EP2501475B1 - System und ein verfahren zur detektion von in flüssigen proben enthaltenen analytmolekülen - Google Patents

System und ein verfahren zur detektion von in flüssigen proben enthaltenen analytmolekülen Download PDF

Info

Publication number
EP2501475B1
EP2501475B1 EP10816365.0A EP10816365A EP2501475B1 EP 2501475 B1 EP2501475 B1 EP 2501475B1 EP 10816365 A EP10816365 A EP 10816365A EP 2501475 B1 EP2501475 B1 EP 2501475B1
Authority
EP
European Patent Office
Prior art keywords
analyte molecules
measurement channel
susceptibility
permanent magnets
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10816365.0A
Other languages
English (en)
French (fr)
Other versions
EP2501475A1 (de
Inventor
Frank Sonntag
Udo Klotzbach
Niels Schilling
Mathias Gruchow
Markus Henke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2501475A1 publication Critical patent/EP2501475A1/de
Application granted granted Critical
Publication of EP2501475B1 publication Critical patent/EP2501475B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0332Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/32Magnetic separation acting on the medium containing the substance being separated, e.g. magneto-gravimetric-, magnetohydrostatic-, or magnetohydrodynamic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical applications

Definitions

  • the invention relates to a system and a method for detecting analyte molecules contained in liquid samples.
  • These may in particular be proteins or DNA. Particularly advantageous use is possible with very small molecules
  • the procedure is such that a liquid sample flows through a measuring channel in which ligands specific for the respective analyte molecules are immobilized on measuring surfaces to which the analyte molecules can bind. After binding, a detection is carried out in which it can be determined whether the respective analyte molecules in the sample are included or not. A quantitative determination can also be made.
  • the analyte molecules are more or less evenly distributed in the liquid sample and the measurement channel has a certain required volume. As a result, the liquid sample flows through the measuring channel with a minimum layer thickness. However, a complete filling of measuring channels is preferred.
  • the transport of analyte molecules to the immobilized ligands takes place essentially by convection and diffusion. Near the surface of measurement surfaces where ligands are immobilized, a layer is formed in which diffusion substantially occurs. This is called the Nernst-type diffusion barrier layer. The transport of analyte molecules to ligands is thereby hindered, whereby this effect increases with increasing thickness of the diffusion layer.
  • strip-shaped electrodes should be arranged at intervals above one another and optionally also below a measuring channel at intervals from one another and in each case acted upon by an electrical alternating voltage.
  • the polarity changes from electrode to electrode.
  • a force action is to be exerted on molecules in order to move them away when passing through them to a measuring surface or non-specifically bound foreign molecules.
  • a device and a method for separating, immobilizing and quantifying biological substances are known. This should be done with help be achieved by external and internal magnetic fields, which are to be formed with permanent magnets, which are arranged with respect to a ferromagnetic catcher construction on a separation vessel.
  • the catcher construction should preferably be formed with a grid formed of a ferromagnetic material, which is to be attached to the upper inner wall of the separation vessel.
  • the force effect of the magnetic field is intended to draw molecules or cells which are coupled with magnetically reacting particles in the direction of the capture structure and to immobilize there. Subsequently, a preferred optical detection of the molecules can then be carried out.
  • FR 2 863 117 - A1 describes a microsystem for displacing fluids, the microsystem having a micro-conduit with at least one fluid and means used to establish a primary displacement of the fluid between an inlet and an outlet of the micro-conduit. Furthermore, the microsystem has magnetohydrodynamic means which cause at least a secondary displacement of the fluid.
  • the invention can be used in the field of microfluidics, inter alia for mixing fluids and for scanning particles on the surface of reactors.
  • At least one opening for supplying and discharging thereof is present in a housing in the flow direction of a fluid containing analyte molecules at a measuring channel at its beginning and end.
  • a sample comprising analyte molecules and a liquid can thus be passed through the measurement channel.
  • at the bottom of the measuring channel there is a sensitive area on which ligands for the respective analyte molecules can be immobilized in the measuring channel.
  • the housing should be formed of a non-magnetic and non-magnetizable material.
  • suitable polymers and / or aluminum can be used.
  • the measuring channel at least one element made of a ferromagnetic material is arranged in the housing material or on the upper wall of the measuring channel.
  • two permanent magnets are arranged on both sides of the measuring channel parallel to the flow direction, or they can be arranged there temporarily.
  • a magnetic field should be within the measurement channel at least in the region in which the / the element (s) is arranged / are made of ferromagnetic material, are formed.
  • the analyte molecules have a susceptibility> 0 or particles are bound to analayt molecules whose susceptibility is> 0.
  • the total susceptibility should be> 0.
  • the analyte molecules and / or particles therefore have paramagnetic, supermagnetic or ferromagnetic properties.
  • a plurality of permanent magnets may be arranged in a series arrangement above the measuring channel.
  • the permanent magnets are alternately magnetized alternately. The polar alignment of juxtaposed permanent magnets is therefore set against.
  • This series arrangement should be arranged at least in the region of the sensitive surface area.
  • a sample is used in which analyte molecules are present which have a susceptibility which is ⁇ 0 or particles which have a susceptibility ⁇ 0 are bound to analyte molecules.
  • the total susceptibility should be ⁇ 0.
  • the analyte molecules and / or particles have diamagnetic properties.
  • a force acting on magnetic or magnetized particles can be influenced by the gradient of the magnetic field strength within a magnetic field.
  • the respective force is dependent on the ratio of the susceptibility of the particles and the surrounding medium.
  • a magnetic field formed with magnets can be influenced with ferromagnetic elements which are arranged in the magnetic field. These elements are magnetized and can lead to magnetic field intensity gradients in certain directions, depending on the particular arrangement of the magnets and the ferromagnetic elements. In the plane aligned parallel to the external magnetic field, the gradient becomes a ferromagnetic element. Perpendicular to this, the gradient of the magnetic field strength away from the ferromagnetic element.
  • ⁇ p is the susceptibility (magentizability) of the analyte molecules or of the magnetizable particles / particles bound to them
  • ⁇ fl - the acceptability of the sample liquid in each case as dimensionless volume magnetizability in SI unit
  • ⁇ p - ⁇ fl be positive or negative, whereby the direction of the acting force F can be changed by 180 ° in accordance depending on the sign.
  • a suitable parameter for this is a corresponding selection of a liquid for the respective sample with a smaller or larger susceptibility ⁇ fl . as the susceptibility ⁇ p of the analyte molecules.
  • One or more elements of ferromagnetic material should preferably be arranged in the flow direction in front of the sensitive surface area.
  • a force acting on the analyte molecules which in this case have a higher susceptibility ⁇ p as the susceptibility ⁇ fl of the sample liquid from the one or more ferromagnetic element (s) away in towards the bottom of the measuring channel and because of the flow in the direction ligands immobilized on the sensitive area are exercised.
  • the respective analyte molecules can thereby be better and more securely bound to the ligands.
  • the required sample volume can be kept small and the required time can be reduced.
  • the ferromagnetic elements which can be used in the invention can have a very flat design and can be aligned parallel to the bottom of the measuring channel. They may, for example, be aligned in a strip shape and parallel to the flow direction of the sample. They should have a thickness of 0.1 mm to 0.4 mm have their width at least ten times greater.
