EP2529835B1 - Device for mechanically separating material conglomerates from materials of various densities and/or consistency - Google Patents
Device for mechanically separating material conglomerates from materials of various densities and/or consistency Download PDFInfo
- Publication number
- EP2529835B1 EP2529835B1 EP12170392.0A EP12170392A EP2529835B1 EP 2529835 B1 EP2529835 B1 EP 2529835B1 EP 12170392 A EP12170392 A EP 12170392A EP 2529835 B1 EP2529835 B1 EP 2529835B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rotor
- section
- separating chamber
- impact
- feed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C13/00—Disintegrating by mills having rotary beater elements ; Hammer mills
- B02C13/14—Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C13/00—Disintegrating by mills having rotary beater elements ; Hammer mills
- B02C13/20—Disintegrating by mills having rotary beater elements ; Hammer mills with two or more co-operating rotors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C13/00—Disintegrating by mills having rotary beater elements ; Hammer mills
- B02C13/26—Details
- B02C13/282—Shape or inner surface of mill-housings
Definitions
- the DE 20 2010 008 197 U1 describes a centrifugal jet mill for crushing good. From the DE 197 14 075 A1 is a grinding plant for crushing good known.
- the DE 2 163 496 A1 relates to a shredder with separating blades, which shred the material.
- the WO 2010/057604 A1 discloses a device for shredding electronic waste, in which baffles rotate in a plane in a cylindrical container and thus comminute the material. In the device according to the DE 43 19 702 A1 the material to be crushed is thrown by a rotor against the surrounding baffle.
- the DE 103 19 786 A1 describes a device in which the material to be crushed is acted upon by an opposing air flow through which the material is thrown against radially inwardly facing baffles and digested.
- the invention is therefore based on the object to provide a device with which the mechanical digestion or the separation of small and smallest bound in the slag solid metal particles is possible.
- the invention should also be applicable to other material conglomerates of materials of different density and / or consistency.
- the device according to the invention has a separation chamber with a supply side and an outlet side.
- the separation chamber is surrounded by a cylindrical separation chamber wall or a separation chamber wall whose diameter increases from the supply side to the outlet side.
- the separation chamber wall is usually oriented vertically with the supply side up and the outlet side down. In principle, however, it is also possible to arrange the axis horizontally when the system is used for processing only very small material conglomerates by means of horizontal air flow. Otherwise takes place in the vertical arrangement, the supply of material from above gravimetrically.
- the separation chamber has in the direction of the cylinder axis at least two, preferably three successive sections.
- each of these three sections is at least one rotor on which impact tools are arranged, which extend radially into the separation chamber at least during operation of the device. If chains are used as impact tools, they only extend radially into the separation chamber when the rotor rotates at a corresponding rotational speed.
- the striking tools serve, possibly in conjunction with later described baffles at the separation chamber wall, a rupture of the material conglomerates in a manner to be described in more detail.
- the rotors have in the successive sections a rotor shell in the form of a cone, which has an increasing radius from the supply side to the outlet side. In this way it is achieved that the material conglomerates supplied are brought further radially outwards with increasing penetration into the separation chamber, where the absolute velocity of the impact tools is much higher than in the radially inner region.
- the diameter increase of the cone may be continuous in the manner of a cone or stepwise, e.g. in the manner of a cascade.
- the radius of the separation chamber wall can either remain the same, or preferably increase from the supply side to the outlet side, which also causes the absolute velocities of the particles in the separation chamber to increase with increasing distance in the separation chamber.
- the radius of the separation chamber wall may even decrease, which may be problematic because of the increased risk of clogging.
- the increase can be continuous or in stages.
- the radius of the rotor shell and the radius of the separation chamber wall are adjusted in the axial direction of the separation chamber so that the difference between these two radii decreases from the supply side to the outlet side. This ensures that the volume of the separation chamber becomes smaller with increasing axial penetration of the material into the separation chamber, which leads to an increase in the particle density and thus an increase in the mutual collisions and impacts of the particles against impact tools or baffles.
- the direction of rotation of the rotors in respectively adjacent sections is preferably in opposite directions.
- the Particles that are accelerated by the impact tools in one section meet in the next section head-on against the counter-rotating impact tools.
- the impact velocity is thus added by the particle velocity and the velocity of the impact tools.
- an extremely high impact velocity of the metal particles is achieved on the impact tools and / or baffles on the separation chamber wall, resulting in a break up of the material conglomerates, if there are materials of different density and / or consistency z. B. elasticity.
- the rotational speed of the rotors increases in the sections from the supply side to the discharge side of the separation chamber. In this way, it is achieved that the impact velocities of the material conglomerates increase in the region of increasing particle density in the direction of the outlet side, since there also increase the rotational speeds of the rotors and thus the absolute speeds of the striking tools.
- the device of the invention thus allows a separation z.
- iron or non-ferrous metals from slags or scaling which is hardly possible by the known devices according to the prior art.
- the invention makes use of a construction which leads to a maximization of the Impact energy of réelleumbleden conglomerates on impact tools and / or baffles in the separation chamber leads without the metal parts are crushed itself.
- the invention achieves the highest impact velocities of material conglomerates to be separated on impact tools which, with only a small grinding action, lead to a rupture of the material conglomerates.
- the rotor While it is in principle possible to use a drive for the rotors in the three sections and to provide the opposite direction of rotation and different rotational speeds via corresponding gear, it is preferable that the rotor has its own drive in each section, which is independent of the rotors other sections is operable or controllable. In this way, the rotational speeds can be adjusted individually to different réelleumblede material conglomerates, which would be more complicated to realize with a single drive for all rotors.
- the rotor shell is truncated cone-shaped, which has the consequence that the material conglomerates and metal particles are transferred into the more radially outer region of the separation chamber without their fall speed is significantly reduced.
- the rotor shells in the successive sections then preferably form a truncated cone, in which the diameter of the truncated cones in the mutually facing sections corresponds in each case and is continued towards the outlet side with increasing radius. In this way, a transfer of the supplied metal particles and material conglomerates in the radially outer region can be carried out in the entire separation chamber, without the material throughput in the axial direction of the separation chamber is significantly reduced.
- the striking tools are replaceably held on the rotor formed recordings, whereby they are easily replaceable.
- the rotor shell is formed in the same way from a plurality of rotor shell elements held interchangeably on the rotor.
- the rotor shell is exposed during the transfer of the material particles in the radially outer region of the separation chamber a certain wear, so that in exchange only the rotor shell elements is much cheaper than when the entire rotor must be replaced.
- the invention will be explained with reference to a separation chamber with three sections. However, it should be understood that the invention works equally well with two sections or even four or more sections.
- the first section facing the feed side is hereafter called a pre-treatment chamber.
- This pretreatment chamber is followed by a second section, called the acceleration chamber.
- the third portion, which faces the outlet side, is called a high speed impaction chamber.
- the number of impact tools per section of the separation chamber can be set in a wide range, resulting in an improvement in the acceleration of the particles and material conglomerates in the first two sections and an increase in the probability of a collision of the material conglomerate on a striking tool in the third section.
- the rotor shell has at least and preferably in the second section entrainment bars, which extend axially and radially into the separation chamber.
- These entrainment bars carry material particles which move radially further inward in the area of the rotor shell and accelerate them into the radially outer region of the separation chamber, so that this material can then be smashed more effectively by the impact tools of the high-speed impact chamber, since the absolute velocity of the impact tools in the radially outer region is higher than in the radially inner region.
- baffles that extend axially and radially inward. Material particles can bounce against these baffles after acceleration by impact tools and then break up.
- more impact tools are arranged in a subsequent in the direction of feed of the material section than in the section arranged in front.
- This has the advantage that the number of collisions of material and impact tool is shifted to a section in which the impact tools have a higher impact velocity. So z. B. in the pre-treatment chamber, the number of impact tools be even lower, since the task of this chamber is to convey the material particles radially outward, so that they get into the sphere of impact tools of the subsequent acceleration chamber, in which already more impact tools are arranged as in the pre-treatment chamber.
- entrainment strips can be formed on the rotor shell in order to realize an effective transfer of the material particles in the radially outer region.
- the acceleration chamber which follows the pretreatment chamber in the feed direction of the material, significantly more impact tools are arranged than in the pretreatment chamber. These impact tools serve to accelerate the increasingly dense material particles outwardly and downwardly toward the high velocity impaction chamber.
- the rotor shell of the acceleration chamber may have entrainment bars for transferring the particles to the radially outward region where they are accelerated strongly toward the high velocity impingement chamber by the more numerous drums in the acceleration chamber.
- the numerous impact tools rotate in the highest velocity, high speed impaction chamber, which is preferably selected to be more than 200 m / s but less than 300 m / s, i.e., less than 300 m / s, on the outer edge of the impact tools. is below the speed of sound.
- the increasing number of striking tools in the successive sections as well as the increasing rotational speed in the successive sections in connection with the opposite direction of rotation thus results in a maximization of the impact energy in all transition areas from one section to the next, resulting in effective mechanical disruption of the material conglomerates.
- the decomposed into the individual constituents material conglomerates can be separated later after removal from the separation chamber in known separation or separation chambers of each other, such as. As wind separators, magnetic separators etc.
- the absolute speeds of the rotors are then preferably set such that the absolute velocity of the outer edge of the striking tools in the third section is between 100 and 300 m / s, preferably between 200 and 300 m / s.
- the ratio of the radii of the rotor shell to the separation chamber wall in the first section is between 0.25 and 0.6, in the second section between 0.4 and 0.7 and in the third section between 0.5 and 0.8.
- a ratio of the radii is on the one hand an effective transfer of the material particles in the radially outer region connected with a corresponding increase in the density of the metal particles achieved whereas on the other hand, the current through the expansion of the rotor shell is not affected too much, because of the radius the separation chamber wall does not increase to the same extent as the radius of the rotor shell, which ultimately leads to an increase in particle density and an increase in impact energy, since the absolute speeds of the impact tools are higher in these radial widths outer regions than in radially inner regions ,
- the diameter of the rotor shell in a separation chamber from top to bottom can increase from 500 mm to 1400 mm.
- the diameter of the separation chamber wall may increase from 1200 mm at the top to 1900 mm at the bottom or remain constant within a range from 1700 to 1900 mm.
- the distance between the rotor shell and the partition thus decreases towards the outlet side. This decrease is at least on average over a certain axial distance.
- the distance between the rotor shell and the partition wall may temporarily increase towards the exit of the separation chamber, if, for example, a cascading expansion stage is present in the partition wall.
- the rotor speeds (speeds) can in this example in the three sections from top to bottom 600, 1000 and 1500 rpm.
- the absolute speed of the striking tools in the outer area of the third section is thus more than 140 m / s. In conjunction with the counter-acceleration of the particles in the pre-treatment chamber and the acceleration chamber so impact speeds of over 200 m / s can be realized.
- the striking tools are in a conventional manner, as it is z. B. by the DE 10 2005 046 207 is shown formed by chains and / or blow bars.
- the inventive device preferably has an input funnel on the input side and an outlet funnel on the outlet side, via which the mechanically digested material z. B. can be passed to a conveyor belt or a deposition device.
