EP2548237A1 - Bleifreier piezokeramischer werkstoff mit perowskit-phase und wolframbronze-phase und verfahren zum herstellen eines piezokeramischen bauteils mit dem werkstoff - Google Patents

Bleifreier piezokeramischer werkstoff mit perowskit-phase und wolframbronze-phase und verfahren zum herstellen eines piezokeramischen bauteils mit dem werkstoff

Info

Publication number
EP2548237A1
EP2548237A1 EP11725704A EP11725704A EP2548237A1 EP 2548237 A1 EP2548237 A1 EP 2548237A1 EP 11725704 A EP11725704 A EP 11725704A EP 11725704 A EP11725704 A EP 11725704A EP 2548237 A1 EP2548237 A1 EP 2548237A1
Authority
EP
European Patent Office
Prior art keywords
piezoceramic
phase
component
tungsten bronze
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11725704A
Other languages
English (en)
French (fr)
Inventor
Robert Bathelt
Katrin Benkert
Carsten Schuh
Thomas Soller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2548237A1 publication Critical patent/EP2548237A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Definitions

  • the invention relates to a lead-free, multi-phase piezoceramic material having at least one perovskite phase and at least one tungsten bronze phase and a method for producing a piezoceramic component with the material.
  • Piezo ceramic materials on the basis of the binary mixing ⁇ system of lead zirconate and lead titanate, known as lead-zirconate-titanate ceramic (Pb (Ti, Zr) O3, PZT) are, because of their excellent mechanical and piezoelectric properties, for example high Curie Temperature T c of over 300 ° C or high d33 ⁇ coefficient in the large and small signal range, used in many fields of technology.
  • Piezoelectric components with these materials include bending ⁇ converters , multilayer actuators and ultrasonic transducers. These components are used in actuators, medical technology, ultrasound technology or automotive engineering.
  • the material consists of a perovskite phase based on a potassium Sodium niobate (KNN).
  • KNN potassium Sodium niobate
  • a plurality of dopants may be present. Particularly good piezoelectric properties are obtained with lithium, tantalum and / or antimony as dopants.
  • the object of the invention is to further develop the known piezoceramic material for use in piezoceramic components.
  • a lead-free, multiphase piezoceramic material comprising at least one perovskite phase having the perovskite phase composition (Li x K ! X y Na y ) (Nbi- - u Ta Sb u ) O 3 and at least one tungsten bronze phase having the tungsten bronze phase composition (M I_
  • a method for producing a piezoceramic component with the piezoceramic material is also specified with the following method steps: a) providing a green body with a piezoceramic starting composition of the piezoceramic material and b) heat treating the green body, wherein the piezoceramic starting composition of the piezoceramic Material of the component is created.
  • the piezoceramic material is lead-free. Lead-free means that very small, detectable impurities can be present on lead, for example in the ppm range.
  • the piezoceramic material has a lead-free, at least two-phase system which has a perovskite phase based on an alkali metal niobate and a tungsten bronze phase based on an alkali metal niobate and / or on the basis of an alkali tantalate.
  • the alkali niobate of the perovskite phase is doped with tantalum and / or with antimony. Is preferably ⁇ least one of these metals are present (u + t + 0).
  • the tungsten bronze phase in addition to the pure alkali niobates or alkali tantalates, in particular mixed forms of these two oxidic alkali compounds are conceivable.
  • the mixed form contains both niobium and tantalum (alkali niobate tantalate).
  • the tungsten bronze phase on the A sites is doped with trivalent (trivalent) metal M 111 . Any trivalent metals are suitable. Different metals can also be used in the same piezoceramic material.
  • the perovskite phase is doped on the A sites with different metals.
  • the composition is a multi-phase system that has a high elongation (eg, high d33 coefficient) and a high Curie temperature ( Tc ). It has ⁇ ge shows that the piezoceramic material then has very good pie ⁇ zoelektwitz properties when, as it is not from the state of the art, single-phase (phase-in), but two or more phases. At least one tungsten bronze phase is present in addition to at least one perovskite phase. In addition, other (fixed) phases may be present. Also, the particular composition of the perovskite phase and the tungsten bronze phase has a great influence on the piezoelectric properties of the material.
  • a high elongation eg, high d33 coefficient
  • Tc Curie temperature
  • the two phases of the piezoceramic material are in the vicinity of a phase transformation from the ortho rhombic crystal system to the tetragonal crystal system.
  • a phase transformation from the ortho rhombic crystal system to the tetragonal crystal system.
  • very good piezoelectric properties of a material result.
  • the necessary for the actuators high strains can be achieved.
  • the trivalent metal M 111 is a rare earth metal RE.
  • the rare earth element RE is neodymium
  • B-site dopants may be present.
  • B-site dopants are, for example, Ti, Zr, Si, Ge, Y or Sc.
  • the B-sites of the perovskite phase and / or the B-sites of the tungsten bronze phase are partly occupied by one type of metal or by different types of metals.
  • the proportions of the two phases on the piezoceramic material can be very different.
  • a proportion of the tungsten bronze phase on the piezoceramic material is in the range of from 0.01% by volume to 25% by volume inclusive, and in particular from the range of 0 inclusive , Is selected from 05% by volume up to and including 15% by volume.
  • the proportion of the tungsten bronze phase is selected up to and including 10% by volume.
  • the proportions refer to the solid of the material.
  • the value of the perovskite phase on the piezoceramic material is in the range of 99.99 inclusive Vol .-% up to and including 75.0 vol .-% and in particular a value in the range of 99.95 vol .-% inclusive up to and including 85 vol .-% and 90 vol .-%.
  • the green body is a shaped body which, for example, consists of homogeneously mixed, pressed-together oxides of the stated metals.
  • the green body may have an organic additive, which is processed with the oxides of the metals to a slurry.
  • the organic additive is, for example, a binder or a dispersant.
  • a green body is produced in a molding process.
  • the green body is ⁇ example, a green sheet, which is produced by the forming process (film drawing).
  • the green body with the piezoceramic starting composition produced in the shaping process is subjected to a heat treatment.
  • the heat treatment of the green body includes calcination and / or sintering. It comes to the formation and compression of the forming piezoceramic material.
  • a mixing of pulverulent, oxidic metal compounds of the metals of the perovskite phase and the tungsten bronze phase is carried out according to a particular embodiment.
  • oxides of Me ⁇ metals for example antimony oxide (Sb 2 0 5) may, niobium oxide (B 2 0 5) and tantalum oxide (a 2 0 5), and precursors of the oxides of the metals, for example, carbonates (Li 2 C0 3, K 2 C0 3 ) or oxalates are ⁇ set.
  • precursors of the oxides of the metals for example, carbonates (Li 2 C0 3, K 2 C0 3 ) or oxalates are ⁇ set.
  • Both types of metal compounds, ie the precursors of the oxides and the oxides themselves, can be referred to as oxidi ⁇ cal metal compounds.
  • the powders of the oxidic metal compounds can be prepared by known processes, for example by the sol-gel, citrate, hydrothermal or oxalate process.
  • oxidic metal compounds can be produced with only one kind of metal. It is also conceivable, in particular, that oxidic metal compounds with more types of Metals are used (mixed oxides). Therefore, according to a Customized ⁇ ren embodiment, a piezoceramic out put ⁇ composition is used with at least one metal oxide compound with at least two of the metals. Examples of these are lithium niobate (LiNbOs) or lithium tantalate (Li-TaOs).
