EP2548262B1 - Antenne omnidirectionnelle à large bande - Google Patents

Antenne omnidirectionnelle à large bande Download PDF

Info

Publication number
EP2548262B1
EP2548262B1 EP11708004.4A EP11708004A EP2548262B1 EP 2548262 B1 EP2548262 B1 EP 2548262B1 EP 11708004 A EP11708004 A EP 11708004A EP 2548262 B1 EP2548262 B1 EP 2548262B1
Authority
EP
European Patent Office
Prior art keywords
radiator
antenna
slot
antenna according
earth plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11708004.4A
Other languages
German (de)
English (en)
Other versions
EP2548262A1 (fr
Inventor
Tanja Hefele
Manfred Stolle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Publication of EP2548262A1 publication Critical patent/EP2548262A1/fr
Application granted granted Critical
Publication of EP2548262B1 publication Critical patent/EP2548262B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/12Longitudinally slotted cylinder antennas; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/16Folded slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements

Definitions

  • the invention relates to a broadband omnidirectional antenna according to the preamble of patent claim 1.
  • Omnidirectional antennas are used, for example, as indoor antennas. They are multiband capable and preferentially emit with a vertical polarization orientation. You can do this include a ground or ground plate, which may be designed, for example, disk-shaped, on the transversely and in particular perpendicular to the base plate a monopole radiator rises.
  • the entire assembly is usually by means of a protective housing, i. covered by an antenna cover (radome).
  • the known monopole radiator rises vertically above a base plate or counterweight surface from which it is galvanically isolated.
  • the vertically polarized monopole radiator comprises at least approximately a conical or frustoconical radiator section (which points away from the base plate or counterweight surface with its divergent extension) and / or a cylindrical or cup-shaped radiator section.
  • the counterweight surface is adjoined first by the cone-shaped or frustoconical radiator section facing away from the counterweight surface with its diverging extension, which radiator section then merges into a tubular radiator section.
  • Such an antenna type has proven particularly useful as an indoor antenna. It is characterized by its wide bandwidth and simultaneous operation in different frequency ranges, and this with a very low overall design.
  • a directional radiator which is formed, for example in the form of a cavity radiator with a plurality of offset on its peripheral side walls in the circumferential direction lying slots, wherein the slots are fed separately via separate coaxial cables.
  • This antenna comprises a broadband omnidirectional antenna with a monopole radiator that is vertically polarized and rises above a base or counterweight surface.
  • the omnidirectional antenna is designed as a dual-polarized antenna, wherein the dual-polarized antenna in addition to the vertically polarized monopole radiator comprises a horizontally polarized radiator.
  • a monopole-shaped antenna in a cylindrical design is from the US 5,754,143 A known.
  • the monopole comprises a slot inserted in a cylindrical jacket, which is arranged running meandering.
  • longer sections of the meander-shaped slot antenna are arranged parallel to one another and parallel to a vertical axis, wherein these mutually parallel aligned and circumferentially offset from each other slot sections are connected to each other via a top or a bottom, horizontally extending slot portion.
  • the monopole is determined by the longer, extending in the vertical direction and aligned parallel slot sections. In this case, this monopole radiator is operated by feeding the meandering slot.
  • the feeding of the slot takes place in this case by means of a coaxial cable, wherein the outer conductor of the coaxial cable is galvanically connected to one edge of the slot, whereas over the outer conductor axially projecting inner conductor is passed across the slot and is electrically connected to the opposite edge of the slot.
  • EP 0 195 356 A2 is a circularly polarized emitter for the satellite mobile in the L-band as known to remove. It proposes a slotted tube antenna with a cylindrical antenna tube of certain length as a vertically polarized linear radiator and introduced into the cylinder jacket of the cylinder tube, a single vertically extending slot. This longitudinal slot in a predetermined length serves as a horizontally polarized dipole.
  • the maximum radiation of the lobe is at a collection angle of about 30 °.
  • the slot is excited by means of a coaxial cable, which in turn the regroupleter at one edge of the slot and the slot crossing inner conductor at the opposite Slot edge is in each case galvanically connected to the jacket of the antenna tube.
  • an antenna arrangement with a cylinder jacket to take as known, in which circumferentially offset from one another and parallel to each other and to the axial central axis extending slots are formed in the radiator shell, which are fed by means of a running inside the radiator shell feeding device. It is a pure monopole radiator.
  • Object of the present invention is to provide an omnidirectional antenna, which is basically broadband, opens up a wider range of applications compared to the prior art and also claim little space.
  • the feed device provided in the interior of the lamp shroud for the plurality of slots comprises separate feed devices, via which the respectively assigned slots are excited separately.
  • the feed device provided in the interior of the vertically polarized pole-shaped radiator comprises slot-shaped antenna devices in the form of tapered slot antennas (TSA) arranged offset from one another in several circumferential directions.
  • the separate feed devices consist of the mentioned slot-shaped antenna devices in the form of tapered slot antennas (TSA).
  • the feed structure can be formed differently.
  • a central feed point on a printed circuit board
  • a tubular or frusto-conical support in adaptation to the shape of the monopole radiator
  • a galvanic contact with the electrically conductive outer surface of the monopole radiator.
  • Different principles are feasible.
  • a horizontal radiator device is a multiple Vivaldi antenna arrangement proposed as a feed structure for the slots in the jacket of the monopole radiator.
  • a Vivaldi antenna is a special case of a "longitudinal antenna", more particularly a special case of a “tapered slot antenna” (TSA), the edges or edges of the slot preferably being from a closed end to its open end expand in a funnel shape with a defined exponential formula.
  • TSA tapeered slot antenna
  • This funnel-shaped widened slot thus serves as a radiating element, wherein the feeding and excitation of the slot can take place via a feed microstrip line crossing the slot.