- the invention is not limited to the use of metal particles in slags, but may be applied to all types of material conglomerates consisting of materials of different density or elasticity.
- the rotors can be driven separately via drives arranged at one end of the separation chamber via mutually concentric shafts, or the drives can are located radially within the rotor shells of the corresponding rotors, in particular in the form of external rotor motors.
- the partition as well as the striking tools and the rotor shell are preferably made of hard impact resistant materials such as metal or ceramic metal composites.
- the number of rotors per section does not necessarily have to be 1, but two or more rotors may be provided in a section in axial sequence.
- the invention is not limited to the formation of two sections, but the invention can in principle be realized with three or more successive sections, e.g. with four or five axially consecutive sections.
- the chamber wall may have a plurality of annular circumferential projections for deflecting material that falls down the chamber wall in the direction of the rotor. As a result, the material is brought into the sphere of action of the impact tools and thus effectively fed to comminution.
- Fig. 1 shows in a partially sectioned longitudinal section of an inventive device 10 for the mechanical separation of material conglomerates of materials of different density and / or consistency.
- the end device 10 has a cylindrical partition wall 12, which is arranged vertically and whose diameter is constant. However, it can also increase from top to bottom, for example.
- the upper first section 24 of the separation chamber may be referred to as a pretreatment chamber, the central second section 24 as an acceleration chamber, and the last lower section 26 upstream of the outlet side as a high velocity impingement chamber.
- the rotors 16, 18, 20 can be driven separately via associated shafts 28, 30, 32. These shafts are each connected to drives (not shown) arranged above the separating device 10.
- the separation chamber forms at its upper end a feed side 34 with a feed hopper 36 for the material to be separated to be supplied.
- the rotors 16, 18, 20 have a conical rotor shell 17, 19, 21 concentric with the rotor, whose diameter increases from top to bottom.
- the rotor assembly 14 has the overall shape of a truncated cone.
- the individual rotors and sections are numbered consecutively in their arrangement in the material flow direction from top to bottom.
- the first rotor 16 has axially offset from one another two rows 42, 44 of impact tools distributed over the circumference, which are connected to the rotor 16 in a manner described in greater detail.
- the second rotor 18 has third and fourth rows 46, 48 of striking tools which are also axially offset from one another.
- the third rotor 20 on the outlet side has two axially offset rows 50, 52 of impact tools.
- These striking tools are e.g. Chains or metal bars, which have a hard metal edge at their outer end and on their front side in the direction of rotation.
- annular circumferential projections 64 are formed on the chamber wall 12. These projections serve to divert material which falls down the chamber wall in the direction of the rotor, and thus effectively feed it to comminution.
- the projections can - in a manner not shown - from the top to the bottom inside Beveled to achieve a better guiding effect. If the chamber wall increases in radius from top to bottom, no annular protrusions are necessary to achieve more effective comminution of the material because in that case the material falls away from the wall towards the rotor shell.
- the inner diameter of the separation chamber wall 12 may be 1760 mm, while the inner diameter of the annular peripheral projections is 1600 mm.
- the upper diameter of the rotor shell may, for example, be 60 mm, while the lower outlet-side diameter may be 1120 mm, so that the gap between the separation chamber wall and rotor shell decreases from 580 mm to 320 mm from the supply side to the outlet side.
- the direction of rotation of the second rotor 18 and the third rotor 20 ie the rotor in front of the outlet side 38 in opposite directions, so that accelerated by the impact tools 46, 48 of the second rotor 18 material on the counter-rotating striking tools 50, 52 of the third rotor 20, which increases the speed of the material particles as well as the speed of the striking tools based on the rotation of the third rotor 20.
- This can lead to impact velocities of the material particles on the impact tools of over 200 m / s, which leads to a relatively safe break up of material composites of materials of different density and / or consistency.
- the three rotors 16, 18, 20 are driven by concentric shafts 28, 30, 32 by drives from above.
- the waves may alternatively extend to the output side.
- Fig. 2 shows by way of example a detail of the upper first rotor 16 Fig. 1
- the first rotor 16 includes three associated with the associated rotor shaft 28 plate receptacles 70, 72, 81 which are rotatably connected to the shaft 28 (not shown) and rotate concentrically to the rotor axis.
- the upper plate receptacle 70 has a smaller outer diameter than the underlying plate receptacles 72 and 81.
- recesses 74 are provided into which the first members 76, 78 of striking chains 44, 46 are inserted ( Fig. 4 ).
- All plate shots 70, 72, 81 of the rotor 16 have vertical bores, which are enforced by bolts 80, 80b. Between each two plate receptacles 70, 72 and 72, 81 rotor shell elements 82, 84 are arranged, which also have a vertical bore 86 which are aligned with the holes of the plate seats 70, 72 aligned. Facing the rotor shell elements 82, 84, stops 73, 75 are formed on the underside of the upper seat receptacle 70 and on the upper side of the underlying seat receptacle 72, on which side of horizontal support walls of the jacket elements 82, 84 come to lie.
- the rotor sheath elements are centered and supported in the correct position on the rotor.
- the rotor shell elements 82, 84 are then fixed to the rotor 16 in the supported position. If the rotor shell elements 82, 84 need to be replaced, this is easily done by removing the bolts 80, 80b and replacing the corresponding elements.
- the rotor shell element 84 located further down has a driver bar 88 which extends radially and axially outwards from the frustoconical outer surface of the rotor jacket element 84.
- the entrainment bar 88 is intended to accelerate the material parts reaching into the region of the rotor shell 17 radially outwards, in order to transfer them there into the region of higher speeds of the impact tools.
- These driver strips 88 are in particular also provided on the rotor shell elements of the second rotor 18.
- the lower rotor shell element 84 also has a bottom plate 81 of the rotor 16 cross-over outer edge 79 which is supported against the plate receptacle and thus in a similar manner as the stops 73, 75, 77, the rotor shell elements on the rotor in position determines, then by the bolts 80, 80b is fixed.
- the figure also shows a plate receptacle 70b of the second rotor 18 of the rotor assembly 14 FIG. 1 , Due to the larger diameter of this second rotor 18 compared to the diameter of the first rotor 16, the receptacle 74b for the striking elements 46 and the bore for the bolt 80c is displaced radially further outwards.
- FIGS. 3a and b shows the connection between the plate receptacle 70 and formed as impact chain impact tool 42, 44, 46, 48, 50, 52.
- the percussion chain 42, 44, 46, 48, 50, 52 consists of a rotor facing the first chain link 76, in which a vertical bolt 78 is welded.
- a first chain link 76 engages a second semi-open chain link 43, in which a firing pin 45 is welded from a highly wear-resistant steel.
- the plate receptacles 70, 72, 81 are distributed over the circumference several (eg to 8) milled pockets 46 (see esp. Fig. 3b ), in which the striking chains 42, 44, 46, 48, 50, 52 with their bolts 78 are only hung.
- Fig. 3 moreover shows an annular circumferential projection 64 of the separation chamber wall 12, which is opposite to the impact tool 44. It can be seen that the discontinued material passes from the projection 64 into the region of the impact tool.
- Fig. 4 shows a detail Fig. 1 which illustrates how a baffle 92 is secured in the separation chamber wall 12.
- the baffle element has a baffle surface 97, which serves as the impact surface for the material accelerated by the impact tools 42 and leads there to a rupture of the metal conglomerates. Of course, the conglomerates also break on the striking tools themselves.
- the direction of rotation of the rotor is indicated by an arrow.
- the baffles 92 form on the cylindrical partition wall 12 projecting into the rotor space "gearing" by axially and radially after extend inside.
- the baffles 92 may be inserted into pockets 95 provided therebetween which are distributed over the circumference of the separation chamber wall 12. For example, 4-8 pockets 95 may be distributed around the circumference.
- the baffles 92 are inserted from the outside into these pockets 95 and screwed to the outside of the separation chamber wall.
- the direction of rotation opposite and projecting into the separation chamber 97 side of the impact element 92 forms the baffle. If a smooth cylindrical partition, ie no baffles are desired, a so-called placeholder 94 is used in these pockets 95.
- the placeholders 94 have the same thickness as the separation chamber wall 12 including its wear liner 93, thus aligning with the inside 96 of the separation chamber wall, resulting in a consistently smooth cylindrical inside 96 of the separation chamber wall 12.
- the baffles 92 protrude into the separation chamber.
- Fig. 5 illustrates the principle of operation of the separation device according to the present invention.
- the material conglomerates 100 consisting of metal particles 102 and slag residues 104 are accelerated by impact tools of the separating device according to the invention. This gives you a speed v 2 . These then hit in the next section 26 of the separation chamber on the high speed and counter-rotating impact tools 50, 52, which adds up to the velocity v 2 of the material conglomerates 100 and the velocity v 1 of the percussion tools 50, 52 upon impact, which upon impact to a securely splashing the material conglomerates into their individual components 102, 104. Impact speeds of 200 m / s and more can thus be achieved by the invention. The released energy leads to a safe splitting of firmly coagulated material conglomerates.
- the number and the distribution of impact tools may differ from the illustrated example. Different impact tools such as chains and blow bars can be used. In the rows 50 and 52 of the impact tools in the third section 26 of the separation chamber, many more impact tools can be distributed circumferentially than in the first section 22. This results in an increased area in the region of the third section, which may also be referred to as a high speed impaction chamber Probability of collisions.
- the separation chamber wall may have a sector which is to be opened to allow it to be e.g. to allow access to the separation chamber for maintenance.
- wearing parts such as the Schl adoptedausconstru 93, the striking tools 42, 44, 46, 48, 50, 52 or the rotor shell elements 82, 84 can be greatly simplified.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Crushing And Pulverization Processes (AREA)
Description
In den Schlacken und Aschen der thermischen Abfallverwertung sowie in den Schlacken der Metallerzeugung befinden sich zahlreiche Eisen und Nichteisenmetalle, die in gediegener Form in mineralischen Schlacken eingebunden oder stark verzundert sind. Ein effiziente Rückgewinnung dieser Metalle aus dem Materialkonglomeraten ist nur möglich, wenn diese Metalle aus ihren Verbunden/Verzunderungen so aufgeschlossen oder getrennt werden, das sie anschließend durch Magnete oder Nichteisenmetallabscheider aus dem Stoffstrom abgeschieden werden können.In the slags and ashes of thermal waste processing and in the slags of metal production are numerous iron and non-ferrous metals, which are involved in dehydrated form in mineral slags or heavily scaled. An efficient recovery of these metals from the material conglomerate is only possible if these metals are so digested or separated from their composites / scalings that they can then be separated from the flow by magnets or non-ferrous metal.
