EP2627874A2 - Nachrüsten einer heizdampfentnahme bei einer fossil befeuerten kraftwerksanlage - Google Patents

Nachrüsten einer heizdampfentnahme bei einer fossil befeuerten kraftwerksanlage

Info

Publication number
EP2627874A2
EP2627874A2 EP11796646.5A EP11796646A EP2627874A2 EP 2627874 A2 EP2627874 A2 EP 2627874A2 EP 11796646 A EP11796646 A EP 11796646A EP 2627874 A2 EP2627874 A2 EP 2627874A2
Authority
EP
European Patent Office
Prior art keywords
steam
steam turbine
heating
power plant
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11796646.5A
Other languages
English (en)
French (fr)
Inventor
Gerald Stief
Andreas Pickard
Thomas Schneider
Johannes-Werner Wein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2627874A2 publication Critical patent/EP2627874A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/38Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of turbine type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the object of the invention is therefore to specify a method for retrofitting a subsequent vapor extraction from the steam process of a fossil-fueled power plant, which can be realized in a simple and cost-effective manner, and which is also thermodynamically favorable, so that the efficiency Losses due to the additional Dampfentnähme minimized who ⁇ .
  • a heating steam turbine is provided, which is connected to the overflow of the steam turbine.
  • the invention makes it possible to choose a sampling point that is outside the turbine. This makes it possible to retrofit without high initial investment.
  • the use of a back-pressure turbine with sampling points makes it possible to realize the multistage ⁇ -stage heating which is thermodynamically more favorable than a single-stage heating.
  • this concept allows retrofit a subsequent thermodynamic optimization ⁇ tion because the withdrawals are set only with the retrofit.
  • the heating steam extraction from the main process is decoupled by the use of the back pressure steam turbine. Since the back-pressure steam turbine is LOVED ⁇ fert only with the conversion, not taking part must be provided on the main steam turbine. Thus, the retrofitting is possible even in a power plant in which a Schudampfentnähme was not included in the construction. In this case, however, a modification to the low-pressure turbine could be necessary .
  • the steam extraction line is connected to a reheat line.
  • an auxiliary capacitor is connected in parallel to the steam extraction line.
  • the auxiliary capacitor serves to condense the resulting in case of failure or intentional shutdown of Dampfentnähme excess steam in the auxiliary capacitor.
  • FIG. 1 shows a schematic diagram of a steam turbine arrangement with a back-pressure steam turbine according to the invention
  • FIG. 2 shows a schematic diagram of a steam turbine arrangement
  • the steam extraction here serves the district heating supply using two heating capacitors HZ-K.
  • the connection of the district heating system to the gas and steam turbine power plant takes place via the overflow line of the steam turbine.
  • vapor is withdrawn (NAA) and Gelei ⁇ tet via a steam line from the turbine building UMC to the district heating buildings and.
  • the actual district heating system is in the form of 2 x 50% heating condensers.
  • the district heating is carried out in one stage, depending on the required district heating capacity.
  • Maximum two Schuvorierr can transmit 265 MW thermal in the district heating system ⁇ together during normal operation.
  • the district heating system can also be operated with steam from the cold intermediate superheat (KZÜ) (emergency operation with standstill steam turbine).
  • KZÜ cold intermediate superheat
  • the power transmission into the district heating network is thermally limited.
  • the district heating return water to be heated is provided at the transfer point with a pressure of approx. 5-22 bar and flows via the two steam-heated heating preheaters (HzVWl and HzVW2) back into the district heating supply to the district heating consumers.
  • the district heating supply and the district heating return can each be separated from the district heating water network with a motorized flap.
  • Each HzVW can be connected on the inlet side with a manual shut-off flap and on the outlet side with a ner engine flap are shut off individually. They have a common bypass with a motorized valve.
  • the steam for the two HzVW is taken from the overflow line to the low pressure (ND) steam turbine (DT) in a steam turbine operation via a motorized tapping flap.
  • ND low pressure
  • DT steam turbine
  • Two check valves in the line prevent backflow to the DT.
  • a vapor tester monitors compliance with the maximum permitted pressure in this line.
  • MD medium-pressure
  • the DT tap lines are dewatered and warmed via drainage lines with motor-operated shut-off valves to the MAG condenser.
  • the HzVW overall staggers switched on this the bypassing of HzVW is fully open before starting up the district heating
