EP2611995A1 - Dampfturbinenanlage mit variabler dampfeinspeisung - Google Patents
Dampfturbinenanlage mit variabler dampfeinspeisungInfo
- Publication number
- EP2611995A1 EP2611995A1 EP11771088.9A EP11771088A EP2611995A1 EP 2611995 A1 EP2611995 A1 EP 2611995A1 EP 11771088 A EP11771088 A EP 11771088A EP 2611995 A1 EP2611995 A1 EP 2611995A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steam
- steam turbine
- feed
- pressure
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
- F01K23/101—Regulating means specially adapted therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
- F01K23/106—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
- F01K23/108—Regulating means specially adapted therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/16—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
- F01K7/18—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbine being of multiple-inlet-pressure type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/16—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
- F01K7/18—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbine being of multiple-inlet-pressure type
- F01K7/20—Control means specially adapted therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/18—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
- F22B1/1807—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
- F22B1/1815—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
Definitions
- the invention relates to a steam turbine plant with variable steam feed.
- steam is generated at several pressure stages, for example live steam, medium pressure steam and low pressure steam in the three-pressure process. Frequently, this is a fuel with a high
- the invention has for its object to provide a steam turbine ⁇ plant, in which the above-mentioned problems over-. are wounds and in particular throttle losses are largely avoided. It is another object of the invention to propose a method for operating the steam turbine plant, in which throttle losses are largely avoided.
- the steam collecting line at a steam feed inlet point of the steam collecting line section is in the exhaust steam flow
- the Einspeisedampf- device is integrally Schlos ⁇ sen to the Zudampfsammel effetsabites and which is driven in such a switchable, that if the exhaust steam pressure is lower than a target pressure in the Zudampfsammel effetsabites is, the Zudampfsammeltechnischs- section with the feed steam device connected vapor-conducting and is interrupted between the changeover valve and the Zudampfein- leitstelle, and otherwise the feed steam device is separated from the Zudampfsammititungsabites.
- the changeover valve is switched in such a way that the steam turbine is subjected to a feed steam via the feed steam device when the desired pressure in the Zudampfsammel Obersab ⁇ falls below the target pressure. If the exhaust steam pressure of the steam turbine is equal to or higher than the desired value, the feed steam device is separated from the steam manifold line section and the steam turbine receives no feed steam via the feed steam. steam device.
- said low pressure steam ⁇ pressure is usually increased to a condensation of sulfurous acid and thus to prevent corrosion of components of the waste heat boiler can be introduced by means of Umschaltarma ⁇ tur the Zudampf upstream of the feed steam device and relaxed in the steam turbine.
- the feed steam device preferably has a plurality of steam feed parts at different stages of the steam turbine and the feed steam device is controllable such that the feeding of the feed steam takes place only at those Dampfeinspeisesteile at which the pressure at the inlet position within the steam turbine is higher than that of the feed steam itself However, the pressure difference is minimal.
- the feed vapor is thus fed into the steam turbine in such a way that an optionally erforder ⁇ Liche throttling of Einspeisedampfs is unnecessary, whereby the steam turbine plant according to the invention is free from unnecessary throttling losses.
- the feed steam device is preferably controlled such that starting from the Dampfeinspeisesteile, which is formed on a steam side arranged stage of the steam turbine, the Einspeeamampf- device controls that Dampfeinspeisesteile which is formed at an adjacent, upstream stage of the steam turbine.
- said feeder ⁇ steam device at load increase of the steam turbine is so controlled at ⁇ that is, starting from a Dampfeinspeisesteile forming excluded at an upstream arranged stage of the steam turbine, which EinspeisedampfVorides drives that Dampfeinspeisestelle, which exhaust steam to an adjacent-side stage the steam turbine is formed.
- a steam consumer of the steam turbine plant is preferably a medium or low pressure steam turbine provided.
- the opening degree characteristic curve of the switching valve for connecting and disconnecting the feed steam device and / or the opening degree characteristic for connecting and disconnecting the steam collecting line section are preferably linear, pro ⁇ gressive or degressive.
- a method for operating the steam turbine plant preferably has the steps of: providing the steam turbine plant; Setting a desired pressure for the ZudampfSammellei ⁇ tion; Switching the changeover valve so that, when the exhaust pressure is smaller than the target pressure in the Zudampfsull- line section, the Zudampfsammelleitabites is vapor-connected to the feed steam device and is interrupted between the changeover valve and the Zudampfeinleitstelle; or switching the reversing valve so that if the exhaust steam pressure is equal to or greater than the target pressure in the inlet steam header portion, the EinspeisedampfVorrich ⁇ tung separated from the change-over valve and the control center to the Zudampfein- Zudampf conveyed directly from the Zudampfsammel effets
- the method preferably further comprises the Einspeisedampf- device a plurality of Dampfeinspeises former at different stages of the steam turbine and the feeder ⁇ steam device is driven such that the feed-solution of Einspeisedampfes place only at those Dampfeinspeise- takes place at which the pressure difference between the Infeed position within the steam turbine and the feed ⁇ steam is minimal.
