EP2520807B1 - Vakuumpumpe mit Rotor - Google Patents

Vakuumpumpe mit Rotor Download PDF

Info

Publication number
EP2520807B1
EP2520807B1 EP12002241.3A EP12002241A EP2520807B1 EP 2520807 B1 EP2520807 B1 EP 2520807B1 EP 12002241 A EP12002241 A EP 12002241A EP 2520807 B1 EP2520807 B1 EP 2520807B1
Authority
EP
European Patent Office
Prior art keywords
balancing
rotor
vacuum pump
accordance
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12002241.3A
Other languages
English (en)
French (fr)
Other versions
EP2520807A3 (de
EP2520807A2 (de
Inventor
Helmut Bernhardt
Wolfgang Lobach
Herbert Stammler
Anja Stroh
Bernhard Tatzber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP2520807A2 publication Critical patent/EP2520807A2/de
Publication of EP2520807A3 publication Critical patent/EP2520807A3/de
Application granted granted Critical
Publication of EP2520807B1 publication Critical patent/EP2520807B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/662Balancing of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings

Definitions

  • the invention relates to a vacuum pump according to the preamble of claim 1 and a method for balancing a rotor of such a vacuum pump.
  • a vacuum pump according to the preamble of claim 1 is known from EP 1 619 395 A1 known. Moreover, a vacuum pump having a balancing means for changing a balancing state of a rotor of the vacuum pump and a sensor for detecting the balancing state in the EP 1 273 803 A2 disclosed. Furthermore, devices for determining a state of balance of a rotating body in the US 5 544 073 A or US 4 046 704 A disclosed.
  • the running quality of a vacuum pump depends crucially on the balancing quality of the rotor or the rotors.
  • a very high balancing quality can be achieved, since the balancing process is carried out under the best conditions and partly in special devices.
  • vacuum pumps in particular molecular and turbomolecular vacuum pumps, were only used in clean applications where the lowest possible end pressure was of prime importance. Today they are exposed to very different conditions. Vacuum pumps are increasingly being used to extract process gases, which in some cases lead to extreme process deposits on the rotor and in the pumping system. The balancing quality of a vacuum pump can deteriorate to a high degree of contamination within just a few months so far that a further operation is permitted only after re-balancing.
  • One of these measures is targeted temperature management. In this individual areas of the vacuum pump are subjected to a heat treatment in order to avoid deposits.
  • Another solution for limiting deposits is to add inert gas.
  • the goal is either a substantial delimitation of the process components from the surfaces of the vacuum pump or an acceleration of the pumping speed.
  • the claimed features create a vacuum pump whose balancing quality can be improved in the simplest way. This can be done at the customer's site.
  • the invention can be carried out so that the vacuum pump does not have to be removed from the customer's device. Instead of a costly exchange with possibly subsequent disassembly of the vacuum pump, a fast rebalancing occurs in a process break. This achieves an enormous cost and time advantage.
  • FIG. 1 An arrangement with a vacuum pump.
  • a chamber 2 in which, for example, a coating process takes place, has a chamber flange 4, to which a vacuum-tight vacuum pump 10 is attached in a gas-tight manner.
  • the vacuum pump houses a rotor 20. Gas, which is conveyed and compressed in the vacuum pump, is transferred to the gas outlet line 6, which leads, for example, to a backing pump, not shown, which then compresses the gas to atmospheric pressure.
  • the vacuum pump has a pump electronics 12, which can be flanged directly to the vacuum pump. Within the pump electronics electronic assemblies are provided for various tasks, such as drive modules, interface controls and the like. With the pump electronics, a display element 16 is connected, which can be designed as a screen in the housing of the pump electronics, as a detachably connected handset with optical signal instrument or connected via an interface computer.
  • FIG Fig. 2 A first embodiment of the interior of the vacuum pump is shown in FIG Fig. 2 shown schematically.
  • the rotor 20 has a shaft 22 which carries at least one disc hub 24 to which a ring of blades 26 is attached.
  • a first end of the shaft is supported by a radial permanent magnet bearing 44 comprising a bearing stator 46 and a bearing rotor 48.
  • a fishing camp 36 prevents the contact of Lagerstator and bearing rotor in the case of high and excessive deflection of leading forces on the rotor.
  • a second end of the shaft is opposite the first.
  • the shaft is rotatably supported by a rolling bearing 50 in the axial and radial directions.
  • a motor magnet 40 is mounted on the shaft, which cooperates with a powered motor stator 38 and the shaft in rapid rotation about a rotation axis 200.
  • the rotor has a Holwecknabe 30 rotatably connected to the shaft, which carries a Holweckzylinder 32.
  • Balancing holes and introduced therein, for example, screwed, balancing weights are provided near the permanent magnet bearing.
  • a second plurality of balancing bores 106 with balancing weights 108 are mounted in the axle hub.
  • the energization of the motor stator is effected by a drive control 130 connected to the motor stator by means of current supply lines.
  • a rotor position detection unit 132 is connected to the energizing lines by means of position detection taps 142 and evaluates the rotor position from the signals of the energizing lines, for example the counter-electromotive force induced by the motor magnet. Conceivable is the use of Hall probes or the like, but the example shown has a cost advantage by eliminating components and avoids a source of error.
  • the rotor position detection unit may be part of the drive control and, for example, an in the motor control running in the case of a sinusoidally commutated synchronous motor to determine the rotor position.
  • a vibration sensor 52 is connected, which receives the vibrations of the rolling bearing. In this vibration signal, the information about the imbalance of the rotor 20 is included.
  • the vibration sensor is operatively connected via a sensor connection 144 to an evaluation unit 134. This is also operatively connected by means of a position detection connection 148 with the rotor position detection unit.
