EP2576310A1 - Procédé et dispositif de détection de réactions intempestives de la chaîne cinématique d'un véhicule automobile équipé d'au moins un groupe motopropulseur - Google Patents

Procédé et dispositif de détection de réactions intempestives de la chaîne cinématique d'un véhicule automobile équipé d'au moins un groupe motopropulseur

Info

Publication number
EP2576310A1
EP2576310A1 EP11712844.7A EP11712844A EP2576310A1 EP 2576310 A1 EP2576310 A1 EP 2576310A1 EP 11712844 A EP11712844 A EP 11712844A EP 2576310 A1 EP2576310 A1 EP 2576310A1
Authority
EP
European Patent Office
Prior art keywords
dynamic model
motor vehicle
variable
drive
drive unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11712844.7A
Other languages
German (de)
English (en)
Inventor
Jens-Werner Falkenstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to EP13178293.0A priority Critical patent/EP2660118B1/fr
Publication of EP2576310A1 publication Critical patent/EP2576310A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/023Avoiding failures by using redundant parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • B60W2050/0006Digital architecture hierarchy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0037Mathematical models of vehicle sub-units
    • B60W2050/0039Mathematical models of vehicle sub-units of the propulsion unit

Definitions

  • the invention relates to a method for detecting unwanted driveline reactions of a motor vehicle with at least one drive unit, wherein at least one input of the motor vehicle and / or the drive unit is input to the driveline and at least one output variable is measured on the motor vehicle and / or the drive unit and a device to carry out the process.
  • Power output of a power plant e.g. due to an error in the data communication or a component failure can then cause a safety-critical movement of the vehicle, without the driver wants it.
  • Torque and / or power output by the drive unit is possible. Characterized in that at least one input variable of the motor vehicle and / or the drive unit (for example, a torque or a power) is supplied to the drive train of the motor vehicle at least partially replicating dynamic model, wherein the dynamic model based on the input determines at least one model output variable, which with is compared with at least one measured output, wherein a difference between the measured output and the
  • Model output on an unwanted driveline reaction is closed, a detection and possibly a minimization of unwanted
  • a disturbance of the drive train of the motor vehicle is estimated in the dynamic model. Errors in the real drive beach have an impact on the real drive train. Since disturbances acting on the real system of the drive train can not be measured on the real system of the drive train, it is possible in the present invention to evaluate the disturbance variable via the dynamic model, wherein a
  • the disturbance can be determined mathematically.
  • Motor vehicle in the dynamic model compared with at least one threshold, wherein when exceeding a first threshold or
  • the threshold value depends on an operating state of the drive train. For example, at very dynamic and / or magnitude high target torque / target power at detected road bumps, when detected frosted road surface, recognized driveline vibrations, braking, ABS or ESP interventions or increases in gear shifts the first threshold.
  • the estimated value of the disturbance variable is fed back to the part of the dynamic model which is at least partially replicating the drive train of the motor vehicle. Through this feedback, an approximation between the dynamic model and the real behavior of the drive train takes place.
  • Torque and power of the drive unit are typical
  • the torque and / or the power of the act act
  • Drive units on the inertia of the moving parts of the at least one drive unit For example, an air gap moment acts on the rotor of an electric machine or moments due to the gas and friction forces on the crank mechanism of an internal combustion engine.
  • setpoints are usually specified by a controller, which are suitable for direct comparison with determined or estimated actual values.
  • the dynamic model uses or estimates
  • Target torque a target power, a calculated actual torque and / or a calculated actual power of the drive unit.
  • the dynamic model is therefore designed so that it can record and reproduce variables recorded or emitted by the real drive train dynamically. This gives an identity between the real powertrain and the dynamic model.