Nach dem Stand der Technik werden derartige Schlacken mit herkömmlichen Hammer- und Prallmühlen zerkleinert und anschließend Magneten und Nichteisenmetallabscheider zugeführt. Die
Mit Hammer- und Prallmühlen ist der Aufschluss und die Rückgewinnung von Metallen mit einer Partikelgröße von mehr als 20 mm möglich und auch effizient. Für den Aufschluss kleinerer Metallpartikeln mit diesen Mühlen müssten sehr kleine Spaltabstände, beispielsweise unter 20 mm eingestellt werden, was dann zu einer starken Zunahme der Mahlzerkleinerung zu Lasten der Prallzerkleinerung führen würde. Diese Mahlzerkleinerung hätte zur Folge, dass weiche Nichteisenmetalle so aufgerieben werden dass sie nicht mehr über einen Nichteisenmetallabscheider separiert werden können. Damit ist die Rückgewinnung von kleinen Metallpartikeln, die in den Schlacken in gediegener Form vorliegen, mit den Zerkleinerungseinrichtungen nach dem Stand der Technik nur
begrenzt möglich. Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung zu schaffen, mit welcher der mechanische Aufschluss bzw. die Trennung von kleinen und kleinsten in den Schlacken gebundenen gediegenen Metallpartikeln möglich ist. Die Erfindung soll überdies anwendbar sein auf andere Materialkonglomerate aus Materialen unterschiedlicher Dichte und/oder Konsistenz.With hammer and impact mills the digestion and recovery of metals with a particle size of more than 20 mm is possible and also efficient. For the digestion of smaller metal particles with these mills, very small gap distances, for example less than 20 mm, would have to be set, which would then lead to a sharp increase in comminution at the expense of impact comminution. This comminution would mean that soft non-ferrous metals are so worn down that they can no longer be separated by a non-ferrous metal separator. Thus, the recovery of small metal particles present in the slags in dignified form, with the shredders of the prior art only
limited possible. The invention is therefore based on the object to provide a device with which the mechanical digestion or the separation of small and smallest bound in the slag solid metal particles is possible. The invention should also be applicable to other material conglomerates of materials of different density and / or consistency.
Diese Aufgabe wird gelöst durch eine Vorrichtung mit den Merkmalen des Anspruchs 1. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.This object is achieved by a device having the features of claim 1. Advantageous developments of the invention are the subject of the dependent claims.
Die erfindungsgemäße Vorrichtung hat eine Trennkammer mit einer Zufuhrseite und einer Auslaßseite. Die Trennkammer ist von einer zylindrischen Trennkammerwand oder einer Trennkammerwand, deren Durchmesser von der Zufuhrseite zur Auslassseite hin zunimmt, umgeben. Die Trennkammerwand ist in der Regel vertikal ausgerichtet, wobei sich die Zufuhrseite oben und die Auslaßseite unten befindet. Prinzipiell ist es aber auch möglich, die Achse horizontal anzuordnen, wenn die Anlage zur Aufbereitung nur sehr kleiner Materialkonglomerate mittels horizontalen Luftstroms verwendet wird. Ansonsten erfolgt in der vertikalen Anordnung die Materialzufuhr von oben gravimetrisch.The device according to the invention has a separation chamber with a supply side and an outlet side. The separation chamber is surrounded by a cylindrical separation chamber wall or a separation chamber wall whose diameter increases from the supply side to the outlet side. The separation chamber wall is usually oriented vertically with the supply side up and the outlet side down. In principle, however, it is also possible to arrange the axis horizontally when the system is used for processing only very small material conglomerates by means of horizontal air flow. Otherwise takes place in the vertical arrangement, the supply of material from above gravimetrically.
Die Trennkammer hat in Richtung der Zylinderachse wenigstens zwei, vorzugsweise drei aufeinanderfolgende Abschnitte. In jeden dieser drei Abschnitte befindet sich jeweils mindestens ein Rotor an welchem Schlagwerkzeuge angeordnet sind, die sich zumindest im Betrieb der Vorrichtung radial in die Trennkammer hineinerstrecken. Falls als Schlagwerkzeuge Ketten verwendet werden, er- strecken sich diese nur radial in die Trennkammer hinein, wenn sich der Rotor mit einer entsprechenden Rotationsgeschwindigkeit dreht. Die Schlagwerkzeuge dienen, eventuell in Verbindung mit späteren noch beschriebenen Prallblechen an der Trennkammerwand, einem Aufbrechen der Materialkonglomerate in noch näher beschriebener Weise.The separation chamber has in the direction of the cylinder axis at least two, preferably three successive sections. In each of these three sections is at least one rotor on which impact tools are arranged, which extend radially into the separation chamber at least during operation of the device. If chains are used as impact tools, they only extend radially into the separation chamber when the rotor rotates at a corresponding rotational speed. The striking tools serve, possibly in conjunction with later described baffles at the separation chamber wall, a rupture of the material conglomerates in a manner to be described in more detail.
Die Rotoren haben in den aufeinanderfolgenden Abschnitten einen Rotormantel in Form eines Konus, der von der Zufuhrseite zur Auslaßseite einen zunehmenden Radius aufweist. Auf diese Weise wird erreicht, dass sich die zugeführten Materialkonglomerate mit zunehmenden Vordringen in die Trennkammer radial weiter nach außen gebracht werden, wo die Absolutgeschwindigkeit der Schlagwerkzeuge viel höher als im radial innen liegenden Bereich ist. Die Durchmesserzunahme des Konus kann kontinuierlich in Art eine Kegels oder stufenweise, z.B. in Art einer Kaskade, erfolgen. Der Radius der Trennkammerwand kann entweder gleich bleiben, oder vorzugsweise von der Zufuhrseite zur Auslaßseite hin zunehmen, was ebenfalls dazu führt, dass die Absolutgeschwindigkeiten der Partikel in der Trennkammer mit zunehmender zurückgelegter Distanz in der Trennkammer zunehmen. Prinzipiell kann der Radius der Trennkammerwand sogar abnehmen, was wegen zunehmender Verstopfungsgefahr jedoch eventuell problematisch ist. Fall der Radius der Trennkammerwand nach unten zunimmt, kann die Zunahme kontinuierlich oder in Stufen erfolgen. In jedem Fall werden der Radius des Rotormantels und der Radius der Trennkammerwand dabei in axialer Richtung der Trennkammer so eingestellt, dass die Differenz zwischen diesen beiden Radien von der Zufuhrseite zur Auslaßseite hin abnimmt. Hierdurch wird erreicht, dass das Volumen der Trennkammer mit zunehmendem axialen Vordringen des Materials in die Trennkammer kleiner wird, was zu einer Erhöhung der Partikeldichte führt und damit einer Erhöhung der gegenseitigen Stöße und der Stöße der Partikel gegen Schlagwerkzeuge oder Prallbleche.The rotors have in the successive sections a rotor shell in the form of a cone, which has an increasing radius from the supply side to the outlet side. In this way it is achieved that the material conglomerates supplied are brought further radially outwards with increasing penetration into the separation chamber, where the absolute velocity of the impact tools is much higher than in the radially inner region. The diameter increase of the cone may be continuous in the manner of a cone or stepwise, e.g. in the manner of a cascade. The radius of the separation chamber wall can either remain the same, or preferably increase from the supply side to the outlet side, which also causes the absolute velocities of the particles in the separation chamber to increase with increasing distance in the separation chamber. In principle, the radius of the separation chamber wall may even decrease, which may be problematic because of the increased risk of clogging. As the radius of the separation chamber wall increases, the increase can be continuous or in stages. In any case, the radius of the rotor shell and the radius of the separation chamber wall are adjusted in the axial direction of the separation chamber so that the difference between these two radii decreases from the supply side to the outlet side. This ensures that the volume of the separation chamber becomes smaller with increasing axial penetration of the material into the separation chamber, which leads to an increase in the particle density and thus an increase in the mutual collisions and impacts of the particles against impact tools or baffles.
Zusätzlich dazu ist die Rotationsrichtung der Rotoren in jeweils benachbarten Abschnitten vorzugsweise gegenläufig. Auf diese Weise wird erreicht, dass die Partikel, die durch die Schlagwerkzeuge in einem Abschnitt beschleunigt werden, im nächsten Abschnitt frontal gegen die gegenläufig drehenden Schlagwerkzeuge treffen. Die Aufprallgeschwindigkeit addiert sich somit aus der Partikelgeschwindigkeit und der Geschwindigkeit der Schlagwerkzeuge. Hierdurch wird eine extrem hohe Aufprallgeschwindigkeit der Metallpartikel auf den Prallwerkzeugen und/oder Prallblechen an der Trennkammerwand erzielt, was zu einem Aufbrechen der Materialkonglomerate führt, sofern sich darin Materialen unterschiedlicher Dichte und/oder Konsistenz z. B. Elastizität befinden. Schließlich nimmt erfindungsgemäß die Rotationsgeschwindigkeit der Rotoren in den Abschnitten von der Zufuhrseite zur Auslaßseite der Trennkammer hin zu. Auf diese Weise wird erzielt, dass die Aufprallgeschwindigkeiten der Materialkonglomerate im Bereich zunehmender Partikeldichte in Richtung auf die Auslaßseite hin zunimmt, da sich dort auch die Rotationsgeschwindigkeiten der Rotoren und damit die Absolutgeschwindigkeiten der Schlagwerkzeuge erhöhen.In addition, the direction of rotation of the rotors in respectively adjacent sections is preferably in opposite directions. In this way it is achieved that the Particles that are accelerated by the impact tools in one section, meet in the next section head-on against the counter-rotating impact tools. The impact velocity is thus added by the particle velocity and the velocity of the impact tools. As a result, an extremely high impact velocity of the metal particles is achieved on the impact tools and / or baffles on the separation chamber wall, resulting in a break up of the material conglomerates, if there are materials of different density and / or consistency z. B. elasticity. Finally, according to the invention, the rotational speed of the rotors increases in the sections from the supply side to the discharge side of the separation chamber. In this way, it is achieved that the impact velocities of the material conglomerates increase in the region of increasing particle density in the direction of the outlet side, since there also increase the rotational speeds of the rotors and thus the absolute speeds of the striking tools.
Die Kombination der oben dargelegten technischen Merkmale führt somit dazu, dass zum einen die Geschwindigkeit der Materialkonglomerate der Auslaßseite hin stark zunimmt, gleichzeitig die Partikeldichte, was schließlich dazu führen soll, dass sich im letzten Abschnitt vor dem Ausgang der Trennkammer die Materialkonglomerate Geschwindigkeiten von über 200 m/s gegen Prallbleche oder Schlagwerkzeuge prallen, was zu einem Zersprengen der Materialkonglomerate führt, ohne das diese wie beim Stand der Technik zermahlen werden. Die Größe der in den Materialkonglomeraten erhaltenen Metallpartikeln wird somit nicht reduziert.The combination of the technical features set out above thus leads, on the one hand, to a rapid increase in the speed of the material conglomerates of the outlet side and, at the same time, the particle density, which should ultimately lead to material conglomerates having velocities of over 200 in the last section before the exit of the separation chamber m / s bounce against baffles or impact tools, resulting in a collapse of the material conglomerates, without these are ground as in the prior art. The size of the metal particles obtained in the material conglomerates is thus not reduced.