  • the oxide metal compound having at least two of the metals may also be the perovskite phase or the tungsten bronze phase itself.
  • To provide these mixed oxides can also be resorted to the above-mentioned precipitation reactions.
  • Also conceivable is a mixed-oxide process. In this case, powdery oxides of the metals are mixed together and calcined at higher temperatures. Calcination results in mixed oxides.
  • the workup of the metal oxides with the conversion into the piezoceramic material can be done in various ways. It is conceivable, for example, that first the powders of the oxidic metal compounds are homogeneously mixed.
  • the piezoceramic starting composition is formed in the form of a homogeneous mixture of the metal oxides. Subsequently, the piezoceramic starting composition is treated by heat ⁇ treat, for example, by calcination, in the piezoceramic material.
  • the piezoceramic material is ground to a fine piezoceramic powder.
  • a ceramic green body with an organic binder and further organic additives is produced from the fine piezoceramic powder in the shaping process. This ceramic green body is debinded and sintered. In this case, the pie ⁇ zokeramische component forms with the piezoceramic material.
  • the powders of the oxidic metal compounds can be homogeneously mixed and processed in the shaping process into a ceramic green body with organic binder.
  • This green body also has the piezoceramic starting composition. Subsequent sintering leads to the piezoceramic component with the piezoceramic material.
  • a piezoceramic component having at least one piezoelectric element is produced which has an electrode layer with electrode material, at least one further electrode layer with a further electrode material and at least one piezoceramic layer arranged between the electrode layers with the piezoceramic material.
  • a single piezoelectric element represents the smallest unit of the piezoceramic component.
  • a ceramic green sheet with the piezoceramic starting composition is printed on both sides with the electrode materials.
  • the Elect ⁇ clear materials can thereby be the same or different. Subsequent debindering and sintering results in the piezoelectric element.
  • a piezoelectric element in which the electrode material and / or the wider ⁇ re electrode material at least one element selected from the group consisting of silver, copper and palladium elemental metal.
  • the piezoceramic material or the piezoelectric element is produced in particular by co-sintering the piezoceramic starting composition and the electrode material (cofiring).
  • the electrode material may consist of the pure metals, for example, only of silver or only of copper. An alloy of said metals is also possible, for example an alloy of silver and palladium.
  • the sintering to the piezoceramic material can be carried out both in reducing or oxidizing sintering atmosphere.
  • a reducing sintering atmosphere almost no oxygen is present.
  • An oxygen partial pressure is less than 1-10 -2 mbar, and preferably less than 1-10 -3 mbar.
  • any piezoceramic component with the piezoceramic material are produced.
  • the piezoceramic component mainly comprises at least one top ⁇ be signed piezo element.
  • the piezoceramic component with the piezoelement is selected from the group of piezoceramic bending transducers, piezoceramic multilayer actuator, piezoceramic transformer, piezoceramic motor and piezoceramic ultrasonic transducer.
  • the piezoelectric element is for example part of a piezoelectric bending transducer.
  • FIG. 1 shows a ceramic piezoelectric element in a lateral cross section.
  • Figure 2 shows a piezoelectric component having a plurality of piezoelectric elements in a lateral cross section.
  • Figure 3 shows the d33 ⁇ coefficient of the at different
  • FIG. 4 shows the permittivities of the exemplary embodiments.
  • the material has a perovskite phase with a subsequent perovskite phase composition: (Li x K ! X x y Na y ) (Nbi_t-uTa t Sb u ) 0 3 .
  • tungsten bronze-phase with the following tungsten bronze-phase composition (M 11 ⁇ (Li x K! _ X _ Yna y)! _ M (Nb! _ W Ta w) 5 0 15 + VA '2m
  • the trivalent metal M 111 is Ne ⁇ odym (Nd 3+ ).
  • the proportion of the tungsten bronze phase in the piezoceramic material is 10% by volume.
  • the proportion of perovskite phase be ⁇ contributes 90 vol .-%.
  • Tablet made of piezoceramic material For this purpose, pulverulent, oxidic starting materials are pressed together to form a ceramic green body in the form of a tablet and sintered at temperatures of 1140.degree. C., 1150.degree. C. or 1160.degree. On the main surfaces of each resulting tablet electrode layers of silver are applied, via which an electric field is coupled into the ceramic. The result is a piezoelectric element with electrode layers of Sil ⁇ over and arranged therebetween piezoceramic layer with the respective piezoceramic material.
  • the d33 coefficients of the piezoceramic materials with dopings of less than 1.0 mol% are increased compared with the undoped piezoceramics (FIG. 3).
  • the values at% egg ⁇ ner Nd doping of 1.0 mol are. Lowered.
  • a piezoelectric component 1 is produced with the pie ⁇ zokeramischen material.
  • the piezoelectric component 1 is according to a first embodiment, a piezoelectric actuator 1 in monolithic multilayer construction ( Figure 2).
  • the piezoactuator 1 consists of a multiplicity of piezoelements 10 arranged one above the other in a stack (FIG. 1).
  • Each of the piezoelectric elements 10 has an electrode layer 11, a further electrode layer 12 and an electrode layer between the electrodes. denstoffen 11 and 12 arranged piezoceramic layer 13.
  • the adjacent in the stack piezo elements 10 each have ⁇ wells on a common electrode layer.
  • the electrode ⁇ layers 11 and 12 consist of (approximately) pure silver.
  • the electrode layers 11 and 12 comprise an electrode material of a silver-palladium alloy in which palladium is contained in a proportion of 5% by weight.
  • the green sheets are dried, printed with a paste containing the electrode material stacked lami ⁇ defined, binder removal and sintered to the piezoelectric actuator 1 (as the electrode material silver or silver-palladium alloy) under an oxidizing sintering atmosphere.
  • the resulting monolithic piezoceramic multi-layer actuator is used to actuate a fuel injection valve of an internal combustion engine of a motor vehicle.
  • Other, not shown embodiments such as piezokera ⁇ mixing bending transducer, piezoceramic transformer or piezoceramic ultrasonic transducer with the new piezokera mixing material are also accessible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Die Erfindung betrifft einen bleifreien, mehrphasigen piezokeramischen Werkstoff, aufweisend mindestens eine Perowskit- Phase mit der Perowskit-Phasen-Zusammensetzung (LixK1-x-yNay) (Nb1-t-uTatSbu) O3 und mindestens eine Wolframbronze-Phase mit der Wolframbronze-Phasen-Zusammensetzung (MIII m(LixK1-x-yNay)1-m(Nb1-wTaw) 5O15 + VA' 2m, wobei MIII mindestens ein dreiwertiges Metall ist, VA' A-Platz-Leerstellen sind und folgende Zusammenhänge gelten: 0 < m ≤ 0,05; 0 ≤ t ≤ 0,15; 0 ≤ u ≤ 0,15; 0 ≤ w ≤ 1; 0 ≤ x ≤ 0,15; 0,25 ≤ y ≤ 0,75. Es wird auch ein Verfahren zum Herstellen eines piezokeramischen Bauteils mit dem piezokeramischen Werkstoff mit folgenden Verfahrensschritten angegeben: a) Bereitstellen eines Grünkörpers mit einer piezokeramischen Ausgangszusammensetzung des piezokeramischen Werkstoffs und b) Wärmebehandeln des Grünkörpers, wobei aus der piezokeramischen Ausgangszusammensetzung der piezokeramische Werkstoff des Bauteils entsteht. Das piezokera- mische Bauteil ist beispielsweise ein Ultraschallwandler oder ein piezokeramischer Biegewandler. Insbesondere ist das piezokeramische Bauteil ein Vielschicht-Piezoaktor, der zur Ansteuerung einer Kraftstoffventils eines Verbrennungsmotors eines Kraftfahrzeugs eingesetzt wird.