  • the dynamic model simulates a drive dynamics of the at least one drive unit and / or further units.
  • the other units may be additional drive units such as electric machines, hydraulic and internal combustion engines or units such as clutches, torque converters, lock-up clutches and gearboxes that respond dynamically to a control.
  • the dynamic model simulates the aggregate limits of the at least one drive unit and further units.
  • the dynamic model forms time delays in one
  • the measured output as well as the model output determined by the dynamic model can be compared as if they had occurred at the same time.
  • the dynamic model simulates torques and / or performances of mechanically driven ancillary components.
  • Ancillaries include power steering pumps, air conditioning compressors,
  • the dynamic model forms elasticities and / or mechanical play in the suspensions of the drive unit and / or in the suspensions of further units and / or in a chassis and / or in the chassis
  • Wheel suspensions and elasticities of the tires improves the simulation of the vibration behavior of a motor vehicle.
  • the dynamic model or the parameters of the dynamic model based on a time course of at least one
  • a development of the invention relates to a device for detecting unwanted driveline reactions of a motor vehicle with at least one drive unit, wherein at least one input of the
  • Motor vehicle and / or the drive unit is input to the driveline and at least one output on the motor vehicle and / or the
  • Drive unit is measured.
  • means are provided which feed the input quantity to a dynamic model at least partially replicating the drivetrain of the motor vehicle, wherein the dynamic model determines a model output variable based on the input variable , which is compared with the measured output, wherein an unwanted driveline response is inferred with a difference between the measured output and the model output.
  • This is the dynamic model calculated from the real drive train. The dynamic model receives this
  • Drive units i. magnitudes determined on the real driveline, e.g.
  • a first control device comprising the dynamic model is connected to a second control device via a communication device transmitting at least one input variable and / or at least one measured output variable.
  • a communication device transmitting at least one input variable and / or at least one measured output variable.
  • the first control device comprises a first dynamic model and the second control device comprises a second dynamic model, wherein the first control device is connected to a power supply, while the second control device is connected to the drive unit.
  • the first control unit is designed as a vehicle control unit and the second control unit as a drive unit control unit.
  • the determination of the dynamic model can be interrupted, whereby the drive unit control unit can control the drive unit without adverse effect and regulate or switch off.
  • Figure 1 a simplified model of a drive train
  • FIG. 2 Replica of the drive train according to FIG. 1
  • FIG. 3 shows a signal flow diagram for an embodiment of the invention
  • FIG. 4 simulation results for a starting process of the
  • Figure 5 an embodiment of the device according to the invention.
  • FIG. 1 shows a simplified model of a drive train which comprises an electric machine 1 which drives the drive wheels 5, 6 of the motor vehicle via a transmission 2 and side shafts 3, 4.
  • the gear 2 is not switchable, so it contains only one gear and provides permanent adhesion between the
  • Drive wheels 5, 6 is the rotor of the electric machine. 1
  • the basic idea of the present invention is that a dynamic model or partial model of the oscillatory drive train of the
  • FIG. 2 A vibratory replica of the electric drive train of Figure 1 is shown in Figure 2.
  • the rotational inertial masses of the electric machine 1 and the transmission 2 are modeled in the replacement torque EIM.
  • Vehicle mass simulates.
  • the torsion spring / damper element 7 simulates elasticities in the drive train, which are usually characterized by the stiffnesses of the side shafts 3, 4.
  • all inertias, angular velocities and torques as well as other parameters with the real translations of the Gear 2 and the tire radii converted and reduced, so that in Figure 2 of translations i 1 is assumed.
  • the replacement torque EIM of the electric machine 1 and of the transmission 2 shown in FIG. 2 rotates at the angular speed CUEIM, which is determined by a speed sensor, not shown, and reported to a vehicle control.
