung 16 sowie mehrere Wärmeübertrager 7.
  • In dem Abhitzekessel 2 wird die Wärmeenergie der heißen Abgase der Gasturbinenanlage 3 mittels der Wärmeübertrager 7 an eine jeweils zugehörige Kesselanlage 8, 9 und 10 zum Erzeugen von Dampf abgegeben. Der in den Kesselanlagen 8, 9 und 10 erzeugte Dampf dient zum Betreiben einer Hochdruckdampfturbine 11, einer Mitteldruckdampfturbine 12 und einer Niederdruckdampfturbine 13.
  • Die Hochdruckdampfturbine 11 und die Mitteldruckdampfturbine 12 sind mittels je einer der Dampfsammelleitungen 14 und 15 mit dem jeweils entsprechenden Dampfsystem 4 bzw. 5 gekoppelt. Die Mitteldruck-Zudampfsammelleitung 15 weist ferner einen Zwischenüberhitzer 20 auf, mittels dem ein Mitteldruck-Dampf zum Erhöhen des Wirkungsgrades der Dampfturbinenanlage 1 im Abhitzekessel 2 überhitzt wird. Der Mitteldruck-Dampf setzt sich zusammen aus dem in der Kesselanlage 9 erzeugten Mitteldruck-Zudampf und dem Abdampf der Hochdruckdampfturbine 11. Von dem Zwischenüberhitzer 20 strömt der überhitzte Mitteldruck-Dampf via die Mitteldruckdampfsammelleitung 22 zur Mitteldruckdampfturbine 12.
  • Via eine Niederdruck-Zudampfsammelleitung 16 strömt der Niederdruck-Zudampf von der Kesselanlage 10 zu einer Umschaltarmatur 17. Der Druck des Zudampfs in der Niederdruck-Zudampfsammelleitung 16 beträgt vorliegend 4,2 bar. Im Falle einer Verwendung eines stark schwefelhaltigen Brennstoffs beim Betrieb der Gasturbinenanlage 3 wird der Druck des Niederdruck-Zudampfs derart erhöht, dass ein Auskondensieren von schwefliger Säure an den Wärmeübertragerflächen der Wärmeübertrager 7 und somit ein Korrodieren der Wärmeübertragerflächen verhindert wird. Dadurch ergibt sich in der Niederdruck-Zudampfsammelleitung 16 ein Druck von beispielsweise 8 bar.
  • Die Niederdruck-Zudampfsammelleitung 16 weist ferner einen Niederdruck-Zudampfleitungsabschnitt 19 auf, an dem eine Zudampfeinleitstelle 21 ausgebildet ist. Via die Zudampfeinleitstelle 21 wird der Niederdruck-Zudampf über den Niederdruck-Zudampfleitungsabschnitt 19 mit dem Abdampf der Mitteldruckturbine 12 eingespeist.
  • Der Umschaltarmatur 17 ist eine (nicht dargestellte) Steuerungseinrichtung zugeordnet, die eingerichtet ist, bei einem Unterschreiten des Abdampfdrucks der Mitteldruckdampfturbine 12 von einem vorgegebenen Soll-Wert, beispielsweise 4 bar, verursacht insbesondere durch einen Teillastbetrieb der Mitteldruckdampfturbine 12, die Umschaltarmatur 17 derart zu schalten, dass der Zudampf via die Umschaltarmatur 17 zu einer Einspeisedampfvorrichtung 18 strömt. Fällt beispielsweise der Betriebszustand der Mitteldruckdampfturbine 12 von einem Volllastbetrieb auf einen Teillastbetrieb von 60% der Volllast, fällt auch der Abdampfdruck entsprechend, d. h. der Abdampfdruck fällt auf 60% des Abdampfdrucks bei Volllast. Dadurch wird der Soll-Wert unterschritten und die Umschaltarmatur 17 wird geschaltet, wodurch der Zudampf zur Einspeisedampfvorrichtung 18 strömt, via die er als Einspeisedampf in die Mitteldruckturbine 12 strömt. Somit wird der Zudampf vom Druckniveau in der Niederdruck-Zudampfsammelleitung 16 auf das Druckniveau an der Zudampfeinleitstelle 21 in der Mitteldruckturbine 12 entspannt und somit energetisch verwertet.
  • Die Einspeisedampfvorrichtung 18 weist eine Mehrzahl an Dampfeinspeisestellen (nicht dargestellt) auf, von denen nur maximal eine angesteuert wird. Das heißt, die Dampfzufuhr erfolgt immer nur an einer Dampfeinspeisestelle. Dabei wird diejenige Dampfeinspeisestelle angesteuert, an der der Druck des Dampfturbinenprozessdampfs in etwa gleich dem Druck des Einspeisedampfs ist. Dies ermöglicht ein nahezu ungedrosseltes Einspeisen des Einspeisedampfs, wodurch ein zusätzlicher Drosselverlust durch Androsseln vermieden ist. Aufgrund von Strömungsverlusten weist der Zudampf nach Passieren der Umschaltarmatur 17 an der Dampfeinspeisestelle einen geringfügig niedrigeren Druck auf, als in der Niederdruck-Zudampfsammelleitung 16, beispielsweise 4 bar.
  • Ist der von der Steuerungseinrichtung gemessene Abdampfdruck über bzw. gleich dem Soll-Wert, wird die Umschaltarmatur 17 derart geschaltet, dass der Zudampfstrom via den Niederdruck-Zudampfleitungsabschnitt 19 zur Niederdruckdampfturbine 13 strömt. In dem Niederdruck-Zudampfleitungsabschnitt 19 strömen dann an der Zudampfeinleitstelle 21 der Abdampf der Mitteldruckturbine 12, der zuvor auf 4 bar entspannt wurde, und der Dampf der Niederdruck-Zudampfsammelleitung 16, der vorliegend ebenfalls einen Druck von 4 bar hat, zusammen und zur Niederdruckturbine 13.