  • Vivaldi antennas can be realized in a very broadband manner.
  • Vivaldi antennas or other, in particular linearly taped slot antennas have an advantage insofar as they are structurally simple to implement, can be arranged within the rotationally symmetrical hollow body of the monopole radiator (thus not contribute to an increase in the height ) And especially the preferred exponential funnel shapes, so the various radiation directions of Vivaldi antennas can be aligned directly with the slots in the rotationally symmetric or rotation-like formation of the lateral surface of the monopole radiator.
  • the lateral surface of the monopole radiator results in a particularly high broadband while avoiding tolerance problems.
  • the number of mentioned slots in the lateral surface of the at least approximately rotationally symmetrical monopole radiator can be chosen differently.
  • at least three or four slots extending in the circumferential direction of the lateral surface of the monopole radiator are provided.
  • the length and width of the slots can be optimized according to the frequency ranges to be used.
  • the slots open in the vertical beam direction of the monopole radiator open, but may also be formed closed in particular with correspondingly longer dimensioning.
  • the slot structure in the circumferential direction may be repeatedly formed so that it is U-shaped, that consists of a double slot, in which case the remaining between the double slot electrically conductive surface can be held by a dielectric support structure, for example, for filling in the Slots are inserted.
  • the feeding of the vertically polarized radiator device can take place via the central axis, ie the axis of symmetry of the monopole radiator, for example by means of a serial (capacitive) coupling for the monopole-shaped vertically polarized radiator, as described in US Pat DE 103 59 605 B4 is described.
  • the feed of the horizontally polarized radiator is preferably realized by means of a coaxial cable which passes once through a passage opening in the mass or counterweight surface and is arranged to extend with a predetermined cable length on the counterweight surface until the coaxial cable through a further passage opening in the Mantle surface of the monopole radiator, where it is, for example, electrically conductively connected to this lateral surface, is guided into the interior, up to an aforementioned star-shaped distribution point of a corresponding feed structure for exciting the slots.
  • the coaxial feeders for the horizontally polarized radiator device which extend outside the generally rotationally symmetrical monopole radiator, preferably have a length which is chosen such that it is not the multiple of ⁇ / 2 of an operating wavelength used by the vertically polarized radiator.
  • the feed for the vertically and horizontally polarized radiator but also vice versa, so that, for example, the supply of horizontally polarized radiator in the vertical Central or symmetry axis takes place and the supply for the vertically polarized monopole radiator outside this central or symmetry axis.
  • the dual polarized omnidirectional antenna comprises a substantially vertically polarized antenna device 1 (i.e., a substantially vertically polarized radiator 1) and a substantially horizontally polarized antenna device 3 (i.e., substantially horizontally polarized radiator device 3).
  • the entire antenna arrangement is constructed on a base, base or ground plate 5 or surface 5, which is also referred to below as a counterweight surface 5 or reflector 5.
  • this counterweight surface 5 is designed circular or disc-shaped. But completely different shapes are possible.
  • the counterweight surface 5, for example, square, rectangular, oval, etc. may be formed, in general so also n-polygonal, etc.
  • Other embodiments of the counterweight surface, for example as a grid, are conceivable.
  • the vertically polarized antenna device 1 consists essentially of the aforementioned monopole-like radiator device 1, which is designed in the form of a hollow cylinder in the embodiment shown.
  • the vertically polarized monopole radiator 1 is at least approximately rotational body 11, i. in particular as an inner hollow rotary body 11 with a rotary or radiator sheath 11a is formed which is rotationally symmetrical to a central or symmetry axis 9.
  • the rotary body 11 has a predetermined height H, which is measured from the counterweight surface 5 to the upper edge 13 of the cylindrical monopole radiator 1.
  • the monopole steel 1, in the embodiment shown in the form of a cylindrical radiator device 1a, is galvanically separated from the mass or counterweight surface 5, as in particular in the very oblique perspective view according to FIG. 2 as well as in the axial vertical sectional view of Figure 3 can be seen.
  • the cylindrical radiator device 1a next to the here cylindrical radiator shell 11a the cup-shaped, adjacent to the mass or counterweight surface 5 extending bottom 11b includes.
  • an insulating sleeve 21 is placed, with a widened flange below 21a, on which then the formed with a cylindrical coupling portion 11c vertically polarized radiator device 1, 1a with its cylindrical radiator shell 11a placed is, wherein the cylindrical radiator shell 11a electrically via the bottom 11b with the cylindrical coupling portion 11c, that is galvanically connected.
  • the radiator 1 are fed with its electrically conductive radiator shell 11a via an inner conductor 17b, which passes through an electrically connected to the counterweight surface 5 outer conductor 17a thereof, whereby a coaxial connector 17 is formed in the region of the recess of the counterweight surface 5 ( as in FIG. 3 to see).
  • an insulator is also provided between the inner and outer conductors and between the counterweight surface 5 and the bottom 11b, by means of which the emitter 1 is kept separate from the counterweight surface 5 and the inner conductor 17b is separated from the outer conductor 17a.
  • a substrate or a dielectic 23 is arranged, which serves as the base section of several Vivaldi antenna devices 25.
  • These multiple Vivaldi antenna devices 25 form a feed structure 111 for feeding the slits explained below into the radiator shell 11a of the monopole radiator 1, 1a.
  • one of 11 is spoken, which comprises a plurality of separate feeders 111a, about which the respectively associated below-mentioned slots 43, 43 'are separately excited.
  • Vivaldi antenna devices are "tapered slot antennas" (TSAs) - ie expanded slot antennas. These are therefore broadband antennas, which are also used as sole radiation elements, for example in the millimeter-wave range. Often they are realized on a double-sided metallized substrate 23.
  • TSAs tapeered slot antennas