Die Vorrichtung der Erfindung erlaubt somit eine Abtrennung z. B. von Eisen oder Nichteisenmetallen aus Schlacken oder Verzunderungen, die durch die bekannten Vorrichtungen nach dem Stand der Technik kaum möglich ist. Die Erfindung bedient sich hierbei einer Konstruktion, die zu einer Maximierung der Aufprallenergie der aufzuschließenden Materialkonglomerate auf Schlagwerkzeugen und/oder Prallblechen in der Trennkammer führt, ohne das die Metallteile dabei selbst zerkleinert werden. Somit lassen sich durch die Erfindung auch kleinste Metallteile in Schlacken noch ökonomisch sinnvoll abscheiden. Mit der Erfindung werden somit höchste Aufprallgeschwindigkeiten von zu trennenden Materialkonglomeraten auf Schlagwerkzeugen erzielt, die bei nur geringer Mahlwirkung zu einem Aufbrechen der der Materialkonglomerate führen.The device of the invention thus allows a separation z. As iron or non-ferrous metals from slags or scaling, which is hardly possible by the known devices according to the prior art. The invention makes use of a construction which leads to a maximization of the Impact energy of aufzuschließenden conglomerates on impact tools and / or baffles in the separation chamber leads without the metal parts are crushed itself. Thus, even the smallest metal parts in slags can still be deposited economically through the invention. Thus, the invention achieves the highest impact velocities of material conglomerates to be separated on impact tools which, with only a small grinding action, lead to a rupture of the material conglomerates.
Während es prinzipiell möglich ist, einen Antrieb für die Rotoren in den drei Abschnitten zu verwenden und die gegenläufige Drehrichtung und unterschiedliche Rotationsgeschwindigkeiten über entsprechende Getriebe vorzusehen, ist es vorzuziehen, dass der Rotor in jedem Abschnitt seinen eigenen Antrieb hat, der unabhängig von den Rotoren der anderen Abschnitte betreib- bzw. steuerbar ist. Auf diese Weise können die Rotationsgeschwindigkeiten individuell an unterschiedliche aufzuschließende Materialkonglomerate angepasst werden, was mit einem einzigen Antrieb für alle Rotoren nur aufwändiger zu realisieren wäre.While it is in principle possible to use a drive for the rotors in the three sections and to provide the opposite direction of rotation and different rotational speeds via corresponding gear, it is preferable that the rotor has its own drive in each section, which is independent of the rotors other sections is operable or controllable. In this way, the rotational speeds can be adjusted individually to different aufzuschließende material conglomerates, which would be more complicated to realize with a single drive for all rotors.
Vorzugsweise ist der Rotormantel kegelstumpfartig ausgebildet, was zur Folge hat, dass die Materialkonglomerate und Metallpartikel in den weiter außen liegenden radialen Bereich der Trennkammer überführt werden, ohne das ihre Fallgeschwindigkeit erheblich reduziert wird. Die Rotormäntel in den aufeinanderfolgenden Abschnitten bilden dann vorzugsweise einen Kegelstumpf, in welchem der Durchmesser Kegelstümpfe in den einander zugewandten Abschnitten sich jeweils entspricht und zur Auslaßseite hin mit zunehmendem Radius fortgeführt wird. Auf diese Weise kann in der gesamten Trennkammer eine Überführung der zugeführten Metallpartikel und Materialkonglomerate in den radial äußeren Bereich erfolgen, ohne das der Materialdurchsatz in axialer Richtung der Trennkammer nennenswert herabgesetzt wird. Es ist jedoch prinzipiell auch möglich, eine Durchmesserzunahme des Rotormantels in Stufen zu realisieren, wobei in jedem Abschnitt dann vorzugsweise eine oder mehrere axiale Bereiche mit konstantem Rotormanteldurchmesser ausgebildet sind, denen stufenartig nachfolgende Bereiche größeren Durchmessers folgen. Diese Version hat den Nachteil, dass der axiale Materialdurchsatz durch die Trennkammer stärker beeinträchtigt wird.Preferably, the rotor shell is truncated cone-shaped, which has the consequence that the material conglomerates and metal particles are transferred into the more radially outer region of the separation chamber without their fall speed is significantly reduced. The rotor shells in the successive sections then preferably form a truncated cone, in which the diameter of the truncated cones in the mutually facing sections corresponds in each case and is continued towards the outlet side with increasing radius. In this way, a transfer of the supplied metal particles and material conglomerates in the radially outer region can be carried out in the entire separation chamber, without the material throughput in the axial direction of the separation chamber is significantly reduced. However, it is also possible in principle to realize an increase in diameter of the rotor shell in stages, wherein in each section then preferably one or more axial regions are formed with a constant rotor sheath diameter, which follow successively subsequent regions of larger diameter. This version has the disadvantage that the axial material throughput is more affected by the separation chamber.
Vorzugsweise sind die Schlagwerkzeuge auswechselbar am Rotor ausgebildeten Aufnahmen gehalten, wodurch sie leicht ersetzbar sind.Preferably, the striking tools are replaceably held on the rotor formed recordings, whereby they are easily replaceable.
Vorzugsweise ist in gleicher Weise der Rotormantel aus mehreren auswechselbar an dem Rotor gehaltenen Rotormantelelementen gebildet. Der Rotormantel ist bei der Überführung der Materialpartikel in den radial äußeren Bereich der Trennkammer einer gewissen Abnutzung ausgesetzt, so dass eine in Austausch lediglich der Rotormantelelemente wesentlich kostengünstiger ist, als wenn der gesamte Rotor ersetzt werden muss.Preferably, the rotor shell is formed in the same way from a plurality of rotor shell elements held interchangeably on the rotor. The rotor shell is exposed during the transfer of the material particles in the radially outer region of the separation chamber a certain wear, so that in exchange only the rotor shell elements is much cheaper than when the entire rotor must be replaced.
Nachfolgend wird die Erfindung anhand einer Trennkammer mit drei Abschnitten erläutert. Es soll jedoch klargestellt werden, dass die Erfindung auch mit zwei Abschnitten oder auch vier oder mehr Abschnitten in gleicher Weise funktioniert. Der erste, der Zufuhrseite zugewandte Abschnitt wird hiernach Vorbehandlungskammer genannt. Dieser Vorbehandlungskammer folgt ein zweiter Abschnitt, welcher Beschleunigungskammer genannt wird. Der dritte Abschnitt, welcher der Auslaßseite zugewandt ist, wird Hochgeschwindigkeitsaufprallkammer genannt.The invention will be explained with reference to a separation chamber with three sections. However, it should be understood that the invention works equally well with two sections or even four or more sections. The first section facing the feed side is hereafter called a pre-treatment chamber. This pretreatment chamber is followed by a second section, called the acceleration chamber. The third portion, which faces the outlet side, is called a high speed impaction chamber.
In einer vorteilhaften Weiterbildung der Erfindung sind in dem ersten und/oder zweiten und/oder dritten Abschnitt, d. h. in der Vorbehandlungskammer, in der Beschleunigungskammer und/oder in der Hochgeschwindigkeitsaufprallkammer zwei axial versetzte Aufnahmen für die Schlagwerkzeuge vorgesehen. Auf diese Weise kann die Anzahl der Schlagwerkzeuge pro Abschnitt der Trennkammer in weiten Bereichen eingestellt werden, was in den ersten beiden Abschnitten eine Verbesserung der Beschleunigung der Partikel und Materialkonglomerate mit sich bringt und im dritten Abschnitt eine Erhöhung der Wahrscheinlichkeit eines Aufpralls des Materialkonglomerats auf ein Schlagwerkzeug.In an advantageous development of the invention, in the first and / or second and / or third section, ie in the pretreatment chamber, in the acceleration chamber and / or in the high-speed impact chamber, two axially offset receptacles are provided for the impact tools. To this In this way, the number of impact tools per section of the separation chamber can be set in a wide range, resulting in an improvement in the acceleration of the particles and material conglomerates in the first two sections and an increase in the probability of a collision of the material conglomerate on a striking tool in the third section.
Vorzugsweise hat der Rotormantel zumindest und vorzugsweise im zweiten Abschnitt Mitnehmerleisten, die sich axial und radial in die Trennkammer hineinerstrecken. Diese Mitnehmerleisten nehmen Materialpartikel mit, welche sich radial weiter innen im Bereich des Rotormantels entlang bewegen und beschleunigen sie in den radial außen liegenden Bereich der Trennkammer, so dass dieses Material dann durch die Schlagwerkzeuge der Hochgeschwindigkeitsaufprallkammer wirksamer zerschlagen werden kann, da die Absolutgeschwindigkeit der Schlagwerkzeuge im radial außen liegenden Bereich höher ist als im radial weiter innen liegenden Bereich.Preferably, the rotor shell has at least and preferably in the second section entrainment bars, which extend axially and radially into the separation chamber. These entrainment bars carry material particles which move radially further inward in the area of the rotor shell and accelerate them into the radially outer region of the separation chamber, so that this material can then be smashed more effectively by the impact tools of the high-speed impact chamber, since the absolute velocity of the impact tools in the radially outer region is higher than in the radially inner region.
Gerade dieses Merkmal ist der Grundidee der Erfindung dienlich, die kinetische Energie möglichst aller Materialpartikel in der Trennkammer so zu erhöhen, dass ein Aufprall der Materialpartikel oder Materialkonglomerate mit Schlagelementen oder Prallblechen mit einer gewissen Geschwindigkeit erreicht wird, die in den Bereich von etwa 200 m/s liegt. Die Anmelderin hat herausgefunden, dass eine derartige Prallgeschwindigkeit relativ sicher zu einem Aufbrechen der Materialkonglomerate führt, ohne dass die Metallanteile selbst zerkleinert werden. Nach oben hin ist die Prallgeschwindigkeit praktischer Weise durch die Schallgeschwindigkeit begrenzt, wie sozusagen eine gewisse praktikable physische Grenze für die Absolutgeschwindigkeit der Schlagelemente darstellt.It is precisely this feature of the basic idea of the invention to increase the kinetic energy of all material particles in the separation chamber so that an impact of the material particles or material conglomerates with impact elements or baffles is achieved at a certain speed, which is in the range of about 200 m / s is. The Applicant has found that such an impact speed relatively certainly leads to a breakage of the material conglomerates, without the metal components themselves being comminuted. Towards the top, the impact speed is practically limited by the speed of sound, as it were a certain practicable physical limit for the absolute velocity of the impact elements.
Um die Anzahl der Zusammenstöße von Materialpartikeln bzw. Materialkonglomeraten in der Trennkammer zu erhöhen, können an der Trennkammerwand Prallbleche ausgebildet sein, die sich axial und radial nach innen erstrecken. Materialpartikel können nach der Beschleunigung durch Schlagwerkzeuge gegen diese Prallbleche prallen und dann aufbrechen.In order to increase the number of collisions of material particles or material conglomerates in the separation chamber, can at the separation chamber wall Be formed baffles that extend axially and radially inward. Material particles can bounce against these baffles after acceleration by impact tools and then break up.
