EP2581016A1 - Dispositif de traitement de sol de type vertical - Google Patents

Dispositif de traitement de sol de type vertical Download PDF

Info

Publication number
EP2581016A1
EP2581016A1 EP11795362.0A EP11795362A EP2581016A1 EP 2581016 A1 EP2581016 A1 EP 2581016A1 EP 11795362 A EP11795362 A EP 11795362A EP 2581016 A1 EP2581016 A1 EP 2581016A1
Authority
EP
European Patent Office
Prior art keywords
section
floor surface
steering wheel
steering
surface treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11795362.0A
Other languages
German (de)
English (en)
Other versions
EP2581016A4 (fr
Inventor
Hiroshi Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Publication of EP2581016A1 publication Critical patent/EP2581016A1/fr
Publication of EP2581016A4 publication Critical patent/EP2581016A4/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/28Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/28Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle
    • A47L5/30Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle with driven dust-loosening tools, e.g. rotating brushes
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/28Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle
    • A47L5/32Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle with means for connecting a hose
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/36Suction cleaners with hose between nozzle and casing; Suction cleaners for fixing on staircases; Suction cleaners for carrying on the back
    • A47L5/365Suction cleaners with hose between nozzle and casing; Suction cleaners for fixing on staircases; Suction cleaners for carrying on the back of the vertical type, e.g. tank or bucket type
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2852Elements for displacement of the vacuum cleaner or the accessories therefor, e.g. wheels, casters or nozzles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/32Handles
    • A47L9/325Handles for wheeled suction cleaners with steering handle