  • the evaluation unit is designed so that it generates the information about the imbalance from the vibration signal and assigns the information about the rotor position.
  • an assignment means for example, provided on the Holwecknabe recess 100 on the rotor, it is possible to unambiguously allocate the information about the unbalance the balancing bores and balancing weights.
  • FIG. 3 a likewise suitable embodiment of the inner life of the vacuum pump 10 before.
  • the rotor 20 comprises in this example, in addition to the shaft 22 a bell-shaped body 28, often called also short bell, which carries the blades 26. Through the bell, a cavity is created, in which the shaft is arranged. Surrounding it, it at least partially incorporates the components of a magnetic bearing to support the rotor in five axes.
  • the rotor has balancing means comprising balancing bores and balancing weights.
  • the balancing bores 102 of the first balancing plane and the balancing weights 104 located therein are located on the front side of the bell on which the shaft opposite outside.
  • the balancing bores 106 and the balancing weights 108 of the second balancing plane contained therein are provided on the casing of the bell between two blade rows.
  • a cover 80 may be provided which protects the balancing bores of the first level and is releasably connected to the bell.
  • a closure 82 may be provided, which is designed, for example, as a circulating around the bell metal band.
  • An assignment means which is designed for example as a small recess 100 in the form of a reduction, allows an assignment of the balancing bores to the position of the motor magnet and thus the assignment of the balancing state of the rotor to the balancing bores.
  • the assignment means in the example shown, the recess, be similar to the balancing holes covered.
  • Fig. 3 an alternative is shown, which is also applicable to the balancing bores and balancing weights.
  • a blocking gas inlet 84 sealing gas is admitted under the bell, whereby both the bell and the magnetic bearing are protected from process gases.
  • the marking is now arranged on the bell so that they are flown by the sealing gas and thus process deposits on the marking are suppressed.
  • the magnetic bearing comprises a bell-side end of the shaft associated upper radial bearing stator 60, an upper radial sensor 62, a lower radial bearing stator 64, and a lower radial sensor 66.
  • the storage is effected in two perpendicular spatial directions.
  • the radial sensors provide information about the position of the shaft within the radial bearing stators.
  • the remaining fifth axis is oriented along the axis of rotation 200 and is supported by a thrust bearing.
  • a thrust bearing Serve for this purpose an axial bearing stator 68 and the rotor side a thrust washer 70th
  • the energization of the coils of the radial and axial bearing stators is adjusted in accordance with the signals of the radial and axial sensors by a magnetic bearing controller 136 connected to the sensors and the coils.
  • the signals from the sensors contain the information about the balancing state of the rotor.
  • a sufficient number of backup bearings 36 ensures the storage in de-energized storage.
  • a drive causes the shaft and thus the rotor to rotate rapidly and comprises a motor stator 38 and a motor rotor 40.
  • the energization of the motor stator is effected by the drive controller 130 via supply lines 140.
  • a rotor position detection unit 132 is provided, which detects the rotational position of the rotor in a suitable form.
  • position detection taps 142 are provided with which the position information is determined from the counter-motor force induced by the motor magnet of the motor rotor.
  • An evaluation unit 134 is operatively connected to the rotor bearing detection unit 132 and to the magnetic bearing control 136. It is designed so that a rotor position is assigned to the determined from the magnetic bearing sensor signals balance state of the rotor. Due to the marking of the balancing state is then clearly associated with the balancing bores and balancing weights.
  • Fig. 4 Schematically illustrated are the first balancing plane 204 and the second balancing plane 206, in which balancing weights 104 and 108 are provided. With these balancing weights, the rotor is balanced as well as possible during production, so that a smooth running around the axis of rotation 200 results.
  • the motor rotor has a pronounced direction 202, which follows, for example, from the magnetization direction of a motor magnet. This direction is fixedly assigned to the positions of the balancing bores, since the motor rotor and balancing bores are stationary on the rotor. Again, stationary on the rotor is the marker 100.
  • the effects of imbalance are contained in the sensor signals.
  • the detection can be measured by sensors in two directions perpendicular to the axis of rotation.
  • a sensor may be provided which measures only in one direction and whose signal is then analyzed phase-related, because during the revolution about the axis of rotation, the imbalance is once in the direction and once perpendicular to the sensor direction.
  • the evaluation unit is now designed so that it is out of the imbalance changed balancing state derives a necessary change of individual balancing weights in the balancing planes and assigns them to the rotor position.
  • the absolute value of the unbalance can be output.
  • a simpler embodiment provides to design the evaluation unit so that it determines only the relative change of the balancing state based on the balancing state after the pump has been manufactured. From this follows the necessary change in the balancing means, in the example shown, the individual balancing weights. These changes are first assigned to the rotor position, that is, the direction 202. Since this is in a fixed relationship to the assignment means, the changes are also assigned to this.
  • a service technician After issuing the necessary changes in the balancing weights via the display element 16, which is accordingly adapted to output the information about the change of the balancing means, a service technician is able to make the necessary changes by looking up the allocation means of the rotor, for example the recess and starting from this, looking for the individual balancing bores and adapts the balancing weights contained therein.