Vorzugsweise sind in einem in Aufgaberichtung des Materials folgenden Abschnitt mehr Schlagwerkzeuge angeordnet als in dem davor angeordneten Abschnitt. Dies hat den Vorteil dass die Anzahl der Zusammenstösse von Material und Schlagwerkzeug zu einem Abschnitt hin verlagert wird, in welchem die Schlagwerkzeuge eine höhere Schlaggeschwindigkeit haben. So kann z. B. in der Vorbehandlungskammer die Zahl der Schlagwerkzeuge noch geringer sein, da die Aufgabe dieser Kammer darin liegt, die Materialpartikel radial nach außen zu befördern, damit sie dort in den Wirkungsbereich der Schlagwerkzeuge der darauffolgenden Beschleunigungskammer geraten, in welchem bereits mehr Schlagwerkzeuge angeordnet sind als in der Vorbehandlungskammer. In der Vorbehandlungskammer können darüber hinaus Mitnehmerleisten an dem Rotormantel ausgebildet sein, um eine effektive Überführung der Materialpartikel in dem radial außen liegenden Bereich zu realisieren.Preferably, more impact tools are arranged in a subsequent in the direction of feed of the material section than in the section arranged in front. This has the advantage that the number of collisions of material and impact tool is shifted to a section in which the impact tools have a higher impact velocity. So z. B. in the pre-treatment chamber, the number of impact tools be even lower, since the task of this chamber is to convey the material particles radially outward, so that they get into the sphere of impact tools of the subsequent acceleration chamber, in which already more impact tools are arranged as in the pre-treatment chamber. Furthermore, in the pretreatment chamber, entrainment strips can be formed on the rotor shell in order to realize an effective transfer of the material particles in the radially outer region.
In der Beschleunigungskammer, welche der Vorbehandlungskammer in Aufgaberichtung des Materials folgt, sind deutlich mehr Schlagwerkzeuge angeordnet als in der Vorbehandlungskammer. Diese Schlagwerkzeuge dienen dazu, die zunehmend in größerer Dichte vorhandenen Materialpartikel nach außen und unten in Richtung auf die Hochgeschwindigkeitsaufprallkammer zu beschleunigen. Auch der Rotormantel der Beschleunigungskammer kann Mitnehmerleisten aufweisen, um die Partikel in den radial außen liegenden Bereich zu überführen, wo sie durch die zahlreicheren Schlagzeuge in der Beschleunigungskammer stark in Richtung auf die Hochgeschwindigkeitsaufprallkammer beschleunigt werden.In the acceleration chamber, which follows the pretreatment chamber in the feed direction of the material, significantly more impact tools are arranged than in the pretreatment chamber. These impact tools serve to accelerate the increasingly dense material particles outwardly and downwardly toward the high velocity impaction chamber. Also, the rotor shell of the acceleration chamber may have entrainment bars for transferring the particles to the radially outward region where they are accelerated strongly toward the high velocity impingement chamber by the more numerous drums in the acceleration chamber.
In der Hochgeschwindigkeitsaufprallkammer, also dem dritten Abschnitt, sind die meisten Schlagwerkzeuge angeordnet, die dazu dienen, die aufgrund des zunehmenden Rotormantelradius stark gestiegene Materialpartikeldichte in diesem Abschnitt der Trennkammer mit einer hohen Wahrscheinlichkeit zu zerschlagen. Vorzugsweise drehen sich die zahlreichen Schlagwerkzeuge in der Hochgeschwindigkeitsaufprallkammer mit der höchsten Rotationsgeschwindigkeit, die vorzugsweise so gewählt wird, dass sie im Außenbereich an der Außenkante der Schlagwerkzeuge über 200 m/s jedoch unter 300 m/s, d.h. unter der Schallgeschwindigkeit liegt.In the high-speed impact chamber, ie the third section, most of the striking tools are arranged, which serve to smash the greatly increased due to the increasing rotor shell radius material particle density in this section of the separation chamber with a high probability. Preferably, the numerous impact tools rotate in the highest velocity, high speed impaction chamber, which is preferably selected to be more than 200 m / s but less than 300 m / s, i.e., less than 300 m / s, on the outer edge of the impact tools. is below the speed of sound.
Die zunehmende Anzahl von Schlagwerkzeugen in den aufeinanderfolgenden Abschnitten als auch die zunehmende Rotationsgeschwindigkeit in den aufeinanderfolgenden Abschnitten in Verbindung mit der gegenläufigen Drehrichtung führt somit in allen Übergangsbereichen von einem Abschnitt zur nächsten zu einer Maximierung der Aufprallenergie, die zu einem effektiven mechanischen Aufschließen der Materialkonglomerate führt. Die in die Einzelbestandteile zerlegten Materialkonglomerate können später nach dem Abführen aus der Trennkammer in an sich bekannten Abscheidungs- oder Trennkammern von einander getrennt werden, wie z. B. Windabscheidern, magnetischen Abscheidern etc.The increasing number of striking tools in the successive sections as well as the increasing rotational speed in the successive sections in connection with the opposite direction of rotation thus results in a maximization of the impact energy in all transition areas from one section to the next, resulting in effective mechanical disruption of the material conglomerates. The decomposed into the individual constituents material conglomerates can be separated later after removal from the separation chamber in known separation or separation chambers of each other, such as. As wind separators, magnetic separators etc.
Um eine Maximierung der Aufprallgeschwindigkeit der Metallpartikel in der Trennkammer zu realisieren, als auch um die Wahrscheinlichkeit eines Aufpralls eines Metallpartikels auf ein Schlagwerkzeug zu erhöhen, hat es sich als vorteilhaft erwiesen, das Verhältnis der Rotationsgeschwindigkeit der Rotoren zwischen einem in Aufgaberichtung nachfolgenden Abschnitt und dem davor angeordneten Abschnitt zwischen 1,5 und 5, insbesondere zwischen 2 und 4 einzustellen.In order to maximize the impact velocity of the metal particles in the separation chamber, as well as to increase the likelihood of impact of a metal particle on an impact tool, it has been found advantageous to increase the ratio of the rotational speed of the rotors between a downstream portion and the front thereof to set arranged section between 1.5 and 5, in particular between 2 and 4.
Die Absolutgeschwindigkeiten der Rotoren sind dann vorzugsweise derart einzustellen, dass Absolutgeschwindigkeit der Außenkante der Schlagwerkzeuge im dritten Abschnitt zwischen 100 und 300 m/s, vorzugsweise zwischen 200 und 300 m/s liegt.The absolute speeds of the rotors are then preferably set such that the absolute velocity of the outer edge of the striking tools in the third section is between 100 and 300 m / s, preferably between 200 and 300 m / s.
Vorzugsweise liegt das Verhältnis der Radien des Rotormantels zur Trennkammerwand im ersten Abschnitt zwischen 0,25 und 0,6, im zweiten Abschnitt zwischen 0,4 und 0,7 und im dritten Abschnitt zwischen 0,5 und 0,8. Mit einem derartigen Verhältnis der Radien wird zum einen eine wirksame Überführung der Materialpartikel in den radial außen liegenden Bereich verbunden mit einer entsprechenden Erhöhung der Dichte der Metallpartikel erzielt wohingegen zum anderen der von Strom durch die Aufweitung des Rotorsmantels nicht zu stark beeinträchtigt wird, denn der Radius der Trennkammerwand nimmt nicht im gleichen Maße zu, wie der Radius des Rotormantels, was letztendlich zu einer Erhöhung der Partikeldichte und zu einer Erhöhung der Prallenergie führt, da in diesen Radialweiten außen liegenden Bereichen die Absolutgeschwindigkeiten der Prallwerkzeuge höher sind als in Radial weiter innen liegenden Bereichen.Preferably, the ratio of the radii of the rotor shell to the separation chamber wall in the first section is between 0.25 and 0.6, in the second section between 0.4 and 0.7 and in the third section between 0.5 and 0.8. With such a ratio of the radii is on the one hand an effective transfer of the material particles in the radially outer region connected with a corresponding increase in the density of the metal particles achieved whereas on the other hand, the current through the expansion of the rotor shell is not affected too much, because of the radius the separation chamber wall does not increase to the same extent as the radius of the rotor shell, which ultimately leads to an increase in particle density and an increase in impact energy, since the absolute speeds of the impact tools are higher in these radial widths outer regions than in radially inner regions ,
Beispielsweise kann der Durchmesser des Rotormantels in einer Trennkammer von oben nach unten von 500 mm auf 1400 mm zunehmen. Gleichzeitig kann der Durchmesser der Trennkammerwand von 1200 mm oben nach 1900 mm unten zunehmen oder in einem Bereich von 1700 bis 1900 mm konstant bleiben. Der Abstand zwischen Rotormantel und Trennwand nimmt somit zur Auslaßseite hin ab. Diese Abnahme liegt zumindest im Mittel über eine gewisse axiale Distanz vor. Natürlich kann der Abstand zwischen Rotormantel und Trennwand kurzzeitig zum Ausgang der Trennkammer hin zunehmen, wenn z.B. in der Trennwand gerade eine kaskadische Aufweitungsstufe vorliegt. Die Rotorgeschwindigkeiten (Drehzahlen) können in diesem Beispiel in den drei Abschnitten von oben nach unten 600, 1000 und 1500 U/min. betragen, wobei sich die Rotoren im ersten und zweiten Abschnitt gleichsinnig und im zweiten und dritten Abschnitt gegensinnig drehen. Die Absolutgeschwindigkeit der Schlagwerkzeuge im Außenbereich des dritten Abschnitts (Hochgeschwindigkeitsaufprallkammer) liegt damit über 140 m/s. In Verbindung mit der Gegenbeschleunigung der Partikel in der Vorbehandlungskammer und der Beschleunigungskammer lassen sich so Aufprallgeschwindigkeiten von über 200 m/s realisieren.For example, the diameter of the rotor shell in a separation chamber from top to bottom can increase from 500 mm to 1400 mm. At the same time, the diameter of the separation chamber wall may increase from 1200 mm at the top to 1900 mm at the bottom or remain constant within a range from 1700 to 1900 mm. The distance between the rotor shell and the partition thus decreases towards the outlet side. This decrease is at least on average over a certain axial distance. Of course, the distance between the rotor shell and the partition wall may temporarily increase towards the exit of the separation chamber, if, for example, a cascading expansion stage is present in the partition wall. The rotor speeds (speeds) can in this example in the three sections from top to bottom 600, 1000 and 1500 rpm. be, with the rotors in the first and second sections in the same direction and in the second and third sections rotate in opposite directions. The absolute speed of the striking tools in the outer area of the third section (high-speed impact chamber) is thus more than 140 m / s. In conjunction with the counter-acceleration of the particles in the pre-treatment chamber and the acceleration chamber so impact speeds of over 200 m / s can be realized.
Auf diese Weise werden die Aufprallgeschwindigkeit und damit die Aufprallenergie der Metallpartikel beim Auftreffen auf Schlagwerkzeuge und/oder Prallbleche in der Trennkammer innerhalb der physikalisch möglichen und sinnvollen Grenzen maximiert.In this way, the impact velocity and thus the impact energy of the metal particles are maximized when striking impact tools and / or baffles in the separation chamber within the physically possible and reasonable limits.
Die Schlagwerkzeuge sind in an sich bekannter Weise, wie es z. B. durch die
Die erfindungsgemäße Vorrichtung hat vorzugsweise eingangsseitig einen Aufgabetrichter und auslaßseitig einen Ausgabetrichter, über welchen das mechanisch aufgeschlossene Material z. B. auf ein Förderband oder eine Abscheidungsvorrichtung geleitet werden kann.The inventive device preferably has an input funnel on the input side and an outlet funnel on the outlet side, via which the mechanically digested material z. B. can be passed to a conveyor belt or a deposition device.