  • the control valves at the outlet of HzVW are CLOSED ⁇ sen and the heat mouse coupling begins by the exit.
  • ⁇ flap opens the HzVWl.
  • the control valve closes controlled to increase the district heating power in repeater. with increasing heat demand the damper is regulated at the outlet of HzVW2 opened and, as previously described in HzVWl, closes at further increasing heat demand the damper in the HzVW-by-pass until the entire amount of overall flow through the HzVW.
  • Dampfprüfstock monitors compliance with the maximum permitted pressure on the low pressure side. When exceeding the value a ⁇ provided the appropriate Umformventil is directly applicable closed. Any leakage of the fitting which could lead to a further increase in pressure, are in each case via a downstream safety valve gelei ⁇ tet.
  • the injection water for steam cooling the Dampfumformsta- tion is taken from the condensate system after the condensate pumps.
  • the injection water lines are equipped with an upstream dirt filter to protect against contamination of the injection control valve.
  • the Kirsab ⁇ section is up to the control valve under certain circumstances secured with a safety valve, so it can not come as a result of heating the trapped condensate to damage.
  • the steam pipes in front of the steam forming stations are heated and dewatered via drainage pipes with motor-operated shut-off valves to the LCM drainage system.
  • the HzVW is shut down in exactly the reverse order of the connection.
  • the condensate in the HzVW geodesically or due to the pressure difference in the main condenser, where it is passed through a main condensate preheater, so as to work more energy efficient.
  • a control valve in the drain line keeps the level in the HzVW constant within the specified limits.
  • the two HzVW remain at 'not in operation be ⁇ sensitive district heating pressurized hot water side, so that evaporation is reliably prevented.
  • On the heating water side both HzVWs are equipped with a safety valve in order to dissipate the expanding heating water during heating and enclosed medium. Valves operated in the vacuum range have a sealed water connection or are equipped with a vacuum-tight spindle.
  • the pulse lines of the level measurements of the HzVW are always kept filled via single-line lines.
  • a safety valve is installed on both HzVWs in order to be able to dissipate the resulting heating water in case of pipe break or leaks.
  • the district heating system according to FIG. 2 has the following tasks:
  • the district heating system consists of the following main components:
  • FIG. 1 shows a steam turbine arrangement with a back-pressure steam turbine according to the invention.
  • the connection of the district heating system to the combined cycle gas turbine plant takes place in the same way as in FIG. 2.
  • steam is taken and directed via a steam line from the machine house UMC to the district heating building UND.
  • the steam from the NM system is directed either only to the steam turbine or additionally to a third heating condenser (HzVW3).
  • District heating is up to three stages depending on the required district heating capacity. Accordingly, depending on requirements, two or even three heating condensers are operated on the steam side. Under each steam turbine discharge there is a heating condenser (HzVWl and HzVW2). Together with maximum steam turbine load, for example, they can heat up 120 MW thermally from the NM
  • the heating capacitor 3 (HzVW 3) is additionally vapor-deposited. This is supplied directly with steam from the NM system.
  • the district heating system can also be operated with steam from the cold intermediate superheat (KZÜ) (emergency operation with standstill steam turbine).
  • KZÜ cold intermediate superheat
  • the power transfer supply to the district heating network to, for example, 220 MW thermally limited.
  • the entire district heating can be transmitted via the HzVW3 in the district heating network.
  • the steam supply to the heating steam turbine is locked and the steam is supplied exclusively to the HzVW3.
  • the district heating system according to FIG. 1 has the following tasks:
  • the district heating system consists of the following main components: - Double-flow heating steam turbine with a max. Terminal Leis ⁇ processing, for example, about 14 MW
  • Heating condensate system including heating condensate pumps
  • the district heating system can be accommodated in a separate building AND.
  • An enlarged district heating building may be required due to the increased space requirement of the heating steam turbine including ancillary units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Nachrüsten einer bestehenden Dampfturbine mit einer Dampfentnahme, wobei die Dampfturbine mehrere Druckstufen umfasst und in eine fossil befeuerte Dampfkraftwerksanlage integrierte ist, wobei eine Dampfentnahmeleitung an einer, oder zwischen zwei Druckstufen der Dampfturbine angeschlossen wird, und in die Dampfentnahmeleitung eine Heizdampfturbine geschaltet wird.