  • the replacement rotational mass EIM is affected by the air-gap torque M E IMAG generated by the electric machine 1 and by the torsion spring
  • the Arbitrnavmasse 8 forms with the moment of inertia J Veh of the motor vehicle further drive train parts, wheels and the translationally moving vehicle mass and rotates with the angular velocity cc eh -
  • the angular velocity o eh can in real drive, for example from the signals of Radfieregeber at the two drive wheels by averaging and under consideration of
  • Torsion spring / damper element 7 currently transmitted torque M S D and a
  • Travel resistance torque M D which simulates the roll, air and pitch resistance.
  • FIG. 3 shows a signal flow diagram for an embodiment of the method according to the invention.
  • a of Figure 3 is the real oscillatory
  • a block 9 specifies a desired torque M Des , which is determined from the position of an accelerator pedal and / or predetermined by a driver assistance system or a driving stability system.
  • the desired torque M Des can also be influenced by an idling control or an automated transmission.
  • the desired torque M Des can depend on
  • the Air gap torque M E IMAG corresponds to the real-acting actual torque of the electric machine 1 and follows the setpoint torque M DeS EiM delayed.
  • Node 1 1 summarized.
  • the angular velocity CÜEIM of the replacement rotational mass EIM is obtained.
  • a corresponding procedure in the blocks 16 and 1 7 leads to the angular velocity cc eh the
  • inventive method with the dynamic model or partial model of the drive train.
  • the determined on the real drive train is
  • Air gap torque M E iMAGObs is summarized with a torque M S DObs of the torsion spring / damper element modeled in block 19 at node 20 and divided by the estimated moment of inertia J E iMOb S of the replacement rotational mass EIM (block 21).
  • An integrator 22 calculates therefrom an estimate cctiMObs for the
  • Angular velocity cc before replacement torque 8 are used by a model of the torsion spring / damper element shown in block 19 to determine the modeled moment M S DObs.
  • Angular velocity CC ⁇ IM and the estimated angular velocity cctiMObs of the replacement rotational mass EIM together.
  • the two variables cetiM and cetiMObs deviate from one another.
  • An undesired torque output of the electric machine 1 acts only on the real drive train and thus on the determined angular velocity CO ⁇ M, but not on the dynamic model and therefore not on the estimated
  • Electric machine 1 is in Figure 3 by a disturbance torque M z in block 23rd
  • the disturbance torque M z acts on the real drive train, but is not measured there.
  • the difference Acc bs of the two variables CUEIM and coeiMObs in the node 24 is formed in the sense of a disturbance observer and via a proportional-integral feedback 25 as disturbance observer correction torque AM 0 b S the modeled air gap moment M e iMAGObs in
  • the estimated angular velocity GtiMObs is introduced to the determined angular velocity CÜEIM.
  • the disturbance observer correction torque AM 0 b S required for this purpose then corresponds to an estimated value for the disturbance torque M z .
  • the disturbance observer correction torque AM 0 bs is intended to provide an estimate for the
  • the disturbance observer correction torque AM 0 b S is for the most part (for example 80%) applied to the model at node 28 before the modeled drive dynamics (block 18).
  • the two quantities M z and AM 0 b S can be compared directly in the simulations.
  • a stabilizing feedback (block 29) is used for the integral part.
  • the disturbance observer correction torque AM 0 bs is compared with torque thresholds and leads to the torque reduction or shutdown of Electric machine 1, if it exceeds an upper threshold above or below a lower threshold. An intervention in the brake system is possible in this case.
  • the torque thresholds are modified depending on the operating state of the drive, eg widened at very dynamic and / or magnitude high target torque M Des .
  • the setpoint torque M Des is limited to the torque limits of the electric machine 1, since the real electric machine 1 can only set torques within its aggregate limits. Such a limitation is not shown in FIG. 3 for the sake of simplicity.
  • the vibration capability of the real drive is utilized.
  • the angular velocity CUEIM determined on the real drive train reacts even before there are appreciable effects on the angular velocity cc eh
  • the driver can respond independently.
  • the parameters of the real drive train may not be known exactly or change over the lifetime.