  • One or more elements of ferromagnetic material can be conveniently embedded in the material of the housing. Direct contact with samples can thus be avoided. It can maintain a permanent exact positioning and avoid adhesion problems. These elements can also be formed in the form of wires with a circular or elliptical cross-section.
  • a magnetic field with a magnetic field strength H of at least 0.5 T should be able to be formed.
  • the magnetization of the permanent magnets should be at least 0.5T.
  • a suitable liquid with corresponding greater susceptibility ⁇ fl By selecting a suitable liquid with corresponding greater susceptibility ⁇ fl, the direction of force action which is caused by the gradient of the magnetic field strength can also be changed with an unchanged arrangement of the permanent magnets. This can be used for rinsing or also removing / detaching unspecifically bound other molecules from the sensitive surface area.
  • a liquid with greater susceptibility ⁇ fl in which no further molecules, at least no analyte molecules contained, flow through the measuring channel. Unspecifically bound molecules whose binding forces to ligands are smaller can be easily detached and removed from the measuring channel before the actual detection of the analyte molecules.
  • such a liquid may also be achieved a complete flushing of the measuring channel and thereby at least the bound ligand analyte molecules are removed so that a so-purged and purified system is used for detection of another sample again.
  • whole blood samples, blood plasma or other body fluids may be used for detection.
  • samples may also be more or less diluted. This can be achieved with deionized water.
  • paramagnetic or superparamagnetic particles can be bound to the respective analyte molecules whose size is a few nanometers. These particles can be formed from iron, nickel, cobalt or an alloy of said metals or they can also be used as a mixture with polymer.
  • the same effects for rinsing and dissolving non-specifically bound molecules can also be achieved by adjusting the orientation of the external magnetic field is changed.
  • the previously arranged on the two sides of the measuring channel two permanent magnets can be removed.
  • At least one permanent magnet is then arranged above the one or more elements formed from a ferromagnetic material.
  • the element (s) are then located between this magnet and the measuring channel.
  • the force caused by the gradient of the magnetic field strength thereby changes its direction and is opposite to the direction of force, which has been exploited for binding the analyte molecules to ligands.
  • the magnitude of the acting force is dependent on the achievable with the / the permanent magnet magnetic field strength and / or its / their distance to the / the ferromagnetic element (s).
  • a third possibility for purging and / or removing nonspecifically bound molecules consists of flowing through the measuring channel with a rinsing liquid in the opposite direction through the measuring channel.
  • FIG. 1 It should be clarified how the direction of forces acting on magnetic or magnetizable particles in a magnetic field is dependent on the orientation of the magnetic field. This can be changed by changing the orientation of the magnetic field.
  • FIG. 2 In the schematic representation after FIG. 2 is shown in a side and front view formed in a housing 1 of optically transparent polymer measuring channel 3 through which a sample 2 is guided.
  • the flow direction is indicated by the arrow.
  • Particles of iron, nickel, an alloy thereof, which can also be used as a mixture with polymer, having a diameter of 5 nm to 500 nm are bound to the respective analyte molecules of sample 2.
  • the thus-prepared analyte molecules had a susceptibility ⁇ P > 0 to 100.
  • the Liquid of the sample had a susceptibility ⁇ fl ⁇ 0.
  • the particles may also be magnetizable polymers or a diamagnetic metal, such as gold.
  • the improvement of the attachment by liquids with increased susceptibility leads to a negative difference in the term ( ⁇ P - ⁇ fl ) to a deflection of particles or analyte molecules which are diamagnetic or bound to the diamagnetic particles.
  • a ferromagnetic element 6 formed of iron is embedded in the polymeric material.
  • the element 6 has a thickness of 0.2 mm. Its width should be 2.5 mm.
  • the measuring channel 3 has a length of 8 mm to 10 mm with respect to the flow direction and a height of 50 microns.
  • the north pole of a permanent magnet 5 points in the direction of the measuring channel 3, whereas the south pole of the permanent magnet 5 arranged on the opposite side of the measuring channel 3 faces the measuring channel 3.
  • the magnetization of the permanent magnets 5 should be at least 0.5 T.
  • FIG. 2 is illustrated by the darker area of the flowing through the measuring channel 3 Sample 2, as analyte molecules move through the forces caused by the gradient of the magnetic field strength towards the bottom of the measuring channel 3.
  • a sensitive area 7 is formed, are immobilized on the ligand for analyte molecules.
  • the sensitive area 7 may be formed with a thin metal layer, preferably gold or silver.
  • an SPR analysis as for example in DE 10 2008 062 620 is described.
  • an unillustrated optical waveguide can be arranged below the sensitive surface region 7, via which electromagnetic radiation can be directed at least almost under total reflection conditions onto the underside of the sensitive surface region 7.
  • the evaluation of the SPR analysis can be carried out in a manner known per se.
  • FIG. 3 a system not belonging to the invention is shown in schematic form.
  • 3 permanent magnets 5.1 and 5.2 are arranged in the flow direction of the sample 2 in series above the measuring channel.
  • the juxtaposed permanent magnets 5.1 and 5.2 are each magnetized opposite to each other.
  • the susceptibility ⁇ p of the analyte molecules or possibly also of the particles which are bound to analyte molecules is smaller than the susceptibility ⁇ fl of the liquid or the fluid of the sample 2.
  • a force is exerted on the analyte molecules in the sample 2 and can be utilized for a movement in the direction of the sensitive area 7 arranged at the bottom of the measuring channel 3 in order to improve the binding behavior of the analyte molecules to ligands immobilized there.
  • a rinsing liquid with a higher susceptibility ⁇ fl than the susceptibility of the sample liquid instead of the sample only a rinsing liquid with a higher susceptibility ⁇ fl than the susceptibility of the sample liquid can be used.
  • the sign of the term ( ⁇ p - ⁇ fl ) changes and as a result the direction of the acting forces changes in the opposite direction, which can lead to the detachment of nonspecifically bound molecules.
  • ⁇ p and ⁇ fl With a larger difference of ⁇ p and ⁇ fl , all molecules can be detached and the measuring channel 3 can be cleaned.
  • FIG. 4 An example of a system according to the invention used for binding analyte molecules to ligands is disclosed in US Pat FIG. 4 shown in an exploded view.
  • two permanent magnets 5 can be inserted laterally to the right and left of the measuring channel 3 into recesses 9 arranged there or can be used temporarily for a detection.
  • a plate-shaped element 6 made of iron is embedded in the lid 1.1 of the housing 1 in the polymer of the lid 1.1.
  • the element 6 has the following dimensions L / B / H 10 / 2.5 / 0.2 mm.
  • a sensitive surface area 7 is again formed at the bottom of the measuring channel 3.
  • a sealing element 1.2 is disposed of an elastomer, pointing to the bottom in the direction of the bottom 1.3 facing a recess is present, which forms the measuring channel 3.
  • a sensitive area 7 formed as a thin gold layer. There, ligands can be immobilized.
  • a further receptacle 10 is formed, in which a further permanent magnet 8 can be used when bound analyte molecules or non-specifically bound molecules to be removed.
  • the permanent magnets 5 previously inserted into the receptacles 9 have been removed therefrom.
  • the openings for the supply and removal of samples 2 may be formed in the lid 1.1.
  • FIG. 5 shows a system according to the invention without the two arranged on the sides of the measuring channel 3 permanent magnets. 5 Otherwise this corresponds to in FIG. 5 shown system by example FIG. 4 , wherein, however, can be additionally dispensed with the formation of shots 9 and 10 in the lid 1.1.