Definitions

  • the present invention relates to a floor surface treating apparatus such as an upright cleaner, a carpet washing apparatus, or a floor surface washing apparatus.
  • An upright floor surface treating apparatus typically includes a vertical body section at an upper portion thereof, a holding section such as a handle at the upper portion thereof, and a floor surface treating section pivotally mounted to a lower portion of the body section to perform a floor surface treating.
  • wheels or rotary members such as rollers
  • the body section is typically configured to be held in a substantially upright state with respect to the floor surface treating section. Therefore, during non-use, the floor surface treating apparatus can rest in the substantially upright state.
  • the floor surface treating apparatus When the floor surface treating apparatus is carried, the floor surface treating apparatus can be moved on the floor surface by the wheels in a state where the floor surface treating section is upwardly apart from the floor surface by moving down the handle like the use state, while keeping the floor surface treating apparatus in a fixed state.
  • a vacuum cleaner suction cleaner
  • FIG. 14 A conventional general upright cleaner 610 is constructed in such a manner that a handle 614 is located at an upper portion thereof, a cleaner body 611 including a suction motor, a duct collecting section, and others is located at a lower portion thereof, and a suction nozzle 613 including a rotary brush or the like is mounted to the cleaner body 611.
  • This suction nozzle 613 is pivotable around nozzle support shafts (not shown) provided at the lower portion of the cleaner body 611. During use, dusts suctioned by the suction nozzle 613 are immediately collected into the cleaner body 611.
  • the upright cleaner 610 is constructed such that the suction nozzle 613 is directly coupled to the cleaner body 611, it has advantages as follows as compared to a canister cleaner. While the canister cleaner is used in a state in which a cleaner body and a suction nozzle are coupled together by means of a hose, an extension pipe, or the like, the upright cleaner 610 is constructed such that the cleaner body 610 and the suction nozzle 613 have a substantially unitary structure. Because of this, the upright cleaner 610 is superior to the canister cleaner in maneuverability. In addition, in the upright cleaner 610, typically, the suction nozzle 613 includes a rotary brush, which enables the upright cleaner 610 to produce a high duct-collecting capability. Therefore, the upright cleaner 610 is preferably used to clean a carpet, etc..
  • the user may move the suction nozzle 613 via the cleaner body 611 at the lower portion while holding the handle 614 at the upper portion. This enables the user to manipulate the entire upright cleaner 610 merely by substantially holding the handle 614.
  • the user To move the upright cleaner 610 forward and backward, the user has only to move an arm holding the handle 614 forward and backward while walking forward and backward. Thus, its manipulation is relatively easy. However, when changing a direction of the upright cleaner 610, it is not easy to manipulate the upright cleaner 610.
  • the pivot P0 when a pivot around which the upright cleaner 610 is turned is a pivot P0, the pivot P0 is, as shown in Fig. 14 , near a connecting portion at which the cleaner body 611 and the suction nozzle 613 are coupled together.
  • the length L2 is much longer than the length L1.
  • an angle with which the direction of the suction nozzle 613 is changed is a movement angle ⁇ and the degree to which the handle 613 is displaced laterally when the direction of the suction nozzle 613 is changed (direction crossing the direction in which the upright cleaner 610 is moving) is a displacement amount WL.
  • the user cannot realize the displacement amount WL corresponding to the movement angle ⁇ unless the user moves the handle 614 laterally to a great degree as shown in Fig. 14 .
  • the suction nozzle 613 is adapted to suction the floor surface to collect dusts. Therefore, during use of the upright cleaner 610, a negative pressure for suctioning the floor surface is always generated on the lower surface of the suction nozzle 613. This negative pressure might become a resistance to the movement of the suction nozzle 613. If the floor surface is a carpet, the lower surface of the suction nozzle 613 is subjected to a substantial resistance even when the lower surface of the suction nozzle 613 contacts piles of the carpet. In addition to this, when the carpet piles are scraped up with the rotary brush being rotated, the lower surface of the suction nozzle 613 is subjected to a greater resistance.
  • Patent Literature 1 discloses a vacuum cleaner which improves maneuverability.
  • This vacuum cleaner includes a lower base, a cylindrical motor housing rotatably mounted to the lower base, and a universal joint mounted to the motor housing.
  • a handle of the vacuum cleaner by twisting a handle of the vacuum cleaner, an upper body can be twisted in a clockwise direction or in a counterclockwise direction. This twist manipulation can bend the lower base in a rightward direction or in a leftward direction.
  • Patent Literature 2 discloses a surface treating apparatus which improves maneuverability.
  • a vacuum cleaner is illustrated.
  • This vacuum cleaner includes a roller assembly positioned at a base portion of a body, and a link mechanism positioned between a handle and a cleaner head.
  • the link mechanism and the cleaner head are coupled together by means of a pivot shaft around which the cleaner head is pivotable in a rightward direction or in a leftward direction.
  • the link mechanism is configured to turn the cleaner head in a new direction by rotating the roller assembly and the handle around a lengthwise axis of the handle.
  • a vacuum cleaner 510 of Fig. 13A and a vacuum cleaner 520 of Fig. 13B correspond to the vacuum cleaner disclosed in Patent Literature 1 or the surface treating apparatus disclosed in Patent Literature 2, respectively.
  • the vacuum cleaner 510 includes a column-shaped cleaner body 511, a suction nozzle 513 ("lower base” in Patent Literature 1, "cleaner head” in Patent Literature 2) mounted to a lower portion of the cleaner body 511, and is configured such that the suction nozzle 513 is supported on the cleaner body 511 to be pivotable around a nozzle support shaft 517.
  • the vacuum cleaner 520 includes a column-shaped cleaner body 521, a suction nozzle 523 ("lower base” in Patent Literature 1, "cleaner head” in Patent Literature 2) mounted to a lower portion of the cleaner body 521, and is configured such that the suction nozzle 523 is supported on the cleaner body 521 to be pivotable around a nozzle support shaft 527.
  • a direction of the suction nozzle 513, 523 can be changed via the cleaner body 511, 521.
  • the cleaner body 511, 521 extending vertically is pivoted in a rotational direction (to the right or to the left) to a great degree. Therefore, a weight of the cleaner body 511, 521 and a centrifugal force are applied to a hand holding the handle 514, 524.
  • an external force for twisting the handle 514, 524 during changing of the direction, and the associated stress tends to concentrate on a pivot 513a, 523a. Because of this, a portion near the pivot 513a, 523a is required to have a strength which can withstand the external force and the stress. To realize a higher strength, a particular structure or a particular material are required, which might make the configuration of the cleaner complex.
  • the cleaner body 521 and the suction nozzle 523 are coupled together via the roller assembly 522 by means of a support shaft 527 of the link mechanism. For this reason, the external force and the stress tend to concentrate on the link mechanism and the support shaft 527.
  • a suction fan and a motor (suction motor) for actuating the suction fan are accommodated into the roller assembly 522.
  • the roller assembly 522 is coupled to the suction nozzle 523 via the link mechanism. Therefore, for a structural reason, the suction motor cannot be used as a motor for actuating the rotary brush. Because of this, there is a need for a motor for rotating the rotary brush, inside of the suction nozzle 523. That is, in a case where the surface treating apparatus disclosed in Patent Literature 2 is a cleaner, a two-motor configuration is inevitably employed. This makes the configuration of the cleaner more complex.
  • the present invention has been developed to solve the above stated problem, and an object of the present invention is to further improve maneuverability of an upright floor surface treating apparatus while avoiding making its configuration complex.
  • an upright floor surface treating apparatus of the present invention comprises a columnar body section; a floor surface treating section having a lower surface facing a floor surface which is a treated target and mounted to a lower portion of the body section; and a holding section provided at an upper portion of the body section and held by a user; a steering wheel which is provided on the lower portion of the body section in a location at which the steering wheel is able to contact the floor surface and determines a movement direction of the floor surface treating section, according to its angle; and a steering coupling section which is provided in the body section between the holding section and the steering wheel and changes the angle of the steering wheel according to a manipulation of the holding section, independently of the body section and the floor surface treating section.
  • the steering coupling section may include: a rotary shaft rotatably mounted to the body section, the holding section being fastened to an upper end of the rotary shaft; and a rotation transmission section for coupling a lower end of the rotary shaft to the steering wheel to change the angle of the steering wheel according to a rotational position of the rotary shaft.
  • the steering coupling section may include: a wheel angle adjusting section for adjusting the angle of the steering wheel in response to an electric signal received as an input; and an angle adjusting signal generating section for converting a manipulation of the holding section into the electric signal input to the wheel angle adjusting section.
  • the steering wheel may be mounted to the body section in such a manner that an outer peripheral surface of the steering wheel is apart from the floor surface with the body section being in an upright state, while the outer peripheral surface of the steering wheel is in contact with the floor surface with the body section being in a slanted state in which the body section is slanted in a rearward direction in the movement direction, with respect to the upright state.
  • a specific configuration of the upright floor surface treating apparatus of the present invention is not limited. As a typical example, there is a vacuum cleaner.
  • an upright vacuum cleaner 10A includes a body casing section 11, a body dust collecting section 12, a suction nozzle 13, a handle 14, steering wheels 15, a handle shaft 16 and a sub-suction section, and others.
  • the upright vacuum cleaner 10A will be abbreviated as a vacuum cleaner 10A.
  • a block arrow M in Fig. 1 indicates a movement direction of a suction nozzle 13 (vacuum cleaner 10A), a forward direction in the movement direction is a forward direction, while a reverse direction in the movement direction is a rearward (backward) direction.
  • the body casing section 11 and the body dust collecting section 12 constitute a body section of the vacuum cleaner 10A.
  • a front side of the body casing section 11 has a substantially curved surface (not shown) to which the body dust collecting section 12 of a cylindrical shape is mountable.
  • a rear side of body casing section 11 has a substantially flat surface (not shown) of a rectangular shape.
  • a carrying handle 111 is attached to a rear surface of the body casing section 111. A user can carry the vacuum cleaner 1 0A while holding the carrying handle 111.
  • the carrying handle 111 can also be used as a hook for rewinding a power supply code 128, together with a code rewinding hook 112 provided at a rear surface of a lower portion of the handle 14.
  • a hose holding member 113 for holding a suction hose 133 is provided at an upper surface of the body casing section 11.
  • a power supply switch 129 is provided at a rear side of an upper surface of the body casing section 11.
  • the body dust collecting section 12 includes a dust collecting body portion 121 and a dust collecting head portion 122, and an inside thereof is a dust collecting chamber of the vacuum cleaner 10A.
  • the dust collecting body portion 121 has a substantially cylindrical shape.
  • the dust collecting head portion 122 is mounted on an upper portion of the dust collecting body portion 121 via a buckle member 123.
  • a rear lid 125 is openably provided on a lower portion of the dust collecting body portion 121 via a hinge member 124.
  • the body dust collecting section 12 is entirely removably mounted to the body casing section 11.
  • a lower surface of the dust collecting head portion 122 faces an inner space (dust collecting chamber) of the dust collecting body portion 121.
  • a HEPA filter 221 is provided at the lower surface of the dust collecting head portion 122.
  • a pre-filter 222 is provided inside of the dust collecting body portion 121.
  • a lower surface of the dust collecting body portion 121 faces an air exhaust cover 126.
  • a suction motor 223 (indicated by a broken line in Fig. 1 ) is built into a lower portion of the body casing section 11.