Description

Beschreibung
Nachrüsten einer Heizdampfentnähme bei einer fossil befeuerten Kraftwerksanlage
Bestehende fossil befeuerte Kraftwerksanlagen müssen an sich verändernde Anforderungen angepasst werden. Insbesondere bei Dampfkraftwerken oder kombinierten Gas- und Dampfkraftwerken ist häufig eine Anpassung, insbesondere eine nachträgliche Realisierung der Dampfentnähme aus dem Dampfteil des Kraft¬ werks gefordert. Dieser zusätzlich entnommene Dampf kann als Prozess- oder Heizdampf für interne Prozesse im Kraftwerks- prozess oder zur Versorgung anderer Prozesse außerhalb des eigentlichen Kraftwerksprozesses gefordert werden. Die Ent¬ nahme von Dampf aus dem Dampfturbinenprozess reduziert die noch für den Dampfturbinenprozess zur Verfügung stehende restliche Dampfmenge, die nun keinen Beitrag mehr zur Stro¬ merzeugung leisten kann. Folglich reduziert die Entnahme von Dampf aus dem Dampfturbinenprozess den Wirkungsgrad einer Dampfkraftwerksanlage .
Um bei einer nun vorzunehmenden Dampfentnähme ein thermodyna- misch optimiertes Konzept realisieren zu können, würde sich der Einsatz einer Entnahmeturbine bereits bei der Errichtung der Kraftwerksanlage anbieten. Dieses Konzept würde aber zu einer erhöhten Erstinvestition führen, da sich die Turbine nicht gleichzeitig auf einen Betrieb ohne Entnahme und mit Entnahme optimieren lässt. Die nachträgliche Nachrüstung ei¬ ner Dampfentnähme mit Dampfentnahmemöglichkeit ist oft tech¬ nisch anspruchsvoll und aufwendig und in der Realisierung kostenintensiv. Wird erst durch eine Nachrüstung eine Dampfentnahme realisiert, ist zudem mit großen Wirkungsgradverlus¬ ten zu rechnen.
Die Umrüstung einer bestehenden Dampfturbinenanlage mit einer nachträglichen Dampfentnähme, insbesondere von Niederdruckdampf, kann jedoch sehr aufwendig sein. So kann zum Beispiel das Maschinenhaus für die zusätzliche Verrohrung zur Entnahme des Dampfes nicht ausreichend groß dimensioniert sein, oder die Dampfturbine bzw. der Kraftwerksprozess ist für die Ent¬ nahme von Dampf nicht entsprechen konfiguriert. Bei Dampfturbinen mit getrenntem Gehäuse für die Mittel- und Niederdruck- stufe ist zumindest die Entnahme von Niederdruckdampf an der Überströmleitung auf einfache weise möglich. Hingegen bei Dampfturbinen mit einer eingehäusigen Mittel- und Niederdruckstufe sind nachträgliche Umbauten zur Entnahme der er¬ forderlichen großen Dampfmenge oft nicht realisierbar, wes- halb die Turbine in diesem Fall ausgetauscht werden muss. Auf jeden Fall muss jedoch bei Entnahme von Niederdruckdampf aus der Überströmleitung in den Niederdruckteil, der Niederdruckteil an die geänderte Schluckfähigkeit (Dampfvolumenstrom) angepasst werden.
Die Entnahme von Dampf aus anderen Quellen innerhalb des Kraftwerksprozesses ist oft ebenfalls nicht wirtschaftlich, oder auf geeignete Weise möglich. So führt beispielsweise ei¬ ne Entnahme aus einer Zwischenüberhitzungsleitung der Dampf- turbine ohne weitere aufwendige Maßnahmen zur Schieflast des Kessels. Auch die Entnahme von höherwertigem Dampf für die Kohlendioxid-Abscheidevorrichtung muss ohne weitere Maßnahmen ausgeschlossen werden, da dies zu unvertretbaren Energieverlusten führt.
Ein weiteres Problem, das mit der Nachrüstung einer Dampfentnahme entsteht, ist das bei Wegfall der Dampfentnähme schlag¬ artig der nun nicht benötigte Dampf überschüssig anfällt. Dieser überschüssige Dampf kann nun nicht einfach wieder in den Dampfturbinenprozess zurück geführt werden, da dieser auf einen Betrieb mit Dampfentnähme, also für eine geringere Dampfmenge ausgelegt ist.