Description

  • Die Erfindung betrifft ein System und ein Verfahren zur Detektion von in flüssigen Proben enthaltenen Analytmolekülen. Dies können insbesondere Proteine oder DNA sein. Besonders vorteilhaft ist ein Einsatz bei sehr kleinen Molekülen möglich
  • Üblicherweise wird so vorgegangen, dass eine flüssige Probe durch einen Messkanal strömt, in dem für die jeweiligen Analytmoleküle spezifische Liganden auf Messflächen immobilisiert sind, an die die Analytmoleküle anbinden können. Nach dem Anbinden erfolgt eine Detektion, bei der festgestellt werden kann, ob die jeweiligen Analytmoleküle in der Probe enthalten sind oder nicht. Es kann auch eine quantitative Bestimmung durchgeführt werden.
  • Die Analytmoleküle sind in der flüssigen Probe mehr oder weniger gleichmäßig verteilt und der Messkanal hat ein bestimmtes erforderliches Volumen. Dadurch bedingt strömt die flüssige Probe mit einer Mindestschichtdicke durch den Messkanal. Bevorzugt ist aber ein vollständiges Ausfüllen von Messkanälen. Der Analytmolekültransport zu den immobilsierten Liganden erfolgt dabei im Wesentlichen durch Konvektion und Diffusion. In der Nähe der Oberfläche von Messflächen, an denen Liganden immobilisiert sind, bildet sich eine Schicht aus, in der im Wesentlichen Diffusion auftritt. Diese wird als Nernstsche-Diffusionsgrenzschicht bezeichnet. Der Transport von Analytmolekülen zu Liganden ist dadurch behindert, wobei sich dieser Effekt mit steigender Dicke der Diffusionsschicht verstärkt.
  • Um diesen Nachteilen entgegenzutreten und die Bindungsrate von Analytmolekülen zu erhöhen und die Anbindung zu beschleunigen wurde in DE 10 2007 012 866 A1 vorgeschlagen, durch einen Flusskanal einen mit einer inerten Flüssigkeit gebildeten Hauptstrom zu führen. In diesen von Analytmolekülen freien Hauptstrom soll dann vor den eigentlichen Messflächen eine Zuführung für flüssige Probe angeordnet sein. Mit dem Hauptstrom kann eine Verdrängung der flüssigen Probe in Richtung auf die Messflächen mit den dort immobilisierten Liganden erreicht werden. Die flüssige Probe kann so als dünner Film über die Messflächen strömen.
  • Es liegt auf der Hand, dass durch den erforderlichen größeren freien Querschnitt des Flusskanals eine Vergrößerung des gesamten Systems hervorgerufen wird. Mit dem Hauptstrom kann ein Verdünnungseffekt für die Probe nicht vermieden werden. Außerdem kann nicht spezifisch bzw. selektiv auf das Anbindungsverhalten bestimmter Analytmoleküle Einfluss genommen werden.
  • Des Weiteren ist es bekannt, dass mittels Dielektrophorese eine Trennung oder Sortierung von Nanopartikeln oder auch Biomolekülen möglich ist. Eine geeignete Vorrichtung ist in der nicht vorveröffentlichten DE 10 2008 062 620 beschrieben.
  • Dabei sollen ober- und ggf. auch unterhalb eines Messkanals streifenförmige Elektroden in Abständen zueinander angeordnet und jeweils mit einer elektrischen Wechselspannung beaufschlagt sein. Die Polarität wechselt dabei von Elektrode zu Elektrode. Dabei soll mit bestimmter Frequenz unter Berücksichtigung des jeweiligen Clausius-Mossotti-Faktors eine Kraftwirkung auf Moleküle ausgeübt werden, um diese beim Durchströmen zu einer Messfläche hin oder unspezifisch gebundene Fremdmoleküle von dieser weg zu bewegen.
  • Dabei wirken sich Unterschiede der Flüssigkeit, in der die jeweiligen Analytmoleküle enthalten sind, aus und es ist sehr aufwändig die jeweilige den Clausius-Mossotti-Faktor berücksichtigende Frequenz zu bestimmen. Auch bei zumindest nahezu optimal eingehaltener Frequenz der elektrischen Wechselspannung müssen die Analytmoleküle eine bestimmte Größe aufweisen, um eine ausreichende Kraftwirkung zu erreichen.
  • Aus DE 697 29 101 T2 sind ein Gerät sowie ein Verfahren zum Trennen, Immobilisieren und Quantifizieren biologischer Substanzen bekannt. Dies soll mit Hilfe von externen und internen Magnetfeldern erreicht werden, die mit Permanentmagneten, die in Bezug zu einer ferromagnetischen Fängerkonstruktion an einem Trenngefäß angeordnet sind, ausgebildet werden sollen. Die Fängerkonstruktion soll dabei bevorzugt mit einem aus einem ferromagnetischen Werkstoff gebildeten Gitter ausgebildet sein, das an der oberen Innenwand des Trenngefäßes angebracht werden soll. Die Kraftwirkung des Magnetfeldes soll dabei Moleküle oder Zellen, die mit magnetisch reagierenden Teilchen gekoppelt sind, in Richtung auf die Fangkonstruktion ziehen und dort zu immobilisieren. Anschließend kann dann eine bevorzugt optische Detektion der Moleküle durchgeführt werden.
  • Insbesondere durch die Anordnung der Fängerkonstruktion wird aber eine Detektion behindert außerdem können unspezifisch gebundene Moleküle die Genauigkeit beeinträchtigen und auch eine Reinigung kann nicht ohne weiteres bzw. in einfacher Form durchgeführt werden.
  • FR 2 863 117 - A1 beschreibt ein Mikrosystem zur Verdrängung von Fluiden, wobei das Mikrosystem eine Mikroleitung mit mindestens einer Flüssigkeit und Mittel aufweist, die zum Einrichten einer primären Verdrängung des Fluids zwischen einem Einlass und einen Auslass der Mikroleitung verwendet werden. Weiterhin weist das Mikrosystem magnetohydrodynamischen Mittel auf, die mindestens eine sekundäre Verdrängung des Fluids bewirken. Die Erfindung kann auf dem Gebiet der Mikrofluidik, unter anderem zum Mischen von Fluiden und zum Abtasten von Teilchen an der Oberfläche von Reaktoren eingesetzt werden.
  • Es ist daher Aufgabe der Erfindung Möglichkeiten zu schaffen, um eine verbesserte Sensitivität von Analytmolekülen, mit einem einfach aufgebauten und wieder verwendbaren System, zu erreichen.
  • Erfindungsgemäß wird diese Aufgabe mit einem System, das die Merkmale des Anspruchs 1 aufweist, gelöst. Dabei kann mit einem Verfahren nach Anspruch 5 vorgegangen werden. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind mit in untergeordneten Ansprüchen bezeichneten Merkmalen realisierbar.