  • the delay (PT1 time constant) of the modeled drive dynamics is the
  • Electric machine 1 (block 18) compared to the real driving dynamics of the
  • Damping in the model of the torsion spring / damper element (block 19) are compared to the real torsion spring / damper element / (relative block 14) reduced by 10%.
  • an adaptation of the model parameters to the parameters of the real drive makes sense, a deviation of 10% therefore seems realistic.
  • FIG. 4 shows simulation results for a starting process of the vehicle with a setpoint torque M Des ramp-shaped by the driver.
  • the disturbance torque M z jumps from 0 Nm to 150 nos.
  • a corresponding disturbance can occur on the real drive, eg due to an error in the data communication or a component failure arise.
  • the reaction of the disturbance observer correction torque AMo b s which represents an estimated value for the disturbance torque M z , can be clearly seen.
  • the electric machine 1 can be switched off as soon as the disturbance observer correction torque AM 0 b S exceeds a torque threshold of 40 Nm.
  • the shutdown command can be less than 5 ms after the
  • FIG. 4 shows the curves of the angular velocities CUEIM, ⁇ iMObs and o eh .
  • the angular velocity o eh acts equally on the real drive and on the dynamic model. This results in a high degree of robustness of the method compared to vibration excitations due to road bumps, in icy conditions, in braking, ABS or ESP interventions. As shown above, the torque thresholds are compared with the disturbance observer
  • Correction torque AMo b s modified depending on the operating state of the drive.
  • the integral component of the disturbance observer correction torque AMo b s can be modified or initialized depending on the operating state of the drive.
  • the disturbance observer correction torque AM 0 bs represents an estimated value for the disturbance torque M z , thus describes a deviation of the actual torque of the electric machine 1 from the target torque.
  • the model can also be used to detect a magnitude too low torque on a drive unit and take action against it, for example by another
  • Drive unit compensates for the missing torque component. Too much retarding torque can also be detected and e.g. the electric machine 1 are switched off, if there is a risk that the drive wheels 5, 6 too slow or block.
  • Figure 5 shows a possible embodiment of an apparatus for performing the method, wherein in a first control unit 30, which is designed as a vehicle control unit, the target torque M Des determined and transmitted via a bus system 32 to a second control unit 31, wherein the second control unit 31 as Electric machine control unit is designed.
  • the first controller 30 receives the
  • the first control unit 30 may require the encoder signals required to determine the angular velocities CUEIM and cc eh also read directly. It can also own, the first controller 30th
  • Signal propagation times of the data transmission are simulated in blocks 33, 34 and 37.
  • the dynamic model is calculated in the first controller 30.
  • Signal delays are compensated in the first controller 30. This is done by delaying the desired torque M Des with the aid of a block 35 such that the response of the model in the form of the angular velocity coeiMObs coincides with the delayed values of the angular velocities CUEIM and cc eh available in the control unit 30.
  • Electric machine 1, the electric machine 1 and / or a power supply 36 are turned off. This shutdown is preferably carried out by means of a
  • the first control unit 30 sends to the second control unit 31 a switch-off signal for the electric machine 1.
  • a corresponding switch-off signal is output to the energy supply 36 by the first control unit 30.
  • a first dynamic model is calculated in the first control unit 30 and a second dynamic model is simultaneously calculated in the second control unit 31.
  • Dynamic model detects an unwanted torque output of the electric machine 1, the second control unit 31 switches off the electric machine.
  • the dynamic model or partial model of the drive train can drive units such as electric machines and hydraulic and internal combustion engines or units such as clutches, torque converter, lock-up clutches,
  • Model parameter to the parameters of the real drive train makes sense.
  • the illustrated method can be used in hybrid, electric or hydraulic vehicles but also vehicles with conventional combustion engine drive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