Description

Beschreibung
Bleifreier piezokeramischer Werkstoff mit Perowskit-Phase und Wolframbronze-Phase und Verfahren zum Herstellen eines piezo- keramischen Bauteils mit dem Werkstoff
Die Erfindung betrifft einen bleifreien, mehrphasigen piezokeramischen Werkstoff mit mindestens einer Perowskit-Phase und mit mindestens einer Wolframbronze-Phase sowie ein Ver- fahren zum Herstellen eines piezokeramischen Bauteils mit dem Werkstoff .
Piezokeramische Werkstoffe auf der Basis des binären Misch¬ systems von Bleizirkonat und Bleititanat, so genannte Blei- Zirkonat-Titanat-Keramik (Pb (Ti, Zr) O3, PZT) , werden wegen ihrer sehr guten mechanischen und piezoelektrischen Eigenschaften, beispielsweise hohe Curie-Temperatur Tc von über 300° C oder hoher d33~Koeffizient im Groß- und Kleinsignalbereich, in vielen Bereichen der Technik eingesetzt. Piezoelektrische Bauteile mit diesen Werkstoffen sind beispielsweise Biege¬ wandler, Vielschichtaktoren und Ultraschallwandler. Diese Bauteile werden in der Aktorik, der Medizintechnik, der Ultraschalltechnik oder der Automobiltechnik eingesetzt. Mit Inkrafttreten der RoHS (Restriction of the use of certain hazardous substances ) -Richtline im Jahr 2006 wurde der ge¬ setzlich erlaubte Gehalt an Schwermetallen in elektrischen und elektronischen Bauteilen innerhalb der Europäischen Union (EU) stark beschränkt. Dies betrifft auch oben beschriebene piezoelektrische Bauteile. Der Einsatz von Bauteilen mit PZT als piezokeramischen Werkstoff ist derzeit nur über eine be¬ fristete EU-Ausnahmegenehmigung möglich.
Im Hinblick auf eine verbesserte Umweltverträglichkeit ist beispielsweise aus der US 7,101,491 B2 ein viel versprechen¬ der bleifreier, phasenreiner piezokeramischer Werkstoff mit guten piezoelektrischen Eigenschaften bekannt. Der Werkstoff besteht aus einer Perowskit-Phase auf der Basis eines Kalium- Natrium-Niobats (KNN) . Zur Verbesserung der piezoelektrischen Eigenschaften des piezokeramischen Werkstoffs kann eine Vielzahl von Dotierungen vorhanden sein. Besonders gute piezoelektrische Eigenschaften werden mit Lithium, Tantal und/oder Antimon als Dotierungen erhalten.
Aufgabe der Erfindung ist es, den bekannten piezokeramischen Werkstoff für den Einsatz in piezokeramischen Bauteilen weiterzuentwickeln .
Zur Lösung der Aufgabe wird ein bleifreier, mehrphasiger pie- zokeramischer Werkstoff angegeben, aufweisend mindestens eine Perowskit-Phase mit der Perowskit-Phasen-Zusammensetzung (LixK!_x_yNay) (Nbi- -uTa Sbu) O3 und mindestens eine Wolframbronze- Phase mit der Wolframbronze-Phasen-Zusammensetzung (MI_
Ix m (LixK!_x_yNay) i_m (Nbi_wTaw) 5O15 + VA' 2m, wobei M111 mindestens ein dreiwertiges Metall ist, VA' A-Platz-Leerstellen sind und folgende Zusammenhänge gelten:
- 0 < m < 0,05;
- 0 < t < 0,15;
- 0 < u < 0, 15;
- 0 < w < 1;
- 0 < x < 0,15;
- 0,25 < y < 0,75.
Zur Lösung der Aufgabe wird auch ein Verfahren zum Herstellen eines piezokeramischen Bauteils mit dem piezokeramischen Werkstoff mit folgenden Verfahrensschritten angegeben: a) Bereitstellen eines Grünkörpers mit einer piezokeramischen Aus- gangszusammensetzung des piezokeramischen Werkstoffs und b) Wärmebehandeln des Grünkörpers, wobei aus der piezokeramischen Ausgangszusammensetzung der piezokeramische Werkstoff des Bauteils entsteht. Der piezokeramische Werkstoff ist bleifrei. Bleifrei bedeutet dabei, dass sehr geringe, nachweisbare Verunreinigungen an Blei, beispielsweise im ppm-Bereich vorhanden sein können. Der piezokeramische Werkstoff weist ein bleifreies, zumindest zweiphasiges System auf, das eine Perowskit-Phase auf Basis eines Alkali-Niobats und eine Wolframbronze-Phase auf Basis eines Alkali-Niobats und/oder auf Basis eines Alkali- Tantalats aufweist. Das Alkali-Niobat der Perowskit-Phase ist mit Tantal und/oder mit Antimon dotiert. Vorzugsweise ist zu¬ mindest eines dieser Metalle vorhanden sind (u + t + 0) . Für die Wolframbronze-Phase sind neben den reinen Alkali-Niobaten bzw. Alkali-Tantalaten insbesondere Mischformen dieser beiden oxidischen Alkali-Verbindungen denkbar. Die Mischform enthält sowohl Niob als auch Tantal (Alkali-Niobat-Tantalat ) . Darüber hinaus ist die Wolframbronze-Phase auf den A-Plätzen mit dreiwertigem (trivalentem) Metall M111 dotiert. Dabei kommen beliebige dreiwertige Metalle in Frage. Auch können verschie- dene Metalle in selben piezokeramischen Werkstoff zu Einsatz kommen. Die Perowskit-Phase ist auf den A-Plätzen mit ver¬ schiedenen Metallen dotiert.