Claims (9)

  1. Dampfturbinenanlage (1) mit einer Mitteldruckdampfturbine (12) woran eine Mitteldruck-Zudampfsammelleitung (15) gekoppelt ist und mit einer weiteren einen Zudampfleitungsabschnitt (19) aufweisenden Zudampfsammelleitung (16) zur Versorgung der Mitteldruckdampfturbine (12) oder einer Niederdruckdampfturbine (13), dadurch gekennzeichnet, dass die Zudampfsammelleitung (16) an einer Zudampfeinleitstelle (21) des Zudampfleitungsabschnitts (19) in den Abdampfstrom der Mitteldruckdampfturbine (12) eingeleitet ist und eine Einspeisedampfvorrichtung (18) mit mindestens eine an einer abdampfseitig angeordneten Stufe der Mitteldruckdampfturbine ausgebildete Dampfeinspeisestelle mit einer Umschaltarmatur (17) vorgesehen ist, mit der stromauf der Zudampfeinleitstelle (21) die Einspeisedampfvorrichtung (18) an den Zudampfleitungsabschnitt (19) angeschlossen ist und die derart umschaltbar ist, dass, wenn der Abdampfdruck kleiner einem Soll-Druck in dem Zudampfleitungsabschnitt (19) ist, der Zudampfleitungsabschnitt (19) mit der Einspeisedampfvorrichtung (18) dampfleitend verbunden und zwischen der Umschaltarmatur (17) und der Zudampfeinleitstelle (21) unterbrochen ist, sowie sonst die Einspeisedampfvorrichtung (18) von dem Zudampfleitungsabschnitt (19) getrennt ist.
  2. Dampfturbinenanlage (1) gemäß Anspruch 1,
    wobei die Einspeisedampfvorrichtung (18) eine Mehrzahl an Dampfeinspeisestellen an unterschiedlichen Stufen der Mitteldruckdampfturbine (12) aufweist und die Einspeisedampfvorrichtung (18) derart ansteuerbar ist, dass die Einspeisung des Einspeisedampfes nur an derjenigen Dampfeinspeisestelle erfolgt, an der die Druckdifferenz zwischen dem Druck an der Einleitposition innerhalb der Mittelddruckdampfturbine (12) und dem Einspeisedampf selbst minimal ist.
  3. Dampfturbinenanlage (1) gemäß Anspruch 2,
    wobei die Einspeisedampfvorrichtung (18) ausgebildet ist, bei Lastabsenkung der Mitteldruckdampfturbine (12) von der an einer Stufe der Mitteldruckdampfturbine (12) angesteuerten Dampfeinspeisestelle auf eine angrenzende, stromauf angeordnete Dampfeinspeisestelle umzusteuern.
  4. Dampfturbinenanlage (1) gemäß Anspruch 2 oder 3,
    wobei die Einspeisedampfvorrichtung (18) ausgebildet ist, bei Lasterhöhung der Mitteldruckdampfturbine (12) von der an einer Stufe der Mitteldruckdampfturbine (12) angesteuerten Dampfeinspeisestelle auf eine angrenzende, stromab angeordnete Dampfeinspeisestelle umzusteuern.
  5. Dampfturbinenanlage (1) gemäß einem der Ansprüche 1 bis 4,
    wobei die Öffnungsgradkennlinie der Umschaltarmatur (17) für das Verbinden und Trennen der Einspeisedampfvorrichtung (18) und/oder die Öffnungsgradkennlinie für das Verbinden und Trennen des Zudampfleitungsabschnitts (19) linear, progressiv oder degressiv sind.