  • the air exhaust cover 126 is removably attached to the body casing section 11 by means of a buckle 127 in front of the suction motor 223.
  • An air exhaust filter (not shown) is provided inside of the air exhaust cover 126 to filter air exhausted from the suction motor 223.
  • An air exhaust port 224 is provided on a front surface of the air exhaust cover 126 to exhaust the filtered air.
  • the body dust collecting section 12 is mounted to the body casing section 11, thereby constructing the body section of the vacuum cleaner 10A as described above.
  • the body section has a shape in which a substantially forward half portion (body dust collecting section 12) has a cylindrical shape and a substantially rearward half portion has a rectangular cylinder shape. Therefore, the body section has a column shape in which forward surface is protrusively curved, and a rearward surface is substantially flat.
  • the suction nozzle 13 has a substantially flat plate shape and is provided at a lower portion of the body casing section 11. A rear portion of the suction nozzle 13 is mounted to the lower portion of the body casing section 11 to retain both side surfaces of the lower portion of the body casing section 11.
  • the suction nozzle 13 corresponds to a floor surface treating section (treating head).
  • the floor surface treating section (suction nozzle 13) has a lower surface Su facing a floor surface 100 which is a target of floor surface treating.
  • the suction nozzle 13 is mounted to the lower portion of the body casing section 11 via nozzle support shafts 13a, and is pivotable (swingable) around the nozzle support shafts 13a in a direction indicated by arrow R2 in Fig. 3 . Therefore, the suction nozzle 13 is capable of changing an angle of the lower surface Su with respect to a direction in which the column-shaped body section extends.
  • a part of the configuration of Fig. 1 is omitted to easily explain the configuration of the steering wheels 15 and a steering coupling section 60A as will be described later.
  • a cylindrical rotary brush 131 (indicated by broken line in Figs. 1 and 3 ) is provided inside of a front portion of the suction nozzle 13.
  • the rotary brush 131 is exposed toward the lower surface Su in a location along a direction perpendicular to a movement direction M.
  • a driving mechanism air turbine, not shown
  • the front portion of the suction nozzle 13 has a greater lateral width to allow the rotary brush 131 extending laterally to be provided therein.
  • a front portion lower surface 13b see Fig.
  • a guard section 132 made of an elastic material is provided on a front surface of the suction nozzle 13.
  • the guard section 132 serves to prevent a furniture, a wall, etc., from being damaged when the suction nozzle 13 collides with the furniture, the wall, etc..
  • the suction nozzle 13 is coupled to the body dust collecting section 12 via a suction hose 133.
  • a suction port 114 is provided on a rearward side surface (at a left side in Fig. 2 ) of the body casing section 11.
  • the suction port 114 is connected to the body dust collecting section 12.
  • the suction port 114 is attached with a suction connecting pipe 115.
  • the suction connecting pipe 115 has a L-shape.
  • One end of the suction connecting pipe 115 is mounted to the suction port 114, while the other end thereof is coupled to one end (downstream end in a case where the body dust collecting section 12 is a downstream side) of the suction hose 133.
  • the other end (upstream end) of the suction hose 133 is coupled to a hose connector 136 positioned on a side surface (at a right side in Fig. 2 ) which is at an opposite side of the suction port 114.
  • the hose connector 136 is a member by which a nozzle hose 137 and the suction hose 133 which are coupled to a portion of the extension pipe holder 116 are removably coupled to an extension pipe holder 116.
  • the hose connector 136 can disconnect the nozzle hose 137 and the suction hose 133 from each other.
  • the nozzle hose 137 is connected to a suction opening provided on the lower surface Su of the suction nozzle 13.
  • the suction motor 223 is actuated inside of the body casing section 11.
  • a suctioning force of the suction motor 223 travels from the dust collecting head portion 122, through the HEPA filter 221, the dust collecting body portion 121, the suction port 114, the suction connecting pipe 115, the suction hose 133, the hose connector 136, and the nozzle hose 137, and then reaches the suction opening of the suction nozzle 13, thereby generating the suctioning force in the suction nozzle 13.
  • the hose connector 136 can disconnect the suction nozzle 13 from the nozzle hose 137.
  • a suction extension pipe 134 or a gap nozzle 135 is connectable to the hose connector 136. That is, in a state in which the suction hose 133 is separated from the suction nozzle 13, the suction hose 133 constitutes a sub-suction section different from the suction nozzle 13.
  • the suction extension pipe 134 and the gap nozzle 135 are connectable to the suction hose 133 and therefore constitute a sub-suction section together with the suction hose 133.
  • the suction hose 133 is placed on an upper surface of an arch-shaped hose holding member 113 above the body casing section 11 and held thereon in a stable manner.
  • the suction extension pipe 134 and the gap nozzle 135 are removably attachable to the body casing section 11 via an extension pipe holder 116.
  • the extension pipe holder 116 is mounted to a side surface of the body casing section 11 and has a recess directed in an upward direction with a diameter substantially equal to a diameter of the suction extension pipe 134.
  • the gap nozzle 135 is inserted into the suction extension pipe 134 through one end of the suction extension pipe 134, and the other end of the suction extension pipe 134 in this state is inserted into the recess of the extension pipe holder 116. This allows the suction extension pipe 134 and the gap nozzle 135 to be removably mounted to the side surface of the body casing section 11.
  • the handle 14 is attached to an upper portion of the body casing section 11 via the handle shaft 16.
  • the handle 14 is a holding section to be held by the user, and has an oval-ring-shape conforming in size to an average palm.
  • a code rewinding hook 112 is provided at a rear surface of a lower portion of the handle 14.
  • the code rewinding hook 112 and the carrying handle 111 form a pair.
  • the carrying handle 111 is directed downward, while the code rewinding hook 112 is directed upward.
  • the power supply code 128 is rewound around a rear surface of the body casing section 11 and held therein.
  • the steering wheels 15 are attached to the lower portion of the body casing section 11 in addition to the suction nozzle 13. During use, the steering wheels 15 are located substantially below the nozzle support shafts 13a, and their outer peripheral surfaces contact the floor surface 100. On the other hand, during non-use, as shown in Fig. 3 , the outer peripheral surfaces of the steering wheels 15 are apart from the floor surface 100. The steering wheels 15 serve to determine the movement direction M of the suction nozzle 13. As will be described later, the angles of the steering wheels 15 are changed by the user's manipulation of the handle 14 while holding the handle 14.
  • two steering wheels 15 are provided at both sides of the lower portion of the body casing section 11.
  • the two steering wheels 15 have a positional relationship so as to form a pair along the direction perpendicular to movement direction M.
  • the two steering wheels 15 are attached to the lower portion of the body casing section 11 in obliquely rearward location relative to the nozzle support shafts 13a.
  • the steering wheels 15 are coupled to the handle 14 via a handle shaft 16, a steering wheel adjustment shaft 161 (broken line in Fig. 3 ), and others.
  • a handle shaft 16 As indicated by arrow R1 in Fig. 3 , the handle shaft 16 and the steering wheel adjustment shaft 161 are rotatably attached to the body casing section 11.
  • the handle shaft 16 is exposed above the body casing section 11.
  • the steering wheel adjustment shaft 161 is disposed inside of the body casing section 11.
  • the handle 14, the handle shaft 16 and the steering wheel adjustment shaft 161 form a unitary structure.
  • the handle shaft 16 and the steering wheel adjustment shaft 161 are rotated according to a position change of the handle 14 which is caused by the rotation of the handle 14.
  • the rotation of the handle shaft 16 and the steering wheel adjustment shaft 161 is transmitted to the steering wheels 15, which causes the angles of the steering wheels 15 to be changed. That is, the handle shaft 16 and the steering wheel adjustment shaft 161 constitute a steering coupling section 60A for changing the angles of the steering wheels 15 according to the manipulation of the handle 14.
  • the steering wheels 15 are provided with cover members 151 covering the steering wheels 15, respectively, from above.
  • Stoppers 152 pick-like stoppers 152 ahead of the cover members 151 are provided at front portions of the cover members 151, respectively.
  • the stoppers 152 are plate-shaped portions extending forward relative to the cover members 151, respectively.
  • Each cover member 151 not only covers the steering wheel 15 from above but also supports a rolling shaft 153 of the steering wheel 15.
  • a wheel support shaft 154 is rotatably attached to an upper portion of the cover member 151 such that the wheel support shaft 154 is rotatable with respect to the body casing section 11.
  • the wheel support shaft 154 extends in a direction substantially conforming to a straight line connecting the nozzle support shaft 13a to the rolling shaft 153. Since the steering wheel 15 is rotatably attached to the body casing section 11 via the wheel support shaft 154 and the cover member 151, the angle of the steering wheel 15 with respect to the body casing section 11 can be changed.
  • the body section includes the body casing section 11 and the body dust collecting section 12 which are separable from each other, they may have a unitary structure.
  • the body section has a columnar shape in which its front surface is a substantially curved surface and its rear surface is a substantially flat surface, the shape of the body section is not limited to this.
  • the body section may have a substantially rectangular cylinder shape, but may have a columnar shape in which its cross-section decreases in size gradually in an upward direction.
  • the body section may be provided with a recess or a convex portion on a side surface thereof so long as it entirely has a columnar shape.
  • the suction nozzle 13 has a substantially flat plate shape
  • the shape of the suction nozzle 13 is not limited to this.
  • the suction nozzle 13 may have a semi-spherical shape, a casing shape, etc., so long as it has the lower surface Su.
  • the handle 14 is provided as a holding section, the shape of the holding section is not limited to this, but a known holding section other than the handle 14 may be used.
  • the suction motor 223 and a suction fan (not shown) rotated by the suction motor 223 are provided inside of the body section (specifically body casing section 11), and the rotary brush 131 is provided inside of the suction nozzle 13.
  • a rotary shaft of the suction motor 223 may extend from the nozzle support shafts 13a supporting the suction nozzle 13 toward the suction nozzle 13, and may be coupled to the rotary brush 131 by means of a belt, or the like.
  • the suction fan and the rotary brush 131 can be actuated by the suction motor 223, and therefore, the single suction motor 223 can be used as driving sources for the suction fan and the rotary brush 131. This makes it possible to simplify the configuration of the vacuum cleaner 10A.
  • a specific configuration of the nozzle support shafts 13a for supporting the suction nozzle 13 on the body section is not particularly limited to this.
  • the suction nozzle 13 is pivotally supported on the body section by means of a pair of right and left nozzle support shafts 13a in locations at which the lower portion of the body section is sandwiched.
  • single nozzle support shaft 13a may penetrate the lower portion of the body section or nozzle support shafts 13a having a mechanical configuration like a bearing mechanism instead of shafts may be used.
  • any configuration of the nozzle support shaft 13a may be used, so long as it is provided at the lower portion of the body section, and pivotally supports the suction nozzle 13 in a direction to change the angle of the lower surface Su with respect to the direction in which the body section extends.
  • known configurations may be used as a treating section support shaft corresponding to the nozzle support shaft 13a, so long as it can pivotally support the floor surface treating section.
  • a specific configuration of the cover member 151 and a specific configuration of the stopper 152 provided at the steering wheel 15 are not particularly limited.
  • the cover member 151 covers an entire of a substantially upper half portion of the steering wheel 15, for example, the cover member 151 may cover only an upper surface of the steering wheel 15 with its side surface being exposed.
  • the stopper 152 has the flat plate shape, for example, a front portion of the cover member 151 may have a block-like form and a floor surface contact surface corresponding to the stopper 152 may be provided in a portion of the front portion of the cover member 151.