Selbstverständlich ist die Erfindung nicht auf die Anwendung von Metallpartikeln in Schlacken begrenzt, sondern kann angewandt werden auf alle Arten von Materialkonglomeraten die aus Materialen unterschiedlicher Dichte oder Elastizität besteht.Of course, the invention is not limited to the use of metal particles in slags, but may be applied to all types of material conglomerates consisting of materials of different density or elasticity.
Falls der Rotor jeden Abschnitts einen eigenen Antrieb aufweist, können die Rotoren über an einem Ende der Trennkammer angeordnete Antriebe über zueinander konzentrische Wellen separat angetrieben sein, oder die Antriebe können sich radial innerhalb der Rotormäntel der entsprechenden Rotoren befinden, insbesondere in Form von Außenläufermotoren.If the rotor of each section has its own drive, the rotors can be driven separately via drives arranged at one end of the separation chamber via mutually concentric shafts, or the drives can are located radially within the rotor shells of the corresponding rotors, in particular in the form of external rotor motors.
Die Trennwand als auch die Schlagwerkzeuge und der Rotormantel bestehen vorzugsweise aus harten schlagfesten Materialen wie aus Metall oder Keramikmetallverbundmaterialien.The partition as well as the striking tools and the rotor shell are preferably made of hard impact resistant materials such as metal or ceramic metal composites.
Die Anzahl der Rotoren pro Abschnitt muss nicht unbedingt 1 betragen sondern es können auch in axialer Abfolge zwei oder mehr Rotoren in einem Abschnitt vorgesehen sein. Zudem ist die Erfindung nicht auf die Ausbildung von zwei Abschnitten beschränkt, sondern die Erfindung kann prinzipiell mit drei oder mehr aufeinanderfolgenden Abschnitten realisiert werden, so z.B. mit vier oder fünf axial aufeinanderfolgenden Abschnitten.The number of rotors per section does not necessarily have to be 1, but two or more rotors may be provided in a section in axial sequence. In addition, the invention is not limited to the formation of two sections, but the invention can in principle be realized with three or more successive sections, e.g. with four or five axially consecutive sections.
Die Kammerwand kann mehrere ringförmig umlaufende Vorsprünge haben, um Material, das die Kammerwand entlang nach unten fällt, in Richtung auf den Rotor abzulenken. Hierdurch wird das Material in den Wirkungsbereich der Schlagwerkzeuge gebracht und somit effektiv einer Zerkleinerung zugeführt.The chamber wall may have a plurality of annular circumferential projections for deflecting material that falls down the chamber wall in the direction of the rotor. As a result, the material is brought into the sphere of action of the impact tools and thus effectively fed to comminution.
Die Erfindung wird nachfolgend beispielsweise anhand der schematischen Zeichnung beschrieben. In dieser zeigen:
- Fig. 1
- eine Seitenansicht auf eine mechanische Trennvorrichtung der Erfindung mit drei Rotoren,
- Fig. 2
- ein teilgeschnittenes Detail des Rotors aus
Fig. 1 , - Fig. 3a, b
- eine geschnittene Ansicht und Aufsicht eines Details der Aufhängung der Schlagwerkzeuge aus
Fig. 1 , - Fig. 4
- eine Detail aus
Figur 1 , und - Fig. 5
- eine schematische Darstellung des Prinzips des mechanischen Aufschließens von Materialkonglomeraten gemäß der vorliegen-den Erfindung.
- Fig. 1
- a side view of a mechanical separator of the invention with three rotors,
- Fig. 2
- a partially cut detail of the rotor
Fig. 1 . - Fig. 3a, b
- a sectional view and top view of a detail of the suspension of the striking tools
Fig. 1 . - Fig. 4
- a detail from
FIG. 1 , and - Fig. 5
- a schematic representation of the principle of mechanical disruption of material conglomerates according to the present invention.
Zwischen diesen Rotoren 16, 18, 20 und den entsprechenden axialen Abschnitten der zylindrischen Trennwand 12 sind drei Abschnitte 22, 24, 26 einer Trennkammer gebildet. Der obere erste Abschnitt 24 der Trennkammer kann als Vorbehandlungskammer bezeichnet werden, der in der Mitte liegende zweite Abschnitt 24 als Beschleunigungskammer und der letzte untere Abschnitt 26 vor der Auslaßseite als Hochgeschwindigkeitsaufprallkammer.Between these
Die Rotoren 16, 18, 20 sind über zugehörige Wellen 28, 30, 32 separat antreibbar. Diese Wellen sind jeweils mit (nicht dargestellten) oberhalb der Trennvorrichtung 10 angeordneten Antrieben verbunden. Die Trennkammer bildet an ihrem oberen Ende eine Zufuhrseite 34 mit einem Aufgabetrichter 36 für das zuzuführende zu trennende Materialgut.The
Am unteren Ende der durch die Abschnitte 22, 24, 26 gebildeten Trennkammer befindet sich die Auslaßseite 38 mit einem Auslauftrichter 40, um das zerkleinerte und mechanisch aufgeschlossene Schüttgut z. B. einem Bandförderer zu übergeben.At the lower end of the separating chamber formed by the
Die Rotoren 16, 18, 20 haben einen kegelförmigen Rotormantel 17, 19, 21 konzentrisch zum Rotor, dessen Durchmesser von oben nach unten zunimmt. Auf diese Weise hat die Rotoranordnung 14 insgesamt die Form eines Kegelstumpfes. Der Übersichtlichkeit halber sind nachfolgend die einzelnen Rotoren und Abschnitte in ihrer Anordnung in Materialflußrichtung von oben nach unten durchnummeriert. Der erste Rotor 16 hat axial zueinander versetzt zwei über den Umfang verteilte Reihen 42, 44 von Schlagwerkzeugen, welche in näher beschriebener Weise mit dem Rotor 16 verbunden sind. In gleicher Weise hat der zweite Rotor 18 eine dritte und vierte Reihe 46, 48 von Schlagwerkzeugen, die ebenfalls axial zueinander versetzt sind. Schließlich hat auch der dritte Rotor 20 an der Auslassseite zwei axial zueinander versetzte Reihen 50, 52 von Schlagwerkzeugen.The
Diese Schlagwerkzeuge sind z.B. Ketten oder Metallstangen, die an ihrem äußeren Ende und an ihrer in Drehrichtung vorderen Seite eine Schlagkante aus Hartmetall haben.These striking tools are e.g. Chains or metal bars, which have a hard metal edge at their outer end and on their front side in the direction of rotation.
Während die Rotoranordnung 14 von oben nach unten, d.h. von einer Einlassseite zur Auslassseite kontinuierlich in Art eines Kegelstumpfes zunimmt, ist der Durchmesser der zylindrischen Trennwand 12 konstant.While the
In axialer Richtung hintereinander sind mehrere ringförmig umlaufende Vorsprünge 64 an der Kammerwand 12 ausgebildet. Diese Vorsprünge dienen dazu, Material, das entlang der Kammerwand nach unten fällt, in Richtung auf den Rotor abzulenken, und somit effektiv einer Zerkleinerung zuzuführen. Die Vorsprünge können - in nicht dargestellter Weise - von außen oben nach innen unten abgeschrägt sein, um eine bessere Führungswirkung zu erzielen. Falls die Kammerwand im Radius von oben nach unten zunimmt, sind keine ringförmigen Vorsprünge notwendig, um eine effektivere Zerkleinerung des Materials zu erzielen, weil in diesem Fall das Material von der Wand weg in Richtung des Rotormantels fällt. Beispielsweise kann der Innendurchmesser der Trennkammerwand 12 1760 mm betragen, während der Innendurchmesser der ringförmig umlaufenden Vorsprünge 1600 mm beträgt. Der obere Durchmesser des Rotormantels kann z.B. 60 mm betragen, während der untere auslaßseitige Durchmesser 1120 mm betragen kann, so dass der Spalt zwischen Trennkammerwand und Rotormantel von der Zufuhrseite zur Auslaßseite hin von 580 mm auf 320 mm abnimmt.In the axial direction one after the other several annular
Diese Tatsache, dass der Abstand zwischen dem Rotormantel 17, 19, 21 und dem entsprechendem Abschnitt der Trennkammerwand 12 von oben nach unten abnimmt und sich radial nach außen verlagert ist ein wesentlicher Aspekt an der
Dies hat zufolge, dass zum einen das Volumen der Trennkammer nach unten hin reduziert wird, wodurch sich die Dichte des Materials in der Trennkammer erhöht, und dass zudem das Material in den weiter außen liegenden radialen Bereich der Trennvorrichtung 10 überführt wird, wo die Absolutgeschwindigkeit der Schlagwerkzeuge 41, 44, 46, 48, 50, 52 ansteigt.This has the result that on the one hand the volume of the separation chamber is reduced towards the bottom, which increases the density of the material in the separation chamber, and that, moreover, the material is transferred to the more external radial region of the
Weiterhin ist die Drehrichtung des zweiten Rotors 18 und des dritten Rotors 20, d.h. des Rotors vor der Auslaßseite 38 gegenläufig, so dass das durch die Schlagwerkzeuge 46, 48 des zweiten Rotors 18 beschleunigte Material auf die in Gegenrichtung rotierenden Schlagwerkzeuge 50, 52 des dritten Rotors 20 treffen, wodurch sich die Geschwindigkeit der Materialpartikel als auch die Geschwindigkeit der Schlagwerkzeuge basierend auf der Rotation des dritten Rotors 20 aufsummieren. Dies kann zur Aufprallgeschwindigkeiten der Materialpartikel auf den Schlagwerkzeugen von über 200 m/s führen, was zu einem relativ sicheren Aufbrechen von Materialverbunden aus Materialen unterschiedlicher Dichte und/oder Konsistenz führt.Furthermore, the direction of rotation of the
In dem Ausführungsbeispiel sind die drei Rotoren 16, 18, 20 über konzentrische Wellen 28, 30, 32 durch Antriebe von oben angetrieben. Die Wellen können sich alternativ auch zur Ausgangsseite hin erstrecken. Ebenso ist es möglich, die Antriebe selbst radial innerhalb der den entsprechenden Rotoren 16, 18, 20 zugeordneten Rotormänteln 17, 19, 21 anzuordnen, womit sich das Herausführen von Antriebswellen aus der Trennvorrichtung 10 erübrigt.In the exemplary embodiment, the three
Es soll weiterhin klargestellt werden, dass in der Ausführungsform der
Das weiter unten liegende Rotormantelelement 84 weist eine Mitnehmerleiste 88 auf, die sich radial und axial von der kegelstumpfartigen Außenfläche des Rotormantelelements 84 nach außen erstreckt. Die Mitnehmerleiste 88 ist dafür vorgesehen, die in den Bereich des Rotormantels 17 gelangenden Materialteile radial nach außen zu beschleunigen, um sie dort in den Bereich höherer Geschwindigkeiten der Schlagwerkzeuge zu überführen. Diese Mitnehmerleisten 88 sind insbesondere auch an den Rotormantelelementen des zweiten Rotors 18 vorgesehen. Das untere Rotormantelelement 84 weist darüber hinaus eine die unterste Telleraufnahme 81 des Rotors 16 übergreifende Außenkante 79, die gegen die Telleraufnahme abgestützt ist und damit in ähnlicher Weise wie die Anschläge 73, 75, 77 die Rotormantelelemente am Rotor in ihrer Lage festlegt, die dann durch die Bolzen 80, 80b fixiert wird.The
Die Figur zeigt weiterhin eine Telleraufnahme 70b des zweiten Rotors 18 der Rotoranordnung 14 aus
Die
Die Prallelemente 92 bilden an der zylindrischen Trennwand 12 eine in den Rotorraum hineinragende " Verzahnung", indem sie sich axial und radial nach innen erstrecken. Die Prallelemente 92 können in dafür vorgesehenen Taschen 95 eingesetzt werden, die über den Umfang der Trennkammerwand 12 verteilt sind. So können z.B. 4 - 8 Taschen 95 über den Umfang verteilt sein. Die Prallelemente 92 werden von außen in diese Taschen 95 eingesetzt und an der Außenseite der Trennkammerwand verschraubt. Die der Drehrichtung entgegenstehende und in die Trennkammer hineinragende Seite 97 des Prallelements 92 bildet die Prallfläche. Wenn eine glatte zylindrische Trennwand, d.h. keine Prallflächen gewünscht werden, wird in diesen Taschen 95 ein sogenannter Platzhalter 94 eingesetzt. Die Platzhalter 94 haben die gleiche Stärke wie die Trennkammerwand 12 inklusive deren Schleißauskleidung 93, womit sie mit der Innenseite 96 der Trennkammerwand fluchten, was zu einer durchgängig glatten zylindrischen Innenseite 96 der Trennkammerwand 12 führt. Hingegen ragen die Prallelemente 92 in die Trennkammer hinein.The
Erfindungsgemäß werden die Materialkonglomerate 100 bestehend aus Metallpartikeln 102 und Schlackeresten 104 durch Schlagwerkzeuge der erfindungsgemäßen Trennvorrichtung beschleunigt. Sie erhalten dadurch eine Geschwindigkeit v2. Diese treffen dann im nächsten Abschnitt 26 der Trennkammer auf die mit hoher Geschwindigkeit und gegenläufig drehenden Schlagwerkzeuge 50, 52, womit sich beim Aufprall die Geschwindigkeit v2 der Materialkonglomerate 100 und die Geschwindigkeit v1 der Schlagwerkzeuge 50, 52 aufaddiert, was beim Aufprall zu einem sicheren Zersprengen der Materialkonglomerate in ihre Einzelkomponenten 102, 104 führt. Durch die Erfindung können somit Aufprallgeschwindigkeiten von 200 m/s und mehr erzielt werden. Die dabei freiwerdende Energie führt zu einem sicheren Aufspalten auch fest zusammen gebackener Materialkonglomerate.According to the invention, the
Die Erfindung ist nicht auf das vorliegende Ausführungsbeispiel begrenzt sondern Variationen sind innerhalb des Schutzbereichs der nachfolgenden Ansprüche möglich.The invention is not limited to the present embodiment but variations are possible within the scope of the following claims.