  • the dielectric 23 is disc-shaped and has a diameter which is equal to or slightly smaller than the inner diameter of the cylindrical electrically conductive jacket 11a.
  • FIG. 5 Corresponding FIG. 5 are provided on this disc-shaped substrate 23 in the circumferential direction at equal intervals, four Vivaldi antennas 25, which are therefore in other words in a 90 ° distance circumferentially offset from each other formed.
  • Each of the slot-shaped recesses 29 begins with a circular recess 33 typically adjacent to the vicinity of the center 31 of the substrate 23, wherein of the four circular, also in 90 ° in Circumferentially offset recesses 33 in each case the outwardly funnel-shaped widening slot-shaped structure 29 emanates, in the region of which the substrate 23 is freed from a conductive layer.
  • the slot line 29 'formed by the slot-shaped recess 29 is completed in a broadband manner, this circular clearance 33 preferably being long by a quarter wavelength.
  • the slot-shaped recesses 29, which widen outwards in the shape of a funnel extend in the radial direction, ie they are preferably symmetrical with respect to a radial vector passing through the center 31.
  • edges 29 "of the slot-shaped recess 29 delimiting the slot lines 29 ' can be designed differently for adapting the broadband of the antenna.”
  • these slot lines 29' have a funnel-shaped widening towards the outside, the curve of the edges 29 delimiting the slot lines 29 ". can follow an exponential function.
  • each slot feed line 35 initially extends with a radial line section 35a, to which a second line section 35b extending at right angles thereto adjoins in the exemplary embodiment shown (which runs parallel to the lines 31 extending from the center 31) Radial vectors runs), in order then in a third, again at right angles angled line section 35c, which cuts the respective slot line 29 'transversely and preferably perpendicularly.
  • arcuate courses of the feeders 35 are also possible.
  • the decisive factor is that they emanate from a star point and cross the slot line 29.
  • the strip line-shaped slot lines 35 on the substrate are terminated with a corresponding surface element 35d, which may be triangular or circular-sector-shaped or similar.
  • the respective multiple bends of the feed slot lines 35 take place in the same direction in the circumferential direction, so that a next slot line section 35b and so on adjoin each radial line section 35a in the circumferential direction continuously in the same direction.
  • the mentioned slot supply lines 35 are formed on the upper side 23b of the substrate 23, that is opposite to the slot lines 29 'of the Vivaldi antennas 25 (s. FIG. 6 wherein the slot lines 29 'formed on the opposite side of the substrate 25 are shown by dashed lines).
  • a coaxial feed line leading to the branching point 37 for this horizontal antenna arrangement is connected such that the outer conductor of a coaxial cable 41 is electrically connected to the conductive layer 27 on the underside 23b of the substrate 23, whereas the inner conductor of such a coaxial cable connection is passed through an opening in the substrate 23 upwards and galvanically connected to the central star branch point 37.
  • the individual outwardly funnel-shaped widened slot lines 29 ' are arranged so that their outwardly facing opening portions 29a each adjacent to in the lateral surface 11a of the cylindrical radiator device 1, 1a extending slots 43 end, so that via the respective Vivaldi antenna or generally the "tapered slot” antenna 25 of the corresponding vertical slot 43 is excited.
  • the circuit board or supply structure is therefore also characterized in that the slot lines 29 'resulting from the free spaces 33 outgoing slot lines 29' on the board or the substrate 23 for all slot or Vivaldi antennas 25 a common contiguous metallized surface 27th although the metallized areas for the individual Vivaldi antennas could be separated, which is not so advantageous.
  • the omnidirectional characteristic can be further improved by increasing the number of corresponding Vivaldi antennas which are offset in the circumferential direction. In other words, also 2, 3 or 5, 6, 7, etc.
  • Vivaldi antennas could be arranged offset in the circumferential direction, in which case on the opposite side a correspondingly larger number of feeders 35 are provided should be, whose individual supply line sections 35a, 35b, 35c would have to be angularly adjusted so that the last, the actual feed causing feeder line section 35c respectively the corresponding slot-shaped recess 29 intersects, namely preferably perpendicular to the radial extent.
  • the feed structure 111 is fed with a provided on the top of the board 23 feed network in the middle by a coaxial cable 41 from below (via an inner conductor of the coaxial cable), wherein on the idle microstrip lines with broadband stubs as Conclusion each a Vivaldi antenna 25 (as a special case of a TSA) is fed, which are located on the underside of the board.
  • the electric field propagates in each individual Vivaldi antenna from the center to the edge of the board, whereby the electric field vector in the slot is parallel to the surface of the board. In other words, the electric field vector is already horizontally polarized relative to the overall antenna.
  • the individual slots 43 are excited to radiate.
  • the omnidirectional antenna is constructed so that the monopole radiator 1 faces in the vertical direction, that is, the counterweight surface is aligned horizontally. Accordingly, the feed structure 111 with the board or the substrate 23 is horizontally aligned (namely, parallel to the counterweight surface and thus perpendicular to the monopole radiator), so that from the inside to the outside preferably funnel-shaped widening slot radiator (Vivaldi radiator) are aligned in the plane parallel to the counterweight 5 horizontal plane and thus act this radiator as a horizontal radiator.
  • the corresponding vertical and horizontal directions would point in different directions, depending on the antenna orientation.
  • a feed structure is preferably proposed on a printed circuit board, via which a coupling to the slits can take place from a central point, in particular capacitively.
  • the feed line 41 for feeding the Vivaldi antenna elements 25 in the interior 11d of the rotationally symmetric and internally hollow body of revolution 11 or Strahlermantel 11a extend, for example, the mentioned coaxial feed cable 41 in the interior 11d via a bore 45 through the bottom 11b or Mantle surface 11a of the vertically polarized antenna device 1 and is passed through a further bore 47 in the counterweight surface 5 on the underside of the counterweight surface 5.
  • the coaxial cable 41 may be connected to a further coaxial connector 117.