  • a length of the stopper 152 is suitably set depending on conditions such as a location at which the steering wheel 15 is mounted to the body casing section 11, and is not limited to a particular length.
  • the handle shaft 16 and the steering wheel adjustment shaft 161 constitute the steering coupling section 60A.
  • a rotation transmission section 160 connected to the steering wheel adjustment shaft 161 constitutes the steering coupling section 60A.
  • the handle 14 is attached to the upper end of the steering wheel adjustment shaft 161 which is a portion of the steering coupling section 60A, via the handle shaft 16.
  • a cam member 162 is attached to a lower end of the steering wheel adjustment shaft 161, and is coupled to the pair of steering wheels 15 via arm members 163, 164, respectively.
  • Each of the cam member 162 and the arm members 163, 164 has an elongate plate shape.
  • the lower end of the steering wheel adjustment shaft 161 is fastened to one end (rear end) of the cam member 162, while one ends of the arm members 163 and 164 are mounted to the other end (front end) of the cam member 162.
  • the other ends of the arm members 163 and 164 are mounted to the stoppers 152 of the cover members 151, respectively.
  • Each cover member 151 serves to cover the corresponding steering wheel 15 from above, and constitutes the rotation transmission section 160 for coupling the lower end of the steering wheel adjustment shaft 161 to the corresponding steering wheel 15 via the cam member 162 and the arm members 163 and 164.
  • the steering wheel adjustment shaft 161 extends vertically inside of the body casing section 11 and the rear end of the cam member 162 is fastened to the lower end of the steering wheel adjustment shaft 161, as shown in Fig. 3 . Therefore, the cam member 162 of an elongate plate shape crosses an axial direction of the steering wheel adjustment shaft 161.
  • the arm members 163 and 164 cross a lengthwise direction of the cam member 162 at a front end of the cam member 162.
  • the cam member 162 is sandwiched between the two steering wheels 15.
  • the cam member 162 and the steering wheels 15 are arranged substantially in parallel.
  • a through-hole 162a is provided on the front end of the cam member 162, and a protruding portion 163b provided on a lower surface of the inner end of the arm member 163 is inserted into the through-hole 162a.
  • An upper hole 163a is formed on an upper surface of the protruding portion 163b.
  • a protruding portion 164b provided on a lower surface of the inner end of the arm member 164 is inserted into the upper hole 163a.
  • An attaching configuration of the outer ends of the arm members 163 and 164 and the stoppers 152 is similar to the above.
  • Protruding portions 163c and 164c provided on lower surfaces of the outer ends of the arm members 163 and 164 are inserted into through-holes (not shown in Fig. 4A ) formed in the stoppers 152, respectively.
  • the steering wheels 15 are covered with the cover members 151 from above, the stoppers 152 are provided at the front end portions of the cover members 151, respectively, and the outer ends of the arm members 163 and 164 are attached to the stoppers 152, respectively.
  • the cover members 151 support the rolling shafts 153 of the steering wheels 15, and the wheel support shafts 154 are provided at upper surfaces thereof, respectively.
  • the cover members 151 and the steering wheels 15 are rotatable around the wheel support shafts 154 as indicated by an arrow R3.
  • the pair of steering wheels 15 are arranged in one row along the direction perpendicular to the movement direction M of the suction nozzle 13 at the lower portion of the body casing section 11. Specifically, as schematically shown at the left side in Fig. 4C , when the lower portion of the body casing section 11 is seen from a back side, steering wheels 15-1 in a pair indicated by solid lines are positioned so as to sandwich the body casing section 11. In Fig. 4C , a left-side view and a right-side view are rear views of the vacuum cleaner 10A. Therefore, a direction along from a near side to a far side in Fig. 4C is the movement direction M.
  • steering wheels 15 Since two or more steering wheels 15 may be provided, for example, steering wheels 15-2 indicated by broken lines are provided at the inner side and adjacently to the pair of steering wheels 15-1. In this way, four steering wheels 15 may be provided. Or, a steering wheel 15-3 indicated by one-dotted line may be provided at the middle between the steering wheels 15-1. In this way, three steering wheels 15 may be provided. Or, the steering wheels 15-1 ⁇ 15-3 may be provided, and thus, five steering wheels 15 may be provided.
  • the steering wheel adjustment shaft 161 and the cam member 162 are coupled together in a fixed state, while the front end of the cam member 162, the inner ends of the arm members 163 and 164, the stoppers 152, and the outer ends of the arm members 163 and 164 are coupled together in an incompletely fixed state, the pair of steering wheels 15 are rotatably mounted to the lower portion of the body casing section 11.
  • a position change in the handle 14 caused by the twist action is transmitted to the handle shaft 16 and to the steering wheel adjustment shaft 161.
  • the steering wheel adjustment shaft 161 rotates as indicated by arrow R1. This rotation is transmitted to the cam member 162.
  • the front end of the cam member 162 moves from a location indicated by a solid line to a location indicated by two-dotted line, for example.
  • the arm members 163 and 164 are pivoted in the direction crossing the lengthwise direction of the cam member 162, which causes the steering wheels 15 coupled to the arm members 163 and 164 via the cover members 151 to be rotated in the direction indicated by arrow R3.
  • the angles of the steering wheels 15 are changed.
  • a direction of the twist manipulation of the handle 14 can correspond with a change in the direction of the suction nozzle 13. This makes it possible to avoid that the user feels difficulty in the manipulation for changing the direction of the suction nozzle 13.
  • the plurality of steering wheels 15 are arranged in one row, if the angles of all of the steering wheels 15 are changed to allow the steering wheels 15 to be directed in the same direction, by the user's manipulation of the handle 14, the movement direction M of the suction nozzle 13 can be effectively restricted by the plurality of steering wheels 15.
  • the mounting structures of the cam member 162, the arm members 163 and 164, and the stoppers 152 are the insertion configuration as shown in Fig. 4B . Therefore, the configuration of the cam member 162, and the arm members 163 and 164 can be made flexible. For example, in a case where a longer plate member is required to be used as the cam member 162 depending on the specific configuration of the body casing section 11 and the suction nozzle 13, as shown in Fig. 5B , the arm members 163 and 164 move suitably according to the movement of the front end of the cam member 162 by means of the insertion configuration and the angles of the steering wheels 15 can be changed.
  • the specific configurations of the steering wheel adjustment shaft 161, the cam member 162, and the arm members 163 and 164 are not particularly limited, but shapes, dimensions, materials, etc., which are known in the field in which similar mechanisms are used, may be suitably used depending on the specific configuration, use, etc., of the vacuum cleaner 10A.
  • the configuration of the steering coupling section 60A is not limited to the configuration having the steering wheel adjustment shaft 161, the cam member 162, and the arm members 163 and 164.
  • the steering wheel adjustment shaft 161 is configured such that the position change caused by twisting the handle 14 is transmitted to the steering wheel adjustment shaft 161 via the handle shaft 16, any kind of shaft may be used so long as it is made of a material having durability or stiffness to the twist force, or has a shape having such durability or stiffness.
  • either the cam member 162 or the arm members 163, 164, or both of them are preferably made of a flexible material or have a shape for allowing for flexibility. This makes it possible to mitigate a difference in a degree of rotation between the wheel support shafts 154 of the steering wheels 15 and the steering wheel adjustment shaft 161, due to, for example, a resistance or the like applied from the floor surface 100 to the steering wheels 15.
  • a specific shape of the steering wheels 15 will not be particularly limited.
  • the outer peripheral surface of the steering wheel 15 is entirely flat, or a peripheral portion of the outer peripheral surface of the steering wheel 15 protrudes more than its center portion.
  • a wheel 15a having a general form is used, in which a cross-sectional shape taken along a rolling shaft 153 (center axis) has a substantially rectangular shape.
  • a wheel 15b may be used, in which its cross-sectional shape has two protruding portions.
  • a configuration of the wheel 15a having a general form is not particularly limited, and its outer peripheral surface may be entirely flat.
  • the wheel 15b having two protruding portions is not particularly limited, so long as the peripheral portion of the outer peripheral surface protrudes more than its center portion to form the two protruding portions on the outer peripheral surface in the cross-section, and a degree of protrusion is not particularly limited.
  • the wheel 15a and the wheel 15b are each configured such that an entire cross-section taken along the rolling shaft 153 may be made of a single material. However, the present invention is not limited to this.
  • a portion near the rolling shaft 153 i.e., rolling center of the wheel 15a, 15b is made of metal
  • a portion near the outer peripheral surface may be made of a resin
  • its inner portion may be hollow.
  • the shape of the wheel 15a, 15b shown in Fig. 6A, Fig. 6B is not limited to the cross-sectional shape taken along the center axis (rolling shaft 153), but may be a shape in which a projection shape (cross-sectional shape) with respect to the movement direction M is not illustrated
  • the shape of the wheel 15a or the wheel 15b allows a relative location of the rolling shaft 153 of the steering wheel 15 to be maintained higher in a state in which the peripheral portion of the steering wheel 15 contacts the floor surface 100 in a slanted state of the wheel 15a, 15b. That is, as shown in the upper view of Fig. 6A, 6B , when a height of the rolling shaft 153 from the floor surface 100 is Hw1 in a normal attitude of the wheel 15a, 15b, a height Hw2 of an upper portion of a slanted rolling shaft 153 is greater than the height Hw1 in a slanted state of the wheel 15a, 15b as shown in lower views of Fig. 6A, 6B .
  • all of the steering wheels 15 may be the wheels 15a having a general form or the wheels 15b having two protruding portions, or the wheels 15a and the wheels 15b may co-exist.
  • rollers 15c may be used as steering wheels 15 instead of the wheels 15a, 15b.
  • the wheel 15a, 15b has a shape in a which a lateral width of the outer peripheral surface is smaller than its diameter
  • the roller 15c has a shape in which a ratio of the lateral width of the outer peripheral surface is greater.
  • a relative location of the rolling shaft 153 of the steering wheel 15 in the state in which the peripheral portion of the slanted steering wheel 15 is in contact with the floor surface 100 can be made higher.
  • a rotary member having any shape may be suitably used as the steering wheel 15 so long as it can move the suction nozzle 13 and its direction can be changed by the manipulation of the handle 14.
  • the relative location of the rolling shaft 153 is higher in the slanted state of the steering wheel 15, the relative location of the nozzle support shaft 13a can also be made higher. Since the nozzle support shaft 13a is positioned at the rear portion of the suction nozzle 13, the front portion of the suction nozzle 13 can be lowered. As described later, in a state in which the body section is maintained in a substantially horizontal state, reduction of a close contact state between the suction nozzle 13 and the floor surface can be made up for.
  • the specific configuration of the wheel 15a, 15b or the roller 15c for use as the steering wheel 15 is not particularly limited, at least the outer peripheral surface thereof is preferably made of an elastic material.
  • the elastic material for example, there are rubber (elastomer) materials such as styrene-butadiene rubber, butadiene rubber, chloroprene rubber, nitrile butadiene rubber, ethylene-propylene rubber, butyl rubber, urethane rubber, silicon rubber, and fluoro-rubber, or a cork, etc.
  • the elastic material is not particularly limited.
  • the elastic material may be used for at least only the outer peripheral surface.
  • a larger portion of the steering wheel 15 including the outer peripheral surface or the entire of the steering wheel 15 may be made of the elastic material.
  • a portion of the steering wheel 15 for holding the rolling shaft 153 for supporting the steering wheel 15 such that the steering wheel 15 is rotatable may be made of metal or a resin material having high stiffness and the other portion may be made of an elastic material.
  • the floor surface 100 contacts the elastic material surface. Because of this, it is possible to effectively lessen a possibility that the steering wheels 15 slip on the floor surface 100 without depending on a state or a material of the floor surface 100. As a result, maneuverability of the vacuum cleaner 10A can be further improved.