Bei der Zusammensetzung handelt es sich um ein mehrphasiges System, das eine hohe Dehnung (z.B. hoher d33~Koeffizient ) und eine hohe Curie-Temperatur (Tc) aufweist. Es hat sich ge¬ zeigt, dass der piezokeramische Werkstoff dann sehr gute pie¬ zoelektrische Eigenschaften zeigt, wenn er, nicht wie es aus dem Stand der Technik bekannt ist, einphasig (phasenrein) , sondern zwei- oder mehrphasig ist. Dabei ist neben mindestens einer Perowskit-Phase mindestens eine Wolframbronze-Phase vorhanden. Darüber hinaus können weitere (feste) Phasen vorhanden sein. Auch hat die jeweilige Zusammensetzung der Perowskit-Phase und der Wolfram-Bronze-Phase einen großen Einfluss auf die piezoelektrischen Eigenschaften des Werkstoffs. Die beiden Phasen des piezokeramischen Werkstoffs befinden sich nämlich in der Nähe einer Phasen-Umwandlung vom orhto-rhombischen Kristall-System in das tetragonale Kristall-System. In der Nähe einer solchen Phasen-Umwandlung resultieren sehr gute piezoelektrische Eigenschaften eines Materials. Dies betrifft sowohl die Dehnung als auch den Kopplungsfaktor und die die- lektrischen Eigenschaften. Dadurch können die für die Aktorik notwendigen hohen Dehnungen erreicht werden.
Vorzugsweise ist das dreiwertige Metall M111 ein Seltenerdme- tall RE . Insbesondere ist das Seltenerdmetall RE Neodym
(Nd3+) . Basierend auf der A-Platz-Dotierung mit dreiwertigem Neodym können sehr gute piezoelektrische Eigenschaften erzielt werden. Aufgrund der A-Platz-Dotierung mit einem dreiwertigen Metall kommt es zu einer entsprechenden Anzahl von A-Platz-Leerstellen . Es wird vermutet, dass dies die Ursache für die Reduktion der Phasen-Übergangs-Temperatur von der or- tho-rhombischen in die tetragonale Phase der Wolframbronze- Phase ist und in Folge davon die Ursache für die verbesserten elektrischen und piezoelektrischen Eigenschaften des Werk- Stoffs ist.
Zur Maßschneiderung des piezokeramischen Werkstoffs, beispielsweise der Maßschneiderung der Phasen- Übergangstemperatur der Perowskit-Phase und/oder der Wolfram- bronze-Phase, können B-Platz-Dotierungen vorhanden sein. Solche B-Platz-Dotierungen sind beispielsweise Ti, Zr, Si, Ge, Y oder/oder Sc. Die B-Plätze der Perowskit-Phase und/oder die B-Plätze der Wolframbronze-Phase sind zum Teil von einer Art Metall oder von verschiedenen Arten von Metallen besetzt.
Die Anteile der beiden Phasen am piezokeramischen Werkstoff können sehr unterschiedlich sein. Im Hinblick auf gute piezoelektrische Eigenschaften ist es besonders vorteilhaft, wenn ein Anteil der Wolframbronze-Phase am piezokeramischen Werk- Stoff aus dem Bereich von einschließlich 0,01 Vol.-% bis einschließlich 25 Vol.-% und insbesondere aus dem Bereich von einschließlich 0,05 Vol.-% bis einschließlich 15 Vol.-% gewählt ist. Vorzugweise ist der Anteil der Wolframbronze-Phase bis einschließlich 10 Vol.-% gewählt. Die Anteile beziehen sich auf den Feststoff des Werkstoffs. Bei einem Werkstoff, der nur aus den beiden angegebenen Phasen besteht, ergibt sich für einen Anteil der Perowskit-Phase am piezokeramischen Werkstoff ein Wert aus dem Bereich von einschließlich 99, 99 Vol.-% bis einschließlich 75,0 Vol.-% und insbesondere ein Wert aus dem Bereich von einschließlich 99,95 Vol.-% bis einschließlich 85 Vol.-% bzw. 90 Vol.-%. Hinsichtlich des Verfahrens zum Herstellen des piezokerami- schen Werkstoffs ist Folgendes anzumerken: Der Grünkörper ist ein Formkörper, der beispielsweise aus homogen vermischten, zusammen verpressten Oxiden der angegebenen Metalle besteht. Ebenso kann der Grünkörper ein organisches Additiv aufweisen, das mit den Oxiden der Metalle zu einem Schlicker verarbeitet ist. Das organische Additiv ist beispielsweise ein Binder oder ein Dispergator. Aus dem Schlicker wird in einem Formge- bungsprozess ein Grünkörper erzeugt. Der Grünkörper ist bei¬ spielsweise eine Grünfolie, die durch den Formgebungsprozess (Folienziehen) hergestellt wird. Der beim Formgebungsprozess hergestellte Grünkörper mit der piezokeramischen Ausgangszusammensetzung wird einer Wärmebehandlung unterzogen. Das Wärmebehandeln des Grünkörpers beinhaltet ein Kalzinieren und/oder ein Sintern. Es kommt zur Bildung und zum Verdichten des sich bildenden piezokeramischen Werkstoffs.
Zum Bereitstellen des Grünkörpers wird gemäß einer besonderen Ausgestaltung ein Mischen pulverförmiger, oxidischer Metallverbindungen der Metalle der Perowskit-Phase und der Wolfram- bronze-Phase durchgeführt. Dabei können neben Oxiden der Me¬ talle, beispielsweise Antimonoxid ( Sb205 ) , Nioboxid ( b205 ) und Tantaloxid ( a205 ) , auch Vorstufen der Oxide der Metalle, beispielsweise Carbonate (Li2C03 , K2C03 ) oder Oxalate einge¬ setzt werden. Beide Arten von Metallverbindungen, also die Vorstufen der Oxide sowie die Oxide selbst, können als oxidi¬ sche Metallverbindungen bezeichnet werden.