  • the adjustment can be a simple replacement of the balance weight.
  • the balancing weights 104a to 104d are provided, which are distributed on the rotor over the circumference and arranged at a distance from the rotation axis 200.
  • a first spatial direction 212 and a second orthogonal spatial direction 214 span the balancing plane.
  • the rotor can never be made so accurately that the center of mass coincides with the axis of rotation. He is therefore in a production balance state 230, the smooth running of the rotor at the required high speeds not possible. Therefore, the balance weights are added to achieve an initial balance state 232 where the center of gravity is sufficiently close to the axis of rotation.
  • the masses are used in the initial state 240a to 240d, the rotor is in the tilluchtuchtSh after this process step.
  • deposits progressively change the balancing state according to the balancing curve 250 until the balancing state is achieved by deposits 234. This balancing condition requires rebalancing of the rotor for further operation of the pump.
  • the balancing state is included in the sensor signals.
  • the evaluation unit is designed and configured to calculate the changes of the balancing means and to assign them to the rotor position and the allocation means to the balancing means.
  • the absolute value of the imbalance can also be calculated and output. In both cases, as part of the process, the balancing state of the rotor is monitored and assigned to a rotor position.
  • the method now provides that upon a change in the balancing state, for example by the abovementioned deposits, balancing means provided on the rotor are changed to improve the balancing state.
  • balancing means provided on the rotor are changed to improve the balancing state.
  • the mass changes 244a to 244d the balancing weights are brought to the mass according to balances 242a to 242d.
  • the new balancing state 236 is reached which allows further operation of the rotor.
  • FIG. 6 A development of the balancing shows Fig. 6 as a section through a rotor Fig. 3 , whereby the measure also after a rotor after Fig. 2 is applicable. In outline, the circumferential row of blades 26 can be seen. These are attached to the bell 28. About the scope the bell balancing bores 106 are distributed. All or part of the balancing bores may be designed as continuous as the balancing bore 112.
  • the assignment means may be used instead of or in addition to that in the Fig. 2 and 3 shown recess comprise a balancing bore with a larger diameter 110.
  • the allocation means provides a non-rotationally symmetric distribution of the balancing means in the circumferential direction. In Fig. 6 this is shown.
  • the balancing bores 106 are located at a normal distance 220, wherein asymmetrically placed bores 114 are provided, which have a shortened distance 222 to at least one of the closest balancing bores.
  • FIG. 7 Another embodiment of the allocation means shows the Fig. 7 .
  • Fig. 7 is a plan view of a rotor 20 shown with bell 28, on the outer periphery of blades 26 are arranged.
  • the assignment means in this example comprises an asymmetric connection screw 152.
  • the asymmetry is achieved by a shorter distance 262 from the axis of rotation.
  • this connection screw may have a different diameter.
  • Other ways of making this connecting screw asymmetrical to the others are conceivable, for example with the aid of washers, markings, color design, to name a few.
  • the balancing means comprises in this example balancing points 154 which are distributed over the circumference. At these locations material is removed, for example, in a cutting or grinding manner, whereby the Balance of the rotor is selectively changed.
  • the asymmetrical connecting screw is assigned to one of the equalization points, so that the balance means uniquely assigns the balance to the rotor position.
  • Fig. 8 is a section, not belonging to the invention, shown by a rotor with bell 28 at the level of balancing bores 112.
  • the number of blades and the number of balancing holes are in a proportionable ratio, in the example shown there are eight blades and five balancing holes. By this ratio of the number, it is possible to provide an associated balancing bore 156, which is uniquely associated, for example, with a blade edge 158 of a blade.
  • the allocation means in this example comprises elements of the rotor, namely the blades, which are distributed in such a way as the balancing means, namely the balancing bores, about the axis of rotation 200, that an unambiguous assignment of the balancing means and to one of the elements arises.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft eine Vakuumpumpe nach dem Oberbegriff des Anspruchs 1 und ein Verfahren zum Wuchten eines Rotors einer solchen Vakuumpumpe.
  • Eine Vakuumpumpe gemäß dem Oberbegriff des Anspruchs 1 ist aus der EP 1 619 395 A1 bekannt. Überdies ist eine Vakuumpumpe mit einem Wuchtmittel zur Änderung eines Wuchtzustands eines Rotors der Vakuumpumpe sowie ein Sensor zur Detektion des Wuchtzustandes in der EP 1 273 803 A2 offenbart. Ferner sind Vorrichtungen zur Bestimmung eines Wuchtzustands eines rotierenden Körpers in der US 5 544 073 A oder US 4 046 704 A offenbart.
  • Die Laufqualität einer Vakuumpumpe, insbesondere einer solchen mit einem schnell drehenden Rotor, hängt entscheidend von der Wuchtgüte des Rotors oder der Rotoren ab. Im Herstellungsprozess einer Vakuumpumpe kann eine sehr hohe Wuchtgüte erreicht werden, da der Wuchtvorgang unter besten Bedingungen und zum Teil in speziellen Vorrichtungen durchgeführt wird.
  • Früher wurden Vakuumpumpen, insbesondere molekulare und turbomolekulare Vakuumpumpen, nur in sauberen Anwendungen eingesetzt, bei denen ein möglichst tiefer Enddruck im Vordergrund stand. Heute sind sie ganz anderen Bedingungen ausgesetzt. Immer häufiger werden Vakuumpumpen zum Absaugen von Prozessgasen genutzt, die zu teilweise extremen Prozessablagerungen auf dem Rotor und im Pumpsystem führen. Die Wuchtgüte einer Vakuumpumpe kann sich bei hohem Verschmutzungsgrad innerhalb nur weniger Monate soweit verschlechtern, dass ein weiterer Betrieb erst nach erneutem Wuchten zulässig ist.
  • Im Stand der Technik sind Maßnahmen gegen dieses Problem bekannt.
  • Eine dieser Maßnahmen ist gezieltes Temperaturmanagement. Bei diesem werden einzelne Bereiche der Vakuumpumpe einer Wärmebehandlung unterzogen, um Ablagerungen zu vermeiden.