  • the body section (body casing section 11 and body dust collecting section 12) is in an upright state.
  • This upright state is the same as the state shown in Fig. 3 .
  • the steering wheels 15 are held in a state in which their forward portions are lower and their rearward portions are higher because of the upright state of the body section.
  • each of the wheel support shafts 154 for supporting the steering wheel 15 such that the steering wheel 15 is rotatable is disposed in a location substantially conforming to a straight line connecting the nozzle support shaft 13a to the rolling shaft 153.
  • the stoppers 152 which are a portion of the cover members 151 are provided at the front portions of the steering wheels 15, the stoppers 152 contact the floor surface 100 and the outer peripheral surfaces of the steering wheels 15 are apart from the floor surface 140. Since the center axes of the rolling shafts 153 are located obliquely rearward and below relative to the center axes of the nozzle support shafts 13a, the relative locations of the nozzle support shafts 13a with respect to the floor surface 100 are lower as compared to the use state (slanted state of the body section) as will be described later.
  • a front portion lower surface 13b of the suction nozzle 13 is located at the front portion of the suction nozzle 13.
  • the nozzle support shafts 13a of the suction nozzle 13 are located at the rear portion of the suction nozzle 13.
  • the rear portion of the suction nozzle 13 is lowered. Therefore, the front portion lower surface 13b located at the front portion of the suction nozzle 13 is held in a slanted state such that its front portion is upwardly apart from the floor surface with the rear portion being a point of support.
  • the body section is slanted in a rearward direction as shown in the right view of Fig. 7 .
  • This slanted state is the use state.
  • the user slants the body section as indicated by arrow C 1 in Fig. 7 while holding the handle 14 or the like.
  • the steering wheels 15 move to be located substantially below the nozzle support shafts 13a such that the front portions of the cover members 151 are higher and the rear portions of the cover members 151 are lower.
  • the stoppers 152 having been in contact with the floor surface 100 move up, and the steering wheels 15 having been higher move down.
  • an inclination angle (body inclination angle) As of the body section is not particularly limited, it may generally be in a range from 40 degrees to 50 degrees, and preferably, about 45 degrees.
  • the locations of the nozzle support shafts 13a with respect to the floor surface 100 are higher (see difference Df indicated by one-dotted line) in the slanted state than in the upright state.
  • the rear portion of the suction nozzle 13 having been located lower moves up as indicated by arrow C3 in Fig. 7 .
  • the front portion lower surface 13b of the suction nozzle 13 entirely contacts the floor surface 100.
  • the front portion lower surface 13b of the suction nozzle 13 is slanted such that the front portion is higher so as to form an angle ⁇ between the front portion lower surface 13b and the floor surface 100.
  • This angle ⁇ will be referred to as "lower surface inclination angle ⁇ " to be distinguished from the body inclination angle As.
  • the stoppers 152 are in contact with the floor surface 100, and therefore the outer peripheral surfaces of the steering wheels 15 are apart from the floor surface 100. Then, when the vacuum cleaner 10A shifts from the upright state to the slanted state, the nozzle support shafts 13a move to be higher.
  • the rear portion of the suction nozzle 13 moves to be higher, and therefore the rear portion of the front portion lower surface 13b of the suction nozzle 13 moves to be higher.
  • the lower surface inclination angle ⁇ formed between the front portion lower surface 13b and the floor surface 100 is cancelled, and the front portion lower surface 13b and the floor surface 100 substantially conform to each other.
  • the front portion lower surface 13b is entirely in contact with the floor surface 100.
  • the stoppers 152 move to be higher such that they are placed substantially horizontally, and the outer peripheral surfaces of the steering wheels 15 contact the floor surface 100. Therefore, the steering wheels 15 allow the suction nozzle 13 to be movable, and the rotary brush 131 provided at the front portion of the suction nozzle 13 to sufficiently contact the floor surface 100. As a result, the vacuum cleaner 10A can shift to a use attitude in which cleaning can be carried out.
  • the user operates the power supply switch 129 to actuate the suction motor 223 (see Fig. 1 ).
  • an air pressure in an interior (dust collecting chamber) of the body dust collecting section 12 decreases, and a suction force is generated in the suction nozzle 13 via the suction hose 133.
  • the user moves the suction nozzle 13 in a desired direction and carries out cleaning by holding the handle 14.
  • the user may perform a manipulation for twisting the handle 14 in the direction of the arrow R1.
  • a position change caused by the twist manipulation (rotation) of the handle 14 is transmitted to the cam member 162 via the handle shaft 16 and the steering wheel adjustment shaft 161.
  • the front end of the cam member 162 is swung to the right or to the left, thereby allowing the angles of the pair of steering wheels 15 to be changed via the arm members 163 and 164.
  • the angles of the steering wheels 15 can be changed in the direction of the arrow M1 (to the right) without moving the entire of the body section of the vacuum cleaner 10A.
  • the suction nozzle 13 itself can be moved in an oblique direction without changing its angle. Because of this, even when cleaning is carried out toward a wall surface in front, a region to be cleaned can be changed sequentially while maintaining the front portion of the suction nozzle 13 in parallel with the wall surface. Therefore, as compared to a conventional vacuum cleaner, for example, a corner region in a room can be cleaned very easily, and the direction of the suction nozzle 13 itself is not changed in changing the direction. As a result, a resistance applied from, for example, a carpet which is an example of the floor surface 100 can be mitigated when changing the direction.
  • the configuration of the steering coupling section 60A can be simplified as compared to a configuration in which the steering wheels 15 are provided in forward location.
  • the outer peripheral surfaces of the steering wheels 15 can be made apart from the floor surface 100. That is, the suction nozzle 13 is pivotally mounted to the body section such that the suction nozzle 13 is pivotable around the nozzle support shafts 13a.
  • a distance from the point of support (nozzle support shaft 13a) to the point of effort (handle 14) is longer than a distance from the point of support (nozzle support shaft 13a) to the point of load (steering wheel 15). Because of this, the user has only to hold the handle 14 with a small force to make the body section upright, the stoppers 152 protruding near the point of load (steering wheel 15) to move to locations under the steering wheels 15. Therefore, the steering wheels 15 can be made apart from the floor surface easily.
  • the nozzle support shafts 13a which are the point of support, i.e., rear portion of the suction nozzle 13 move down, so that the front portion of the suction nozzle 13 move up.
  • the front portion lower surface 13b in contact with the floor surface 100 in the slanted state to be apart from the floor surface 100.
  • the rotary brush 131 is exposed in the front portion lower surface 13b, it can be held or preserved so as not to contact the floor surface 100 depending on a magnitude of the lower surface inclination angle ⁇ , or a location of the rotary brush 131.
  • the suction nozzle 13 is pivotally mounted to the body section by means of the pair of right and left nozzle support shafts 13a provided so as to sandwich the lower portion of the body section (in Fig. 9 , body casing section 11). Because of this, as compared to the improved prior arts (see Figs. 13A, 13B ), a mounting stiffness of the suction nozzle 13 to the body section can be improved with a simple configuration without using a special material, etc.. As a result, cost of the vacuum cleaner 10A will not increase.
  • a vertically narrower region such as a space under a furniture or a bed
  • the steering wheels 15 are in locations forward relative to the nozzle support shafts 13a with the body section being placed substantially horizontally.
  • the relative locations of the nozzle support shafts 13a are lower than those in the slanted state, as in the case of the upright state. Therefore, the rear portion of the suction nozzle 13 is made lower than that in the slanted state (two-dotted line in Fig. 8C ).
  • a vertical location of the nozzle support shaft 13a in the upright state is a height Hs1 as shown in Fig. 8A and a vertical location of the nozzle support shaft 13a in the slanted state is a height Hs2 as shown in Fig. 8B
  • the height Hs2 is greater than the height Hs1.
  • Fig. 8C in the down state of the body section, the location of the nozzle support shaft 13a becomes closer to the height Hs1 in the upright state. In the down state, the location of the nozzle support shaft 13a does not completely conform to the height Hs1, but substantially conforms to the height Hs1.
  • the steering wheels 15 are positioned below the suction nozzle 13 and forward relative to the nozzle support shafts 13a. Therefore, the suction nozzle 13 is maintained in a state in which it is movable by the steering wheels 15. Even in the vertically narrower space, the location of the entire suction nozzle 13 can be lowered by merely placing the body section in the down state. Therefore, the floor surface 100 can be suitably cleaned.
  • the wheels 15a having a general form or the wheels 15b having two protruding portions are more preferable when the body section is used in the down state.
  • the steering wheels 15 are located substantially below the nozzle support shafts 13a (see Fig. 8B as well as Fig. 8C ).
  • the locations of the nozzle support shafts 13a move to be lower than those in the slanted state. This causes the front portion of the suction nozzle 13 to move up a little. Therefore, as in the case of the upright state (see Fig. 8A ), the front edge of the front portion lower surface 13b provided at the front portion is a little apart from the floor surface 100.
  • the wheel support shaft 154 is disposed to substantially conform to a straight line connecting the nozzle support shaft 13a and the rolling shaft 153, it is maintained in a substantially vertical state in the state in which the body section is slanted (see Fig. 8B in addition to Fig. 8C ). Therefore, in the slanted state, the user can change only the direction of the steering wheel 15 by manipulating the handle 14. That is, the steering wheels 15 are not slanted with respect to the floor surface 100. By comparison, in the down state of the body section, the direction in which the wheel support shaft 154 extends changes from the substantially vertical state as indicated by the dotted line Sx1 into the slanted state indicated by the dotted line Sx2.
  • the steering wheels 15 are slanted with respect to the floor surface 100 according to a change in the direction of the steering wheels 15 by the steering coupling section 60A. Since the steering wheels 15 are the wheels 15a having a general form or the wheels 15b having two protruding portions, the peripheral portion of the steering wheels 15 contact the floor surface 100.
  • the locations of the handle 14, the steering wheels 15, and the rear portion of the suction nozzle 13 are relatively lower as indicated by two-dotted lines in Fig. 6C .
  • the relative locations of the steering wheels 15 are made higher by a height Hu (difference between a height Hw2 and a height Hw1 shown in Figs. 6A and 6B ), and correspondingly the relative locations of the nozzle support shafts 13a are made higher.
  • the rear portion of the suction nozzle 13 is made higher and the front portion of the suction nozzle 13 is made lower. Therefore, the state shown in Fig. 8C in which the front periphery of the front portion lower surface 13b is a little apart from the floor surface 100 is effectively lessened. Thereby, a close contact state between the lower surface Su (see Fig. 7 ) of the suction nozzle 13 and the floor surface 100 is improved. Therefore, even in the down state of the body section, degradation of a suctioning action performed by the suction nozzle 13 can be suppressed effectively. Therefore, the floor surface 100 corresponding to the vertically narrow space under the bed or the like, can be suitably cleaned by merely manipulating the handle 14 to move the suction nozzle 13 forward and backward. Thus, regardless of the slanted state or the down state of the body section, a good cleaning capability can be realized.
  • the steering wheels 15 are placed apart from the floor surface 100 in the upright state to restrict movement of the suction nozzle 13 (vacuum cleaner 10A) during the non-use, the present invention is not limited to this.
  • the steering wheels 15 may be locked so as to be unrotatable.
  • the steering wheels 15 may be locked automatically by a mechanical configuration, an electric configuration, etc., when the body section is switched from the slanted state to the upright state.
  • the steering wheels 15 may be entirely moved up by a mechanical configuration, an electric configuration, etc., so that they move apart from the floor surface 100.