  6. Verfahren zum Betreiben einer Dampfturbinenanlage (1) gemäß einem der Ansprüche 1 bis 5, mit den Schritten:
    - Bereitstellen der Dampfturbinenanlage (1) gemäß einem der Ansprüche 1 bis 5;
    - Festlegen eines Soll-Drucks für die Zudampfsammelleitung (16) ;
    - Schalten der Umschaltarmatur (17) so, dass, wenn der Abdampfdruck kleiner dem Soll-Druck in dem Zudampfleitungsabschnitt (19) ist, der Zudampfleitungsabschnitt (19) mit der Einspeisedampfvorrichtung (18) dampfleitend verbunden und zwischen der Umschaltarmatur (17) und der Zudampfeinleitstelle (21) unterbrochen wird; oder
    - Schalten der Umschaltarmatur (17) so, dass, wenn der Abdampfdruck gleich oder größer dem Soll-Druck in dem Zudampfleitungsabschnitt (19) ist, die Einspeisedampfvorrichtung (18) von der Umschaltarmatur (17) getrennt und an die Zudampfeinleitstelle (21) Zudampf direkt von dem Zudampfleitungsabschnitt (19) gefördert wird.
  7. Verfahren gemäß Anspruch 6,
    wobei die Einspeisedampfvorrichtung (18) eine Mehrzahl an Dampfeinspeisestellen an unterschiedlichen Stufen der Dampfturbine (12) aufweist und die Einspeisedampfvorrichtung (18) derart angesteuert wird, dass die Einspeisung des Einspeisedampfes nur an derjenigen Dampfeinspeisestelle erfolgt, an der die Druckdifferenz zwischen der Einspeiseposition innerhalb der Dampfturbine und dem Einspeisedampf minimal ist.
  8. Verfahren gemäß Anspruch 6 oder 7,
    wobei bei Lastabsenkung der Mitteldruckdampfturbine (12) von der an einer Stufe der Mitteldruckdampfturbine (12) angesteuerten Dampfeinspeisestelle auf eine angrenzende, stromauf angeordnete Dampfeinspeisestelle umgesteuert wird.
  9. Verfahren gemäß einem der Ansprüche 6 bis 8,
    wobei bei Lastzunahme der Dampfturbine (12) von der an einer Stufe der Mitteldruckdampfturbine (12) angesteuerten Dampfeinspeisestelle auf eine angrenzende, stromab angeordnete Dampfeinspeisestelle umgesteuert wird.
EP11771088.9A 2010-10-29 2011-10-12 Dampfturbinenanlage mit variabler dampfeinspeisung Not-in-force EP2611995B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11771088.9A EP2611995B1 (de) 2010-10-29 2011-10-12 Dampfturbinenanlage mit variabler dampfeinspeisung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10189417A EP2447484A1 (de) 2010-10-29 2010-10-29 Dampfturbinenanlage mit variabler Dampfeinspeisung
PCT/EP2011/067811 WO2012055703A1 (de) 2010-10-29 2011-10-12 Dampfturbinenanlage mit variabler dampfeinspeisung
EP11771088.9A EP2611995B1 (de) 2010-10-29 2011-10-12 Dampfturbinenanlage mit variabler dampfeinspeisung