  • This section 41a of the feed cable 41 outside of the radiator 1 and above the counterweight surface 5 is not intended to be an integer multiple of half of an operating wavelength used by the vertically polarized antenna.
  • the supply of the vertically polarized monopole radiator 1 via the mentioned serial (capacitive) power supply in the center of the antenna array (or via the central supply accordingly FIG. 3 via a connector provided there) and the feeding of the horizontally polarized radiator device 3 via offset coaxial cable 41 or vice versa can be made such that the Vivaldi antenna devices 25 are fed centrally via a running in the central axis 9 coaxial cable, whereas the vertically polarized monopole-shaped Radiator device 1 is fed via a radially offset eccentric coaxial cable.
  • the monopole-shaped vertically polarized antenna device 1 need not necessarily consist of a cylindrical steel body 1a, but alternatively may consist of a running away from the counterweight surface 5 cone or frusto-conical radiation body 1b or preferably from a radiation body
  • the offset Starting from the ground surface 5, a conically widening first antenna section 1b and an adjoining cylindrical antenna section 1a comprises, as is basically the case from the already mentioned DE 103 59 605 B4 is known, to whose disclosure content in so far in Full reference is made.
  • This also forms a rotational body 11 or at least approximately a rotational body 11 as a particularly efficient, vertically polarized monopole-shaped radiator.
  • the slots 43 running away from the counterweight surface 5 in the radiator shell 11a could be formed completely or partially at the level of the conically widening radiator 1b or radiator section 1b, although this somewhat impairs the emission behavior.
  • FIG. 2 shows a non-inventive example in which the feed of the vertical slots 43 in the cylindrical or envelope-shaped radiator 1a of the vertically polarized monopole radiator 1 is not via tapered slot antenna devices (TSA) but, for example, via a microstrip antenna. Radiation coupling takes place.
  • TSA tapered slot antenna devices
  • a substrate or a dielectric 23 is likewise provided in the interior of the rotationally symmetrical or rotation-like radiator 1 designed as a hollow body which, starting from a central point 37, comprises a slot feed line 35 which likewise comprises a first radial line section 35a (the one of FIG mentioned star point 37 emanates), and then immediately adjacent to the hollow body-like cylindrical or frusto-conical shell 11a of the radiator device 1 merges into a part-circular slot line section 35b immediately adjacent to the inner wall 11 "of the radiator jacket 11a and intersecting the vertical slots 43 introduced there (preferably parallel to the counterweight face 5).
  • the slots 43 can be excited correspondingly in principle, as is the case with slot antennas.
  • the additional feed structure 111 provided in the interior 11 'of the vertically polarized antenna device 1, 1a for the horizontally polarized antenna device can be arranged deeper below the upper circumferential edge 13, in particular also because, in the embodiment according to FIGS. 8 and 9 is shown that here the total height H of the cylindrical vertically polarized antenna device 1 higher than in the embodiment according to FIG. 1 can be and therefore also vertical slots 43 are used, which are not open on one side upwards, but are closed in both directions, that are limited by a corresponding skirt portion of the vertically polarized antenna device 1. Therefore, the slit length of the slits 43 should differ from the embodiment of FIGS. 1 to 7 not by ⁇ / 4, but by ⁇ / 2 amount.
  • Deviating from FIG. 8 is in an enlarged detail illustration according to also not belonging to the invention FIG. 9 shown that a supply of the vertical slots 43 (regardless of whether they are closed or as the embodiments of the FIGS. 1 to 4 open at the top) not only via microstrip lines, but also via coaxial cable 49 or any other lines that consist of at least two conductors (two-wire line, microstrip, slotline etc.), wherein the outer conductor 49a of the coaxial cable 49 preferably terminates in front of the respective vertical slots and is galvanically connected to the inner jacket 11 'of the cylindrical radiator 1, whereas the inner conductor 49b crosses the slot 43 and projects beyond it in the transverse direction.
  • strip-shaped, i. in particular rectangular slots 43, 43 ' have been shown.
  • the slots may also have a different shape. It is possible, for example, that the slots are designed trapezoidal or apart from a middle section upwards and downwards trapezoidal or run together, etc.
  • the central longitudinal line of the slots 43, 43 'in the radiator shell 11a of the rotating body 11 of the monopole radiator 1, 1a be introduced so that these mean longitudinal line in the slots 43 in a vertical plane perpendicular to the counterweight 5, in which is also the central or symmetry axis 9 of the entire omnidirectional antenna.
  • the slots 43 in the rotationally symmetrical shell 11a of the monopole radiator 1 can also be formed as U-shaped double slots 43 ', which are open at the top.
  • the corresponding wavelengths are each related to the associated operating frequencies in which the omnidirectional antenna is to be used.
  • the material portions 11x (which are metallized and / or electrically conductive) remaining between the double slots are held in the slots 43 by dielectric inserts or the entire structure is constructed on a dielectric, in which accordingly conductive surfaces are applied, with the omission of electrically conductive layers at the locations where the slots or double slots or U-shaped slots 43, 43 'are formed.
  • Such an omnidirectional antenna can be used for different operating frequencies or operating bands.
  • different frequency ranges for the horizontal and for the vertically polarized antenna are possible within the available total volume of the antenna, if this brings an advantage.
  • the number of slots is selected.
  • the distance between adjacent slots on the surface of the monopole radiator should not be too large, in particular not greater than ⁇ (where ⁇ is an operating wavelength used by the horizontally polarized antenna unit) to ensure sufficient roundness of the radiation characteristic of the horizontally polarized antenna.
  • the slots 43, 43 'through the feed structure 111 for example in the form of coaxial cables, in the form of a Radiation coupling using microstrip lines or in the form of slot antennas (in particular Vivaldi antennas) are each separately excited and fed.
  • a linear polarization in the horizontal plane is achieved with a corresponding orientation, namely, when the board structure and the counterweight surface are aligned in the horizontal direction and the monopole radiator points in the vertical direction.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (23)