L'invention concerne un procédé de détection de réactions intempestives de la chaîne cinématique d'un véhicule automobile équipé d'au moins un groupe motopropulseur, selon lequel on saisit au moins une variable d'entrée (MDes) du véhicule automobile et/ou du groupe motopropulseur (1) dans la chaîne cinématique, et on mesure au moins une variable de sortie (ωEIM) sur le véhicule automobile et/ou le groupe motopropulseur (1). Afin de détecter précocement un cas de défaut, la ou les variables d'entrée (MDes) sont introduites dans un modèle dynamique reproduisant au moins partiellement la chaîne cinématique du véhicule automobile. Le modèle dynamique détermine, sur la base de la variable ou des variables d'entrée (MDes), au moins une variable de sortie modèle (ωEIMObs) qui est comparée à la variable ou aux variables de sortie mesurées (ωEIM). En cas de différence entre la variable de sortie mesurée (ωEIM) et la variable de sortie modèle (ωEIMObs), on conclut à une réaction intempestive de la chaîne cinématique.
EP11712844.7A 2010-06-04 2011-04-05 Procédé et dispositif de détection de réactions intempestives de la chaîne cinématique d'un véhicule automobile équipé d'au moins un groupe motopropulseur Withdrawn EP2576310A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13178293.0A EP2660118B1 (fr) 2010-06-04 2011-04-05 Dispositif pour la détection des vibrations non désirées d'une chaîne cinématique d'un véhicule automobile comprenant au moins une unité d'entraînement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010029706A DE102010029706A1 (de) 2010-06-04 2010-06-04 Verfahren und Vorrichtung zur Erkennung von ungewollten Triebstrangreaktionen eines Kraftfahrzeuges mit wenigstens einem Antriebsaggregat
PCT/EP2011/055255 WO2011151094A1 (fr) 2010-06-04 2011-04-05 Procédé et dispositif de détection de réactions intempestives de la chaîne cinématique d'un véhicule automobile équipé d'au moins un groupe motopropulseur