- the EinspeisedampfVorraum when the load lowering of the steam turbine, preferably such angesteu ⁇ ert that, starting from the Dampfeinspeisesteile which is formed on an exhaust-mounted stage of the steam turbine from ⁇ that EinspeisedampfVorides drives that Dampfeinspeisestelle attached to an adjacent current ⁇ on arranged step of Steam turbine is formed.
- the feed steam orrich ⁇ tion is preferably controlled such that, starting from a Dampfeinspeisesteile, which is formed at an upstream stage of the steam turbine, the Einlraineddedampf- device controls that Dampfeinspeisestelle formed on an adjacent, steam side arranged stage of the steam turbine ,
- a steam turbine plant 1 is shown, which is coupled via a waste heat boiler 2 with a gas turbine plant 3.
- the waste heat boiler 2 comprises a high-pressure steam system 4 with a live steam collecting line 14, a medium-pressure steam system 5 with a medium-pressure steam feed line 15, a low-pressure steam system 6 with a low-pressure steam feed line 16 and a plurality of heat exchangers 7.
- the heat energy of the hot Ab ⁇ gases of the gas turbine plant 3 is discharged by means of the heat exchanger 7 to a respective associated boiler system 8, 9 and 10 for generating steam.
- the steam generated in the boiler systems 8, 9 and 10 is used for operating a high-pressure steam turbine 11, a medium-pressure steam turbine 12 and a low pressure steam turbine ⁇ . 13
- the high-pressure steam turbine 11 and the medium-pressure steam turbine 12 are each coupled by means of one of the steam collecting lines 14 and 15 to the respectively corresponding steam system 4 or 5.
- the medium-pressure ZudampfSammeltechnisch 15 further includes a reheater 20, by means of which a medium-pressure steam to increase the efficiency of the steam turbine plant 1 in the waste heat boiler 2 is overheated.
- the medium-pressure steam is composed of the generated in the boiler system 9 Medium pressure steam and the exhaust steam of the high pressure steam turbine 11. From the reheater 20, the superheated medium pressure steam flows via the medium pressure steam manifold 22 to the medium pressure steam turbine 12th
- the low-pressure Zudampf from the boiler system 10 flows through a low-pressure ZudampfSammeltechnisch 16 to a changeover valve 17.
- the pressure of the Zudampfs in the low-pressure to ⁇ steam collecting line 16 is presently 4.2 bar.
- the pressure of Nie ⁇ derdruck-Zudampfs is increased such that a condensation of sulfurous acid on the heat exchanger surfaces of the heat exchanger 7 and thus corroding the heat exchanger surfaces is prevented. This results in the low pressure ZudampfSammeltechnisch 16, a pressure of for example 8 bar.
- the low-pressure ZudampfSammeltechnisch 16 also has a low-pressure Zudampfsammel effetsabites 19, on which a Zudampfeinleitstelle 21 is formed.
- the low-pressure Zudampf via the low-pressure Zudampfsammel effetsabites 19 with the exhaust steam of the medium-pressure turbine 12 is fed via the inlet steam inlet 21.
- the reversing valve 17 is a (not shown) Steue ⁇ reasoner assigned which is arranged at a below the Abdampfdrucks the medium-pressure steam turbine 12 from a predetermined desired value, for example 4 bar, caused especially by a partial load operation of with ⁇ telyakdampfturbine 12, the change-over valve 17 to switch so that the Zudampf via the switching valve 17 to a feed steam device 18 flows. For example, falls the operating condition of the medium-pressure steam turbine 12 from a full load operation to a partial load operation of 60% of
- the Abdampfdruck falls accordingly, ie the Abdampfdruck drops to 60% of the exhaust steam pressure at full load.
- the setpoint value is fallen short of and the Umschaltar- matur 17 is switched, whereby the Zudampf flows to the feed steam device 18, via which it flows as feed steam into the medium-pressure turbine 12.
- the Zudampf from the pressure level in the low pressure ZudampfSammel effet 16 is relaxed to the pressure level at the Zudampfeinleitstelle 21 in the central ⁇ pressure turbine 12 and thus energetically utilized.
- the feed steam device 18 has a plurality
- the changeover valve 17 is switched such that the exhaust steam flow flows via the low pressure steam manifold line section 19 to the low pressure steam turbine 13.