  1. Antenne omnidirectionnelle à large bande avec les caractéristiques suivantes :
    - dotée d'un élément rayonnant (1 ; 1a, 1b) en forme de monopôle,
    - l'élément rayonnant (1 ; 1a, 1b) en forme de monopôle est polarisé verticalement,
    - l'élément rayonnant (1 ; 1a, 1b) polarisé verticalement s'élève au dessus d'une plaque de base ou d'une surface d'équilibrage (5), l'élément rayonnant (1 ; 1a, 1b) en forme de monopôle étant séparé de manière galvanique de la plaque de base ou de la surface d'équilibrage (5),
    - l'élément rayonnant (1 ; 1a, 1b) en forme de monopôle présente une enveloppe (11a) d'élément rayonnant qui s'étend s'éloignant de la plaque de base ou de la surface d'équilibrage (5),
    - l'antenne omnidirectionnelle est conçue sous la forme d'une antenne à double polarisation,
    - l'antenne à double polarisation comprend, à côté de l'élément rayonnant (1 ; 1a, 1b) en forme de monopôle polarisé verticalement, un élément rayonnant polarisé horizontalement (3),
    - l'élément rayonnant polarisé horizontalement (3) comprend des fentes (43, 43') qui sont prévues se situant décalées dans la direction circonférentielle dans l'enveloppe (11a) d'élément rayonnant de l'élément rayonnant (1 ; 1a, 1b) en forme de monopôle polarisé verticalement et qui sont orientées perpendiculairement par rapport à la plaque de base ou à a surface d'équilibrage (5),
    - le dispositif d'alimentation (111) prévu à l'intérieur de l'enveloppe (11a) d'élément rayonnant comprend, pour les multiples fentes (43, 43'), des dispositifs d'alimentation (111a) séparés, par lesquels les fentes (43, 43') respectivement associées sont stimulées séparément,
    caractérisée par les caractéristiques suivantes :
    - le dispositif d'alimentation (111) prévu à l'intérieur de l'élément rayonnant (1 ; 1a, 1b) en forme de monopôle polarisé verticalement comprend plusieurs dispositifs d'antenne fendue disposés décalés les uns par rapport aux autres dans la direction circonférentielle sous la forme d'antennes à fente conique (TSA).
  2. Antenne selon la revendication 1, caractérisée en ce que, dans la direction circonférentielle de l'élément rayonnant (1 ; 1a, 1b) en forme de monopôle, au moins trois ou au moins quatre fentes (43, 43') sont disposées se situant décalées les unes par rapport aux autres à des distances égales dans la direction circonférentielle.
  3. Antenne selon la revendication 1 ou 2, caractérisée en ce que les fentes (43) dans l'enveloppe (11) d'élément rayonnant de l'élément rayonnant (1 ; 1a, 1b) en forme de monopôle polarisé verticalement sont disposées s'étendant de telle manière qu'elles se situent respectivement parallèles par rapport à un plan, dans lequel se situe également un axe de symétrie ou un axe central (9) traversant l'antenne et s'élevant perpendiculairement par rapport à la surface d'équilibrage (5).
  4. Antenne selon l'une des revendications 1 à 3, caractérisée en ce que les fentes (43, 43') sont formées décalées par rapport à la plaque de base ou à la surface d'équilibrage (5) dans l'enveloppe (11) d'élément rayonnant s'éloignant de la plaque de base ou de la surface d'équilibrage (5) et s'arrêtent ouvertes sur la face sur le bord supérieur (13) de l'élément rayonnant (1 ; 1a, 1b) en forme de monopôle, située éloignée par rapport à la plaque de base ou à la surface d'équilibrage (5).
  5. Antenne selon la revendication 4, caractérisée en ce que les fentes (43, 43') présentent une longueur d'environ λ/4.
  6. Antenne selon l'une des revendications 1 à 3, caractérisée en ce que les fentes (43, 43') sont formées décalées par rapport à la plaque de base ou à la surface d'équilibrage (5), décalées dans l'enveloppe (11a) d'élément rayonnant, s'éloignant de la plaque de base ou de la surface d'équilibrage (5) et sont fermées sur la face au voisinage du bord supérieur (13) de l'élément rayonnant (1 ; 1a, 1b) en forme de monopôle éloignée par rapport à la plaque de base ou à la surface d'équilibrage (5).
  7. Antenne selon la revendication 6, caractérisée en ce que les fentes (43) présentent une longueur d'environ λ/2.
  8. Antenne selon l'une des revendications 1 à 7, caractérisée en ce que les fentes (43, 43') sont conçues en forme de lignes dans l'enveloppe (11) d'élément rayonnant ou de préférence partant de son centre, respectivement, revenant vers son centre, s'étendant sous forme de trapèzes vers la plaque de base ou la surface d'équilibrage (5).
  9. Antenne selon l'une des revendications 1 à 8, caractérisée en ce que le dispositif d'alimentation (111) est constitué sous la forme d'une antenne à fente conique (TSA) à partir de plusieurs dispositifs d'antenne (25) Vivaldi ou semblables à des antennes Vivaldi disposés décalés les uns par rapport aux autres dans la direction circonférentielle par rapport à un axe de symétrie central (9) de l'antenne ou comprend ceux-ci.
  10. Antenne selon la revendication 9, caractérisée en ce que les dispositifs d'antenne Vivaldi ou d'antenne semblable à une antenne Vivaldi comprennent un substrat (23), sur une face (23a) duquel est formée une couche (27) métallisée ou électriquement conductrice, dans la région de laquelle sont prévus des évidements (29) en forme de fentes situés décalés dans la direction circonférentielle et s'étendant de l'intérieur vers l'extérieur, moyennant la formation d'une ligne à fentes (29') respective, qui s'élargissent de préférence en forme d'entonnoir de l'intérieur vers l'extérieur.
  11. Antenne selon la revendication 10, caractérisée en ce que, sur la face (23b) opposée sur le substrat (23), plusieurs lignes d'alimentation (35) sont prévues pour l'alimentation séparée d'une ligne à fentes (29') respective.