  • the angle of the body section in the upright state is not limited to a right angle, and a specific angle formed when the body section shifts to the slanted state is suitably set depending on a specific configuration of the vacuum cleaner 10A.
  • a specific value of the lower surface inclination angle ⁇ (see Fig. 8A ) of the front portion lower surface 13b set as corresponding to the angle of the slanted state is not particularly limited.
  • the steering wheels 15 are provided in locations behind the lower portion of the body section, the locations of the steering wheels 15 are not limited to this, but may be immediately below the lower portion of the body section or forward relative to the lower portion of the body section.
  • extended portions may be provided at the rear portions of the cover members 151 and the arm members 163 and 164 may be mounted to the extended portions, respectively. That is, when the rotation transmission section 160 includes the cam member 162 and the arm members 163 and 164, the portions of the arm members 163 and 164 relative to the cover members 151 may be coupled to the front end of the cam member 162.
  • the steering wheels 15 are attached with the cover members 151, respectively, the configuration for protecting or supporting the steering wheels 15 is not limited to this.
  • the cover members 151 can protect the steering wheels 15 and serve as connecting members for connecting the rotation transmission section 160 to the steering wheels 15. Since the cover members 151 support the rolling shafts 153 and the wheel support shafts 154 are provided at the upper portions thereof, the steering wheels 15 can be supported on the body casing section 11. This makes it possible to protect the steering wheels 15 and suppress an increase in the number of components.
  • the connecting members connecting the cover members 151 to the rotation transmission section 160, and the support members of the steering wheels 15 may be separate members. Or, the cover members 151 may be omitted, but instead, the steering wheels 15 may be provided with members serving as the connecting members and the support members.
  • the rotation transmission section 160 is comprised of the cam member 162 and the arm members 163 and 164. This allows the motion of the steering wheel adjustment shaft 161 to be transmitted to the plurality of steering wheels 15 well with a simplified configuration.
  • the configuration of the rotation transmission section 160 is not limited to this.
  • another known configuration can be suitably used so long as it couples the steering wheel adjustment shaft 161 to the steering wheels 15 such that the angles of the steering wheels 15 are changed according to the rotational position of the steering wheel adjustment shaft 161.
  • Three or more steering wheels 15 may be provided instead of the two steering wheels 15 in the present embodiment.
  • rotatable members such as wheels or rollers may be provided to contact the lower surface Su.
  • the steering wheels 15 determine the movement direction M of the suction nozzle 13.
  • these steering wheels 15 are preferably aligned along the direction perpendicular to the movement direction M.
  • the twist manipulation of the handle 14 corresponds with the changing direction of the suction nozzle 13, which can avoid a possibility of burdensome manipulation for changing the direction of the suction nozzle 13.
  • the configuration of the steering coupling section 60A including the rotation transmission section 160 is not limited to the configuration including the handle shaft 16 and the steering wheel adjustment shaft 161, so long as the steering coupling section 60A is rotated according to the twist motion (rotation) of the handle 14 by the user's twist manipulation of the handle 14 to a desired angle, and the angles of the steering wheels 15 can be changed according to a change in the rotation of the steering coupling section 60A.
  • the handle shaft 16 may be extended to a location near the steering wheels 15, and the cam member 162 may be directly fastened to the lower end of the handle shaft 16.
  • the handle shaft 16 may be omitted, and the handle 14 may be provided at the upper portion of the body section and directly fastened to the upper end of the steering wheel adjustment shaft 161.
  • the steering wheel adjustment shaft 161 may be rotatably mounted with respect to the body section (in the present embodiment, the body casing section 11). Therefore, the steering wheel adjustment shaft 161 may be entirely accommodated into the body section or an entire or part of it may be exposed on a back surface of the body section.
  • the handle shaft 16 and the steering wheel adjustment shaft 161 are rotary shafts which are rotatably mounted to the body section with the handle 14 being fastened to the upper end thereof.
  • the handle shaft 16 is referred to as a first rotary shaft connected to the handle 14
  • the steering wheel adjustment shaft 161 may be a second rotary shaft.
  • the steering coupling section 60A includes at least a single rotary shaft. For a structural reason of the vacuum cleaner 10A, providing either one of the handle shaft 16 and the steering wheel adjustment shaft 161 as the rotary shaft can avoid an increase in the number of components.
  • the steering coupling section 60A can be incorporated into the existing upright vacuum cleaner 10A without substantially changing its configuration. In this case, without conducting a design change adapted to a complex configuration, maneuverability of the vacuum cleaner 10A can be improved.
  • the vacuum cleaner 10A is exemplarily described as a floor surface treating apparatus
  • the present invention is not limited to this, and is applicable to any kind of an upright apparatus having a floor surface treating section which perform treating on a floor surface.
  • the floor surface treating apparatus there are a floor surface polishing apparatus in which a floor surface treating section includes a polishing pad for polishing a floor surface, a floor surface coating apparatus in which a floor surface treating section coats a liquid such as wax or a paint on a floor surface, a carpet washing apparatus in which a floor surface treating section washes a carpet which is the floor surface, etc..
  • the upright floor surface treating apparatus of the present invention comprises a columnar body section, a floor surface treating section having a lower surface facing a floor surface of a treated target and mounted to lower portion of the body section, a holding section provided at an upper portion of the body section and held by a user, steering wheels provided at the lower portion of the body section in locations at which the steering wheels are able to contact the floor surface and configured to determine a movement direction of the floor surface treating section by the angles of the steering wheels, and a steering coupling section provided at the body section between the holding section and the steering wheels and configured to change the angle of the steering wheel according to a manipulation of the holding section, independently of the body section and the floor surface treating section.
  • the holding section and the steering wheels are coupled together by means of the steering coupling section provided at the columnar body section.
  • the angles of the steering wheels can be changed via the steering coupling section without a need to move the body section.
  • the floor surface treating apparatus has only to include the steering coupling section for coupling the holding section and the steering wheels together without additionally providing a manipulation member, etc.. Therefore, it is possible to avoid that the configuration of the floor surface treating apparatus becomes complex. Thus, maneuverability of the upright floor surface treating apparatus can be improved, and its configuration does not become complex.
  • an example of the steering coupling section may include a rotary shaft which is rotatably mounted to the body section and is fastened with the holding section at an upper end thereof, and a rotation transmission section for coupling a lower end of the rotary shaft to the steering wheels to change the angles of the steering wheels according to a rotational position of the rotary shaft.
  • the steering coupling section includes the rotary shaft and the rotation transmission section, a motion for rotating the holding section is transmitted to the steering wheels and thereby the angles of the steering wheels can be changed. Because of this, without using a complex configuration, maneuverability of the floor surface treating apparatus can be improved. Since the floor surface treating section pivotally mounted to the body section can be supported by treating section support shafts (described later), etc., at right and left sides of the body section, a mounting stiffness of the floor surface treating section with respect to the body section can be improved.
  • one or a plurality of steering wheels may be provided.
  • all of the steering wheels are preferably arranged in one row along the direction perpendicular to the movement direction of the floor surface treating section.
  • the plurality of steering wheels allow the floor surface treating apparatus to move easily on the floor surface. Since the plurality of steering wheels are arranged along the direction perpendicular to the movement direction, the direction of the manipulation of the holding section can conform to the changing direction of the floor surface treating section. This makes it avoid that the user feels difficulty in the manipulation for changing direction. If the angles of all of the plurality of steering wheels arranged in one row are changed such that the steering wheels are oriented in the same direction by the user's manipulation of the holding section, the movement direction of the floor surface treating section can be restricted effectively by the steering wheels.
  • the rotation transmission section includes a cam member fastened at one end to a lower end of the rotary shaft and arm members for coupling the other end of the cam member to the steering wheels.
  • the steering wheels may be provided with cover members for supporting rolling shafts of the steering wheels with the steering wheels being covered with the cover members from above, and the arm members may couple forward portions or rearward portions of the cover members in the movement direction to the other end of the cam member.
  • the cover members cover the steering wheels, the steering wheels can be protected.
  • the cover members serve as connecting members for connecting the rotation transmission section to the steering wheels.
  • the steering wheels are attached (mounted) to the body section in such a manner that in an upright state of the body section, the outer peripheral surfaces of the steering wheels are apart from the floor surface, while in a state where the body section is slanted in a rearward direction of the movement direction, with respect to the upright state, the steering wheels are in contact with the floor surface.
  • front portions of the cover members may be protruded forward to form stoppers.
  • the steering wheels are apart from the floor surface. This prevents the floor surface treating section from moving inadvertently.
  • the steering wheels contact the floor surface, thereby allowing the floor surface treating section to be movable.
  • the floor surface treating apparatus may further comprise treating section support shafts which are provided at the lower portion of the body section and support the floor surface treating section such that the floor surface treating section is pivotable in a direction to change an angle of the lower surface with respect to the extending direction of the body section, and the steering wheels are provided at the lower portion of the body section in locations rearward in the movement direction relative to the floor surface treating section.
  • the floor surface treating section is mounted to the body section such that the body surface treating section is pivotable around the treating section support shafts, and the steering wheels are located rearward relative to the lower portion of the body section.
  • the steering wheels can be located substantially below the treating section support shafts such that the outer peripheral surfaces of the steering wheels are in contact with the floor surface.
  • the outer peripheral surfaces of the steering wheels can be made apart from the floor surface. Therefore, the user can bring the steering wheels into contact with the floor surface or make them apart from the floor surface in an easy manner by placing the body section in the upright state or slanting the body section with a small force while holding the holding section.
  • the user has only to place the body section in the upright state while holding the holding section with a small force to make the steering wheels apart from the floor surface because the floor surface treating section is movable with respect to the body section.
  • the movable section is a point of support
  • the holding section located above the body section is a point of effort
  • the steering wheels are point of load
  • a distance from the point of support to the point of effort (holding section) is longer than a distance from the point of support to the point of load (steering wheel).
  • the outer peripheral surfaces of the steering wheels are entirely flat, or the peripheral portions of the outer peripheral surfaces protrude more than the center portions.
  • locations of the treating section support shafts in the slanted state of the body section are higher than vertical locations of the treating section support shafts in the upright state.