Die Pulver der oxidischen Metallverbindungen können nach bekannten Verfahren hergestellt werden, beispielsweise nach dem Sol-Gel-, dem Citrat-, dem Hydrothermal- oder dem Oxalatver- fahren. Dabei können oxidische Metallverbindungen mit nur einer Art Metall hergestellt werden. Denkbar ist insbesondere auch, dass oxidische Metallverbindungen mit mehren Arten von Metallen eingesetzt werden (Mischoxide) . Gemäß einer besonde¬ ren Ausgestaltung wird daher eine piezokeramische Ausgangszu¬ sammensetzung mit mindestens einer oxidischen Metallverbindung mit mindestens zwei der Metalle verwendet. Beispiele hierfür sind Lithiumniobat (LiNbOs) oder Lithiumtantalat (Li- TaOs) . Die oxidische Metallverbindung mit mindestens zwei der Metalle kann auch die Perowskit-Phase oder die Wolframbronze- Phase selbst sein. Zum Bereitstellen dieser Mischoxide kann auch auf die oben erwähnten Fällungreaktionen zurückgegriffen werden. Denkbar ist auch ein Mixed-Oxide-Verfahren . Dabei werden pulverförmige Oxide der Metalle miteinander vermischt und bei höheren Temperaturen kalziniert. Beim Kalzinieren entstehen die Mischoxide.
Die Aufarbeitung der Metalloxide mit der Überführung in den piezokeramischen Werkstoff kann auf verschiedenen Weisen erfolgen. Denkbar ist beispielsweise, dass zunächst die Pulver der oxidischen Metallverbindungen homogen vermischt werden. Es entsteht die piezokeramische Ausgangszusammensetzung in Form einer homogenen Mischung der Metalloxide. Anschließend wird die piezokeramische Ausgangszusammensetzung durch Wärme¬ behandeln, z.B. durch Kalzinieren, in den piezokeramischen Werkstoff überführt. Der piezokeramische Werkstoff wird zu feinem Piezokeramikpulver zermalen. Anschließend wird aus dem feinen Piezokeramikpulver im Formgebungsprozess ein keramischer Grünkörper mit einem organischen Binder und weiteren organischen Additiven hergestellt. Dieser keramische Grünkörper wird entbindert und gesintert. Dabei bildet sich das pie¬ zokeramische Bauteil mit dem piezokeramische Werkstoff.
Alternativ zum beschriebenen Vorgehen können die Pulver der oxidischen Metallverbindungen homogen vermischt und im Formgebungsprozess zum keramischen Grünkörper mit organischem Binder verarbeitet werden. Auch dieser Grünkörper weist die piezokeramische Ausgangszusammensetzung auf. Nachfolgendes Sintern führt zum piezokeramischen Bauteil mit dem piezokeramischen Werkstoff. Gemäß einer besonderen Ausgestaltung wird ein piezokerami- scher Bauteil mit mindestens einem Piezoelement hergestellt, das eine Elektrodenschicht mit Elektrodenmaterial, mindestens eine weitere Elektrodenschicht mit einem weiteren Elektroden- material und mindestens eine zwischen den Elektrodenschichten angeordnete Piezokeramikschicht mit dem piezokeramischen Werkstoff aufweist. Ein einziges Piezoelement stellt die kleinste Einheit des piezokeramischen Bauteils dar. Zum Herstellen des Piezoelements wird beispielsweise eine keramische Grünfolie mit der piezokeramischen Ausgangszusammensetzung beidseitig mit den Elektrodenmaterialien bedruckt. Die Elekt¬ rodenmaterialien können dabei gleich oder unterschiedlich sein. Durch nachfolgendes Entbindern und Sintern resultiert das Piezoelement.
Gemäß einer besonderen Ausgestaltung wird ein Piezoelement verwendet, bei dem das Elektrodenmaterial und/oder das weite¬ re Elektrodenmaterial mindestens ein aus der Gruppe Silber, Kupfer und Palladium ausgewähltes elementares Metall aufwei- sen. Der piezokeramische Werkstoff bzw. das Piezoelement wird insbesondere durch ein gemeinsames Sintern der piezokeramischen Ausgangszusammensetzung und der Elektrodenmaterials hergestellt (Cofiring) . Das Elektrodenmaterial kann dabei aus den reinen Metallen bestehen, beispielsweise nur aus Silber oder nur aus Kupfer. Eine Legierung der genannten Metalle ist ebenfalls möglich, beispielsweise eine Legierung aus Silber und Palladium.
Das Sintern zum piezokeramischen Werkstoff kann sowohl in re- duzierender oder oxidierender Sinteratmosphäre durchgeführt werden. In einer reduzierenden Sinteratmosphäre ist nahezu kein Sauerstoff vorhanden. Ein Sauerstoffpartialdruck beträgt weniger als 1-10-2 mbar und vorzugsweise weniger als 1-10-3 mbar. Durch Sintern in einer reduzierenden Sinteratmosphäre ist kostengünstiges Kupfer als Elektrodenmaterial möglich.
Prinzipiell kann mit Hilfe der piezokeramischen Ausgangszu¬ sammensetzung jedes beliebige piezokeramische Bauteil mit dem piezokeramischen Werkstoff hergestellt werden. Das piezokera- mische Bauteil weist vornehmlich mindestens ein oben be¬ schriebenes Piezoelement auf. Vorzugsweise wird das piezoke- ramische Bauteil mit dem Piezoelement aus der Gruppe piezoke- ramischer Biegewandler, piezokeramischer Vielschichtaktor, piezokeramischer Transformator, piezokeramischer Motor und piezokeramischer Ultraschallwandler ausgewählt. Das Piezoelement ist beispielsweise Bestandteil eines piezoelektrischen Biegewandlers. Durch Übereinanderstapeln einer Vielzahl von einseitig oder beidseitig mit Elektrodenmaterial bedruckten
Grünfolien, nachfolgendes Entbindern und Sintern entsteht ein monolithischer Stapel aus Piezoelementen . Bei geeigneter Dimensionierung und Form resultiert ein monolithischer piezokeramischer Vielschichtaktor. Dieser piezokeramische Viel- schichtaktor wird vorzugsweise zur Ansteuerung eines Kraft¬ stoffeinspritzventils einer Brennkraftmaschine eingesetzt. Durch die stapeiförmige Anordnung der Piezoelemente ist auch, bei geeigneter Dimensionierung und Form, ein piezokeramischer Ultraschallwandler zugänglich. Der Ultraschallwandler wird beispielsweise in der Medizintechnik oder zur Materialprüfung eingesetzt .