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP13178293.0A Division EP2660118B1 (fr) 2010-06-04 2011-04-05 Dispositif pour la détection des vibrations non désirées d'une chaîne cinématique d'un véhicule automobile comprenant au moins une unité d'entraînement

Publications (1)

Publication Number Publication Date
EP2576310A1 true EP2576310A1 (fr) 2013-04-10

Family

ID=44063644

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13178293.0A Active EP2660118B1 (fr) 2010-06-04 2011-04-05 Dispositif pour la détection des vibrations non désirées d'une chaîne cinématique d'un véhicule automobile comprenant au moins une unité d'entraînement
EP11712844.7A Withdrawn EP2576310A1 (fr) 2010-06-04 2011-04-05 Procédé et dispositif de détection de réactions intempestives de la chaîne cinématique d'un véhicule automobile équipé d'au moins un groupe motopropulseur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13178293.0A Active EP2660118B1 (fr) 2010-06-04 2011-04-05 Dispositif pour la détection des vibrations non désirées d'une chaîne cinématique d'un véhicule automobile comprenant au moins une unité d'entraînement

Country Status (4)

Country Link
US (1) US8983715B2 (fr)
EP (2) EP2660118B1 (fr)
DE (1) DE102010029706A1 (fr)
WO (1) WO2011151094A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014211625A1 (de) * 2014-06-17 2015-12-17 Robert Bosch Gmbh Leistungssteuervorrichtung für eine Motorsteuervorrichtung, Motorsteuervorrichtung und Motorsystem
AU2016309710B2 (en) 2015-08-14 2020-12-24 Crown Equipment Corporation Model based diagnostics based on steering model
US9868445B2 (en) 2015-08-14 2018-01-16 Crown Equipment Corporation Diagnostic supervisor to determine if a traction system is in a fault condition
DE102016113326A1 (de) * 2016-07-20 2018-01-25 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Steuerung eines Antriebsaggregats
AU2017393175B2 (en) * 2017-01-13 2023-08-31 Crown Equipment Corporation Traction speed recovery based on steer wheel dynamic
CA3041343A1 (fr) 2017-01-13 2018-07-19 Crown Equipment Corporation Desensibilisation de rotoculteur en ligne droite a grande vitesse
DE102017109161B4 (de) * 2017-04-28 2021-12-09 Universität Rostock Verfahren und Vorrichtung zur Handhabung von Fehlern in einem Antriebssystem
JP6390774B1 (ja) * 2017-09-13 2018-09-19 株式会社明電舎 動力計制御装置
JP6493578B1 (ja) * 2018-02-08 2019-04-03 株式会社明電舎 試験システムの機械特性推定方法及び機械特性推定装置
JP6958518B2 (ja) * 2018-09-07 2021-11-02 株式会社明電舎 動力計制御装置
DE102018216515A1 (de) * 2018-09-26 2020-03-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Bedaten eines Steuergeräts sowie Verfahren zum Betreiben eines Kraftfahrzeugs
GB2591284B (en) * 2020-01-24 2022-05-04 Perkins Engines Co Ltd Powertrain controller
JP7409222B2 (ja) * 2020-05-14 2024-01-09 マツダ株式会社 移動体の制御装置
DE102020119551B4 (de) 2020-07-24 2024-07-11 Audi Aktiengesellschaft Verfahren zur Regelung eines Antriebsstrangs eines Kraftfahrzeugs, Regelungseinrichtung und Kraftfahrzeug
DE102020119552A1 (de) 2020-07-24 2022-01-27 Audi Aktiengesellschaft Verfahren zur Regelung eines Antriebsstrangs eines Kraftfahrzeugs, Regelungseinrichtung und Kraftfahrzeug
DE102021133400A1 (de) 2021-12-16 2023-06-22 Universität Rostock, Körperschaft des öffentlichen Rechts Verfahren und Vorrichtung zur Gradientenbegrenzung eines an einem Drehmomentübertragungselement eines drehschwingungsfähigen Antriebssystems anliegenden Drehmoments

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3404156A1 (de) * 1984-02-07 1985-08-14 Daimler-Benz Ag, 7000 Stuttgart Einrichtung zur automatischen betaetigung einer kupplung von fahrzeugen waehrend des anfahrens
DE10242123A1 (de) * 2002-09-11 2004-03-25 Robert Bosch Gmbh Fahrdynamikregelungssystem mit Steilkurvenerkennung
DE10260838A1 (de) 2002-12-23 2004-07-15 Volkswagen Ag Verfahren und Vorrichtung zur Steuerung einer Kupplung innerhalb eines Kraftfahrzeugtriebstrangs
DE102004039756A1 (de) 2004-08-17 2006-02-23 Robert Bosch Gmbh Verfahren zum Betreiben eines Antriebssystems, sowie Computerprogramm, elektrisches Speichermedium, Steuer- und Regeleinrichtung und Brennkraftmaschine
JP2006142994A (ja) * 2004-11-19 2006-06-08 Denso Corp 車両用ネットワークシステムおよび電子制御装置
DE102006017824B4 (de) * 2006-04-13 2018-10-11 Dspace Digital Signal Processing And Control Engineering Gmbh Methode zum Konstruieren einer Diagnosefunktion
DE102006047655A1 (de) * 2006-10-09 2008-04-10 Robert Bosch Gmbh Verfahren zum Betreiben eines Parallel-Hybridantriebs
DE102006051317A1 (de) * 2006-10-31 2008-05-08 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren zum generatorischen Bremsen eines Schienenfahrzeugs mit unterlegtem passiven Ersatzbremskreis und Vorrichtung zur Ausführung des Verfahrens
WO2008080378A1 (fr) * 2007-01-05 2008-07-10 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Chaîne cinématique
DE102007020279A1 (de) 2007-04-30 2008-11-06 Robert Bosch Gmbh Verfahren zum Ermitteln des Lastmoments beim Betrieb einer Antriebsmaschine
US8260486B2 (en) * 2008-02-01 2012-09-04 GM Global Technology Operations LLC Method and apparatus for diagnosis of sensors faults using adaptive fuzzy logic