Insbesondere kann die Anzahl und die Verteilung der Schlagwerkzeuge von dem dargestellten Beispiel abweichen. Es können unterschiedliche Schlagwerkzeuge wie Ketten und Schlagleisten verwendet werden. In den Reihen 50 und 52 der Schlagwerkzeuge im dritten Abschnitt 26 der Trennkammer können sehr viel mehr Schlagwerkzeuge über den Umfang verteilt werden als in dem ersten Abschnitt 22. Dies führt im Bereich des dritten Abschnitts, der auch als Hochgeschwindigkeitsaufprallkammer bezeichnet werden kann, zu einer erhöhten Wahrscheinlichkeit von Zusammenstößen.In particular, the number and the distribution of impact tools may differ from the illustrated example. Different impact tools such as chains and blow bars can be used. In the
Die Trennkammerwand kann einen Sektor haben, der zu öffnen ist, um damit z.B. für Wartungsarbeiten Zugang zur Trennkammer zu ermöglichen. Der Austausch von Verschleißteilen, wie z.B. der Schleißauskleidung 93, den Schlagwerkzeugen 42, 44, 46, 48, 50, 52 oder den Rotormantelelementen 82, 84 kann so stark vereinfacht werden.The separation chamber wall may have a sector which is to be opened to allow it to be e.g. to allow access to the separation chamber for maintenance. The replacement of wearing parts, such as the
Claims (16)
- A device (10) for mechanical separation of material conglomerates from materials of different density and/or consistency, comprising a separating chamber (22, 24, 26) with a feed side (34) and a discharge side (38), which separating chamber is surrounded by a cylindrical separating chamber wall (12) or a separating chamber wall the diameter of which increases from the feed side towards the discharge side, and comprises at least two consecutive sections (22, 24, 26) in the axial direction, in each of which at least one rotor (16, 18, 20) with impact tools (42, 44, 46, 48, 50, 52) which extend radially into the separating chamber is arranged, with the following features:- the rotors have in the consecutive sections from the feed side to the discharge side a rotor casing (17, 19, 21), of which the radius increases towards the discharge side,- the difference between the radius of the rotor casing and the radius of the separating chamber wall decreases from the feed side towards the discharge side,- the directions of rotation of the rotor (20) in the section (26) facing the discharge side and the rotor (18) of the section (24) which lies ahead in the direction of the material flow are counter-rotating, characterized in that the rotational velocity of the rotors in the sections (22, 24, 26) increases from the feed side towards the discharge side of the separating chamber.
- The device according to claim 1, characterized in that the rotor (16, 18, 20) of each section has its own drive which can be controlled and/or driven independently of the rotors in the other sections.
- The device according to one of the preceding claims, characterized in that the rotor casing (17, 19, 21) is designed like a truncated cone.
- The device according to claim 3, characterized in that the rotor casings (17, 19, 21) of the rotors (16, 18, 20) form a truncated cone in the consecutive sections (22, 24, 26) .
- The device according to one of the preceding claims, characterized in that the axis of the separating chamber (22, 24, 26) is perpendicular and with the feed side (34) aligned to the top.
- The device according to one of the preceding claims, characterized in that the impact tools (42, 44, 46, 48, 50, 52) are replaceably held in receptacles (74, 74b) formed on the rotor (16, 18, 20).
- The device according to claim 6, characterized in that in at least one section (22, 24, 26) two axially offset receptacles (74) for the impact tools (42, 44, 46, 48, 50, 52) are provided.
- The device according to one of the preceding claims, characterized in that the rotor casing (17, 19, 21) is formed from several rotor casing elements (82, 84) replaceably held on the rotor (16, 18, 20).
- The device according to one of the preceding claims, characterized in that the rotor casing (17, 19, 21) has lifting bars (88) at least in the second to last section in the direction of the material feed, which extend into the separating chamber (22, 24, 26) axially and radially.
- The device according to one of the preceding claims, characterized in that in at least one section (22, 24, 26) impact surfaces are arranged which extend from the separating chamber wall (12) towards the inside axially and radially.
- The device according to one of the preceding claims, characterized in that in one section (24, 26), following in the feed direction of the material, more impact tools (46, 48, 50, 52) are provided than in the section (22, 24) which is arranged before.
- The device according to one of the preceding claims, characterized in that the ratio of the rotational velocities of the rotor (16, 18, 20) between one section (24, 26) and the section (22, 24) arranged before in the direction of throughput of the material to be treated is between 1.5 and 5, and particularly between 2 and 4.
- The device according to one of the preceding claims, wherein the rotational velocities of the rotor (20) in the last section of the separating chamber facing the discharge side is selected such that the absolute velocity of the outside edges of the impact tools (42, 44, 46, 48, 50, 52) is between 100 and 300 m/s, and particularly between 130 and 200 m/s.
- The device according to one of the preceding claims, wherein a feed hopper (36) above and/or a discharge hopper (40) below the separating chamber (22, 24, 26) is arranged.
- The device according to one of the preceding claims, wherein the ratio of the radii of the rotor casing (17, 19, 21) to the separating chamber wall (12) in the direction of the material feed is between 0,25 and 0,6 on the feed side (34), and between 0,5 and 0,8 on the discharge side.