Aufgabe der Erfindung ist es daher ein Verfahren zum Nachrüs- ten einer nachträglichen Dampfentnähme aus dem Dampfprozess einer fossil befeuerten Kraftwerksanlage anzugeben, die auf einfache und kostengünstige Weise realisiert werden kann, und zudem thermodynamisch günstig ist, sodass die Wirkungsgrad- Verluste durch die zusätzliche Dampfentnähme minimiert wer¬ den .
Erfindungsgemäß ist die Aufgabe gelöst durch die Merkmale des Anspruchs 1. Erfindungsgemäß ist dazu eine Heizdampfturbine vorgesehen, welche an die Überströmleitung der Dampfturbine angeschlossen ist.
Die Erfindung erlaubt es, einen Entnahmepunkt zu wählen, der außerhalb der Turbine liegt. Damit ist die Nachrüstbarkeit ohne hohe Erstinvestitionen möglich. Der Einsatz einer Gegendruckturbine mit Entnahmepunkten erlaubt es, die mehrstu¬ fige Aufheizung zu realisieren, die thermodynamisch günstiger ist als eine einstufige Aufheizung. Außerdem erlaubt dieses Nachrüstkonzept eine nachträgliche thermodynamische Optimie¬ rung, da die Entnahmen erst mit der Nachrüstung festgelegt werden .
Erfindungsgemäß wird die Heizdampfauskopplung vom Hauptpro- zess durch den Einsatz der Gegendruckdampfturbine entkoppelt. Da die Gegendruckdampfturbine erst mit der Umrüstung gelie¬ fert wird, müssen keine Entnahmesteilen an der Hauptdampfturbine vorgesehen werden. Damit ist die Nachrüstung sogar in einem Kraftwerk möglich, bei dem eine Heizdampfentnähme bei der Errichtung nicht eingeplant wurde. In diesem Fall könnte allerdings eine Modifikation an der Niederdruckturbine not¬ wendig werden.
Vorteilhafterweise wird die Dampfentnahmeleitung an einer Zwischenüberhitzungsleitung angeschlossen. Im Falle eines Ab- schaltens der Dampfentnähme wird der Niederdruckdampf weiterhin aus der Überströmleitung entnommen. Deshalb wird parallel zur Dampfentnahmeleitung ein Hilfskondensator geschaltet. Der Hilfskondensator dient dazu, den bei Ausfall oder gewollter Abschaltung der Dampfentnähme anfallenden überschüssigen Dampf in dem Hilfskondensator zu kondensieren. Nachfolgend werden Ausführungsbeispiele der Erfindung anhand Figuren näher erläutert. Darin zeigt:
FIG 1 Prinzipskizze einer Dampfturbinenanordnung mit einer erfindungsgemäßen Gegendruckdampfturbine,
FIG 2 Prinzipskizze einer Dampfturbinenanordnung mit
Dampfauskopplung aus der Überströmleitung nach dem Stand der Technik.
FIG 2 zeigt eine Dampfturbinenanordnung mit Dampfauskopplung aus der Überströmleitung nach dem Stand der Technik. Die Dampfauskopplung dient hier der Fernwärmeversorgung unter Einsatz von zwei Heizkondensatoren HZ-K. Die Anbindung des Fernwärmesystems an die Gas- und Dampfturbinenkraftwerksanla- geanlage erfolgt über die Überströmleitung der Dampfturbine. Dort wird Dampf (NAA) entnommen und über eine Dampfleitung aus dem Maschinenhaus UMC bis zum Fernwärmegebäude UND gelei¬ tet. Im Fernwärmegebäude UND befindet sich das eigentliche Fernwärmesystem in Form von 2 x 50% Heizkondensatoren. Die Fernwärmeaufwärmung erfolgt je nach erforderlicher Fernwärmeleistung einstufig. Maximal können die beiden Heizvorwärmer zusammen bei Normalbetrieb 265 MW thermisch in das Fernwärme¬ system übertragen.
Alternativ kann das Fernwärmesystem auch mit Dampf aus der kalten Zwischenüberhitzung (KZÜ) betrieben werden (Notbetrieb bei Stillstand Dampfturbine) . Dabei ist die Leistungsübertra¬ gung in das Fernwärmenetz thermisch limitiert.
Das zu erwärmende Fernwärme-Rücklaufwasser wird an der Übergabestelle mit einem Druck von ca. 5-22 bar bereit gestellt und fließt über die zwei dampfbeheizten Heizvorwärmer (HzVWl und HzVW2) zurück in den Fernwärme-Vorlauf zu den Fernwärme- Verbrauchern. Der Fernwärme-Vorlauf und der Fernwärme- Rücklauf können je mit einer motorisierten Klappe vom Fernheizwasser-Netz getrennt werden. Jeder HzVW kann eintritts- seitig mit einer Handabsperrklappe und austrittseitig mit ei- ner Motorklappe einzeln abgesperrt werden. Sie besitzen eine gemeinsame Umführung mit einem motorisierten Ventil.