Anhand mehrerer Ausführungsbeispiele und der dazugehörigen Figuren wird die Erfindung im Folgenden näher beschrieben. Die Figuren sind schematisch und stellen keine maßstabsge¬ treuen Abbildungen dar.
Figur 1 zeigt ein keramisches Piezoelement in einem seitli chen Querschnitt.
Figur 2 zeigt ein piezoelektrisches Bauteil mit einer Viel zahl von Piezoelementen in einem seitlichen Querschnitt . Figur 3 zeigt den d33~Koeffizienten des bei verschiedenen
Temperaturen gesinterten piezokeramischen Werkstoffs mit unterschiedlichen Nd-Dotierungen bei einer Feldstärke von 2 kV/mm. Figur 4 zeigt die Permittivitäten der Ausführungsbeispiele.
Gegeben ist ein zweiphasiger, bleifreier piezokeramischer Werkstoff. Der Werkstoff weist eine Perowskit-Phase mit fol¬ gender Perowskit-Phasen-Zusammensetzung auf: (LixK!_x_yNay) (Nbi_ t-uTatSbu)03.
Neben der Perowskit-Phase ist eine Wolframbronze-Phase mit folgender Wolframbronze-Phasen-Zusammensetzung (M11^ (LixK!_x_ yNay) !_m (Nb!_wTaw) 5015 + VA'2m. Das trivalente Metall M111 ist Ne¬ odym (Nd3+).
Der Anteil der Wolframbronze-Phase am piezokeramischen Werk- Stoff beträgt 10 Vol.-%. Der Anteil der Perowskit-Phase be¬ trägt 90 Vol.-%.
Die Ausführungsbeispiele umfassen folgende Effektiv- Zusammensetzungen :
Aufgrund der A-Platz-Dotierung mit Nd resultiert jeweils die doppelte Anzahl an Leerstellen auf den A-Plätzen, Die Nd-Dotierung von 0 mol% ist nicht durch die Erfindung er- fasst und fungiert lediglich als Referenz. Gesintert wurde bei einer Temperatur von 1140°C, 1150°C oder von 1160°C. Da¬ bei ergab sich jeweils eine Sinterdichte von ca. 4,95 g/cm3.
Zur Charakterisierung der dielektrischen Eigenschaften der piezokeramischen Werkstoffe wird eine Probe in Form einer
Tablette aus dem piezokeramischen Werkstoff hergestellt. Dazu werden pulverförmige, oxidische Ausgangsstoffe miteinander zu einem keramischen Grünkörper in Form einer Tablette verpresst und bei Temperaturen von 1140°C, 1150°C bzw. 1160°C gesin- tert. Auf die Hauptflächen der jeweils resultierenden Tablette werden Elektrodenschichten aus Silber aufgebracht, über die in die Keramik ein elektrisches Feld eingekoppelt wird. Es entsteht ein Piezoelement mit Elektrodenschichten aus Sil¬ ber und dazwischen angeordneter Piezokeramikschicht mit dem jeweiligen piezokeramischen Werkstoff.
Bei den Sintertemperaturen von 1140°C, 1150°C und 1160°C sind die d33~Koeffizienten der piezokeramischen Werkstoffe mit Dotierungen von weniger als 1,0 mol.% gegenüber der undotierten Piezokeramik erhöht (Figur 3) . Dagegen sind die Werte bei ei¬ ner Nd-Dotierung von 1,0 mol.% erniedrigt.
Im Vergleich zur Permittivität der undotierten Keramik ist die Permittivität der piezokeramischen Werkstoffe mit Nd- Dotierung durchweg erhöht. Allerdings sinkt die Permittivität wieder beim Gang zu höheren Nd-Dotierungen (über 0,75 mol.%) . Der elektrische Isolationswiderstand der Ausführungsbeispiele ist gegenüber der undotierten KNN-Keramik erhöht. In Anlehnung an das beschriebene Verfahren zur Herstellung der Proben wird ein piezoelektrisches Bauteil 1 mit dem pie¬ zokeramischen Werkstoff hergestellt. Das piezoelektrische Bauteil 1 ist gemäß einer ersten Ausführungsform ein Piezoak- tor 1 in monolithischer Vielschichtbauweise (Figur 2) . Der Piezoaktor 1 besteht aus einer Vielzahl von übereinander zu einem Stapel angeordneten Piezoelementen 10 (Figur 1) . Jedes der Piezoelemente 10 weist eine Elektrodenschicht 11, eine weitere Elektrodenschicht 12 und eine zwischen den Elektro- denschichten 11 und 12 angeordnete Piezokeramikschicht 13 auf. Die im Stapel benachbarten Piezoelemente 10 weisen je¬ weils eine gemeinsame Elektrodenschicht auf. Die Elektroden¬ schichten 11 und 12 bestehen aus (annähernd) reinem Silber. In einer dazu alternativen Ausführungsform weisen die Elektrodenschichten 11 und 12 ein Elektrodenmaterial aus einer Silber-Palladium-Legierung auf, bei der Palladium zu einem Anteil von 5 Gew.% enthalten ist. Die Grünfolien werden getrocknet, mit einer Paste mit dem Elektrodenmaterial bedruckt, übereinander gestapelt, lami¬ niert, entbindert und zum Piezoaktor 1 unter oxidierender Sinteratmosphäre (Silber oder Silber-Palladium-Legierung als Elektrodenmaterial) gesintert.
Der resultierende monolithische piezokeramische Vielschich- taktor wird zum Betätigen eines Kraftstoffeinspritzventils eines Verbrennungsmotors eines Kraftfahrzeugs eingesetzt. Weitere, nicht dargestellte Ausführungsformen wie piezokera¬ mischer Biegewandler, piezokeramischer Transformator oder piezokeramischer Ultraschallwandler mit dem neuen piezokera- mischen Werkstoff sind ebenfalls zugänglich.