- The device according to one of the preceding claims, wherein the impact tools are formed by chains and/or baffle plates.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011050789A DE102011050789A1 (en) | 2011-06-01 | 2011-06-01 | Device for the mechanical separation of material conglomerates from materials of different density and / or consistency |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2529835A2 EP2529835A2 (en) | 2012-12-05 |
EP2529835A3 EP2529835A3 (en) | 2017-11-22 |
EP2529835B1 true EP2529835B1 (en) | 2019-05-01 |
Family
ID=46318869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12170392.0A Not-in-force EP2529835B1 (en) | 2011-06-01 | 2012-06-01 | Device for mechanically separating material conglomerates from materials of various densities and/or consistency |
Country Status (10)
Country | Link |
---|---|
US (1) | US8777142B2 (en) |
EP (1) | EP2529835B1 (en) |
JP (1) | JP6159718B2 (en) |
CN (1) | CN103648652B (en) |
CA (1) | CA2837763C (en) |
DE (1) | DE102011050789A1 (en) |
DK (1) | DK2529835T3 (en) |
HU (1) | HUE045830T2 (en) |
RU (1) | RU2596758C2 (en) |
WO (1) | WO2012171597A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012104031B4 (en) * | 2012-05-08 | 2017-05-04 | Pms Handelskontor Gmbh | Separating device for material conglomerates |
SK288377B6 (en) * | 2012-12-14 | 2016-07-01 | Plesnăťk Juraj | Bunchy material as a construction material, especially for building industry, method of preparing a device for its production |
EP2837424A1 (en) * | 2013-08-13 | 2015-02-18 | TARTECH eco industries AG | Slag crusher |
DE102013110352A1 (en) * | 2013-09-19 | 2015-03-19 | Pms Handelskontor Gmbh | comminution device |
JP6059651B2 (en) * | 2013-12-17 | 2017-01-11 | ヨシワ工業株式会社 | Crushing and separating device |
US10376894B2 (en) | 2014-02-14 | 2019-08-13 | Glennon C. Sontag | Grinder |
DE202014008874U1 (en) * | 2014-11-10 | 2015-02-19 | Huning Maschinenbau Gmbh | Device for processing in particular biomass materials |
DE102016110086B4 (en) | 2016-06-01 | 2019-09-26 | TARTECH eco industries AG | Device for separating conglomerates, which consist of materials of different density |
CN110997149A (en) | 2017-06-04 | 2020-04-10 | 塔泰克生态工业股份公司 | Device for separating agglomerates composed of materials of different densities |
JP6544672B1 (en) * | 2018-02-13 | 2019-07-17 | 株式会社ティーフォース | Dry crusher |
CN108993678A (en) * | 2018-07-11 | 2018-12-14 | 刘喃喃 | It is a kind of to break up the good Internet of Things Web robot of effect |
CN109201278B (en) * | 2018-09-21 | 2020-05-26 | 景德镇市珏昊瓷业有限公司 | Ceramic machinery milling machine |
CN110194350B (en) * | 2019-07-09 | 2024-06-21 | 江苏丰东热技术有限公司 | Tipping bucket conveying device and feeding system |
DE102019004847A1 (en) * | 2019-07-12 | 2021-01-14 | Hosokawa Alpine Aktiengesellschaft | Shredding device |
EP3827899A1 (en) | 2019-11-29 | 2021-06-02 | PMS Handelskontor GmbH | Comminution device |
US20230069101A1 (en) * | 2020-02-07 | 2023-03-02 | Jdc Corporation | Rotary Crushing Device and Rotary Crushing Method |
CN118122465B (en) * | 2024-05-07 | 2024-08-09 | 河南尚威生物科技有限公司 | Fodder grinder for poultry |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1621409A (en) * | 1924-10-22 | 1927-03-15 | Horn Heinrich | Manufacture of cocoa, chocolate, and the like |
GB253224A (en) * | 1925-03-19 | 1926-06-17 | Frederic Edward Whitham | A new or improved apparatus for reducing ores, or other suitable materials |
US1638381A (en) * | 1925-03-19 | 1927-08-09 | Abraham Reed | Apparatus for reducing ores or other suitable materials |
US1911193A (en) * | 1927-10-07 | 1933-05-30 | James D Canary | Pulverizer |
US1758010A (en) * | 1928-08-18 | 1930-05-13 | George F Pettinos | Grinding mill |
US1788683A (en) * | 1929-06-27 | 1931-01-13 | Bramley-Moore Swinfen | Machine for breaking and separating cocoa beans |
US1927277A (en) * | 1930-12-15 | 1933-09-19 | James D Canary | Grinding mill |
US1967323A (en) * | 1931-08-25 | 1934-07-24 | Walter W Pettibone | Pulverizer |
US2838246A (en) * | 1954-11-05 | 1958-06-10 | Adorno Stefano M Cattaneo | Machines for treating asbestos and similar fibers |
US3457047A (en) * | 1962-02-20 | 1969-07-22 | Shikoku Chem | Apparatus for producing cellulose derivatives and the like |
JPS4724009Y1 (en) * | 1969-03-14 | 1972-07-31 | ||
JPS5310594Y2 (en) * | 1974-07-23 | 1978-03-22 | ||
JPS588338Y2 (en) * | 1979-03-26 | 1983-02-15 | 株式会社神戸製鋼所 | Vertical impact crusher |
US4369548A (en) * | 1980-07-23 | 1983-01-25 | Malinak Frank J | Depither |
JPS57173840U (en) * | 1981-04-28 | 1982-11-02 | ||
JPS62155946A (en) * | 1985-12-27 | 1987-07-10 | 平川 和雄 | Paper crushing apparatus |
US5067661A (en) * | 1989-07-10 | 1991-11-26 | Light Work Inc. | Mill for grinding garbage or the like |
JP2902273B2 (en) * | 1992-12-07 | 1999-06-07 | 株式会社キンキ | Hammer crusher |
DE4319702C2 (en) * | 1993-06-10 | 1995-06-14 | Dichter Hans Joachim | Impact crusher |
CN2172157Y (en) * | 1993-10-20 | 1994-07-20 | 沙居建 | Verticle shaft and back shock fine crusher |
JP2909503B2 (en) * | 1994-06-29 | 1999-06-23 | 日本磁力選鉱株式会社 | Rotary impact crusher |
CN2229305Y (en) * | 1995-02-11 | 1996-06-19 | 中国矿业大学 | Vertical shaft cone impact crusher |
RU2163166C2 (en) * | 1996-08-12 | 2001-02-20 | Просойа Инк. | Grinder |
DE19714075A1 (en) * | 1997-04-04 | 1998-10-08 | Hosokawa Mikropul Ges Fuer Mah | Grinding plant |
DE202010008197U1 (en) * | 1997-10-28 | 2011-02-10 | Kulakov, Igor A. | Centrifugal jet mill |
RU8973U1 (en) * | 1997-11-10 | 1999-01-16 | Общество с ограниченной ответственностью "Купогран" | CONIC MILL FOR GRINDING MATERIAL |
JP2000093819A (en) * | 1998-09-25 | 2000-04-04 | Japan Steel Works Ltd:The | Crusher |
EP1501634A2 (en) * | 2002-05-04 | 2005-02-02 | Christoph Muther | Method and device for the treatment of substances or composite materials and mixtures |
DE202005021545U1 (en) * | 2005-09-28 | 2008-09-04 | Get Hamburg Gmbh | Device for crushing debris |
JP4265807B2 (en) * | 2006-06-12 | 2009-05-20 | 株式会社アーステクニカ | Pulverizer |
RU2006139261A (en) * | 2006-11-08 | 2008-05-20 | Общество с ограниченной ответственностью Научно-исследовательский институт Комплексные проблемы обогащени минералов (RU) | METHOD FOR SELECTIVE CRUSHING OF BULK MATERIALS AND DEVICES FOR ITS IMPLEMENTATION |
US7900860B2 (en) * | 2007-04-05 | 2011-03-08 | Lehigh Technologies, Inc. | Conical-shaped impact mill |
JP5057452B2 (en) * | 2007-09-20 | 2012-10-24 | 独立行政法人産業技術総合研究所 | Method and apparatus for selective crushing of waste fluorescent lamp |
WO2010057604A1 (en) * | 2008-11-19 | 2010-05-27 | Bomatic Umwelt- Und Verfahrenstechnik Gmbh | Device for reducing and solubilizing |
CN201337928Y (en) * | 2009-01-07 | 2009-11-04 | 周明帮 | Tapered vertical type crusher |
RU102540U1 (en) * | 2010-09-21 | 2011-03-10 | Государственное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" | VERTICAL HAMMER MILL |
-
2011
- 2011-06-01 DE DE102011050789A patent/DE102011050789A1/en not_active Withdrawn
-
2012
- 2012-04-04 CN CN201280029359.0A patent/CN103648652B/en not_active Expired - Fee Related
- 2012-04-04 RU RU2013157304/13A patent/RU2596758C2/en not_active IP Right Cessation
- 2012-04-04 CA CA2837763A patent/CA2837763C/en not_active Expired - Fee Related
- 2012-04-04 WO PCT/EP2012/001603 patent/WO2012171597A1/en active Application Filing
- 2012-04-04 JP JP2014513062A patent/JP6159718B2/en not_active Expired - Fee Related
- 2012-06-01 HU HUE12170392A patent/HUE045830T2/en unknown
- 2012-06-01 DK DK12170392.0T patent/DK2529835T3/en active
- 2012-06-01 US US13/486,215 patent/US8777142B2/en not_active Expired - Fee Related
- 2012-06-01 EP EP12170392.0A patent/EP2529835B1/en not_active Not-in-force
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US20120325949A1 (en) | 2012-12-27 |
HUE045830T2 (en) | 2020-01-28 |
CA2837763C (en) | 2016-12-13 |
RU2013157304A (en) | 2015-07-20 |
JP2014527457A (en) | 2014-10-16 |
CA2837763A1 (en) | 2012-12-20 |
JP6159718B2 (en) | 2017-07-05 |
DK2529835T3 (en) | 2019-08-05 |
WO2012171597A1 (en) | 2012-12-20 |
EP2529835A2 (en) | 2012-12-05 |
CN103648652B (en) | 2016-02-17 |
US8777142B2 (en) | 2014-07-15 |
DE102011050789A1 (en) | 2012-12-06 |
CN103648652A (en) | 2014-03-19 |
EP2529835A3 (en) | 2017-11-22 |
RU2596758C2 (en) | 2016-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2529835B1 (en) | Device for mechanically separating material conglomerates from materials of various densities and/or consistency | |
EP2851122B1 (en) | Comminuting device | |
DE102012104031B4 (en) | Separating device for material conglomerates | |
EP1536892B1 (en) | Comminuting device | |
EP3291915B1 (en) | Comminuting machine comprising a rotor system and method for comminuting feedstock | |
EP0103778B1 (en) | Hammer mill | |
EP2981361B1 (en) | Apparatus and method for comminution of ore with recirculation | |
DE102005055620B4 (en) | Device for processing components from mixtures of substances | |
EP2482987B1 (en) | Method and device for comminuting ore | |
EP3895806A1 (en) | Method and device for cmomminuting solid materials | |
EP3603811B1 (en) | Crushing method and apparatus | |
DE3935882A1 (en) | CRUSHING DEVICE | |
DE69219466T2 (en) | Impact crushing of rock and ore | |
DE2620797C2 (en) | Beater mill for processing fiber-containing products | |
DE1187112B (en) | Vortex mill | |
EP2548648B1 (en) | Mill for comminuting of material | |
WO2018050809A1 (en) | Chopping rotor for a comminution device, in particular a chopper | |
EP0764470A1 (en) | Process for impact milling and impact mill | |
EP1023940A2 (en) | Device for decomposing scrapped apparatuses | |
EP1886729B1 (en) | Comminution device and comminuting method | |
EP0190417B1 (en) | Device for comminuting waste paper | |
DE2554853A1 (en) | Coal breaking and crushing appts. - has lifter shelves positioned at set angle of incline on drum | |
DE102011011493A1 (en) | Device for crushing paper material during recycling of beverage cartons, has impact tool that is rotated around axis and feeding unit, over which paper material is supplied | |
EP2155395B1 (en) | Impact mill | |
DE1168220B (en) | Crushing machine for plastics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TARTECH ECO INDUSTRIES AG |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B02C 13/282 20060101ALI20171019BHEP Ipc: B02C 13/20 20060101ALI20171019BHEP Ipc: B02C 13/14 20060101AFI20171019BHEP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TARTECH ECO INDUSTRIES AG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180430 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20181122 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TARTECH ECO INDUSTRIES AG |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1126201 Country of ref document: AT Kind code of ref document: T Effective date: 20190515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012014679 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20190801 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20190730 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: TROESCH SCHEIDEGGER WERNER AG, CH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20190731 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20190501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190901 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20190822 Year of fee payment: 8 Ref country code: SE Payment date: 20190729 Year of fee payment: 8 Ref country code: FI Payment date: 20190731 Year of fee payment: 8 Ref country code: DE Payment date: 20190819 Year of fee payment: 8 Ref country code: FR Payment date: 20190729 Year of fee payment: 8 Ref country code: IE Payment date: 20190726 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190802 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190801 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20190829 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190901 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190730 Year of fee payment: 8 Ref country code: AT Payment date: 20190805 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E045830 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20190731 Year of fee payment: 8 Ref country code: CH Payment date: 20190828 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012014679 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 |
|
26N | No opposition filed |
Effective date: 20200204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20200110 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502012014679 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20200630 Ref country code: NO Ref legal event code: MMEP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200601 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20200701 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1126201 Country of ref document: AT Kind code of ref document: T Effective date: 20200601 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200601 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200601 Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200701 Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200602 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200601 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200601 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210101 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 |