  • Beim erfindungsgemäßen System sind innerhalb eines Gehäuses in Strömungsrichtung eines Analytmoleküle enthaltenden Fluids an einem Messkanal an dessen Anfang und Ende jeweils mindestens eine Öffnung zu deren Zu- Und Abfuhr vorhanden. Eine Probe die Analytmoleküle und eine Flüssigkeit aufweist, kann so durch den Messkanal hindurchgeführt werden. Außerdem ist am Boden des Messkanals ein sensitiver Flächenbereich vorhanden, auf dem im Messkanal Liganden für die jeweiligen Analytmoleküle immobilisiert werden können.
  • Das Gehäuse soll aus einem nichtmagnetischen und nicht magnetisierbaren Werkstoff gebildet sein. Hierfür können geeignete Polymere und/oder Aluminium eingesetzt werden.
  • Oberhalb des Messkanals ist im Gehäusewerkstoff oder an der oberen Wand des Messkanals mindestens ein Element aus einem ferromagnetischen Werkstoff angeordnet. Für die externe Ausbildung eines magnetischen Feldes sind an beiden Seiten des Messkanals parallel zur Strömungsrichtung zwei Permanentmagnete angeordnet bzw. sie können dort temporär angeordnet werden. Ein magnetisches Feld sollte innerhalb des Messkanals zumindest im Bereich, in dem das/die Element(e) aus ferromagnetischem Werkstoff angeordnet ist/sind, ausgebildet werden. In diesem Fall weisen die Analytmoleküle eine Suszeptibiltät > 0 auf oder es sind an Analaytmoleküle Teilchen gebunden deren Suszeptibilität > 0 ist. Dabei sollte bei an Analytmolekülen gebundenen Teilchen die Gesamtsuzeptibilität > 0 sein. Die Analytmoleküle und/oder Teilchen weisen daher paramagnetische, supermagnetische oder ferromagnetische Eigenschaften auf.
  • Bei einem nicht zur Erfindung gehörenden System können mehrere Permanentmagnete in einer Reihenanordnung oberhalb des Messkanals angeordnet sein. Dabei sind die Permanentmagnete alternierend wechselnd magnetisiert. Die Polausrichtung von nebeneinander angeordneten Permanentmagneten ist demzufolge entgegen gesetzt.
  • Diese Reihenanordnung sollte zumindest im Bereich des sensitiven Flächenbereichs angeordnet sein.
  • Für eine Detektion wird bei diesem nicht zur Erfindung gehörenden System eine Probe eingesetzt, in der Analytmoleküle enthalten sind, die eine Suszeptibilität aufweisen, die ≤ 0 ist oder es sind an Analytmoleküle Teilchen gebunden deren Suszeptibilität ≤ 0 ist. Dabei sollte bei an Analytmoleküle gebundenen Teilchen die Gesamtsuszeptibilität ≤0 sein. Die Analytmoleküle und/oder Teilchen weisen dabei diamagnetische Eigenschaften auf.
  • Beim Durchströmen gelangt die Probe bei beiden alternativen Ausbildungen in den Einflussbereich des magnetischen Feldes, das mit den Permanentmagneten ausgebildet wird, so dass die Analytmoleküle mit einer in Richtung auf den Boden des Messkanals und den mit Liganden für Analytmoleküle immobilisierten sensitiven Flächenbereich wirkenden Kraft beaufschlagt werden.
  • Dabei kann ausgenutzt werden, dass eine auf magnetische bzw. magnetisierte Teilchen wirkende Kraft vom Gradienten der magnetischen Feldstärke innerhalb eines magnetischen Feldes beeinflusst werden kann. Die jeweilige Kraft ist dabei vom Verhältnis der Suszeptilität der Teilchen und dem diese umgebenden Medium abhängig.
  • Bei der Erfindung kann ausgenutzt werden, dass ein mit Magneten ausgebildetes homogenes magnetisches Feld mit ferromagnetischen Elementen, die im magnetischen Feld angeordnet sind, beeinflusst werden kann. Diese Elemente werden magnetisiert und können zu Gradienten der magnetischen Feldstärke in bestimmten Richtungen führen, die von der jeweiligen Anordnung der Magnete und der ferromagnetischen Elemente abhängen. In der Ebene, die parallel zum externen magnetischen Feld ausgerichtet ist, weist der Gradient zu einem ferromagnetischen Element. Senkrecht dazu weist der Gradient der magnetischen Feldstärke vom ferromagnetischen Element weg.
  • Die Richtungsabhängige Kraft F ergibt sich zu F = ½V P * χ p χ fl * µ 0 * δ H * H / δ .
    Figure imgb0001
  • Dabei ist χp - die Suzeptibilität (magentisierbarkeit) der Analytmoleküle bzw. der an ihnen gebundenen magnetisierbaren Teilchen/Partikel, χfl - die Suzeptibilität der Probenflüssigkeit jeweils als dimensionslose Volumenmagnetisierbarkeit in SI-Einheit, Vp - Volumen der Analytmoleküle ggf. mit gebundenem magnetisierbaren Partikel und H - die magnetische Feldstärke.
  • Durch geeignete Wahl kann dementsprechend der Term (χp - χfl) positiv oder negativ sein, wodurch die Richtung der wirkenden Kraft F je nach dem Vorzeichen entsprechend um 180 ° verändert werden kann. Ein hierfür geeigneter Parameter ist eine entsprechende Auswahl einer Flüssigkeit für die jeweilige Probe mit einer kleineren oder größeren Suszeptibilität χfl. als der Suszeptibilität χp der Analytmoleküle.
  • Ein oder mehrere Elemente aus ferromagnetischem Werkstoff sollten bevorzugt in Strömungsrichtung vor dem sensitiven Flächenbereich angeordnet sein. Dadurch kann eine Kraftwirkung auf die Analytmoleküle, die dabei eine höhere Suszeptibilität χp aufweisen als die Suszeptibilität χfl der Probenflüssigkeit, vom einen oder den mehreren ferromagnetischen Element(en) weg in Richtung auf den Boden des Messkanals und wegen der Strömung auch in Richtung auf auf dem sensitiven Flächenbereich immobilisierte Liganden ausgeübt werden. Die jeweiligen Analytmoleküle können dadurch besser und sicherer an die Liganden gebunden werden. Das erforderliche Probenvolumen kann klein gehalten und die erforderliche Zeit reduziert werden.
  • Die bei der Erfindung einsetzbaren ferromagnetischen Elemente können sehr flach ausgebildet und dabei parallel zum Boden des Messkanals ausgerichtet sein. Sie können beispielsweise streifenförmig und parallel zur Strömungsrichtung der Probe ausgerichtet sein. Sie sollten dabei eine Dicke von 0,1 mm bis 0,4 mm aufweisen und dabei ihre Breite mindestens Zehnfach größer sein.
  • Bevorzugt kann es auch sein, lediglich ein solches flächiges ferromagnetisches Element einzusetzen. Dessen Breite sollte dabei mindestens 80 % der Breite des Messkanals in Strömungsrichtung entsprechen.
  • Ein oder auch mehrere Elemente aus ferromagnetischem Werkstoff können günstigerweise in den Werkstoff des Gehäuses eingebettet werden. Ein unmittelbarer Kontakt zu Proben kann so vermieden werden. Es können eine dauerhafte exakte Positionierung beibehalten und Haftungsprobleme vermieden werden. Diese Elemente können aber auch in Form von Drähten mit kreisförmigem oder auch elliptischem Querschnitt ausgebildet sein.
  • Mit den beiden oder den Permanentmagneten sollte ein magnetisches Feld mit einer magnetischen Feldstärke H von mindestens 0,5 T ausgebildet werden können. Die Magnetisierung der Permanentmagnete sollte mindestens 0,5 T aufweisen.
  • Wie bereits vorab angedeutet, kann durch Auswahl einer geeigneten Flüssigkeit mit entsprechender größerer Suszeptibilität χfl die Kraftwirkungsrichtung die mit dem Gradienten der magnetischen Feldstärke hervorgerufen wird, bei unveränderter Anordnung der Permanentmagnete auch verändert werden. Dies kann für ein Spülen bzw. auch ein Entfernen/Ablösen von unspezifisch gebundenen anderen Molekülen vom sensitiven Flächenbereich, genutzt werden. Anstelle einer Probe kann vor oder auch nach einer Detektion eine Flüssigkeit mit größerer Suszeptibilität χfl, in der keine weiteren Moleküle, zumindest keine Analytmoleküle enthalten sind, durch den Messkanal strömen. Unspezifisch gebundene Moleküle, deren Bindungskräfte zu Liganden kleiner sind können so einfach abgelöst und aus dem Messkanal vor der eigentlichen Detektion der Analytmoleküle entfernt werden.
  • Bei einer deutlich größeren Suszeptibilität χfl einer solchen Flüssigkeit kann auch ein vollständiges Spülen des Messkanals erreicht und dabei zumindest auch die an Liganden gebundenen Analytmoleküle entfernt werden, so dass ein so gespültes und gereinigtes System erneut für eine Detektion einer anderen Probe nutzbar wird.
  • Für eine Detektion können beispielsweise Vollblutproben, Blutplasma oder andere Körperflüssigkeiten eingesetzt werden. Solche Proben können auch mehr oder weniger verdünnt sein. Dies kann mit entionisiertem Wasser erreicht werden.
  • Zum Spülen können als Flüssigkeit mit größerer Suszeptibilität χfl beispielsweise Mangan(II)-chlorid oder Gadolinium(III)-Komplexe eingesetzt werden.
  • Zur Verbesserung der Magnetisierbarkeit können an die jeweiligen Analytmoleküle sehr kleine ferromagnetische, paramagnetische oder superparamagnetische Teilchen angebunden werden, deren Größe einige wenige Nanometer beträgt. Diese Teilchen können aus Eisen, Nickel, Kobalt oder einer Legierung der genannten Metalle gebildet sein bzw. können diese auch als Mischung mit Polymer eingesetzt werden.
  • Die gleichen Effekte zum Spülen und Lösen von unspezifisch gebundenen Molekülen können aber auch dadurch erreicht werden, indem die Ausrichtung des externen magnetischen Feldes verändert wird. Dabei können die bis dahin an den beiden Seiten des Messkanals angeordneten zwei Permanentmagnete entfernt werden. Mindestens ein Permanentmagnet wird dann oberhalb des einen oder mehrerer aus einem ferromagnetischen Werkstoff gebildeter Elemente angeordnet. Das oder die Element(e) befinden sich dann zwischen diesem Magnet und dem Messkanal. Die durch den Gradienten der magnetischen Feldstärke hervorgerufene wirkende Kraft verändert dadurch ihre Richtung und ist entgegen gesetzt zur Kraftrichtung, die zum Anbinden der Analytmoleküle an Liganden ausgenutzt worden ist. Die Größe der wirkenden Kraft ist dabei abhängig von der mit dem/den Permanentmagneten erreichbaren magnetischen Feldstärke und/oder dessen/deren Abstand zu dem/den ferromagnetischen Element(en).
  • Eine dritte Möglichkeit zum Spülen und/oder Entfernen unspezifisch gebundener Moleküle besteht mit der Durchströmung des Messkanals mit einer Spülflüssigkeit in entgegen gesetzter Richtung durch den Messkanal.
  • Die genannten Möglichkeiten zum Spülen und/oder Entfernen unspezifisch gebundener Moleküle können auch miteinander kombiniert eingesetzt werden.
  • Nachfolgend soll die Erfindung beispielhaft näher erläutert werden.
  • Dabei zeigen:
    • Figur 1 auf magnetisierbare Teilchen in einem magnetischen Feld wirkende Kraftvektoren, die bei der Erfindung ausgenutzt werden können;
    • Figur 2 eine schematische Darstellung eines erfindungsgemäßen Systems für ein Ablenken von Analytmolekülen in Richtung auf einen sensitiven Flächenbereich am Boden eines Messkanals;
    • Figur 3 eine schematische Darstellung eines Systems für ein Ablenken von Analytmolekülen in die entgegen gesetzte Richtung vom Boden eines Messkanals weg, das nicht zur Erfindung gehört;
    • Figur 4 eine Explosionsdarstellung eines Beispiels eines erfindungsgemäßen Systems, bei dem zwei Permanentmagnete an den Seiten eines Messkanals angeordnet werden können und
    • Figur 5 eine Explosionsdarstellung eines weiteren Beispiels eines erfindungsgemäßen Systems.
  • Mit Figur 1 soll verdeutlicht werden, wie die Richtung von auf magnetische oder magnetisierbare Teilchen wirkende Kräfte in einem Magnetfeld je nach Ausrichtung des magnetischen Feldes ist. Diese kann durch eine Veränderung der Ausrichtung des magnetischen Feldes verändert werden kann.
  • In der schematischen Darstellung nach Figur 2 ist in einer Seiten- und Vorderansicht ein in einem Gehäuse 1 aus optisch transparentem Polymer ausgebildeter Messkanal 3 gezeigt, durch den eine Probe 2 geführt wird. Die Strömungsrichtung ist mit dem Pfeil angegeben. An die jeweiligen Analytmoleküle der Probe 2 sind Teilchen aus Eisen, Nickel, einer Legierung davon, die auch als Mischung mit Polymer eingesetzt werden können, mit einem Durchmesser von 5 nm bis 500 nm gebunden. Die so präparierten Analytmoleküle wiesen eine Suszeptibilität χP > 0 bis 100 auf. Die Flüssigkeit der Probe hatte eine Suszeptibilität χfl < 0. Bei Einsatz von Flüssigkeiten mit unterschiedlicher Suszeptibilät χfl, zur verbesserten Anbindung von Analytmolekülen, können die Teilchen auch magnetisierbare Polymere oder ein diamagnetisches Metall, wie Gold sein. Die Verbesserung der Anbindung durch Flüssigkeiten mit erhöhter Suszeptibilität führt eine negative Differenz im Term (χP - χfl) zu einer Ablenkung von Partikeln oder Analytmolekülen die diamagnetisch oder an die diamagnetische Partikel gebunden sind. Dies gilt jedoch nur für die zweite Alternative der Erfindung.
  • Im Deckel 1.1 des Gehäuses 1 ist in den polymeren Werkstoff ein aus Eisen gebildetes ferromagnetisches Element 6 eingebettet. Das Element 6 hat eine Dicke von 0,2 mm. Seine Breite soll 2,5 mm betragen. Der Messkanal 3 hat eine Länge von 8 mm bis 10 mm in Bezug zur Strömungsrichtung und eine Höhe von 50 µm.
  • An den beiden Seiten des Messkanals 3 sind hier nicht dargestellte Permanentmagnete 5 angebracht, mit deren Hilfe ein externes magnetisches Feld ausgebildet werden kann. Dabei weist der Nordpol des einen Permanentmagneten 5 in Richtung Messkanal 3 wohingegen der Südpol des auf der gegenüberliegenden Seite des Messkanals 3 angeordneten Permanentmagneten 5 zum Messkanal 3 weist. Die Magnetisierung der Permanentmagnete 5 soll mindestens 0,5 T betragen.
  • Mit Figur 2 wird durch den dunkler dargestellten Bereich der durch den Messkanal 3 strömenden Probe 2 verdeutlicht, wie sich Analytmoleküle durch die mit den Gradienten der magnetischen Feldstärke hervorgerufenen Kräfte in Richtung Boden des Messkanals 3 bewegen. Dort ist ein sensitiver Flächenbereich 7 ausgebildet, auf dem Liganden für Analytmoleküle immobilisiert sind. Der sensitive Flächenbereich 7 kann mit einer dünnen Metallschicht, bevorzugt Gold oder Silber gebildet sein. In diesem Fall besteht die Möglichkeit die Detektion mittels einer SPR-Analyse durchzuführen, wie dies beispielsweise auch in DE 10 2008 062 620 beschrieben ist. Hierfür kann ein nicht dargestellter Lichtwellenleiter unterhalb des sensitiven Flächenbereichs 7 angeordnet sein, über den elektromagnetische Strahlung zumindest nahezu unter Totalreflexionsbedingungen auf die Unterseite des sensitiven Flächenbereichs 7 gerichtet werden kann. Die Auswertung der SPR-Analyse kann in an sich bekannter Form vorgenommen werden.
  • Mit Figur 3 ist ein nicht zur Erfindung gehörendes System in schematischer Form gezeigt. Dabei sind oberhalb des Messkanals 3 Permanentmagnete 5.1 und 5.2 in Strömungsrichtung der Probe 2 in Reihe angeordnet. Die nebeneinander angeordneten Permanentmagnete 5.1 und 5.2 sind jeweils entgegen gesetzt zueinander magnetisiert. Die Suszeptibilität χp der Analytmoleküle oder ggf. auch der Teilchen, die an Analytmoleküle gebunden sind, ist dabei kleiner als die Suszeptibilität χfl der Flüssigkeit bzw. des Fluids der Probe 2. Es wird deutlich, dass wie auch beim Beispiel nach Figur 2 eine Kraftwirkung auf die Analytmoleküle in der Probe 2 ausgeübt und für eine Bewegung in Richtung auf den am Boden des Messkanals 3 angeordneten sensitiven Flächenbereich 7 ausgenutzt werden kann, um das Anbindungsverhalten der Analytmoleküle an dort immobilisierte Liganden zu verbessern.
  • Zum Spülen bzw. Entfernen von unspezifisch gebunden Molekülen kann, bei dem in Figur 2 gezeigten Beispiel, anstelle der Probe lediglich eine Spülflüssigkeit mit höherer Suszeptibilität χfl als der Suszeptibilität der der Probenflüssigkeit eingesetzt werden. Das Vorzeichen des Terms (χp - χfl) ändert sich und demzufolge ändert sich auch die Richtung der wirkenden Kräfte in die entgegen gesetzte Richtung, was zum Ablösen unspezifisch gebundener Moleküle führen kann. Bei größerer Differenz von χp und χfl können auch alle Moleküle abgelöst und der Messkanal 3 gereinigt werden.
  • Ein zum Anbinden von Analytmolekülen an Liganden genutztes Beispiel eines erfindungsgemäßen Systems ist in Figur 4 in einer Explosionsdarstellung gezeigt. Dabei können zwei Permanentmagnete 5 seitlich rechts und links vom Messkanal 3 in dort angeordnete Aufnahmen 9 eingesetzt sein oder für eine Detektion temporär eingesetzt werden. Oberhalb des Messkanals 3 ist im Deckel 1.1 des Gehäuses 1 ein plattenförmiges Element 6 aus Eisen in das Polymer des Deckels 1.1 eingebettet. Das Element 6 hat folgende Abmessungen L/B/H 10/2,5/0,2 mm.
  • Am Boden des Messkanals 3 ist wieder, wie bereits beschrieben, ein sensitiver Flächenbereich 7 ausgebildet.
  • Beim Durchströmen einer Probe 2, wie bereits bei der Beschreibung von Figur 2 erläutert, wirken auf die magnetisierten Analytmoleküle Kräfte, die diese in Richtung Boden des Messkanals 3 und auch den sensitiven Flächenbereich 7 beschleunigen und dort kann so im Bereich oberhalb des sensitiven Flächenbereichs 7 eine Anreicherung von Analytmolekülen erreicht werden, wodurch das Anbindungsverhalten verbessert und die Bindungsrate erhöht werden können.
  • Zwischen Deckel 1.1 und Boden 1.3 des Gehäuses 1 ist ein Dichtungselement 1.2 aus einem Elastomer angeordnet, an dessen Unterseite in Richtung Boden 1.3 weisend eine Aussparung vorhanden ist, die den Messkanal 3 bildet. Auf der Oberfläche des Bodens 1.3 ist ein sensitiver Flächenbereich 7, als dünne Goldschicht ausgebildet. Dort können Liganden immobilsiert werden.
  • Im Deckel 1.1 ist eine weitere Aufnahme 10 ausgebildet, in die ein weiterer Permanentmagnet 8 eingesetzt werden kann, wenn gebundene Analytmoleküle oder unspezifisch gebundene Moleküle entfernt werden sollen. Dabei sind die vorab in die Aufnahmen 9 eingesetzten Permanentmagnete 5 aus diesen entfernt worden.
  • Die Richtung der wirkenden Kräfte hat sich durch den Einsatz und die Anordnung des Permanentmagneten 8 umgekehrt. Sie weist nun vom Boden 1.3 des Messkanals 3 weg in Richtung auf das aus ferromagnetischem Werkstoff gebildete Element 6. Es kann so ein Ablösen und Entfernen von Molekülen, auch solchen die an Liganden gebunden waren, aus dem Messkanal 3 erreicht werden.
  • Die Öffnungen für die Zu- und Abfuhr von Proben 2 können im Deckel 1.1 ausgebildet sein.
  • Die Figur 5 zeigt ein erfindungsgemäßes System ohne die beiden an den Seiten des Messkanals 3 angeordneten Permanentmagnete 5.
    Ansonsten entspricht das in Figur 5 gezeigte System dem Beispiel nach Figur 4, wobei jedoch auf die Ausbildung von Aufnahmen 9 bzw. 10 im Deckel 1.1 zusätzlich verzichtet werden kann.

Claims (9)

  1. System zur Detektion von in flüssigen Proben enthaltenen Analytmolekülen, bei dem innerhalb eines Gehäuses (1) in Strömungsrichtung einer Analytmoleküle enthaltenden Probe (2) an einem Messkanal (3) an dessen Anfang und Ende jeweils mindestens eine Öffnung zu deren Zu- Und Abfuhr vorhanden sind;
    außerdem am Boden (1.3) des Messkanals (3) ein sensitiver Flächenbereich (7) angeordnet ist, und
    das Gehäuse (1) aus einem nichtmagnetischen und nicht magnetisierbaren Werkstoff gebildet ist,
    dadurch gekennzeichnet, dass
    oberhalb des Messkanals (3) im Gehäusewerkstoff oder an der oberen Wand des Messkanals (3) mindestens ein Element (6) aus einem ferromagnetischen Werkstoff angeordnet ist; und außerdem an beiden Seiten des Messkanals (3) parallel zur Strömungsrichtung zwei Permanentmagnete (5) angeordnet sind, mit denen ein magnetisches Feld innerhalb des Messkanals (3) zumindest im Bereich, in dem das/die Element(e) (6) aus ferromagnetischem Werkstoff angeordnet ist/sind, ausgebildet wird, dabei in der Probe (2) Analytmoleküle mit einer Suszeptibilität > 0 oder an Analytmoleküle Teilchen, deren Suszeptibiltät > 0 ist, gebunden sind, enthalten sind, so dass die Analytmoleküle mit einer in Richtung auf der mit Liganden für Analytmoleküle immobilisierten sensitiven Flächenbereich (7) wirkenden Kraft beaufschlagbar sind.
  2. System nach Anspruch 1, dadurch gekennzeichnet, dass das/die Element(e) (6) aus ferromagnetischem Werkstoff in Strömungsrichtung vor dem sensitiven Flächenbereich angeordnet ist/sind.
  3. System nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das/die ferromagnetische(n) Element(e) (6) eine Dicke im Bereich von 0,1 mm bis 0,4 mm aufweist/aufweisen und seine/ihre Breite mindestens Zehnfach größer ist.
  4. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass innerhalb des Gehäuses (1) oberhalb des Messkanals (3) ein Element (6) aus einem ferromagnetischen Werkstoff angeordnet ist, dessen Breite mindestens 80 % der Breite des Messkanals (3) in Strömungsrichtung beträgt.
  5. Verfahren zur Detektion von in flüssigen Proben enthaltenen Analytmolekülen, bei dem eine Analytmoleküle enthaltende Probe durch einen Messkanal (3), der innerhalb eines aus nichtmagnetischem oder nichtmagnetisierbarem Werkstoff gebildeten Gehäuses (1) ausgebildet ist, über einen am Boden des Messkanals (3) angeordneten sensitiven Flächenbereich (7) auf dem Liganden für die jeweiligen Analytmoleküle immobilisiert sind, geführt wird,
    beim Durchströmen des Messkanals (3) gelangt die Probe (2) in den Einflussbereich eines extern ausgebildeten Magnetfeldes, das mit zwei an beiden Seiten des Messkanals (3) angeordneten Permanentmagneten (5)und mittels mindestens einem oberhalb des Messkanals (3) angeordneten Elements (6) aus ferromagnetischem Werkstoff ausgebildet wird;
    so dass ein Gradient der magnetischen Feldstärke innerhalb des Messkanals (3) auftritt, der zu einer Kraftwirkung in Richtung Boden des Messkanals (3) und den sensitiven Flächenbereich (7) auf die Analytmoleküle führt, so dass diese in Richtung auf Liganden beschleunigt und an diesen gebunden werden, wobei
    bei dem mit zwei Permanentmagneten (5) ausgebildeten magnetischen Feld die Analytmoleküle eine Suszeptibilität > 0 aufweisen oder an Analytmoleküle Teilchen, deren Suszeptibiltät > 0 ist, gebunden sind.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass Permanentmagnete (5) mit einer Magnetisierung von mindestens 0,5 T eingesetzt werden.
  7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass für ein Spülen und/oder ein Entfernen unspezifisch gebundener Moleküle eine Spülflüssigkeit mit entgegen gesetzter Strömungsrichtung durch den Messkanal (3) oder eine Flüssigkeit mit einer höheren Suszeptibilität χfl als der Suszeptibilität χp der Analytmoleküle, bei gleichzeitig an den beiden Seiten des Messkanals (3) angeordneten Permanentmagneten (5) und unverändertem magnetischen Feld geführt wird.
  8. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass zum Entfernen unspezifisch gebundener Moleküle eine Spülflüssigkeit durch den Messkanal (3) geführt wird und dabei die beiden Permanentmagnete (5) an den Seiten entfernt werden und mindestens ein Permanentmagnet (8) oberhalb des Messkanals (3) und dem/den Element(en) (6) aus ferromagnetischem Werkstoff angeordnet wird.
  9. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass zur Erhöhung des Suszeptibilität χp der Analytmoleküle, diese an ferromagnetische, paramagnetische oder superparamagnetische Teilchen/Partikel vor dem Einführen der Probe in den Messkanal (3) gebunden werden.
EP10816365.0A 2009-11-18 2010-11-15 System und ein verfahren zur detektion von in flüssigen proben enthaltenen analytmolekülen Not-in-force EP2501475B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910055800 DE102009055800B4 (de) 2009-11-18 2009-11-18 System und ein Verfahren zur Detektion von in flüssigen Proben enthaltenen Analytmolekülen
PCT/DE2010/001366 WO2011060771A1 (de) 2009-11-18 2010-11-15 System und ein verfahren zur detektion von in flüssigen proben enthaltenen analytmolekülen

Publications (2)

Publication Number Publication Date
EP2501475A1 EP2501475A1 (de) 2012-09-26
EP2501475B1 true EP2501475B1 (de) 2016-03-30

Family

ID=43797833

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10816365.0A Not-in-force EP2501475B1 (de) 2009-11-18 2010-11-15 System und ein verfahren zur detektion von in flüssigen proben enthaltenen analytmolekülen

Country Status (4)

Country Link
EP (1) EP2501475B1 (de)
DE (1) DE102009055800B4 (de)
PL (1) PL2501475T3 (de)
WO (1) WO2011060771A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140014506A1 (en) * 2010-12-14 2014-01-16 The University Of Queensland Analyte transport
CN111999487B (zh) * 2020-08-25 2023-03-28 思远(广东)工程技术有限公司 一种用于蛋白质结晶的永磁封闭实验装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0920627B1 (de) * 1996-06-07 2004-05-12 Immunivest Corporation Magnetische trennung mit hilfe von externen und internen gradienten
TW496775B (en) * 1999-03-15 2002-08-01 Aviva Bioscience Corp Individually addressable micro-electromagnetic unit array chips
WO2001071034A2 (en) * 2000-03-22 2001-09-27 President And Fellows Of Harvard College Methods and apparatus for parallel magnetic biological analysis and manipulation
WO2002030562A1 (en) * 2000-10-10 2002-04-18 Aviva Biosciences Corporation An integrated biochip system for sample preparation and analysis
US7285412B2 (en) * 2001-07-27 2007-10-23 Surface Logix Inc. Device for magnetic immobilization of cells
US20030040129A1 (en) * 2001-08-20 2003-02-27 Shah Haresh P. Binding assays using magnetically immobilized arrays
US20040018611A1 (en) * 2002-07-23 2004-01-29 Ward Michael Dennis Microfluidic devices for high gradient magnetic separation
CN1280428C (zh) * 2003-05-19 2006-10-18 清华大学 一种基于微小颗粒的生物芯片系统及其应用
FR2863117B1 (fr) * 2003-11-28 2006-02-17 Commissariat Energie Atomique Microsysteme pour le deplacement de fluide
JP2006010535A (ja) * 2004-06-25 2006-01-12 Canon Inc 標的物質捕捉方法および装置
DE102004040785B4 (de) * 2004-08-23 2006-09-21 Kist-Europe Forschungsgesellschaft Mbh Mikrofluidisches System zur Isolierung biologischer Partikel unter Verwendung der immunomagnetischen Separation
EP2109505A1 (de) * 2007-02-07 2009-10-21 Koninklijke Philips Electronics N.V. Mittel zur trennung magnetischer partikel
DE102007012866A1 (de) 2007-03-09 2008-09-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Flusskanalsystem und Verfahren zum Anbinden von Analyten an Liganden
EP2149610B1 (de) * 2007-03-26 2018-05-16 Fundacion Gaiker Vorrichtung zum nachweis genetischen materials mittels polymerasekettenreaktion
GB0711861D0 (en) * 2007-06-19 2007-07-25 Univ Hull Method of operating a fluidic device and a fluidic device for use in the method
US9551706B2 (en) * 2007-06-29 2017-01-24 President And Fellows Of Harvard College Density-based methods for separation of materials, monitoring of solid supported reactions and measuring densities of small liquid volumes and solids
DE102008062620B4 (de) 2008-12-10 2012-12-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Detektion von in flüssigen Proben enthaltenen Analytmolekülen

Also Published As

Publication number Publication date
DE102009055800B4 (de) 2013-01-03
WO2011060771A1 (de) 2011-05-26
DE102009055800A1 (de) 2011-06-22
EP2501475A1 (de) 2012-09-26
PL2501475T3 (pl) 2016-09-30

Similar Documents

Publication Publication Date Title
DE102009047801B4 (de) Durchflusskammer mit Zellleiteinrichtung
DE69729101T2 (de) Magnetische trennung mit hilfe von externen und internen gradienten
DE69818650T2 (de) Gerät und methoden zum einfnag und zur analyse von partikel-einheiten
DE102004040785B4 (de) Mikrofluidisches System zur Isolierung biologischer Partikel unter Verwendung der immunomagnetischen Separation
DE102009012108B4 (de) Vorrichtung und Verfahren zur Anreicherung und Erfassung von Zellen in strömenden Medien
EP2212673B1 (de) Vorrichtung zur magnetischen detektion von einzelpartikeln in einem mikrofluidischen kanal
US20070207548A1 (en) Microflow System for Particle Separation and Analysis
DE102009035941A1 (de) Diagnostiksystem
EP2454020B1 (de) Vorrichtung und verfahren zur anreicherung von magnetpartikeln
CN110621313B (zh) 用于使用软磁结构拉动dna、rna和其它生物分子穿过纳米孔的方法和系统
EP2501475B1 (de) System und ein verfahren zur detektion von in flüssigen proben enthaltenen analytmolekülen
CA3090424C (en) Microfluidic device
WO2010076337A1 (de) Elektromagnetisches mikrosystem zur manipulation magnetischer mikro- oder nanoperlen
DE102011076051A1 (de) Magnetophoretische Analytselektion und -anreicherung
DE102011077905A1 (de) Hintergrundfreie magnetische Durchflusszytometrie
DE102012210457B4 (de) Verfahren und Anordnung zur partiellen Markierung und anschließenden Quantifizierung von Zellen einer Zellsuspension
DE10320869A1 (de) Verfahren und Vorrichtungen zur Flüssigkeitsbehandlung suspendierter Partikel
EP2668500B1 (de) Miniaturisierte magnetische durchflusszytometrie
DE102013100494B4 (de) Verfahren zur Abtrennung von paramagnetischem Material aus Tropfen auf Anforderung sowie ein System zur Abtrennung von paramagnetischem Material aus Tropfen auf Anforderung
DE102004062534B4 (de) Mikroreaktor
DE19706617C1 (de) Verfahren zur Zählung mikroskopischer Objekte
EP3669982B1 (de) Mikrofluidische vorrichtung, einrichtung und verfahren zur anreicherung und verdünnung von magnetischen molekularen einheiten
WO2013186049A1 (de) Verfahren und anordnung zur markierung von zellen in einer zellsuspension
DE102006018332B4 (de) Verfahren und Vorrichtung zur Fraktionierung von Blutzellen
DE19955169A1 (de) Verfahren und Vorrichtung zur Ausübung einer Kraft auf magnetische Partikel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120602

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151020

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 784769

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011374

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160701

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160730

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160801

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011374

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20201119

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201119

Year of fee payment: 11

Ref country code: GB

Payment date: 20201123

Year of fee payment: 11

Ref country code: IT

Payment date: 20201130

Year of fee payment: 11

Ref country code: DE

Payment date: 20201125

Year of fee payment: 11

Ref country code: CZ

Payment date: 20201105

Year of fee payment: 11

Ref country code: AT

Payment date: 20201117

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20201119

Year of fee payment: 11

Ref country code: PL

Payment date: 20201103

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010011374

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20211201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 784769

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211115

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211115

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211115