Claims

Patentansprüche
1. Bleifreier, mehrphasiger piezokeramischer Werkstoff, aufweisend
- mindestens eine Perowskit-Phase mit der Perowskit-Phasen- Zusammensetzung (LixK!_x_yNay) (Nbi-.t-uTatSbu) 03 und
- mindestens eine Wolframbronze-Phase mit der Wolframbronze- Phasen-Zusammensetzung (M11^ (LixK!_x_yNay) i_m (Nbi_wTaw) 50i5 +
VA' 2m, wobei
- M111 mindestens ein dreiwertiges Metall ist, VA' A-Platz- Leerstellen sind und folgende Zusammenhänge gelten:
- 0 < m < 0,05;
- 0 < t < 0,15;
- 0 < u < 0, 15;
- 0 < w < 1;
- 0 < x < 0,15;
- 0,25 < y < 0,75.
2. Werkstoff nach Anspruch 1, wobei das das dreiwertige Me- tall M111 ein Seltenerdmetall RE ist
3. Werkstoff nach Anspruch 1 oder 2, wobei das Seltenerdme¬ tall RE Neodym ist.
4. Werkstoff nach einem der Ansprüche 1 bis 3, wobei ein An¬ teil der Wolframbronze-Phase am piezokeramischen Werkstoff aus dem Bereich von einschließlich 0,01 Vol.-% bis einschließlich 25 Vol.-% und insbesondere aus dem Bereich von einschließlich 0,05 Vol.-% bis einschließlich 15 Vol.-% ge- wählt ist.
5. Verfahren zum Herstellen eines piezokeramischen Bauteils (1) mit einem piezokeramischen Werkstoff nach einem der Ansprüche 1 bis 4 mit folgenden Verfahrensschritten:
a) Bereitstellen eines Grünkörpers mit einer piezokeramischen Ausgangszusammensetzung des piezokeramischen Werkstoffs und b) Wärmebehandeln des Grünkörpers, wobei aus der piezokerami- schen Ausgangszusammensetzung der piezokeramische Werkstoff des Bauteils (1) entsteht.
6. Verfahren nach Anspruch 5, wobei zum Bereitstellen des Grünkörpers ein Mischen pulverförmiger, oxidischer Metallverbindungen der Metalle der Perowskit-Phase und der Wolframbronze-Phase durchgeführt wird.
7. Verfahren nach Anspruch 6, wobei eine piezokeramische Aus¬ gangszusammensetzung mit mindestens einem Mischoxid mit mindestens zwei der Metalle verwendet wird.
8. Verfahren nach einem der Ansprüche 5 bis 7, wobei ein pie- zokeramisches Bauteil (1) mit mindestens einem Piezoelement (10) hergestellt wird, das eine Elektrodenschicht (11) mit Elektrodenmaterial, mindestens eine weitere Elektrodenschicht (12) mit einem weiteren Elektrodenmaterial und mindestens ei¬ ne zwischen den Elektrodenschichten (11, 12) angeordnete Pie- zokeramikschicht (13) mit dem piezokeramischen Werkstoff auf¬ weist.
9. Verfahren nach einem der Ansprüche 8, wobei ein Piezoele- ment (10) verwendet wird, bei dem das Elektrodenmaterial und/oder das weitere Elektrodenmaterial mindestens ein aus der Gruppe Silber, Kupfer und Palladium ausgewähltes elemen- tares Metall aufweisen.
10. Verfahren nach einem der Ansprüche 5 bis 9, wobei das piezokeramische Bauteil (1) mit dem Piezoelement (10) aus der Gruppe piezokeramischer Biegewandler, piezokeramischer Viel- schichtaktor, piezokeramischer Transformator, piezokeramischer Motor und piezokeramischer Ultraschallwandler ausgewählt wird.
11. Verwendung eines nach dem Verfahren nach Anspruch 10 hergestellten piezokeramischen Vielschichtaktors zur Ansteuerung eines Kraftstoffeinspritzventils einer Brennkraftmaschine.
EP11725704A 2010-06-30 2011-06-08 Bleifreier piezokeramischer werkstoff mit perowskit-phase und wolframbronze-phase und verfahren zum herstellen eines piezokeramischen bauteils mit dem werkstoff Withdrawn EP2548237A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010025670A DE102010025670A1 (de) 2010-06-30 2010-06-30 Bleifreier piezokeramischer Werkstoff mit Perowskit-Phase und Wolframbronze-Phase und Verfahren zum Herstellen eines piezokeramischen Bauteils mit dem Werkstoff
PCT/EP2011/059479 WO2012000752A1 (de) 2010-06-30 2011-06-08 Bleifreier piezokeramischer werkstoff mit perowskit-phase und wolframbronze-phase und verfahren zum herstellen eines piezokeramischen bauteils mit dem werkstoff

Publications (1)

Publication Number Publication Date
EP2548237A1 true EP2548237A1 (de) 2013-01-23

Family

ID=44343142

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11725704A Withdrawn EP2548237A1 (de) 2010-06-30 2011-06-08 Bleifreier piezokeramischer werkstoff mit perowskit-phase und wolframbronze-phase und verfahren zum herstellen eines piezokeramischen bauteils mit dem werkstoff

Country Status (4)