Publications (2)

Publication Number Publication Date
EP2611995A1 EP2611995A1 (de) 2013-07-10
EP2611995B1 true EP2611995B1 (de) 2017-04-26

Family

ID=44860323

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10189417A Withdrawn EP2447484A1 (de) 2010-10-29 2010-10-29 Dampfturbinenanlage mit variabler Dampfeinspeisung
EP11771088.9A Not-in-force EP2611995B1 (de) 2010-10-29 2011-10-12 Dampfturbinenanlage mit variabler dampfeinspeisung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10189417A Withdrawn EP2447484A1 (de) 2010-10-29 2010-10-29 Dampfturbinenanlage mit variabler Dampfeinspeisung

Country Status (5)

Country Link
US (1) US9267394B2 (de)
EP (2) EP2447484A1 (de)
CN (1) CN103201464B (de)
PL (1) PL2611995T3 (de)
WO (1) WO2012055703A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2808501A1 (de) * 2013-05-27 2014-12-03 Siemens Aktiengesellschaft Verfahren zum Betreiben einer GuD-Kraftwerksanlage
WO2015068088A1 (en) * 2013-11-07 2015-05-14 Sasol Technology Proprietary Limited Method and plant for co-generation of heat and power
AP2016009201A0 (en) * 2013-11-07 2016-05-31 Sasol Tech (Proprietary) Ltd Method and plant for co-generation of heat and power
AP2016009199A0 (en) * 2013-11-07 2016-05-31 Sasol Tech Pty Ltd Method and plant for co-generation of heat and power
EP2930320A1 (de) * 2014-04-07 2015-10-14 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Dampfturbine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3342195A (en) * 1964-08-11 1967-09-19 Gen Electric Speed and motive fluid pressure control system for steam turbines
US4156578A (en) * 1977-08-02 1979-05-29 Agar Instrumentation Incorporated Control of centrifugal compressors
US4309873A (en) * 1979-12-19 1982-01-12 General Electric Company Method and flow system for the control of turbine temperatures during bypass operation
US4362013A (en) * 1980-04-04 1982-12-07 Hitachi, Ltd. Method for operating a combined plant
US4448026A (en) * 1981-09-25 1984-05-15 Westinghouse Electric Corp. Turbine high pressure bypass pressure control system
JPS60166704A (ja) * 1984-02-09 1985-08-30 Toshiba Corp 大気放出装置
JPS61226505A (ja) * 1985-03-29 1986-10-08 Toshiba Corp 蒸気タ−ビンの運転方法
SE470068B (sv) * 1991-06-20 1993-11-01 Abb Stal Ab Styrsystem för avtappning/intappning av ånga vid en turbin
DE10227709B4 (de) * 2001-06-25 2011-07-21 Alstom Technology Ltd. Dampfturbinenanlage sowie Verfahren zu deren Betrieb
EP2136037A3 (de) * 2008-06-20 2011-01-05 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben einer Dampfkraftwerksanlage mit Dampfturbine und Prozessdampfverbraucher
US8186935B2 (en) * 2009-01-12 2012-05-29 General Electric Company Steam turbine having exhaust enthalpic condition control and related method
CN201363168Y (zh) * 2009-03-19 2009-12-16 昆明钢铁集团有限责任公司 汽轮机油路控制装置
WO2011030285A1 (en) * 2009-09-09 2011-03-17 Andrew Ochse Method and apparatus for electrical power production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
PL2611995T3 (pl) 2017-09-29
US20130205749A1 (en) 2013-08-15
CN103201464A (zh) 2013-07-10
WO2012055703A1 (de) 2012-05-03
US9267394B2 (en) 2016-02-23
CN103201464B (zh) 2016-02-03
EP2447484A1 (de) 2012-05-02
EP2611995A1 (de) 2013-07-10