  • the locations of the treating section support shafts can be made closer to the locations of them in the upright state.
  • the steering wheels are located below the floor surface treating section and forward relative to the treating section support shafts, and therefore, the floor surface treating section is maintained to be movable by the steering wheels. Therefore, by merely placing the body section in the down state, the entire floor surface treating section can be lowered even in a vertically narrow space.
  • the floor surface under a furniture such as a bed can be suitably cleaned.
  • the peripheral portions of the steering wheels contact the floor surface by manipulating the handle in the down state, and thereby the treating section support shafts can be pushed up.
  • This can effectively lessen a possibility that the front portion of the floor surface treating section is a little apart from the floor surface in the down state of the body section, and improve a close contact state with respect to the floor surface.
  • a floor surface treating location can be shifted easily while effectively suppressing degradation of a floor surface treating action.
  • At least the outer peripheral surfaces of the steering wheels are preferably made of an elastic material.
  • a specific configuration of the upright floor surface treating apparatus of the present invention is not particularly limited.
  • the present invention is applicable to various kinds of floor surface treating apparatuses.
  • a vacuum cleaner as described above.
  • the vacuum cleaner having a specific configuration is, for example, such that the body section includes a suction motor and a dust collecting chamber, and the floor surface treating section includes a rotary brush.
  • the steering coupling section 60A in the vacuum cleaner 10A includes, the handle shaft 16, the steering wheel adjustment shaft 161, the cam member 162 and the arm members 163 and 164.
  • the steering coupling section will be described with reference to Figs. 10 and 11 .
  • a vacuum cleaner 10B which is a first example of the present embodiment is configured such that the handle 14 and the handle shaft 16 are located forward relative to the body section (forward handle configuration).
  • a forward protruding section 117 (indicated by one-dotted oval in Fig. 10 ) is provided at an upper portion of a body casing section 17, and the handle 14 is attached on an upper surface of a front portion of the forward protruding section 117 via the handle shaft 16.
  • a basic configuration of the body casing section 17 is the same as that of the body casing section 11 in Embodiment 1, except that the forward protruding section 117 extending obliquely forward is integrally provided immediately above the casing (corresponding to the body casing section 11) extending vertically, and the handle shaft 16 is attached on an upper surface of a front portion of the forward protruding section 117.
  • the steering wheel adjustment shaft 161 is provided inside the body casing section 17.
  • the forward protruding section 117 is positioned between the steering wheel adjustment shaft 161 and the handle shaft 16, and a gear mechanism 165 is accommodated in the forward protruding section 117.
  • the gear mechanism 165 includes, for example, a sector gear fastened to a lower end of the handle shaft 16, an upper end gear fastened to an upper end of the steering wheel adjustment shaft 161, and an intermediate gear provided between the sector gear and the upper end gear.
  • the body section includes the forward protruding section 117, and a steering coupling section 60B includes the handle shaft 16, the steering wheel adjustment shaft 161, the gear mechanism 165 and the rotation transmission section 160.
  • the gear mechanism 165 serves as a means (position change transmission section) for coupling the handle shaft 16 and the steering wheel adjustment shaft 161 together to transmit the position change in the handle 14. More preferably, the gear mechanism 165 also serves as a means (rotational speed changing section) for increasing/decreasing a speed of the position changing of the handle 14, i.e., a rotation of the handle shaft 16.
  • the handle shaft 16 is rotated to a predetermined angle.
  • the angles of the steering wheels 15 can be changed to a greater degree even when the user twists the handle 14 to a smaller degree (an angle change caused by the twist manipulation is small).
  • the gear change "speed change function" of the gear mechanism 165 the force required to twist the handle 14 can be lessened. This allows the user to manipulate the handle 14 with "a smaller force”.
  • a vacuum cleaner 10C which is a second example of the present embodiment has a configuration in which the handle 14 and the handle shaft 16 are slanted in a forward direction (slant handle configuration).
  • an upward slant section 118 is provided at an upper portion of a body casing section 18, and the handle 14 is attached to the upper surface of the upward slant section 118 via the handle shaft 16.
  • a basic configuration of the body casing section 18 is the same as that of the body casing section 11 in Embodiment 1, except that the upward slant section 118 having an upper surface which is slanted in the forward direction is provided integrally with and immediately above a casing (corresponding to the body casing section 11) extending vertically, and the handle shaft 16 is attached to the upper surface of the upward slant section 118.
  • the steering wheel adjustment shaft 161 is provided inside the body casing section 18.
  • the upward slant section 118 is positioned between the steering wheel adjustment shaft 161 and the handle shaft 16.
  • a joint mechanism 166 is mounted inside of the upward slant section 118.
  • the joint mechanism 166 is constructed as, for example, constant speed universal joints configured to contact a downward end surface of the slanted handle shaft 16.
  • the body section includes the upward slant section 118, and a steering coupling section 60C includes the handle shaft 16, the steering wheel adjustment shaft 161, the joint mechanism 166 and the rotation transmission section 160.
  • the handle 14 is positioned in a forward portion of the vacuum cleaner 10B or 10C. Because of this, in the case where the user performs cleaning in the state in which the body section is directed substantially horizontally (see Fig. 8C ), the user need not significantly bend down. This has an advantage that the maneuverability of the vacuum cleaner 10B or 10C can be further improved.
  • a specific configuration of the gear mechanism 165 and a specific configuration of the joint mechanism 166 are not particularly limited. Any known configuration may be used so long as the rotation of the rotary shaft can be transmitted from coaxially to a different location or the rotation of the rotary shaft can be transmitted in a different direction.
  • the present embodiment is the same as Embodiment 1 in that the steering coupling section 60B, 60C includes the handle shaft 16 and the steering wheel adjustment shaft 161 as rotary shafts in a broad sense.
  • the gear mechanism 165 or the joint mechanism 166 is mounted between the handle shaft 16 and the steering wheel adjustment shaft 161. Therefore, when the handle shaft 16 is expressed as a first rotary shaft, the steering wheel adjustment shaft 161 can be expressed as a second rotary shaft.
  • rotary shafts other than the handle shaft 16 and the steering wheel adjustment shaft 161 may be provided.
  • the steering coupling section includes the gear mechanism or the joint mechanism coupled to the lower end of the rotary shaft and the second rotary shaft coupled at the upper end thereof to the gear mechanism or the joint mechanism and coupled at the lower end thereof to the rotation transmission section, and the holding section fastened to the upper end of the rotary shaft is positioned forward in the movement direction relative to the body section.
  • the holding section can be positioned forward relative to the body section without being restricted by the second rotary shaft coupled to the rotation transmission section. Therefore, even when the body section is oriented substantially horizontally to, for example, perform floor surface treating in a vertically narrow space such as a space under a furniture or a bed, the holding section can be kept higher. This can reduce a need for the user to significantly bend while holding the holding section. As a result, the maneuverability of the upright floor surface treating apparatus can be further improved.
  • the gear mechanism of the steering coupling section has "a gear change function"
  • the maneuverability of the upright floor surface treating apparatus can be further improved. For example, if the "speed" of the rotation of the rotary shaft which is caused by manipulation of the holding section increases, an angle change of the secondary rotary shaft can be increased even when an angle change of the rotary shaft is small. Therefore, the angle change of the steering wheels can be increased. Or, if the "speed" of the rotation of the rotary shaft is decreased, the force required to change the angle of the rotary shaft when the user manipulate the holding section can be lessened. This allows the user to manipulate the holding section with "a smaller force".
  • the vacuum cleaners 10A to 10C include the steering coupling sections 60A to 60C having a mechanical configuration, respectively.
  • an example of a vacuum cleaner including a steering coupling section having an electric configuration will be described with reference to Fig. 12 .
  • a vacuum cleaner 10D of the present embodiment has the same configuration as that of the vacuum cleaner 10A of Embodiment 1 except for a steering coupling section 60D.
  • the steering coupling section 60D includes an angle adjusting signal generating section 167 for converting a manipulation of the handle 14 into an electric signal, and a wheel angle adjusting section 168 for adjusting angles of the steering wheels 15 in response to the electric signal received from the angle adjusting signal generating section 167.
  • the angle adjusting signal generating section 167 and the wheel angle adjusting section 168 are coupled together by means of a known wire 169. In this configuration, advantages provided by Embodiment 1 or Embodiment 2 can be achieved.
  • a specific configuration of the angle adjusting signal generating section 167 and a specific configuration of the wheel angle adjusting section 168 are not particularly limited, but known configurations may be suitably used.
  • examples of the angle adjusting signal generating section 167 may include a known dial input device for generating an electric signal corresponding to a position change caused by the twisting (rotation) of the handle 14, a known relay switch device configured to open/close a contact point based on whether or not the position change caused by the twisting (rotation) of the handle 14 exceeds a certain magnitude, a sensor device which detects a position change of a marker provided at a tip end of the handle shaft 16 and generates an electric signal based on a result of the detection, etc.
  • the angle adjusting signal generating section 167 includes the manipulation section.
  • the wheel angle adjusting section 168 may be configured such that a small motor (gear mechanism as desired) is provided at the rear end of the cam member 162 and the front end of the cam member 162 is swung according to the operation of the small motor.
  • the rotation transmission section 160 and the small motor correspond to the wheel angle adjusting section 168.
  • a known actuator or the like may be used.
  • the steering coupling section 60D of the present embodiment may include components other than the angle adjusting signal generating section 167 and the wheel angle adjusting section 168.
  • the steering coupling section may include a wheel angle adjusting section for adjusting angles of the steering wheels in response to an electric signal received, and an angle adjusting signal generating section for converting a manipulation of the holding section into an electric signal input to the wheel angle adjusting section.
  • the steering coupling section having an electric configuration is provided instead of the steering coupling section having a mechanical configuration comprised of a rotary shaft and a rotation transmission section.
  • the same advantages as those provided by the mechanical configuration described in Embodiment 2 can be achieved.
  • the present invention is suitably used in fields of upright floor surface treating apparatuses such as a vacuum cleaner, a floor surface polishing apparatus, a floor surface coating apparatus and a carpet washing apparatus, each of which includes a floor surface treating section at a lower portion thereof and a holding section such as a handle at an upper portion thereof.
  • upright floor surface treating apparatuses such as a vacuum cleaner, a floor surface polishing apparatus, a floor surface coating apparatus and a carpet washing apparatus, each of which includes a floor surface treating section at a lower portion thereof and a holding section such as a handle at an upper portion thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles For Electric Vacuum Cleaners (AREA)
  • Electric Suction Cleaners (AREA)
EP11795362.0A 2010-06-14 2011-06-01 Dispositif de traitement de sol de type vertical Withdrawn EP2581016A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010134741A JP2012000121A (ja) 2010-06-14 2010-06-14 アプライト型床面処理装置
PCT/JP2011/003088 WO2011158454A1 (fr) 2010-06-14 2011-06-01 Dispositif de traitement de sol de type vertical