- the low pressure Zudampfsammel effetesabites 19 then flow at the Zudampfeinleitstelle 21 of the exhaust steam of the medium-pressure turbine 12, which was previously relaxed to 4 bar, and the steam of the low-pressure ZudampfSammeline 16, which in the present case also has a pressure of 4 bar together and to the low-pressure turbine thirteenth ,
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Control Of Turbines (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11771088.9A EP2611995B1 (de) | 2010-10-29 | 2011-10-12 | Dampfturbinenanlage mit variabler dampfeinspeisung |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10189417A EP2447484A1 (de) | 2010-10-29 | 2010-10-29 | Dampfturbinenanlage mit variabler Dampfeinspeisung |
PCT/EP2011/067811 WO2012055703A1 (de) | 2010-10-29 | 2011-10-12 | Dampfturbinenanlage mit variabler dampfeinspeisung |
EP11771088.9A EP2611995B1 (de) | 2010-10-29 | 2011-10-12 | Dampfturbinenanlage mit variabler dampfeinspeisung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2611995A1 true EP2611995A1 (de) | 2013-07-10 |
EP2611995B1 EP2611995B1 (de) | 2017-04-26 |
Family
ID=44860323
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10189417A Withdrawn EP2447484A1 (de) | 2010-10-29 | 2010-10-29 | Dampfturbinenanlage mit variabler Dampfeinspeisung |
EP11771088.9A Not-in-force EP2611995B1 (de) | 2010-10-29 | 2011-10-12 | Dampfturbinenanlage mit variabler dampfeinspeisung |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10189417A Withdrawn EP2447484A1 (de) | 2010-10-29 | 2010-10-29 | Dampfturbinenanlage mit variabler Dampfeinspeisung |
Country Status (5)
Country | Link |
---|---|
US (1) | US9267394B2 (de) |
EP (2) | EP2447484A1 (de) |
CN (1) | CN103201464B (de) |
PL (1) | PL2611995T3 (de) |
WO (1) | WO2012055703A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2808501A1 (de) * | 2013-05-27 | 2014-12-03 | Siemens Aktiengesellschaft | Verfahren zum Betreiben einer GuD-Kraftwerksanlage |
AU2014347766B2 (en) * | 2013-11-07 | 2018-01-25 | Sasol Technology Proprietary Limited | Method and plant for co-generation of heat and power |
WO2015068086A1 (en) * | 2013-11-07 | 2015-05-14 | Sasol Technology Proprietary Limited | Method and plant for co-generation of heat and power |
CN105874272B (zh) * | 2013-11-07 | 2017-12-15 | 沙索技术有限公司 | 用于热电联产的方法和设备 |
EP2930320A1 (de) * | 2014-04-07 | 2015-10-14 | Siemens Aktiengesellschaft | Verfahren zum Betreiben einer Dampfturbine |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3342195A (en) * | 1964-08-11 | 1967-09-19 | Gen Electric | Speed and motive fluid pressure control system for steam turbines |
US4156578A (en) * | 1977-08-02 | 1979-05-29 | Agar Instrumentation Incorporated | Control of centrifugal compressors |
US4309873A (en) * | 1979-12-19 | 1982-01-12 | General Electric Company | Method and flow system for the control of turbine temperatures during bypass operation |
US4362013A (en) * | 1980-04-04 | 1982-12-07 | Hitachi, Ltd. | Method for operating a combined plant |
US4448026A (en) * | 1981-09-25 | 1984-05-15 | Westinghouse Electric Corp. | Turbine high pressure bypass pressure control system |
JPS60166704A (ja) * | 1984-02-09 | 1985-08-30 | Toshiba Corp | 大気放出装置 |
JPS61226505A (ja) * | 1985-03-29 | 1986-10-08 | Toshiba Corp | 蒸気タ−ビンの運転方法 |
SE470068B (sv) * | 1991-06-20 | 1993-11-01 | Abb Stal Ab | Styrsystem för avtappning/intappning av ånga vid en turbin |
DE10227709B4 (de) * | 2001-06-25 | 2011-07-21 | Alstom Technology Ltd. | Dampfturbinenanlage sowie Verfahren zu deren Betrieb |
EP2136037A3 (de) * | 2008-06-20 | 2011-01-05 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zum Betreiben einer Dampfkraftwerksanlage mit Dampfturbine und Prozessdampfverbraucher |
US8186935B2 (en) * | 2009-01-12 | 2012-05-29 | General Electric Company | Steam turbine having exhaust enthalpic condition control and related method |
CN201363168Y (zh) | 2009-03-19 | 2009-12-16 | 昆明钢铁集团有限责任公司 | 汽轮机油路控制装置 |
WO2011030285A1 (en) * | 2009-09-09 | 2011-03-17 | Andrew Ochse | Method and apparatus for electrical power production |
-
2010
- 2010-10-29 EP EP10189417A patent/EP2447484A1/de not_active Withdrawn
-
2011
- 2011-10-12 PL PL11771088T patent/PL2611995T3/pl unknown
- 2011-10-12 WO PCT/EP2011/067811 patent/WO2012055703A1/de active Application Filing
- 2011-10-12 US US13/879,858 patent/US9267394B2/en not_active Expired - Fee Related
- 2011-10-12 EP EP11771088.9A patent/EP2611995B1/de not_active Not-in-force