Similar Documents

Publication Publication Date Title
EP0439754B1 (de) Verfahren zum Anfahren einer Kombianlage
EP0563553B1 (de) Luftkühlung von Turbinen
DE19736889C1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Gas- und Dampfturbinenanlage zur Durchführung des Verfahrens
EP2480762B1 (de) Kraftwerksanlage mit Überlast-Regelventil
EP2611995B1 (de) Dampfturbinenanlage mit variabler dampfeinspeisung
EP2100010B1 (de) Verfahren zur Steigerung des Dampfmassenstroms einer Hochdruck-Dampfturbine eines Dampfkraftwerks während einer Hoch-Phase des Dampfkraftwerks
EP1866521B1 (de) Verfahren zum starten einer gas- und dampfturbinenanlage
EP2136037A2 (de) Verfahren und Vorrichtung zum Betreiben einer Dampfkraftwerksanlage mit Dampfturbine und Prozessdampfverbraucher
EP2126291A2 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie dafür ausgelegte gas- und dampfturbinenanlage
DE102018123663A1 (de) Brennstoffvorwärmsystem für eine Verbrennungsgasturbine
EP2705225B1 (de) Dampfturbinenanlage und verfahren zum betreiben der dampfturbinenanlage
DE102009026274A1 (de) System und Vorrichtungen zum Vorheizen von Brennstoff in einem Kombizykluskraftwerk
EP2627874A2 (de) Nachrüsten einer heizdampfentnahme bei einer fossil befeuerten kraftwerksanlage
CH702677B1 (de) Kombikraftwerk mit Kombikraftwerksanfahrsystem.
EP3420202B1 (de) Kondensatrezirkulation
DE10155508C5 (de) Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie
EP1286030B1 (de) Gas- und Luftturbinenanlage
EP2556218B1 (de) Verfahren zum schnellen zuschalten eines dampferzeugers
EP2480763B1 (de) Dampfkraftwerk
EP3810907B1 (de) Abgasrezirkulation in gas- und dampfturbinenanlagen
EP2426337A1 (de) Einrichtung zur Brennstoffvorwärmung sowie Verfahren zur Brennstoffvorwärmung
WO2016188671A1 (de) Wasser-dampf-kreislauf einer gas- und dampfturbinenanlage
EP2138677B1 (de) Gas- und Dampfturbinenanlage
WO2015024886A1 (de) Dampfkraftwerk und verfahren zum betrieb eines dampfkraftwerks
DE10124492B4 (de) Verfahren zum Betrieb eines Kombikraftwerkes bei unterschiedlichen Netzanforderungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160205

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 23/10 20060101AFI20161026BHEP

Ipc: F01K 7/20 20060101ALI20161026BHEP

Ipc: F22B 1/18 20060101ALI20161026BHEP

Ipc: F01K 7/18 20060101ALI20161026BHEP

INTG Intention to grant announced

Effective date: 20161122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 888079

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011012122

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170426

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170727

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170826

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011012122

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171219

Year of fee payment: 7

Ref country code: CZ

Payment date: 20171011

Year of fee payment: 7

Ref country code: FR

Payment date: 20171019

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20171002

Year of fee payment: 7

Ref country code: IT

Payment date: 20171025

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180103

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171012

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171012

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171012

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171012

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 888079

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011012122

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190501

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181012

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170426

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426