  • Eine andere Lösung zur Begrenzung von Ablagerungen sieht vor, inertes Gas zuzugeben. Ziel ist entweder eine weitgehende Abgrenzung der Prozessbestandteile von den Oberflächen der Vakuumpumpe oder eine Beschleunigung der Durchpumpgeschwindigkeit.
  • Auch funktionelle Beschichtungen von Oberflächen sowie Optimierung der Gasführungsgeometrie werden eingesetzt.
  • Letztlich zögern diese Maßnahmen das Unvermeidliche nur durch Verlangsamen des Ablagerungsprozesses hinaus. Die Wuchtgüte sinkt auch weiterhin und früher oder später wird ein Zustand erreicht, an dem die Wuchtgüte verbessert werden muss. Dies bedeutet in der Regel einen Austausch der Vakuumpumpe, also hohe Materialkosten und Zeitausfall, da zum Austauschen in den Prozess eingegriffen wird.
  • Es ist daher Aufgabe der Erfindung, eine Vakuumpumpe zu schaffen, bei der die Unwuchtänderung kostengünstiger gehandhabt werden kann.
  • Die Aufgabe wird gelöst durch eine Vakuumpumpe mit den Merkmalen des ersten Anspruchs und ein Verfahren mit den Merkmalen des Anspruchs 10. Die abhängigen Ansprüche 2 bis 9 geben vorteilhafte Weiterbildungen an.
  • Die beanspruchten Merkmale schaffen eine Vakuumpumpe, deren Wuchtgüte auf einfachste Art verbessert werden kann. Dies kann beim Kunden vor Ort geschehen. Die Erfindung kann so ausgeführt werden, dass die Vakuumpumpe nicht von der Vorrichtung des Kunden entfernt werden muss. Anstelle eines kostenintensiven Austauschs mit eventuell anschließender Zerlegung der Vakuumpumpe tritt ein schnelles Nachwuchten in einer Prozesspause. Hierdurch wird ein enormer Kosten - und Zeitvorteil erreicht.
  • Anhand von Ausführungsbeispielen und deren Weiterbildungen soll die Erfindung näher erläutert und die Darstellung ihrer Vorteile vertieft werden.
  • Es zeigen:
  • Fig. 1:
    Schematische Anordnung mit Vakuumpumpe;
    Fig. 2:
    Schematische Darstellung der Komponenten einer Vakuumpumpe mit einem in Wälzlager und Magnetlager gelagerten Rotor;
    Fig. 3:
    Schematische Darstellung der Komponenten einer Vakuumpumpe mit einem in fünf Achsen aktiv magnetisch gelagerten Rotor;
    Fig. 4:
    Prinzipdarstellung zur Verdeutlichung des Wuchtzustands;
    Fig. 5:
    Prinzipdarstellung zur Veranschaulichung der Änderung des Wuchtzustands;
    Fig. 6:
    Schnitt durch einen glockenförmigen Rotor mit Wuchtbohrungen;
    Fig. 7:
    Draufblick auf einen glockenförmigen Rotor mit Wuchtmitteln;
    Fig. 8:
    Schnitt, der nicht zur Erfindung gehört, durch einen glockenförmigen Rotor in Höhe der Wuchtmittel.
  • In einer schmatischen Darstellung zeigt Fig. 1 eine Anordnung mit einer Vakuumpumpe. Eine Kammer 2, in der beispielsweise ein Beschichtungsprozess abläuft, besitzt einen Kammerflansch 4, an welchem gasdicht eine Vakuumpumpe 10 lösbar befestigt ist. In ihrem Inneren beherbergt die Vakuumpumpe einen Rotor 20. Gas, welches in der Vakuumpumpe gefördert und verdichtet wird, wird an die Gasauslassleitung 6 übergeben, die beispielsweise zu einer nicht gezeigten Vorvakuumpumpe führt, welche das Gas dann bis zu Atmosphärendruck verdichtet. Die Vakuumpumpe besitzt eine Pumpenelektronik 12, die direkt an die Vakuumpumpe angeflanscht sein kann. Innerhalb der Pumpenelektronik sind Elektronikbaugruppen für verschiedene Aufgaben vorgesehen, beispielsweise Antriebsbaugruppen, Schnittstellenansteuerungen und ähnliches. Mit der Pumpenelektronik ist ein Anzeigeelement 16 verbunden, welches als Bildschirm im Gehäuse der Pumpenelektronik, als lösbar verbundenes Handgerät mit optischem Signalinstrument oder als über eine Schnittstelle verbundener Rechner ausgeführt sein kann.
  • Eine erste Ausführungsform des Innenlebens der Vakuumpumpe ist in Fig. 2 schematisch dargestellt. Der Rotor 20 besitzt eine Welle 22, welche wenigstens eine Scheibennabe 24 trägt, an welcher ein Kranz von Schaufeln 26 befestigt ist. Ein erstes Ende der Welle wird durch ein radiales Permanentmagnetlager 44, umfassend einen Lagerstator 46 und einen Lagerrotor 48, getragen. Ein Fanglager 36 verhindert den Kontakt von Lagerstator und Lagerrotor im Falle hoher und zu starker Auslenkung führender Kräfte auf den Rotor.
  • Ein zweites Ende der Welle liegt dem ersten gegenüber. In seiner Nähe wird die Welle von einem Wälzlager 50 in axialer und radialer Richtung drehbar unterstützt.
  • Zwischen Permanentmagnetlager und Wälzlager ist ein Motormagnet 40 auf der Welle angebracht, welcher mit einem bestromten Motorstator 38 zusammenwirkt und die Welle in schnelle Drehung um eine Drehachse 200 versetzt.
  • Zwischen Scheibennabe und Motormagnet weist der Rotor eine mit der Welle rotierfähig verbundene Holwecknabe 30 auf, die einen Holweckzylinder 32 trägt.
  • Zum Wuchten des Rotors weist dieser Wuchtmittel auf. Diese umfassen in dem Beispiel nach Fig. 2 Wuchtbohrungen und darin eingebrachte, beispielsweise eingeschraubte, Wuchtgewichte. Eine erste Mehrzahl Wuchtbohrungen 102 mit Wuchtgewichten 104 ist nahe dem Permanentmagnetlager vorgesehen. Eine zweite Mehrzahl Wuchtbohrungen 106 mit Wuchtgewichten 108 ist in der Holwecknabe angebracht.
  • Die Bestromung des Motorstators wird durch eine mittels Bestromungsleitungen mit dem Motorstator verbundenen Antriebssteuerung 130 bewirkt. Eine Rotorlageerkennungseinheit 132 ist mittels Lageerkennungsanzapfungen 142 mit den Bestromungsleitungen verbunden und wertet aus den Signalen der Bestromungsleitungen, beispielsweise der durch den Motormagneten induzierten Gegen-Elektomotorischen Kraft, die Rotorlage aus. Denkbar ist der Einsatz von Hallsonden oder ähnlichem, das gezeigte Beispiel hat jedoch einen Kostenvorteil durch Verzicht auf Bauteile und vermeidet eine Fehlerquelle. Die Rotorlageerkennungseinheit kann Bestandteil der Antriebssteuerung sein und beispielsweise auf ein in der Antriebssteuerung ablaufendes Motormodell im Falle eines sinusförmig kommutierten Synchronmotors zurückgreifen, um die Rotorlage zu ermitteln.
  • Mit dem Wälzlager ist ein Schwingungssensor 52 verbunden, der die Schwingungen des Wälzlagers aufnimmt. In diesem Schwingungssignal ist die Information über die Unwucht des Rotors 20 enthalten. Der Schwingungssensor ist über eine Sensorverbindung 144 mit einer Auswerteeinheit 134 wirkverbunden. Diese ist zudem mittels einer Lageerkennungsverbindung 148 mit der Rotorlageerkennungseinheit wirkverbunden.
  • Die Auswerteeinheit ist so gestaltet, dass sie aus dem Schwingungssignal die Information über die Unwucht erzeugt und der Information über die Rotorlage zuordnet. Durch ein Zuordnungsmittel, beispielsweise einer auf der Holwecknabe vorgesehene Ausnehmung 100, auf dem Rotor ist es ermöglicht, die Information über die Unwucht den Wuchtbohrungen und Wuchtgewichten eindeutig zuzuordnen.
  • Bevor das Zusammenwirken der Teile und das Verfahren eingehender beschrieben werden, stellt Fig. 3 eine ebenfalls geeignete Ausgestaltung des Innenlebens der Vakuumpumpe 10 vor.
  • Der Rotor 20 umfasst in diesem Beispiel neben der Welle 22 einen glockenförmigen Körper 28, oft auch kurz Glocke genannt, welcher die Schaufeln 26 trägt. Durch die Glocke wird ein Hohlraum geschaffen, in welchem die Welle angeordnet ist. Diese umgebend beinhaltet er wenigstens teilweise die Komponenten einer Magnetlagerung zur Unterstützung des Rotors in fünf Achsen.
  • Der Rotor weist Wuchtmittel auf, die Wuchtbohrungen und Wuchtgewichte umfassen. Die Wuchtbohrungen 102 der ersten Wuchtebene und die darin befindlichen Wuchtgewichte 104 befinden sich stirnseitig an der Glocke, auf der der Welle abgewandten Außenseite. Die Wuchtbohrungen 106 und die darin befindlichen Wuchtgewichte 108 der zweiten Wuchtebene sind am Mantel der Glocke zwischen zwei Schaufelreihen vorgesehen. Um die Zugänglichkeit der Wuchtgewichte auch nach längerem Betrieb des Rotors und dadurch entstehenden Ablagerungen zu gewährleisten, können die Wuchtbohrungen und Wuchtgewichte geschützt sein. Hierfür kann ein Deckel 80 vorgesehen sein, der die Wuchtbohrungen der ersten Ebene schützt und lösbar mit der Glocke verbunden ist. Zwischen den Schaufelreihen kann ein Verschluss 82 vorgesehen sein, der beispielsweise als ein um die Glocke umlaufendes Metallband gestaltet ist.
  • Eine Zuordnungsmittel, das beispielsweise als kleine Ausnehmung 100 in Form einer Senkung gestaltet ist, erlaubt eine Zuordnung der Wuchtbohrungen zur Stellung des Motormagneten und somit die Zuordnung des Wuchtzustandes des Rotors zu den Wuchtbohrungen.
  • Zum Schutz gegen Ablagerungen kann das Zuordnungsmittel, im gezeigten Beispiel die Ausnehmung, ähnlich den Wuchtbohrungen abgedeckt sein. In Fig. 3 ist eine Alternative gezeigt, die auch auf die Wuchtbohrungen und Wuchtgewichte anwendbar ist. Durch einen Sperrgaseinlass 84 wird Sperrgas unter die Glocke eingelassen, wodurch sowohl Glocke als auch Magnetlagerung vor Prozessgasen geschützt werden. Die Markierung ist nun so auf der Glocke angeordnet, dass sie vom Sperrgas angeströmt und somit Prozessablagerungen auf der Markierung unterdrückt werden.
  • Die Magnetlagerung umfasst einen dem glockenseitigen Ende der Welle zugeordneten oberen Radiallagerstator 60, einen oberen Radialsensor 62, einen unteren Radiallagerstator 64, sowie einen unteren Radialsensor 66. Mit diesen Radiallagern wird die Lagerung in jeweils zwei senkrechten Raumrichtungen bewirkt. Die Radialsensoren geben Aufschluss über die Lage der Welle innerhalb der Radiallagerstatoren.
  • Die verbliebene fünfte Achse ist entlang der Drehachse 200 orientiert und wird von einem Axiallager gestützt. Hierzu dienen ein Axiallagerstator 68 und rotorseitig eine Axiallagerscheibe 70.
  • Die Bestromung der Spulen der Radial- und Axiallagerstatoren wird gemäß der Signale der Radial- und Axialsensoren von einer mit den Sensoren und den Spulen verbundenen Magnetlagersteuerung 136 eingestellt. Die Signale der Sensoren beinhalten die Information über den Wuchtzustand des Rotors.
  • Eine ausreichende Anzahl von Fanglagern 36 stellt die Lagerung bei unbestromter Lagerung sicher.
  • Ein Antrieb versetzt die Welle und damit den Rotor in schnelle Drehung und umfast einen Motorstator 38 und einen Motorrotor 40. Die Bestromung des Motorstators wird von der Antriebssteuerung 130 über Bestromungsleitungen 140 bewirkt.
  • Eine Rotorlageerkennungseinheit 132 ist vorgesehen, welche in geeigneter Form die Drehstellung des Rotors erkennt. Im gezeigten Beispiel sind Lageerkennungsanzapfungen 142 vorgesehen, mit denen die Lageinformation aus der durch den Motormagneten des Motorrotors induzierten gegenmotorischen Kraft bestimmt wird.
  • Eine Auswerteeinheit 134 ist mit der Rotorlagererkennungseinheit 132 und mit der Magnetlagersteuerung 136 wirkverbunden. Sie ist so gestaltet, dass eine Rotorlage dem aus den Magnetlagersensorsignalen ermittelten Wuchtzustand des Rotors zugeordnet wird. Aufgrund der Markierung ist der Wuchtzustand dann eindeutig den Wuchtbohrungen und Wuchtgewichten zugeordnet.
  • Das Zusammenwirken der vorgenannt an Hand der Fig. 2 und 3 beschriebenen Teile soll anhand der Fig. 4 näher erläutert werden. Schematisch dargestellt sind die erste Wuchtebene 204 und die zweite Wuchtebene 206, in welchen Wuchtgewichte 104 und 108 vorgesehen sind. Mit diesen Wuchtgewichten wird der Rotor bei der Herstellung möglichst gut gewuchtet, so dass sich ein ruhiger Lauf um die Drehachse 200 ergibt.
  • Der Motorrotor besitzt eine ausgeprägte Richtung 202, die beispielsweise aus der Magnetisierungsrichtung eines Motormagneten folgt. Diese Richtung ist den Positionen der Wuchtbohrungen fest zugeordnet, da Motorrotor und Wuchtbohrungen auf dem Rotor ortsfest sind. Wiederum auf dem Rotor ortsfest ist die Markierung 100.
  • Während des Betriebes kommt es beispielsweise zu Ablagerungen auf dem Rotor. Da solche Ablagerungen nie vollständig rotationssymmetrisch stattfinden, führen sie zu einer Veränderung des Wuchtzustands, welche in der Fig. 4 durch ein eine Unwucht 208 in einer Unwuchtebene 210 dargestellt ist. Die Unwucht führt zu einem unruhigen Lauf um die Drehachse und es ist nun das Ziel, durch eine Veränderung der Wuchtgewichte der verschiedenen Wuchtebenen diese Unwucht zu kompensieren.
  • Die Auswirkungen der Unwucht sind in den Sensorsignalen enthalten. Der Nachweis kann durch Sensoren in zwei zur Drehachse senkrechten Richtungen gemessen werden. Alternativ kann ein Sensor vorgesehen sein, der nur in einer Richtung misst und dessen Signal dann phasenbezogen analysiert wird, denn während des Umlaufs um die Drehachse liegt die Unwucht einmal in Richtung und einmal senkrecht zur Sensorrichtung.
  • Die Auswerteeinheit ist nun so gestaltet, dass sie aus dem durch die Unwucht veränderten Wuchtzustand eine notwendige Veränderung einzelner Wuchtgewichte in den Wuchtebenen ableitet und diese der Rotorlage zuordnet. Dabei kann der Absolutwert der Unwucht ausgegeben werden. Eine einfachere Ausgestaltung sieht jedoch vor, die Auswerteeinheit so zu gestalten, dass sie nur die relative Änderung des Wuchtzustandes bezogen auf den Wuchtzustand nach Herstellen der Pumpe ermittelt. Aus dieser folgt die notwendige Veränderung der Wuchtmittel, im gezeigten Beispiel der einzelnen Wuchtgewichte. Diese Änderungen sind zunächst der Rotorlage zugeordnet, also der Richtung 202. Da diese in fester Beziehung zum Zuordnungsmittel steht, sind die Änderungen auch diesem zugeordnet. Nach Ausgabe der notwendigen Veränderungen der Wuchtgewichte über das Anzeigeelement 16, welches dementsprechend zur Ausgabe der Infomation über die Änderung der Wuchtmittel angepasst ist, ist ein Servicetechniker in der Lage, die notwendigen Veränderungen vorzunehmen, indem er das Zuordnungsmittel des Rotors, beispielsweise die Ausnehmung, aufsucht und von dieser ausgehend die einzelnen Wuchtbohrungen aufsucht und die darin befindlichen Wuchtgewichte anpasst. Die Anpassung kann ein einfacher Austausch des Wuchtgewichtes sein.
  • Der Verlauf des Wuchtzustands und das Verfahren zum Wuchten sollen an der schematischen Darstellung für einen zweidimensionalen Fall nach Fig. 5 näher erläutert werden.
  • In der Wuchtebene 102 sind die Wuchtgewichte 104a bis 104d vorgesehen, die am Rotor über den Umfang verteilt und mit Abstand zur Drehachse 200 angeordnet sind. Eine erste Raumrichtung 212 und eine zweite, zur ersten senkrechte Raumrichtung 214 spannen die Wuchtebene auf.
  • Der Rotor kann nie so exakt gefertigt werden, dass der Massenschwerpunkt mit der Drehachse zusammenfällt. Er befindet sich daher in einem Fertigungswuchtzustand 230, der einen ruhigen Lauf des Rotors bei den geforderten hohen Drehzahlen nicht ermöglicht. Daher werden die Wuchtgewichte hinzugefügt, um einen Ausgangswuchtzustand 232 zu erreichen, bei dem der Massenschwerpunkt hinreichend dicht an der Drehachse liegt. Dabei kommen die Massen im Ausgangszustand 240a bis 240d zum Einsatz, der Rotor befindet sich nach diesem Verfahrensschritt im Ausgangswuchtzustand.
  • Während der Benutzung der Pumpe kommt es nach und nach zu Ablagerungen, die den Wuchtzustand gemäß des Wuchtverlaufs 250 verändern, bis der Wuchtzustand durch Ablagerungen 234 erreicht wird. Dieser Wuchtzustand erfordert für den weiteren Betrieb der Pumpe ein Nachwuchten des Rotors.
  • Wie zuvor beschrieben, ist der Wuchtzustand in den Sensorsignalen enthalten. Die Auswerteeinheit ist dazu ausgelegt und gestaltet, die Änderungen der Wuchtmittel zu berechnen und diese der Rotorlage und durch das Zuordnungsmittel den Wuchtmitteln zuzuordnen. Alternativ kann auch der Absolutwert der Unwucht berechnet und ausgegeben werden. In beiden Fällen wird als Teil des Vefahrens der Wuchtzustand des Rotors überwacht und einer Rotorlage zugeordnet.
  • Das Verfahren sieht nun vor, dass bei einer Änderung des Wuchtzustands, beispielsweise durch die vorgenannten Ablagerungen, am Rotor vorgesehene Wuchtmittel zur Verbesserung des Wuchtzustands verändert werden. Im Beispiel werden mit Hilfe der Massenänderungen 244a bis 244d die Wuchtgewichte auf die Masse nach Wuchten 242a bis 242d gebracht. In der Folge wird der neue Wuchtzustand 236 erreicht, der einen weiteren Betrieb des Rotors erlaubt.
  • Eine Weiterbildung des Wuchtmittels zeigt Fig. 6 als Schnitt durch einen Rotor nach Fig. 3, wobei die Maßnahme auch auf einen Rotor nach Fig. 2 anwendbar ist. Im Draufblick ist die in Umfangsrichtung umlaufende Reihe von Schaufeln 26 zu sehen. Diese sind an der Glocke 28 befestigt. Über den Umfang der Glocke sind Wuchtbohrungen 106 verteilt. Alle oder ein Teil der Wuchtbohrungen können durchgängig gestaltet sein wie die Wuchtbohrung 112.
  • Das Zuordnungsmittel kann anstelle oder zusätzlich zu der in den Fig. 2 und 3 gezeigten Ausnehmung eine Wuchtbohrung mit größerem Durchmesser 110 umfassen.
  • Das Zuordnungsmittel sieht eine nicht rotationssymmetrische Verteilung des Wuchtmittels in Umfangsrichtung vor. In Fig. 6 ist dies gezeigt. Die Wuchtbohrungen 106 befinden sich in einem Normalabstand 220, wobei asymmetrisch platzierte Bohrungen 114 vorgesehen sind, die einen verkürzten Abstand 222 zu wenigstens einer der nächstliegenden Wuchtbohrungen besitzen.
  • Eine weitere Ausgestaltungsform des Zuordnungsmittels zeigt die Fig. 7.
  • In Fig. 7 ist ein Draufblick auf einen Rotor 20 mit Glocke 28 gezeigt, an deren äußeren Umfang Schaufeln 26 angeordnet sind. Im inneren Bereich nahe der Drehachse 200 und in einem Abstand 260 zu dieser sind Verbindingsschrauben 150 vorgesehen, mit denen die Glocke an der in Fig. 3 gezeigten Welle befestigt ist. Das Zuordnungsmittel umfasst in diesem Beispiel eine asymmetrische Verbindungsschraube 152. Die Asymmetrie wird durch einen kürzeren Abstand 262 zur Drehachse erreicht. Alternativ oder zusätzlich kann diese Verbindungsschraube einen anderen Durchmesser aufweisen. Andere Arten, diese Verbindungsschraube asymmetrisch zu den anderen auszuführen, sind denkbar, beispielsweise mit Hilfe von Unterlegscheiben, Markierungen, Farbgestaltung, um einige zu nennen. Das Wuchtmittel umfasst in diesem Beispiel Ausgleichstellen 154, die über den Umfang verteilt sind. An diesen Stellen wird Material abgetragen, beispielsweise auf schneidende oder schleifende Weise, wodurch der Wuchtzustand des Rotors gezielt verändert wird. Die asymmetrische Verbindungsschraube ist einer der Ausgleichsstellen eindeutig zugeordnet, so dass durch das Zuordnungsmittel das Wuchtmittel eindeutig der Rotorlage zugeordnet ist.
  • In Fig. 8 ist ein Schnitt, der nicht zur Erfindung gehört, durch einen Rotor mit Glocke 28 auf Höhe von Wuchtbohrungen 112 gezeigt. Am äußeren Umfang des Rotors sind Schaufeln 26 befestigt. Die Anzahl der Schaufeln und die Anzahl der Wuchtbohrungen stehen in einem mit Rest teilbaren Verhältnis, im gezeigten Beispiel sind es acht Schaufeln und fünf Wuchtbohrungen. Durch dieses Verhältnis der Anzahl ist es möglich, eine zugeordnete Wuchtbohrung 156 zu schaffen, die beispielsweise einer Schaufelkante 158 einer Schaufel eindeutig zugeordnet ist. Das Zuordnungsmittel umfasst in diesem Beispiel Elemente des Rotors, nämlich die Schaufeln, die derart in anderer Weise als das Wuchtmittel, nämlich die Wuchtbohrungen, um die Drehachse 200 verteilt sind, dass eine eindeutige Zuordnung des Wuchtmittels und zu einem der Elemente entsteht.
  • Neben Wuchtbohrungen und Ausgleichsstellen sind im Stand der Technik auch Mittel wie beispielsweise exzentrisch gestaltete Wuchtringe bekannt, durch deren Drehung um die Drehachse der Wuchtzustand gezielt verändert wird. Auch auf diese Lösungen ist die Erfindung anwendbar.

Claims (10)

  1. Vakuumpumpe (10) mit einem Rotor (20), welcher Wuchtmittel umfasst, einem Antrieb (38, 40), der geeignet ist, den Rotor in Drehung zu versetzen, Lagern (44, 50; 60, 62, 64, 66, 68, 70), welche geeignet sind, den Rotor zu unterstützen, einem Sensormittel, welches geeignet ist, einen Wuchtzustand des Rotors zu erfassen, und welches weiter geeignet ist, mit einer Auswerteeinheit (134), die geeignet ist, eine Änderung des Wuchtzustands zu erkennen, zusammenzuwirken,
    wobei die Vakuumpumpe angepasst ist, mit einer Rotorlageerkennungseinheit (132) zur Bestimmung einer Rotorlage zusammenzuwirken,
    ein Zuordnungsmittel zur Zuordnung des Wuchtzustands zur Rotorlage vorgesehen ist, so dass ein Anpassen der Wuchtmittel ermöglicht ist, um der Änderung des Wuchtzustands zu begegnen, und
    dadurch gekennzeichnet, dass das Zuordnungsmittel als nicht-rotationssymmetrische Gestaltung des Wuchtmittels, insbesondere als nicht-rotationsymmetrische Verteilung von Wuchtbohrungen (114), gestaltet ist.
  2. Vakuumpumpe nach Anspruch 1,
    dadurch gekennzeichnet, dass
    eines der Lager ein Kugellager (50) umfasst, welches den Rotor (20) in radialer Richtung abstützt.
  3. Vakuumpumpe nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Lager ein aktives magnetisches Radiallager (60, 62, 64, 66) umfassen.
  4. Vakuumpumpe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Sensormittel einen Schwingungssensor (52) umfasst, wobei das Sensormittel eingerichtet ist, Schwingungen in wenigstens einer Raumrichtung zu erfassen.
  5. Vakuumpumpe nach Anspruch 3,
    dadurch gekennzeichnet, dass
    das Sensormittel einen Radiallagerabstandssensor (62, 66) umfasst.
  6. Vakuumpumpe nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass
    der Wuchtzustand einen Absolutwert und die Lage einer Unwucht (208) beinhaltet.
  7. Vakuumpumpe nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass
    der Wuchtzustand eine relative Änderung der Unwucht (208) beinhaltet.
  8. Vakuumpumpe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Wuchtmittel eine Mehrzahl auf dem Rotor verteilter Wuchtbohrungen (102, 106; 110, 112, 114, 156) zur Aufnahme jeweils eines Wuchtgewichtes (104, 108; 104a, 104b, 104c, 104d) umfasst.
  9. Vakuumpumpe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Wuchtmittel, insbesondere die Wuchtbohrungen (102, 106; 110, 112, 114, 156), vor Prozessablagerungen geschützt sind.
  10. Verfahren zum Wuchten eines Rotors (20) einer Vakuumpumpe (10) nach Anspruch 1, wobei der Rotor (20) in einen Ausgangswuchtzustand (232) gebracht ist,
    dadurch gekennzeichnet, dass
    der Wuchtzustand des Rotors (20) überwacht wird, der Wuchtzustand einer Rotorlage zugeordnet wird und bei einer Änderung des Wuchtzustands am Rotor (20) vorgesehene Wuchtmittel zur Verbesserung des Wuchtzustands verändert werden.
EP12002241.3A 2011-05-05 2012-03-28 Vakuumpumpe mit Rotor Not-in-force EP2520807B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011105806A DE102011105806A1 (de) 2011-05-05 2011-05-05 Vakuumpumpe mit Rotor