Der Dampf für die beiden HzVW wird bei Dampfturbinenbetrieb aus der Überströmleitung zur Niederdruck (ND) Dampfturbine (DT) über eine motorisierte Anzapfklappe entnommen. Zwei Rückschlagklappen in der Leitung verhindern Rückströmung zur DT. Ein Dampfprüfstock überwacht die Einhaltung des maximal erlaubten Druckes in dieser Leitung. Bei Überschreiten des eingestellten Wertes wird das Mitteldruck (MD) -DT Schnellschlussventil geschlossen. Die DT-Anzapfleitungen werden über Entwässerungsleitungen mit motorbetriebenen Absperrventilen zum Kondensator MAG entwässert und angewärmt. Um eine energe¬ tisch günstige Fahrweise zu erreichen" werden die HzVW ge- staffelt zugeschaltet: Dazu ist vor der Inbetriebnahme der Fernwärmeauskopplung die Umführung der HzVW vollständig geöffnet. Die Regelklappen am Austritt der HzVW sind geschlos¬ sen und die Wärmemauskopplung beginnt, indem die Austritts¬ klappe des HzVWl öffnet. Nach Erreichen der Offenstellung schließt die Regelklappe in der Umführung geregelt, um die Fernwärmeleistung zu steigern. Bei steigendem Wärmebedarf wird die Regelklappe am Austritt des HzVW2 geregelt geöffnet und, wie zuvor bei HzVWl, schließt bei weiter steigendem Wärmebedarf die Regelklappe in der HzVW-Umführung, bis die ge- samte Menge durch die HzVW fließt. Sind beide HzVW mit ge¬ schlossener Umführung in Betrieb und die Anforderung an den Wärmebedarf steigt weiter an, wird mit Hilfe der Regelklappe in der Überströmleitung zur ND-Turbine der Dampfdruck in beiden HzVW angehoben und damit die Wärmeabgabe geregelt
angehoben. Bei Bypassbetrieb der Dampfturbine wird der Dampf über eine Dampfumformstation aus der KZÜ entnommen. Ein
Dampfprüfstock überwacht die Einhaltung des maximal erlaubten Druckes auf der Niederdruckseite. Bei Überschreiten des ein¬ gestellten Wertes wird das entsprechende Umformventil unmit- telbar geschlossen. Eventuelle Leckagen der Armatur die zu einem weiteren Druckanstieg führen könnten, werden jeweils über ein nach geschaltetes Sicherheitsventil ins Freie gelei¬ tet. Das Einspritzwasser zur Dampfkühlung der Dampfumformsta- tion wird dem Kondensatsystem nach den Kondensatpumpen entnommen. Die Einspritzwasserleitungen sind zum Schutz vor Verunreinigungen der Einspritzregelarmatur mit einem vorgeschalteten Schmutzsieb ausgestattet. Ferner ist der Leitungsab¬ schnitt bis zum Regelventil unter Umständen mit einem Sicherheitsventil abgesichert, damit es nicht infolge, Erwärmung des eingeschlossenen Kondensats zu Schäden kommen kann. Die Dampfleitungen vor den Dampfumformstationen werden über Entwässerungsleitungen mit motorbetriebenen Absperrventilen zum Entwässerungssystem LCM angewärmt und entwässert. Bei geringer werdender Anforderung an die Fernwärmeleistung erfolgt das Abfahren der HzVW in genau umgekehrter Reihenfolge wie das Zuschalten.
Das Kondensat in den HzVW läuft geodätisch bzw. aufgrund der Druckdifferenz in den Hauptkondensator ab, wobei es durch einen Hauptkondensatvorwärmer geleitet wird, um so energieeffizienter zu arbeiten. Ein Regelventil in der Ablaufleitung hält den Füllstand in den HzVW in den vorgegebenen Grenzen konstant. Die beiden HzVW bleiben bei' nicht in Betrieb be¬ findlicher Fernwärme heizwasserseitig druckbeaufschlagt, so dass ein Ausdampfen sicher verhindert wird. Heizwasserseitig sind beide HzVW mit einem Sicherheitsventil ausgestattet um bei Beheizung und eingeschlossenem Medium das sich ausdehnende Heizwasser abzuführen. Armaturen, die im Vakuumbereich betrieben werden, haben einen Sperrwasseranschluss oder sind mit vakuumdichter Spindel ausgeführt. Die Impulsleitungen der Füllstandsmessungen der HzVW werden über Einperlleitungen immer gefüllt gehalten. Auf beiden HzVW ist ein Sicherheitsventil installiert, um bei Rohrbruch oder Leckagen das anfallende Heizwasser abführen zu können.