Publications (2)

Publication Number Publication Date
EP2581016A1 true EP2581016A1 (fr) 2013-04-17
EP2581016A4 EP2581016A4 (fr) 2017-09-06

Family

ID=45347870

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11795362.0A Withdrawn EP2581016A4 (fr) 2010-06-14 2011-06-01 Dispositif de traitement de sol de type vertical

Country Status (6)

Country Link
US (1) US20130086768A1 (fr)
EP (1) EP2581016A4 (fr)
JP (1) JP2012000121A (fr)
CN (1) CN102939037A (fr)
CA (1) CA2802508A1 (fr)
WO (1) WO2011158454A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2995233A1 (fr) * 2014-09-15 2016-03-16 Indesit Company S.p.A. Balai électrique réversible
EP3056127A1 (fr) * 2015-02-10 2016-08-17 Black & Decker Inc. Appareil de nettoyage de sol
CN110438924A (zh) * 2019-07-24 2019-11-12 深圳市上源卫生服务有限公司 一种市政道路智能清洁车

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104271020B (zh) 2012-03-19 2017-04-05 伊莱克斯公司 具有支撑件的直立式真空吸尘器
DE102012110182A1 (de) * 2012-10-25 2014-04-30 Miele & Cie. Kg Upright-Staubsauger
RU2647234C2 (ru) * 2013-09-23 2018-03-14 Альфред Кэрхер Гмбх Унд Ко. Кг Насадочное всасывающее устройство для чистящего аппарата и чистящий аппарат
DE102014116588B4 (de) * 2014-11-13 2019-02-28 Vorwerk & Co. Interholding Gmbh Saugdüse für einen Staubsauger zum Pflegen eines Bodens
US10448798B2 (en) * 2015-12-10 2019-10-22 Jiangsu Midea Cleaning Appliances Co., Ltd. Floor brush assembly for upright vacuum cleaner and upright vacuum cleaner with the same
KR102504105B1 (ko) * 2016-05-12 2023-02-28 삼성전자주식회사 진공 청소기
US11478117B2 (en) * 2016-08-29 2022-10-25 Omachron Intellectual Property Inc. Surface cleaning apparatus
CN110494072A (zh) * 2017-03-02 2019-11-22 夏普株式会社 电吸尘器
DE202017102319U1 (de) * 2017-04-19 2018-07-23 Vorwerk & Co. Interholding Gmbh Vorsatzgerät für einen Staubsauger mit stabiler Parkposition
CN108309149B (zh) * 2018-03-29 2023-12-19 添可智能科技有限公司 用于吸尘器的工具及其吸尘器
JP7080094B2 (ja) * 2018-04-11 2022-06-03 ツインバード工業株式会社 電気掃除機用ノズル
EP3790436B1 (fr) * 2018-05-09 2023-07-19 SharkNinja Operating LLC Aspirateur vertical comprenant un corps principal se déplaçant indépendamment du tube pour réduire le mouvement du centre de gravité du corps principal
CN110691541A (zh) 2018-05-11 2020-01-14 深圳市赫兹科技有限公司 具有手势助力运动控制技术的清洁机器人
CN109602329A (zh) * 2018-12-29 2019-04-12 北京石头世纪科技股份有限公司 吸尘器挂架和清洁系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109735A (en) * 1977-06-15 1978-09-25 Matsushita Electric Works Ltd Handle for running machine
JPS569345U (fr) * 1979-06-30 1981-01-27
JPS61197846A (ja) 1985-02-26 1986-09-02 Diesel Kiki Co Ltd 車輛用自動変速装置
JPS62151834U (fr) * 1986-03-18 1987-09-26
JPH0531048A (ja) * 1991-08-02 1993-02-09 Matsushita Electric Ind Co Ltd 縦型電気掃除機
US5323510A (en) 1993-07-09 1994-06-28 Redding Glenn K Vacuum cleaner having improved steering features
JPH11178756A (ja) * 1997-12-24 1999-07-06 Toshiba Tec Corp 電気掃除機
GB2391459A (en) 2002-08-09 2004-02-11 Dyson Ltd A surface treating appliance with increased manoeuverability
US20090044373A1 (en) * 2007-08-14 2009-02-19 Samsung Gwangju Electronics Co., Ltd. Upright type vacuum cleaner
DE102007040954A1 (de) * 2007-08-30 2009-03-05 Miele & Cie. Kg Upright-Staubsauger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011158454A1 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2995233A1 (fr) * 2014-09-15 2016-03-16 Indesit Company S.p.A. Balai électrique réversible
CN105411485A (zh) * 2014-09-15 2016-03-23 英德斯特股份公司 可翻转的电动扫帚
EP3056127A1 (fr) * 2015-02-10 2016-08-17 Black & Decker Inc. Appareil de nettoyage de sol
CN110438924A (zh) * 2019-07-24 2019-11-12 深圳市上源卫生服务有限公司 一种市政道路智能清洁车
CN110438924B (zh) * 2019-07-24 2020-12-22 深圳市上源卫生服务有限公司 一种市政道路智能清洁车

Also Published As

Publication number Publication date
CA2802508A1 (fr) 2011-12-22
JP2012000121A (ja) 2012-01-05
EP2581016A4 (fr) 2017-09-06
CN102939037A (zh) 2013-02-20
WO2011158454A1 (fr) 2011-12-22
US20130086768A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
EP2581016A1 (fr) Dispositif de traitement de sol de type vertical
CN1953691B (zh) 用于清洁器具的附件
JP5577368B2 (ja) 電気掃除機用フロアツール
US7950102B2 (en) Upright vacuum cleaner having steering unit
US7854039B2 (en) Handle assembly rotatable in all directions and cleaner having the same
KR20090074582A (ko) 조향유닛을 구비한 업라이트 진공청소기
JP2003190064A (ja) 自走式掃除機
JP6229169B2 (ja) 電気掃除機用吸込具およびこれを備えた電気掃除機
JP7283804B2 (ja) 掃除機
EP2055219A2 (fr) Appareil de connexion de roue et nettoyeur en disposant
US9949603B2 (en) Nozzle for a vacuum cleaner and vacuum cleaner
KR100762684B1 (ko) 전기 청소기용 흡입구
JP2002209809A (ja) 電気掃除機用吸込具およびそれを用いた電気掃除機
JP2006136503A (ja) 電気掃除機の吸込口体および電気掃除機
JP4334292B2 (ja) 電気掃除機用吸込口体及びこれを備えた電気掃除機
JP4617558B2 (ja) 電気掃除機用吸込具及びそれを用いた電気掃除機
JP2004089243A (ja) 電気掃除機用吸込具およびそれを用いた電気掃除機
JP4726708B2 (ja) 電気掃除機
JP4407048B2 (ja) 掃除機用吸込み口およびそれを用いた電気掃除機
JP2008049072A (ja) 吸込口体および電気掃除機
JP2000354573A (ja) 電気掃除機用吸口体及びそれを用いた電気掃除機
JP4513197B2 (ja) 電気掃除機
JP3246451B2 (ja) 電気掃除機
JPH11206637A (ja) 吸込口体及びこれを用いた電気掃除機
JP2002102125A (ja) 電気掃除機用吸込具およびそれを用いた電気掃除機

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20170808

RIC1 Information provided on ipc code assigned before grant

Ipc: A47L 5/36 20060101ALI20170802BHEP

Ipc: A47L 9/00 20060101AFI20170802BHEP

Ipc: A47L 9/28 20060101ALI20170802BHEP

Ipc: A47L 9/32 20060101ALI20170802BHEP

Ipc: A47L 5/28 20060101ALI20170802BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180306