Publications (3)

Publication Number Publication Date
EP2520807A2 EP2520807A2 (de) 2012-11-07
EP2520807A3 EP2520807A3 (de) 2014-09-24
EP2520807B1 true EP2520807B1 (de) 2017-05-10

Family

ID=46000618

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12002241.3A Not-in-force EP2520807B1 (de) 2011-05-05 2012-03-28 Vakuumpumpe mit Rotor

Country Status (3)

Country Link
EP (1) EP2520807B1 (de)
JP (1) JP6188278B2 (de)
DE (1) DE102011105806A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11333154B2 (en) * 2018-10-15 2022-05-17 Shimadzu Corporation Vacuum pump with a rotary body in a case with the rotary body having at least three balance correction portions accessible from an outside of the case for balance correction by an n-plane method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012112492A1 (de) * 2012-12-18 2014-06-18 Pfeiffer Vacuum Gmbh Vakuumsystem
DE102013113400A1 (de) * 2013-12-03 2015-06-03 Pfeiffer Vacuum Gmbh Pumpe und Verfahren zum Wuchten eines Rotors
DE102014103060B4 (de) * 2014-03-07 2019-01-03 Pfeiffer Vacuum Gmbh Verfahren zum Wuchten eines Rotors einer Vakuumpumpe oder eines Rotors einer Rotationseinheit für eine Vakuumpumpe
EP3244067B1 (de) * 2016-05-10 2020-07-22 Pfeiffer Vacuum Gmbh Vakuumpumpe und verfahren zum verringern einer restunwucht in einer vakuumpumpe
EP3244068B1 (de) * 2016-05-10 2020-01-01 Pfeiffer Vacuum Gmbh Vakuumpumpe
US11105203B2 (en) 2018-01-29 2021-08-31 Carrier Corporation High efficiency centrifugal impeller with balancing weights
JP7363397B2 (ja) * 2019-11-13 2023-10-18 株式会社島津製作所 真空ポンプの振動測定方法および真空ポンプ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064704A (en) * 1975-12-05 1977-12-27 Ird Mechanalysis, Inc. Vibration analyzing apparatus
DE3818556A1 (de) * 1988-06-01 1989-12-07 Pfeiffer Vakuumtechnik Magnetlager fuer eine schnell rotierende vakuumpumpe
US5544073A (en) * 1994-06-02 1996-08-06 Computational Systems, Inc. Rotor balancing calculator
DE19627921A1 (de) * 1996-07-11 1998-01-15 Leybold Vakuum Gmbh Verfahren zum Wuchten eines Rotors sowie für die Durchführung dieses Verfahrens geeigneter Rotor
JP2001241393A (ja) * 1999-12-21 2001-09-07 Seiko Seiki Co Ltd 真空ポンプ
JP2003021092A (ja) * 2001-07-03 2003-01-24 Boc Edwards Technologies Ltd 真空ポンプ
JP2003021093A (ja) * 2001-07-05 2003-01-24 Boc Edwards Technologies Ltd 真空ポンプ
JP2003336597A (ja) * 2002-03-12 2003-11-28 Boc Edwards Technologies Ltd ターボ分子ポンプ
JP4400348B2 (ja) * 2004-07-09 2010-01-20 株式会社島津製作所 ターボ分子ポンプおよびバランス修正方法
EP1619395B1 (de) * 2004-07-20 2010-03-10 VARIAN S.p.A. Rotationsvakuumpumpe und ihr Auswuchtverfahren
DE102004050743A1 (de) * 2004-10-19 2006-04-20 Pfeiffer Vacuum Gmbh Vibrationsarme Vakuumpumpe
DE102007027711A1 (de) * 2007-06-15 2008-12-18 Pfeiffer Vacuum Gmbh Verfahren zum Betreiben einer Anordnung mit Vakuumpumpe und Anordnung mit einer Vakuumpumpe
JP4934089B2 (ja) * 2008-04-09 2012-05-16 株式会社荏原製作所 ターボ分子ポンプ
JP2011012611A (ja) * 2009-07-02 2011-01-20 Shimadzu Corp 回転体のアンバランス修正方法、アンバランス修正装置および真空ポンプ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11333154B2 (en) * 2018-10-15 2022-05-17 Shimadzu Corporation Vacuum pump with a rotary body in a case with the rotary body having at least three balance correction portions accessible from an outside of the case for balance correction by an n-plane method

Also Published As

Publication number Publication date
EP2520807A3 (de) 2014-09-24
DE102011105806A1 (de) 2012-11-08
EP2520807A2 (de) 2012-11-07
JP6188278B2 (ja) 2017-08-30
JP2012233477A (ja) 2012-11-29

Similar Documents

Publication Publication Date Title
EP2520807B1 (de) Vakuumpumpe mit Rotor
EP3550150B1 (de) Verfahren zum wuchten eines rotors einer vakuumpumpe oder eines rotors einer rotationseinheit für eine vakuumpumpe
EP3139044B1 (de) Verfahren zum wuchten eines rotors einer vakuumpumpe oder eines rotors einer rotationseinheit für eine vakuumpumpe
EP2373457B1 (de) Lageranordnung mit magnetlagerabschnitt sowie verfahren zur regelung einer oder der lageranordnung
DE102015113681B3 (de) Verfahren zum Reduzieren eines magnetischen Streuvektorfelds einer Vakuumpumpe oder Rotationseinheit sowie Vakuumpumpe und Rotationseinheit
EP2708753B1 (de) Verfahren zum Zentrieren einer Vakuumpumpe und/oder zum Reduzieren eines magnetischen Streufelds einer Vakuumpumpe oder einer Rotationseinheit für eine Vakuumpumpe, sowie Vakuumpumpe oder Rotationseinheit für eine Vakuumpumpe
WO2008017498B1 (de) Vorrichtung mit einem direkt angetriebenen rotationskörper und aerostatisches lager
EP3361102B1 (de) Positionserfassungsvorrichtung
DE102008060262A1 (de) Sensorsystem für elektrische Maschinen mit mehrpoligen Sensormagneten und mindestens einem Hall-IC
EP1611423A1 (de) Unwuchtmesseinrichtung und verfahren zur unwuchtmessung
DE102015103670A1 (de) Verfahren und Vorrichtung zum Ausgleich einer Unwucht eines Rotors
DE102005001494A1 (de) Regelverfahren für eine Magnetlagerung und hiermit korrespondierende Einrichtung
EP2419645A1 (de) Lüfterrad für ein gebläsemodul
WO2013178634A2 (de) Lagerschild für eine elektrische maschine, elektrischen maschine und verfahren zum zusammenbauen einer elektrischen maschine
EP2848816B1 (de) Anordnung mit einer Turbomolekularpumpe sowie Verfahren zur Kompensation eines Magnetfeldes wenigstens eines in einer Turbomolekularpumpe angeordneten, ein magnetisches Störfeld erzeugenden Bauteiles
DE3248085C2 (de) Verfahren zum Auswuchten von rotationssymmetrischen Teilen während der Rotation
EP2106505A1 (de) Verfahren zur ermittlung von resonanzfrequenzen eines magnetgelagerten rotors
EP3708843B1 (de) Verfahren zur herstellung eines elektromotors oder eines vakuumgeräts mit einem solchen
DE102008016745B4 (de) Lagereinrichtung für einen Spinnrotor
DE102016217693A1 (de) Vorrichtung und Verfahren zur Messung einer Rotationsbewegung eines drehbaren Bauteils, insbesondere einer Rotationsrichtung
EP3536966B1 (de) Vakuumgerät
DE102006057391A1 (de) Farbrad
DE102014214511A1 (de) Vorrichtung mit einer Gantry
EP4105514A1 (de) Automatische auswuchtvorrichtung in kompakter axialer anordnung
EP3244067B1 (de) Vakuumpumpe und verfahren zum verringern einer restunwucht in einer vakuumpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/058 20060101ALI20140820BHEP

Ipc: F04D 19/04 20060101AFI20140820BHEP

Ipc: F04D 29/66 20060101ALI20140820BHEP

17P Request for examination filed

Effective date: 20150303

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160307

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161010

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 892652

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012010271

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170510

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170811

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012010271

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 892652

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170510

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220321

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220322

Year of fee payment: 11

Ref country code: CZ

Payment date: 20220325

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220530

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012010271

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230328

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230328

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230328