Das Fernwärmesystem gemäß FIG 2 hat folgende Aufgaben:
- Sicherstellung des Wärmeeintrages in das Fernwärmenetz
- Regelung der Vorlauftemperatur
- Der Massenstrom wird Kraftwerksseitig geregelt
Beispielhafte Prozessparameter - Rücklauftemperatur : 60 - 75°C
- Vorlauftemperatur : 90 - 110°C
- Heizwassermassenstrom: Bis zu 1.400 kg/s
- Fernwärmeleistung: ca. 20 - 265 MW.
Das Fernwärmesystem besteht aus folgenden Hauptkomponenten:
- Zwei 50% Heizvorwärmer
- Heizkondensatsystem ohne Heizkondensatpumpen
- Bedampfung über Dampfturbinenentnahme (NM)
- Bedampfungssystem von Kalter ZU /KZÜ(LBC) incl . Kondensateinspritzkühlung (LCE) .
In FIG 1 ist eine Dampfturbinenanordnung mit einer erfindungsgemäßen Gegendruckdampfturbine dargestellt.
Die Anbindung des Fernwärmesystems an die Gas- und Dampftur- binenkraftwerksanlageanlage erfolgt gleich wie in der FIG 2. Aus der Überströmleitung der Dampfturbine (DT) wird Dampf (NM) entnommen und über eine Dampfleitung aus dem Maschinen- haus UMC bis zum Fernwärmegebäude UND geleitet. Dort befindet sich eine Heizdampfturbine inkl. aller zum Betrieb erforder¬ lichen Nebenaggregate wie z.B. Schmierölsystem, Evakuierungs¬ system und Entwässerungen. Der Dampf aus dem NM System wird entweder nur auf die Dampfturbine geleitet oder zusätzlich auf einen dritten Heizkondensator (HzVW3) . Die Fernwärmeauf- wärmung erfolgt je nach erforderlicher Fernwärmeleistung bis zu dreistufig. Dementsprechend werden je nach Bedarf dampf- seitig zwei oder auch drei Heizkondensatoren betrieben. Unter jeder Dampfturbinenabflut befindet sich ein Heizkondensator (HzVWl und HzVW2) . Diese können zusammen bei maximaler Dampfturbinenlast beispielsweise 120 MW thermisch aus dem NM
DampfSystem in die Fernwärme übertragen. Soll eine erhöhte Dampfleistung von mehr als 120 MW thermisch entkoppelt werden, wird zusätzlich der Heizkondensator 3 (HzVW 3) bedampft. Dieser wird direkt mit Dampf aus dem NM System versorgt. Alternativ kann das Fernwärmesystem auch mit Dampf aus der kalten Zwischenüberhitzung (KZÜ) betrieben werden (Notbetrieb bei Stillstand Dampfturbine) . Dabei ist die Leistungsübertra- gung in das Fernwärmenetz auf beispielsweise 220 MW thermisch limitiert. Bei Stillstand/Ausfall der Heizdampfturbine kann die gesamte Fernwärme über den HzVW3 in das Fernwärmenetz übertragen werden. Dabei wird die Dampfzufuhr zur Heizdampf- turbine verriegelt und der Dampf wird ausschließlich dem HzVW3 zugeführt.
Das Fernwärmesystem gemäß FIG 1 hat folgende Aufgaben:
- Sicherstellung des Wärmeeintrages in das Fernwärmenetz - Regelung der Vorlauftemperatur
- Der Massenstrom wird Kraftwerksseitig geregelt
Beispielhafte Prozessparameter:
- Rücklauftemperatur : 60 - 75°C
- Vorlauftemperatur : 90 - 110°C
- Heizwassermassenstrom: bis zu 1.400 kg/s
- Fernwärmeleistung: ca. 20 - 265 MW.
Das Fernwärmesystem besteht aus folgenden Hauptkomponenten: - Doppelflutige Heizdampfturbine mit einer max . Klemmenleis¬ tung von beispielsweise ca. 14 MW
- 3 Stk. Heizvorwärmer
- Heizkondensatsystem inklusive Heizkondensatpumpen
- Bedampfung über Dampfturbinenentnahme (NM)
- Bedampfungssysteme von Kalter ZU (KZÜ) LBC inkl. Kondensat¬ einspritzkühlung (LCE) .
Das Fernwärmesystem kann in einem separaten Gebäude UND untergebracht werden. Ein vergrößertes Fernwärmegebäude kann aufgrund des erhöhten Platzbedarfs der Heizdampfturbine inkl. Nebenaggregate erforderlich sein.

Claims

Patentansprüche
1. Verfahren zum Nachrüsten einer bestehenden Dampfturbine mit einer Dampfentnähme, wobei die Dampfturbine mehrere Druckstufen umfasst und in eine fossil befeuerte Dampfkraft¬ werksanlage integrierte ist, wobei
a) eine Dampfentnahmeleitung an einer, oder zwischen zwei Druckstufen der Dampfturbine angeschlossen wird, und b) in die Dampfentnahmeleitung eine Heizdampfturbine ge- schaltet wird.
2. Verfahren nach Anspruch 1, wobei die Dampfentnahmeleitung an der heißen Zwischenüberhitzungsleitung der Dampfturbine angeschlossen wird.
3. Verfahren nach Anspruch 1, wobei die Dampfentnahmeleitung an der kalten Zwischenüberhitzungsleitung der Dampfturbine angeschlossen wird.
4. Verfahren nach Anspruch 1, wobei die Dampfentnahmeleitung an der Überströmleitung der Dampfturbine angeschlossen wird.
5. Fossil befeuerte Kraftwerksanlage, die gemäß dem Verfahren nach einem der Ansprüche 1 bis 4 nachgerüstet ist.
EP11796646.5A 2010-12-08 2011-11-28 Nachrüsten einer heizdampfentnahme bei einer fossil befeuerten kraftwerksanlage Withdrawn EP2627874A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010062623A DE102010062623A1 (de) 2010-12-08 2010-12-08 Verfahren zum Nachrüsten einer fossil befeuerten Kraftwerksanlage mit Heizdampfentnahme
PCT/EP2011/071180 WO2012076355A2 (de) 2010-12-08 2011-11-28 Nachrüsten einer heizdampfentnahme bei einer fossil befeuerten kraftwerksanlage

Publications (1)

Publication Number Publication Date
EP2627874A2 true EP2627874A2 (de) 2013-08-21

Family

ID=45349165

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11796646.5A Withdrawn EP2627874A2 (de) 2010-12-08 2011-11-28 Nachrüsten einer heizdampfentnahme bei einer fossil befeuerten kraftwerksanlage

Country Status (7)

Country Link
US (1) US20130247571A1 (de)
EP (1) EP2627874A2 (de)
KR (1) KR20130139326A (de)
CN (1) CN103403303A (de)
DE (1) DE102010062623A1 (de)
RU (1) RU2013130993A (de)
WO (1) WO2012076355A2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014108980A1 (ja) * 2013-01-10 2014-07-17 パナソニック株式会社 ランキンサイクル装置及び熱電併給システム
CN103835778A (zh) * 2014-03-13 2014-06-04 俞述茜 一种发电系统
DK3533976T3 (da) * 2018-03-01 2020-10-19 Siemens Ag Anlæg med ekstraktionskondensationsturbine og ORC-proces
CN108952844A (zh) * 2018-07-13 2018-12-07 哈尔滨汽轮机厂有限责任公司 一种200mw超高压背压式汽轮机
CN109488397B (zh) * 2018-12-27 2023-08-15 大唐贵州发耳发电有限公司 一种凝汽式汽轮机的轴封溢流汽热量回收系统
CN110847977B (zh) * 2019-11-25 2022-05-10 东方电气集团东方汽轮机有限公司 一种适用于干旱地区的高背压供热系统
CN113464225B (zh) * 2021-07-05 2022-06-21 西安交通大学 带两级蒸汽喷射器的电厂宽负荷运行的系统及方法
CN113914948A (zh) * 2021-10-15 2022-01-11 国能龙源蓝天节能技术有限公司上海分公司 一种利用旁路供热实现热电机组深度调峰的系统以及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1007780B (de) * 1955-06-16 1957-05-09 Hellmut Eickemeyer Dipl Ing Dampfturbinenanlage mit Entnahme von Dampf fuer Heizung
DE1233413B (de) * 1955-07-09 1967-02-02 Siemens Ag Im Regenerativ-Verfahren betriebene Dampfkraftanlage mit einer Kondensationsturbine und einer Gegendruckturbine
DE1513037C3 (de) * 1965-09-10 1975-01-30 Siemens Ag, 1000 Berlin Und 8000 Muenchen Dampfkraftanlage zur Versorgung von mindestens zwei elektrischen Netzen
CH635165A5 (de) * 1978-11-09 1983-03-15 Bbc Brown Boveri & Cie Industrie-dampfturbinenanlage.
US4407131A (en) * 1980-08-13 1983-10-04 Battelle Development Corporation Cogeneration energy balancing system
DE4447044C1 (de) * 1994-12-29 1996-04-11 Hans Wonn Verfahren zur Verminderung der Anfahrverluste eines Kraftwerksblockes
CN100494642C (zh) * 2004-08-31 2009-06-03 天津市电力科技发展公司 三低缸三排汽凝汽式汽轮机组热电联产控制方法及装置
EP2305964A1 (de) * 2009-09-23 2011-04-06 Siemens Aktiengesellschaft Dampfkraftwerk
CN102597430A (zh) * 2009-11-02 2012-07-18 西门子公司 具有二氧化碳分离器的燃烧矿物燃料的电厂设备和燃烧矿物燃料电厂设备的运行方法
US9027348B2 (en) * 2009-11-02 2015-05-12 Siemens Aktiengesellschaft Method for retrofitting a fossil-fueled power station with a carbon dioxide separation device
CN102597432A (zh) * 2009-11-02 2012-07-18 西门子公司 具有二氧化碳分离器燃烧矿物燃料的电厂设备和燃烧矿物燃料电厂设备的运行方法
US20110120130A1 (en) * 2009-11-25 2011-05-26 Hitachi, Ltd. Fossil Fuel Combustion Thermal Power System Including Carbon Dioxide Separation and Capture Unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012076355A2 *

Also Published As

Publication number Publication date
RU2013130993A (ru) 2015-01-20
WO2012076355A3 (de) 2013-07-25
US20130247571A1 (en) 2013-09-26
CN103403303A (zh) 2013-11-20
WO2012076355A2 (de) 2012-06-14
KR20130139326A (ko) 2013-12-20
DE102010062623A1 (de) 2012-06-14

Similar Documents

Publication Publication Date Title
EP2627874A2 (de) Nachrüsten einer heizdampfentnahme bei einer fossil befeuerten kraftwerksanlage
EP2480762B1 (de) Kraftwerksanlage mit Überlast-Regelventil
DE102008037410B4 (de) Superkritischen Dampf verwendender kombinierter Kreisprozess und Verfahren
EP2126291B1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie dafür ausgelegte gas- und dampfturbinenanlage
EP0783619A1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage
DE102010042792A1 (de) System zur Erzeugung mechanischer und/oder elektrischer Energie
DE102008029941A1 (de) Dampfkraftanlage und Verfahren zur Regelung der Leistung einer Dampfkraftanlage
EP3006682A1 (de) Vorrichtung und Verfahren für den Betrieb einer Wärmeübergabestation
EP2326800A2 (de) Dampfkraftanlage zur erzeugung elektrischer energie
EP2224104A1 (de) Verfahren zum Betreiben eines Kraftwerks
WO2007071616A2 (de) Kraftwerksanlage
EP2611995B1 (de) Dampfturbinenanlage mit variabler dampfeinspeisung
WO2015135792A1 (de) Regelkonzept zur fernwärmeauskopplung bei einer dampfkraftanlage
EP1870646B1 (de) Verfahren und Vorrichtung zur Rückgewinnung von Kondensationswärme aus einem thermodynamischen Kreisprozess
DE10155508C5 (de) Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie
DE102005034847B4 (de) Dampfkraftwerksanlage
WO2012126727A1 (de) Verfahren zum schnellen zuschalten eines dampferzeugers
EP0060860B1 (de) Ferndampfsystem mit gemeinsamer kondensatrückführung, und verfahren zur kondensatrückführung
WO2018029371A1 (de) Wärmeübertrager zur verwendung in einem warmteil eines flüssigluftenergiespeicherkraftwerks, warmteil und verfahren zum betrieb eines solchen wärmeübertragers in einem solchen warmteil
DE102012108992A1 (de) Verfahren und Vorrichtung zum Betrieb eines luftgekühlten Kondensationsapparates
DE3808006C2 (de)
WO2016188671A1 (de) Wasser-dampf-kreislauf einer gas- und dampfturbinenanlage
EP2426337A1 (de) Einrichtung zur Brennstoffvorwärmung sowie Verfahren zur Brennstoffvorwärmung
EP3365534B1 (de) Verfahren zur speisewasservorwärmung eines dampferzeugers eines kraftwerks und dampfkraftwerk zur durchführung des verfahrens
DE102010056585A1 (de) Anordnung zur Temperaturerhöhung von flüssigem Erdgas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130516

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

R17D Deferred search report published (corrected)

Effective date: 20130725

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140603