  12. Antenne selon la revendication 10 ou 11, caractérisée en ce que des lignes d'alimentation (35) conçues décalées les unes par rapport aux autres dans la direction circonférentielle s'étendent, en partant d'un centre (31) sur le substrat (23), vers les lignes à fentes (29'), et comprennent en plus un premier segment de ligne (35a) partant du centre (31) s'étendant respectivement radialement ou à peu près radialement, un deuxième segment de ligne (35b) y faisant suite avec un angle et de préférence un troisième segment de ligne (35c) s'étendant encore avec un angle par rapport à ceux-ci, qui fait un pont au dessus de la ligne à fentes (29') formée sur le côté (23a) du substrat (23) situé en face.
  13. Antenne selon l'une des revendications 10 à 12, caractérisée en ce que les lignes à fentes (29') partent au voisinage du centre (31) du substrat (23) à partir d'un espace libre (33) en forme de cercle.
  14. Antenne selon l'une des revendications 9 à 13, caractérisée en ce que les antennes Vivaldi ou antennes semblables à des antennes Vivaldi (25) sont disposées dans un plan et/ou dans un plan parallèle à la surface d'équilibrage (5), notamment dans un plan horizontal.
  15. Antenne selon l'une des revendications 12 à 14, caractérisée en ce que les lignes d'alimentation (35) se terminent dans des éléments de surface (35d) respectivement associés, lesquels sont de préférence conçus en forme de triangles ou de secteurs circulaires.
  16. Antenne selon l'une des revendications 10 à 15, caractérisée en ce que la ligne à fentes (29') de chaque antenne Vivaldi ou antenne semblable à une antenne Vivaldi (25) se termine avec sa région ouverte au voisinage d'une fente (43, 43') associée dans l'enveloppe (11) d'élément rayonnant de l'élément rayonnant (1 ; 1a, 1b) en forme de monopôle.
  17. Antenne selon l'une des revendications 1 à 8, caractérisée en ce que le dispositif d'alimentation (111) est constitué d'un ensemble de couplage d'éléments rayonnants, notamment sous la forme d'une structure d'alimentation Microstrip, dans lequel des lignes d'alimentation (35) correspondantes sont disposées en partant de préférence d'un point de ramification (37) de telle manière qu'elles s'étendent en passant à proximité immédiate d'une fente (43, 43') correspondante dans l'enveloppe (11a) d'élément rayonnant de l'élément rayonnant (1, 1a) en forme de monopole en croisant la fente (43, 43').
  18. Antenne selon l'une des revendications 1 à 17, caractérisée en ce que l'élément rayonnant (1 ; 1a, 1b) polarisé verticalement est alimenté de manière centrale par l'intermédiaire d'un évidement (15) dans la plaque de base ou la surface d'équilibrage (5).
  19. Antenne selon la revendication 18, caractérisée en ce que l'alimentation centrale de l'élément rayonnant (1 ; 1a, 1b) en forme de monopôle est effectuée en série et/ou de manière capacitive.
  20. Antenne selon la revendication 19, caractérisée en ce que la plaque de base ou la surface d'équilibrage (5) présente un évidement (15), par lequel un conducteur interne (17b) d'une ligne d'alimentation coaxiale est mené, et est reliée de manière galvanique avec un élément de couplage de conducteur interne (19) s'étendant au dessus de la plaque de base ou de la surface d'équilibrage (5) sur une certaine hauteur, où l'élément de couplage de conducteur interne (19) est entouré par un segment de couplage (11c) en forme de cylindre pour effectuer une alimentation en série et/ou capacitive de l'élément rayonnant (1 ; 1a, 1b) en forme de monopôle, lequel segment est relié de manière galvanique avec l'élément rayonnant (1 ; 1a, 1b) en forme de monopôle.
  21. Antenne selon l'une des revendications 1 à 20, caractérisée en ce que l'alimentation de l'élément rayonnant (1 ; 1a, 1b) polarisé horizontalement est effectuée par l'intermédiaire d'une ligne coaxiale (41, 41a), qui s'étend sur le côté de la plaque de base ou de la surface d'équilibrage (5) orienté sur l'élément rayonnant polarisé verticalement et horizontalement (1, 3), et en l'occurrence entre un orifice de passage (47) dans la plaque de base ou dans la surface d'équilibrage (5) et un orifice de passage (45) dans l'enveloppe (11a) d'élément rayonnant, où la longueur du câble coaxial (41a) s'étendant dans cette région est choisie de telle manière qu'elle n'est pas un nombre entier de fois de λ/2 d'une fréquence de fonctionnement de l'élément rayonnant polarisé verticalement.
  22. Antenne selon l'une des revendications 1 à 17, caractérisée en ce que le dispositif d'élément rayonnant (3) polarisé horizontalement est alimenté de manière centrale par l'intermédiaire d'un évidement (15) dans la plaque de base ou dans la surface d'équilibrage (1 ; 1a, 1b).
  23. Antenne selon l'une des revendications 1 à 22, caractérisée en ce que l'élément rayonnant (1 ; 1a, 1b) en forme de monopôle comprend au moins un segment d'élément rayonnant (11), à peu près en forme de cône ou en forme de tronc conique, qui indique, avec son élargissement divergent de la plaque de base ou de la surface d'équilibrage (5), et/ou comprend un segment d'élément rayonnant (11) cylindrique ou en forme de pot.
EP11708004.4A 2010-03-18 2011-03-09 Antenne omnidirectionnelle à large bande Active EP2548262B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010011867A DE102010011867B4 (de) 2010-03-18 2010-03-18 Breitbandige omnidirektionale Antenne
PCT/EP2011/001163 WO2011113542A1 (fr) 2010-03-18 2011-03-09 Antenne omnidirectionnelle à large bande

Publications (2)

Publication Number Publication Date
EP2548262A1 EP2548262A1 (fr) 2013-01-23
EP2548262B1 true EP2548262B1 (fr) 2017-05-10

Family

ID=43901629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11708004.4A Active EP2548262B1 (fr) 2010-03-18 2011-03-09 Antenne omnidirectionnelle à large bande

Country Status (6)

Country Link
US (1) US8994601B2 (fr)
EP (1) EP2548262B1 (fr)
KR (1) KR101743487B1 (fr)
CN (1) CN102804501B (fr)
DE (1) DE102010011867B4 (fr)
WO (1) WO2011113542A1 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9257747B2 (en) * 2012-06-30 2016-02-09 Taoglas Group Holdings Limited Vivaldi-monopole antenna
WO2014102794A1 (fr) * 2012-12-28 2014-07-03 Galtronics Corporation Ltd. Antenne à bande ultra-large à jambe de sol couplée de manière capacitive
US20140306686A1 (en) * 2013-04-10 2014-10-16 Alan David Haddy User Mountable Utility Location Antenna
FR3007215B1 (fr) * 2013-06-17 2015-06-05 Zodiac Data Systems Source pour antenne parabolique
DE102013012308A1 (de) 2013-07-24 2015-01-29 Kathrein-Werke Kg Breitbandige omnidirektionale Antenne
CN103811857B (zh) * 2014-01-21 2017-01-11 盛宇百祺(南京)通信技术有限公司 垂直极化全向天线和具有其的4g双极化全向吸顶天线
GB2523201B (en) * 2014-02-18 2017-01-04 Filtronic Wireless Ab A multiband antenna with broadband and parasitic elements
KR102126494B1 (ko) 2014-06-09 2020-06-24 한국전자통신연구원 원형 배열 안테나
DE102016114093B4 (de) * 2016-07-29 2020-01-16 Huber + Suhner Ag Breitbandige omnidirektionale Antenne, insbesondere für Schienenfahrzeuge und ein solches Schienenfahrzeug
KR101887137B1 (ko) * 2016-09-01 2018-09-10 현대자동차주식회사 동작 감지 장치, 동작 감지 방법 및 동작 감지 안테나
CN106549233A (zh) * 2016-12-07 2017-03-29 西安电子科技大学 超宽带水平极化全向连接型的维瓦尔第圆形阵列天线
DE102017101677A1 (de) * 2017-01-27 2018-08-02 Kathrein-Werke Kg Breitbandige omnidirektionale Antenne
DE102017101676B4 (de) 2017-01-27 2019-10-24 Kathrein Se Breitbandige dualpolarisierte omnidirektionale Antenne
CN110832699B (zh) * 2017-09-12 2021-10-22 华为技术有限公司 双极化辐射元件和天线
EP3462536B1 (fr) * 2017-10-02 2021-06-30 Nokia Shanghai Bell Co. Ltd. Antenne compacte
JP7171760B2 (ja) * 2018-05-10 2022-11-15 ケイエムダブリュ インコーポレーテッド 二重偏波アンテナ及びアンテナアレイ
CN108832280B (zh) * 2018-06-08 2019-10-25 西安电子科技大学 一种可用于5g通信的毫米波全向圆极化天线
CN110112561B (zh) * 2019-06-06 2024-01-02 昆山瀚德通信科技有限公司 一种单极化天线
RU196202U1 (ru) * 2019-11-01 2020-02-19 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) Всенаправленная печатная антенная решетка
CN113140888A (zh) * 2020-01-17 2021-07-20 华为技术有限公司 无线数据终端及无线数据终端控制系统
CN111786103B (zh) * 2020-06-19 2021-04-13 深圳国人通信技术服务有限公司 一种室内全向天线
IT202000020770A1 (it) * 2020-09-01 2022-03-01 Bridgestone Europe Nv Sa Robot a guida autonoma per il riconoscimento automatico di pneumatici provvisti di transponder e disposti in una pila e sistema di logistica comprendente il robot a guida autonoma
CN112467346B (zh) * 2020-10-28 2022-07-19 武汉虹信科技发展有限责任公司 一体式双极化吸顶天线
CN112615150B (zh) * 2020-12-09 2023-04-28 上海中兴易联通讯股份有限公司 一种水平极化的全向辐射单元
CN112768884B (zh) * 2020-12-17 2023-10-03 深圳市南斗星科技有限公司 双极化高隔离度室内分布天线
CN112688070B (zh) * 2020-12-21 2021-10-22 西安电子科技大学 一种分布式多点馈电宽带垂直极化全向天线
US11404789B1 (en) * 2021-03-01 2022-08-02 U.S. Government As Represented By The Director, National Security Agency All-in-one antenna
CN114512814B (zh) * 2022-01-13 2024-04-12 微网优联科技(成都)有限公司 一种基于多谐振模式的垂直极化全向天线
CN115642395B (zh) * 2022-09-29 2024-01-02 湖南迈克森伟电子科技有限公司 天线单元、天线阵列及电子设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2660674A (en) 1948-10-14 1953-11-24 Rca Corp Slotted antenna system
DE3508929A1 (de) 1985-03-13 1986-10-23 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn Antenne fuer satelliten-mobilfunk fuer eine wellenlaengen (lambda) im l-band
US4763130A (en) * 1987-05-11 1988-08-09 General Instrument Corporation Probe-fed slot antenna with coupling ring
US5220337A (en) * 1991-05-24 1993-06-15 Hughes Aircraft Company Notched nested cup multi-frequency band antenna
US5870061A (en) * 1996-05-30 1999-02-09 Howell Laboratories, Inc. Coaxial slot feed system
US5754143A (en) 1996-10-29 1998-05-19 Southwest Research Institute Switch-tuned meandered-slot antenna
US5929821A (en) * 1998-04-03 1999-07-27 Harris Corporation Slot antenna
DE10031255A1 (de) 2000-06-27 2002-01-17 Bosch Gmbh Robert Schlitzantenne
US6703984B2 (en) * 2001-03-08 2004-03-09 Spx Corporation Common aperture UHF/VHF high band slotted coaxial antenna
US6879296B2 (en) 2001-11-21 2005-04-12 Superpass Company Inc. Horizontally polarized slot antenna with omni-directional and sectorial radiation patterns
DE10359605B4 (de) * 2003-12-18 2006-05-24 Kathrein-Werke Kg Breitbandige Antenne
DE202004008770U1 (de) * 2004-06-03 2004-08-12 Kathrein-Werke Kg Dualpolarisierte Antenne
EP2034557B1 (fr) 2007-09-06 2012-02-01 Delphi Delco Electronics Europe GmbH Antenne pour la réception de satellites
DE102008003532A1 (de) * 2007-09-06 2009-03-12 Lindenmeier, Heinz, Prof. Dr. Ing. Antenne für den Satellitenempfang