Country Link
EP (1) EP2548237A1 (de)
JP (1) JP2013534898A (de)
DE (1) DE102010025670A1 (de)
WO (1) WO2012000752A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327914B2 (ja) * 2014-04-11 2018-05-23 日本特殊陶業株式会社 無鉛圧電磁器組成物、それを用いた圧電素子、及び、無鉛圧電磁器組成物の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165262A (ja) * 1995-12-19 1997-06-24 Matsushita Electric Ind Co Ltd 圧電体磁器組成物
JP3228175B2 (ja) * 1997-04-28 2001-11-12 株式会社村田製作所 圧電磁器組成物
JPH11240759A (ja) * 1998-02-27 1999-09-07 Kyocera Corp アクチュエータ用圧電磁器
JPH11292627A (ja) * 1998-04-07 1999-10-26 Nissan Motor Co Ltd 圧電材料およびその製造方法
JP4826866B2 (ja) * 2001-01-30 2011-11-30 Tdk株式会社 圧電電歪磁器
JP2003206179A (ja) * 2002-01-09 2003-07-22 Tdk Corp 圧電磁器
US7101491B2 (en) 2002-07-16 2006-09-05 Denso Corporation Piezoelectric ceramic composition and method of production of same, piezoelectric element, and dielectric element
JP2004161532A (ja) * 2002-11-13 2004-06-10 National Institute Of Advanced Industrial & Technology 多結晶圧電材料及びその製造方法
JP4524558B2 (ja) * 2003-12-22 2010-08-18 Tdk株式会社 圧電磁器およびその製造方法
DE102006004447A1 (de) * 2006-01-31 2007-08-02 Siemens Ag Bleifreier piezokeramischer Werkstoff, Verfahren zum Herstellen eines piezokeramischen Bauteils mit dem Werkstoff und Verwendung des Bauteils
JP2007258280A (ja) * 2006-03-20 2007-10-04 Tdk Corp 積層型圧電素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012000752A1 *

Also Published As

Publication number Publication date
DE102010025670A1 (de) 2012-01-05
JP2013534898A (ja) 2013-09-09
WO2012000752A1 (de) 2012-01-05

Similar Documents

Publication Publication Date Title
WO2011103935A1 (de) Bleifreier, mehrphasiger keramischer werkstoff mit texturierung, verfahren zum herstellen des werkstoffs und verwendung des werkstoffs
EP2773598B1 (de) Keramikmaterial, verfahren zur herstellung desselben und elektrokeramisches bauelement umfassend das keramikmaterial
DE102006015042B4 (de) Bleifreier piezokeramischer Werkstoff mit Kupferdotierung, Verfahren zum Herstellen eines piezokeramischen Bauteils mit dem Werkstoff und Verwendung des Bauteils
EP1979291B1 (de) Bleifreier piezokeramischer werkstoff, verfahren zum herstellen eines piezokeramischen bauteils mit dem werkstoff und verwendung des bauteils
WO2012048952A1 (de) Bleifreier, texturierter piezokeramischer werkstoff mit haupt- und nebenphase und anisometrischen keimen, verfahren zum herstellen eines piezokeramischen bauteils mit dem werkstoff und verwendung dazu
DE102005061528B4 (de) Piezokeramisches Bauteil mit Bleizirkonattitanat mit Eisen-Wolfram-Dotierung, Verfahren zum Herstellen des piezokeramischen Bauteils und seine Verwendung
DE102007012916B4 (de) Laminiertes piezoelektrisches Element und Herstellungsverfahren hierfür
EP1578730A2 (de) Piezokeramische zusammensetzung, piezokeramischer körper mit der zusammensetzung und verfahren zum herstellen der zusammensetzung und des körpers
DE102006008742B4 (de) Bleifreier piezokeramischer Werkstoff mit Erdalkalidotierung, Verfahren zum Herstellen eines piezokeramischen Bauteils mit dem Werkstoff und Verwendung des Bauteils
DE102007028094B4 (de) Blei-Zirkonat-Titanat-Keramik mit Texturierung, Verfahren zum Herstellen der Keramik und eines piezokeramischen Bauteils und dessen Verwendung
DE102005061529B4 (de) Bleizirkonattitanat mit Nickel-Molybdän-Dotierung, Verfahren zum Herstellen eines piezokeramischen Bauteils unter Verwendung des Bleizirkonattitanats und Verwendung des piezokeramischen Bauteils
EP2548237A1 (de) Bleifreier piezokeramischer werkstoff mit perowskit-phase und wolframbronze-phase und verfahren zum herstellen eines piezokeramischen bauteils mit dem werkstoff
DE102006015329B4 (de) Bleifreier piezokeramischer Werkstoff mit dem Mischsystem Erdalkali-Perowskit und Bismutyttriumoxid und Verfahren zum Herstellen des Werkstoffs
WO2009043652A1 (de) Bleifreier piezokeramischer werkstoff des kalium-natrium-niobat-systems mit eisen-lanthan-dotierung, verfahren zum herstellen eines bauteils mit dem piezokeramischen werkstoff und verwendung des bauteils
DE102007029601A1 (de) Bleizirkonattitanat mit Eisen-Niob-Wolfram-Dotierung, Verfahren zum Herstellen eines piezokeramischen Bauteils unter Verwendung des Bleizirkonattitanats und Verwendung des piezokeramischen Bauteils
WO2009043746A2 (de) Bleifreier piezokeramischer werkstoff des kalium-natrium-niobat-systems mit mangan-dotierung, verfahren zum herstellen eines bauteils mit dem piezokeramischen werkstoff und verwendung des bauteils
DE102006015330B4 (de) Bleifreier piezokeramischer Werkstoff aus dem Mischsystem Erdalkali-Perowskit und Bismut-Metall-Oxid und Verfahren zum Herstellen des Werkstoffs
WO2009015958A2 (de) Bleifreier, zweiphasiger piezokeramischer werkstoff, verfahren zum herstellen eines piezokeramischen bauteils mit dem werkstoff und verwendung des bauteils
DE102008008902B3 (de) Verfahren zum Herstellen eines bleifreien piezokeramischen Werkstoffs des Kalium-Natrium-Niobat-Systems mit Hilfe von Niobhydroxid und Verwendung eines Bauteils mit dem Werkstoff
DE102010025659A1 (de) Piezoelektrisches Bauteil mit bleifreiem, piezokeramischen Werkstoff auf Basis eines mit Silber dotierten Kalium-Natrium-Niobats und Verfahren zum Herstellen des Bauteils
DE102008008903A1 (de) Verfahren zum Herstellen eines bleifreien piezokeramischen Werkstoffs des Kalium-Natrium-Niobat-Systems mit Hilfe perowskitischer Ausgangsmaterialien und Verwendung eines Bauteils mit dem Werkstoff
DE102006046980A1 (de) Bleifreier piezokeramischer Werkstoff mit einem Mischsystem aus mindestens zwei unterschiedlichen Bismut-Perowskiten und Verfahren zum Herstellen des Werkstoffs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SOLLER, THOMAS

Inventor name: SCHUH, CARSTEN

Inventor name: BENKERT, KATRIN

Inventor name: BATHELT, ROBERT

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130910