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011151094A1 *

Also Published As

Publication number Publication date
WO2011151094A1 (fr) 2011-12-08
EP2660118A3 (fr) 2018-04-18
DE102010029706A1 (de) 2011-12-08
US20130138290A1 (en) 2013-05-30
EP2660118B1 (fr) 2019-12-04
EP2660118A2 (fr) 2013-11-06
US8983715B2 (en) 2015-03-17

Similar Documents

Publication Publication Date Title
EP2660118B1 (fr) Dispositif pour la détection des vibrations non désirées d'une chaîne cinématique d'un véhicule automobile comprenant au moins une unité d'entraînement
EP3172550B1 (fr) Procédé et banc d'essai pour tester un raccordement de composants d'un véhicule
DE102005033354B4 (de) Verfahren zur Abdämpfung von Schwingungen im Antriebsstrang eines Elektrofahrzeugs
EP2560834B1 (fr) Dispositif de fonctionnement pour une unité d'entraînement d'un véhicule à moteur
AT412916B (de) Verfahren zur simulation des fahrverhaltens von fahrzeugen
DE112016001432T5 (de) Antriebsleistungssteuerungsvorrichtung für elektrofahrzeug
DE102015116262A1 (de) Verfahren und Vorrichtung zum Betreiben eines Antriebssystems für ein Kraftfahrzeug mit einer Beschleunigungsüberwachung
EP2379390B1 (fr) Procédé et dispositif pour le fonctionnement d'un véhicule hybride
EP2670644B1 (fr) Procédé et dispositif pour surveiller le bon fonctionnement d'au moins un premier et un second composant de la chaîne cinématique d'un véhicule
WO2009127502A1 (fr) Fonctionnement en patinage d’un accouplement sur des dispositifs propulseurs hybrides
EP2161560A2 (fr) Procédé de commande d'un banc d'essai de transmissions de puissance de véhicules
DE102011084844A1 (de) Verfahren zum näherungsweisen Ermitteln des von einer Kupplung eines Antriebsstrangs eines Fahrzeugs tatsächlichen übertragenen Drehmoments
WO2010034570A1 (fr) Procédé et dispositif pour faire fonctionner un système d'entraînement hybride pendant le démarrage d'un moteur à combustion interne
DE102013113658B4 (de) Verfahren zum Betreiben eines Triebstranges
EP2045162A2 (fr) Procédé de commande d'un engrenage automatique, notamment d'un engrenage automatisé d'un véhicule automobile, de préférence d'un engrenage à embrayage double
DE102010062379A1 (de) Verfahren und Vorrichtung zum Antrieb eines Kraftfahrzeuges
EP2048053B1 (fr) Procédé pour commander la chaîne cinématique mécanique d'un véhicule automobile
EP1529947B1 (fr) Dispositif et méthode de suppression des vibrations torsionelles dans un train d'entraînement
DE102017109161B4 (de) Verfahren und Vorrichtung zur Handhabung von Fehlern in einem Antriebssystem
DE102013019483A1 (de) Verfahren und Vorrichtung zur Schwingungsdämpfung einer angetriebenen Achse mit Momentenquerverteilung
DE102011111775A1 (de) Einseitige Detektion und Deaktivierung des Aufschwingens eines Integrierers für eine Drehzahlsteuerung in einem Fahrzeug
DE19960334A1 (de) Kraftfahrzeug
DE102015111409B3 (de) Verfahren zur Bestimmung von Kräften und/oder Drehmomenten
EP1745363A1 (fr) Procede de compensation de l'influence de la pente lors de la determination d'une vitesse de reference
DE102008043984A1 (de) Verfahren und Vorrichtung zum Betreiben eines Fahrzeuges mit einem Hybridantrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130817