Also Published As

Publication number Publication date
KR20130039721A (ko) 2013-04-22
EP2548262A1 (fr) 2013-01-23
DE102010011867A1 (de) 2011-09-22
WO2011113542A1 (fr) 2011-09-22
CN102804501A (zh) 2012-11-28
DE102010011867B4 (de) 2011-12-22
US8994601B2 (en) 2015-03-31
KR101743487B1 (ko) 2017-06-07
US20130009834A1 (en) 2013-01-10
CN102804501B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
EP2548262B1 (fr) Antenne omnidirectionnelle à large bande
EP3214695B1 (fr) Antenne de téléphonie mobile
EP2256864B1 (fr) Antenne destinée à la polarisation circulaire et dotée d'une surface de base conductrice
EP3411921B1 (fr) Antenne à double polarisation
DE102010035932B4 (de) Antenne für den Empfang zirkular polarisierter Satellitenfunksignale
EP2664025B1 (fr) Antenne de réception multibande pour la réception combinée de signaux satellites et de signaux radiophoniques à émission terrestre
DE60102574T2 (de) Gedruckte Dipolantenne mit dualen Spiralen
EP3025394B1 (fr) Antenne omnidirectionnelle à large bande
WO2017036599A1 (fr) Antenne à double polarisation
DE202017007455U1 (de) Mehrband-Mehrstrahl-Linsenantenne geeignet zur Verwendung in Mobilfunk- und anderen Kommunikationssystemen
EP2424036B1 (fr) Antenne de réception pour signaux radio par satellite polarisés circulaires
DE102007003388A1 (de) Rundhohlleiter-Antenne und Rundhohlleiter-Array-Antenne
DE102008003532A1 (de) Antenne für den Satellitenempfang
EP1239543A1 (fr) Antenne plate pour communication mobile via satellites
EP1695417A1 (fr) Antenne comportant au moins un dipole ou un ensemble rayonnant semblable a un dipole
EP1695416B1 (fr) Antenne a large bande, notamment antenne omnidirectionnelle
DE60014594T2 (de) Doppelspiralige Schlitzantenne für Zirkulare Polarisation
WO2019115363A1 (fr) Antenne à fentes
DE102017101676B4 (de) Breitbandige dualpolarisierte omnidirektionale Antenne
EP2034557B1 (fr) Antenne pour la réception de satellites
EP2546925B1 (fr) Module d'antenne
DE102007012570B4 (de) Patch-Antenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120927

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131129

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161011

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 893213

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011012205

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170510

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170811

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170910

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011012205

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011012205

Country of ref document: DE

Representative=s name: FLACH BAUER & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011012205

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011012205

Country of ref document: DE

Owner name: ERICSSON AB, SE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011012205

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011012205

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011012205

Country of ref document: DE

Owner name: KATHREIN SE, DE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180309

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 893213

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011012205

Country of ref document: DE

Owner name: ERICSSON AB, SE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011012205

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011012205

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011012205

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011012205

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: ERICSSON AB, STOCKHOLM, SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: FI

Ref legal event code: PCE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20230327

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230315

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 14