- 2011-10-12 CN CN201180052992.7A patent/CN103201464B/zh not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2012055703A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20130205749A1 (en) | 2013-08-15 |
PL2611995T3 (pl) | 2017-09-29 |
EP2447484A1 (de) | 2012-05-02 |
US9267394B2 (en) | 2016-02-23 |
CN103201464B (zh) | 2016-02-03 |
CN103201464A (zh) | 2013-07-10 |
WO2012055703A1 (de) | 2012-05-03 |
EP2611995B1 (de) | 2017-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102010001118B4 (de) | Verfahren zum Betreiben einer Brennkraftmaschine mit einer Dampfkraftanlage | |
EP2603672B1 (de) | Abhitzedampferzeuger | |
DE60312239T2 (de) | Kombikraftwerk und Verfahren zu dessen Betrieb | |
WO2012055703A1 (de) | Dampfturbinenanlage mit variabler dampfeinspeisung | |
WO2009153098A2 (de) | Verfahren und vorrichtung zum betreiben einer dampfkraftwerksanlage mit dampfturbine und prozessdampfverbraucher | |
DE102011000300B4 (de) | System zum Anfahren eines Kombikraftwerks | |
EP1953350A2 (de) | Turbinenschaufel | |
WO2016131920A1 (de) | Dampfkraftwerk und verfahren zu dessen betrieb | |
EP2705225B1 (de) | Dampfturbinenanlage und verfahren zum betreiben der dampfturbinenanlage | |
AT510317A1 (de) | Elektrisches kraftwerk | |
EP2606206A2 (de) | Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine | |
DE102018123663A1 (de) | Brennstoffvorwärmsystem für eine Verbrennungsgasturbine | |
EP2288791A1 (de) | Betrieb einer gas- und dampfturbinenanlage mittels frequenzumrichter | |
EP2616643B1 (de) | Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine | |
EP2556218B1 (de) | Verfahren zum schnellen zuschalten eines dampferzeugers | |
DE10155508C2 (de) | Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie | |
EP3620620A1 (de) | Abgasrezirkulation in gas- und dampfturbinenanlagen | |
WO2016188671A1 (de) | Wasser-dampf-kreislauf einer gas- und dampfturbinenanlage | |
EP3728800B1 (de) | Kraftwerk | |
EP2138677B1 (de) | Gas- und Dampfturbinenanlage | |
DE102010043683A1 (de) | Fossil befeuerter Dampferzeuger | |
EP2805031B1 (de) | Kraftwerk und verfahren zum betreiben einer kraftwerksanlage | |
EP2426337A1 (de) | Einrichtung zur Brennstoffvorwärmung sowie Verfahren zur Brennstoffvorwärmung | |
EP3280884B1 (de) | Verfahren zum abkühlen einer dampfturbine | |
DE10124492B4 (de) | Verfahren zum Betrieb eines Kombikraftwerkes bei unterschiedlichen Netzanforderungen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130404 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20160205 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01K 23/10 20060101AFI20161026BHEP Ipc: F01K 7/20 20060101ALI20161026BHEP Ipc: F22B 1/18 20060101ALI20161026BHEP Ipc: F01K 7/18 20060101ALI20161026BHEP |
|
INTG | Intention to grant announced |
Effective date: 20161122 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 888079 Country of ref document: AT Kind code of ref document: T Effective date: 20170515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011012122 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, CH |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170426 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCOW Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170727 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170826 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011012122 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20171219 Year of fee payment: 7 Ref country code: CZ Payment date: 20171011 Year of fee payment: 7 Ref country code: FR Payment date: 20171019 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20171002 Year of fee payment: 7 Ref country code: IT Payment date: 20171025 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180129 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20180103 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171012 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171012 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171012 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171012 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 888079 Country of ref document: AT Kind code of ref document: T Effective date: 20171012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171012 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502011012122 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190501 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181012 Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170426 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |